These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions  

NASA Technical Reports Server (NTRS)

The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (deltaG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.

Weber, Arthur L.

2002-01-01

2

Plasmon-driven sequential chemical reactions in an aqueous environment  

PubMed Central

Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

2014-01-01

3

CHEMICAL TRANSFORMATIONS USING NON-TRADITIONAL APPROACHES: MICROWAVE-ASSISTED GREENER SYNTHESES IN AQUEOUS MEDIA OR UNDER SOLVENT-FREE CONDITIONS  

EPA Science Inventory

Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a 'greener' chemical approach for expeditious N -alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N...

4

Uranium dioxide dissolution under acidic aqueous conditions  

SciTech Connect

Understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in a geologic repository, because waste-form radionuclides could be released by dissolution and transported in groundwater. The dissolution of the uranium dioxide (UO{sub 2}) matrix in spent nuclear fuel is considered the rate-limiting step for release of radioactive fission products. The intrinsic UO{sub 2} dissolution rate sets an upper limit on the aqueous radionuclide release rate. Unsaturated spent fuel tests have shown that pH`s of leachates have decreased to a range of 4 to 6, presumably due to air radiolysis that oxidizes nitrogen, producing nitric acid. Dissolution rates under such acidic conditions may be different than those previously reported for alkaline groundwater conditions. No dissolution rate measurements of UO{sub 2} or spent fuel have been reported for acidic conditions possibly relevant to a geologic repository. The purpose of our work has been to measure the intrinsic dissolution rates of uranium dioxide under acidic conditions that are relevant to a repository and allow for modeling. Experiments have been completed at room-temperature and 75 C, pH`s of 4 and 6, and air and oxygen saturated aqueous solutions. These are compared with earlier work on spent fuel and UO{sub 2} using alkaline solutions.

Steward, S.A.; Mones, E.T.

1995-11-20

5

Explosivity Conditions of Aqueous Solutions and L. Mercury2  

E-print Network

1 Explosivity Conditions of Aqueous Solutions R. Thiéry1 and L. Mercury2 Revised version February of explosive boiling and gas exsolution of aqueous solutions from a thermodynamic point of view. Indeed, the kinetic nature of these processes, hence their explosivity, can be assessed by considering their relation

Paris-Sud XI, Université de

6

CHEMICAL SYNTHESES IN AQUEOUS MEDIA USING MICROWAVES  

EPA Science Inventory

The development of efficient, selective and eco-friendly synthetic methods has remained a major focus of our research group. Microwave (MW) irradiation as alternative energy source in conjunction with water as reaction media has proven to be a successful 'greener' chemical appro...

7

Classes of Chemical Reactions Reactions in aqueous media  

E-print Network

acid, HBr Phosphoric acid, H3PO4 Hydroiodic acid, HI Acetic acid, CH3CO2H Nitric acid, HNO3 CarbonicClasses of Chemical Reactions Reactions in aqueous media · Precipitation reactions · Acid + electrolytes: a substance that conducts an electric current when dissolved in water Acids are donors of H

Zakarian, Armen

8

Application of chemically modified rice husk for the removal of heavy metals from aqueous solution.  

PubMed

The removal efficiency of lead, cadmium and zinc from aqueous solution on adsorption by using rice husk, a non-conventional material in its natural and chemically modified form has been presented in this paper. It has been observed that rate of adsorption is dependent on the nature of the adsorbent, adsorbent dose, particle size of the adsorbent, concentration, pH, contact time, temperature, etc. Under identical experimental condition chemically modified rice husk was found to possess greater adsorption capacity for all metals than untreated rice husk and chemically modified rice husk ash. Chemically modified rice husk could remove 99.8% Pb, 95% Cd and 97% Zn from aqueous solution at room temperature. PMID:21114100

Kayal, N; Sinhia, P K; Kundu, D

2010-01-01

9

Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs-Duhem equation consistency tests  

NASA Astrophysics Data System (ADS)

This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

Mou?ka, Filip; Nezbeda, Ivo; Smith, William R.

2013-09-01

10

Aqueous extracts from dentin adhesives contain cytotoxic chemicals.  

PubMed

It was the aim of our study to investigate the composition and cytotoxicity of aqueous elutes from five dentin adhesives currently used in clinical practice: Solobond Plustrade mark, Solisttrade mark, Scotchbond Multipurposetrade mark, Syntac SCtrade mark, and Prime & Bondtrade mark 2.1. Water extracts were analyzed by gas chromatography/mass spectrometry (GC/MS) and relative quantities of identified compounds were compared by means of an internal caffeine standard [%CF]. The in vitro cytotoxic effects of substances released into DMEM were determined using immortalized 3T3-fibroblast cultures. In addition, the cytotoxicity of ethylene glycol (EG), which was identified in the extracts of Syntac SC, was evaluated. All dentin adhesives tested released various chemical components, like comonomers (mainly ethylene glycol compounds), HEMA, and initiating substances (e.g., camphorquinone). Elutes of Solobond Plus, which contained very high amounts of TEGDMA, were extremely cytotoxic. Two bonding agents (Scotchbond Multi-purpose, Syntac SC), which released significant quantities of HEMA, induced severe cytotoxic effects. In contrast, extracts from Solist and Prime & Bond 2.1 had very small effects on cell proliferation; these elutes contained small amounts of released chemical compounds. EG, a product of HEMA hydrolysis, in concentrations ranging from 0.025-25 mM was not cytotoxic. In summary, these results provide evidence that all dentin adhesives tested in the present study release in aqueous media chemical compounds some of which (for example, TEGDMA and HEMA) are cytotoxic. PMID:10556839

Geurtsen, W; Spahl, W; Mller, K; Leyhausen, G

1999-01-01

11

Organic-based sensor for chemical detection in aqueous solution  

NASA Astrophysics Data System (ADS)

We present a flexible, pentacene-based field-effect device, for the detection of chemical species in aqueous solution. The sensor consists in a double-gate transistor, where the detection is achieved by exploiting the charge sensing capabilities of the floating-gate terminal. To provide the pH-sensitivity, the floating gate is functionalized with thioamine groups as such groups protonize proportionally to the concentration of H3O+ ions in solution. With respect to the existing organic-based devices for pH monitoring, our sensor does not require a counterelectrode and the organic semiconductor is not affected by the contact with the monitored solution.

Caboni, A.; Orgiu, E.; Scavetta, E.; Barbaro, M.; Bonfiglio, A.

2009-09-01

12

Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioacetamide  

Microsoft Academic Search

Chemical bath deposition of indium sulfide thin films from aqueous mixtures containing indium chloride and thioacetamide under the two extreme reaction conditions, namely, at 30 and 70 C, has been examined in order to obtain further insights for understanding the reaction mechanism. The S\\/In ratio of both the films and the precipitates was low at the early stage of the

Koichi Yamaguchi; Tsukasa Yoshida; Hideki Minoura

2003-01-01

13

DERMAL ABSORPTION OF CHEMICALS: EFFECT OF APPLICATION OF CHEMICAL AS A SOLID, AQUEOUS PASTE, SUSPENSION OR IN VOLATILE VEHICLE  

EPA Science Inventory

The purpose of this study was to investigate the dermal absorption of chemicals applied to female F344 rats in different physical forms. hese forms included chemical as a solid, aqueous paste, suspension or dissolved in the volatile vehicle ethanol. he chemicals investigated were...

14

Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae.  

PubMed

This study examined the chemical characteristics and the anaerobic degradability of the aqueous product from hydrothermal liquefaction (HTL-ap) from the conversion of mixed-culture algal biomass grown in a wastewater treatment system. The effects of the HTL reaction times from 0 to 1.5h, and reaction temperatures from 260C to 320C on the anaerobic degradability of the HTL-ap were quantified using biomethane potential assays. Comparing chemical oxygen demand data for HTL-ap from different operating conditions, indicated that organic matter may partition from organic phase to aqueous phase at 320C. Moderate lag phase and the highest cumulative methane production were observed when HTL-ap was obtained at 320C. The longest lag phase and the smallest production rate were observed in the process fed with HTL-ap obtained at 300C. Nevertheless, after overcoming adaptation issues, this HTL-ap led to the second highest accumulated specific methane production. Acetogenesis was identified as a possible rate-limiting pathway. PMID:25455086

Tommaso, Giovana; Chen, Wan-Ting; Li, Peng; Schideman, Lance; Zhang, Yuanhui

2015-02-01

15

Chemical breakdown of coal under restricted conditions  

SciTech Connect

A change in the aggregate state of economic minerals lies at the base of a number of promising methods for developing deposits. Chemical breakdown has been applied to bituminous and brown coals under laboratory conditions by the action of certain solvents, and specimens freely located in solution have been studied. An exception to this is work where chemical breakdown of coal is combined with uniaxial compression of specimens. In this case the action of the disintegrating liquid is reduced to a Rebinder effect, intensifying crack formation under the action of mechanical stress.

Kulakov, V.N.; Muchnik, S.V.; Smirnova, G.T.

1985-05-01

16

MINEQL-EIR. Chemical Equilibrium Composition of Aqueous Systems  

SciTech Connect

MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.

Westall, J.C.; Zachary, J.L.; Morel, F.M.M [Massachusetts Institute of Technology, Cambridge (United States); Schweingruber, M. [Eidgenoessisches Institut for Reaktorforschung, Wuerenlingen (Switzerland)

1986-11-21

17

The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous Solutions  

E-print Network

The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous as a function of salt concentration, (b) compare the behavior of the protein chemical potential for the three salts, which we found to be consistent with the Hofmeister series, and (c) discuss our thermodynamic

Annunziata, Onofrio

18

Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.  

PubMed

Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product. PMID:25116442

Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

2014-09-17

19

Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions  

PubMed Central

Purpose To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group) in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV) and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V). Results Mean aqueous PO2 in groups I, II and III was 112.36.2, 141.120.4, and 170.127 mmHg, respectively (P values <0.001) and mean arterial PO2 was 85.77.9, 184.646, and379.175.9 mmHg, respectively (P values <0.001). Aqueous PO2 was 77.29.2 mmHg in group IV and 152.310.9 mmHg in group V (P values <0.001). There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001). The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels. PMID:23943686

Sharifipour, Farideh; Idani, Esmaeil; Zamani, Mitra; Helmi, Toktam; Cheraghian, Bahman

2013-01-01

20

Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.  

PubMed

Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed. PMID:25609552

McNeill, V Faye

2015-02-01

21

Chemical Absorption of Carbon Dioxide into Aqueous Colloidal Silica Solution with Diethanolamine  

Microsoft Academic Search

The chemical absorption rate (RA) of CO2 was measured into the aqueous nanometer sized colloidal silica solution of 031wt% and diethanoleamine of 02kmol\\/m in the flat?stirred vessel with the impeller size of 0.034m and its agitation speed of 50rev\\/min at 25C and 0.101MPa, and compared with the values estimated from the model based on the film theory accompanied by chemical

2006-01-01

22

CHEMICAL ACCUMULATION IN PLANT TISSUES FROM AQUEOUS EXPOSURE  

EPA Science Inventory

Predictive models have been designed to investigate plant-water distribution coefficients and to study the dynamics of chemical accumulation in aquatic plant organs. nitial model testing has been completed in laboratory studies using two chlorinated benzenes and three species of ...

23

Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves  

Microsoft Academic Search

Moringa oleifera leaves (MOL); an agro-waste material has been used as a precursor to prepare a new biosorbent. The leaves were washed with base and citric acid, and obtained new chemically modified MOL biosorbent (CAMOL) for sequestration of Pb(II) from aqueous solution. The biosorbent was characterized by SEM, FTIR spectral and elemental analyses. The effect of experimental parameters such as

D. Harikishore Kumar Reddy; Y. Harinath; K. Seshaiah; A. V. R. Reddy

2010-01-01

24

Chemical-equilibrium calculations for aqueous geothermal brines  

SciTech Connect

Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

Kerrisk, J.F.

1981-05-01

25

Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.  

PubMed

Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer. PMID:23285641

Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

2012-01-01

26

GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS  

EPA Science Inventory

Green chemical synthesis through catalysis and alternate reaction conditions Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

27

FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS  

EPA Science Inventory

The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

28

Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions  

DOEpatents

Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

Giese, R.W.; Wang, P.

1996-04-30

29

Selection among aqueous and off-gas treatment technologies for synthetic organic chemicals  

SciTech Connect

A methodology for selecting the least-cost treatment technology for waters contaminated by organic wastes was developed using performance and cost models. This methodology simplifies the selection of the least expensive treatment process(es) for a given set of conditions. Two aqueous-phase treatment options were considered: air stripping and liquid-phase adsorption (granular activated carbon). When the off-gases from air stripping must be treated, four off-gas treatment options were considered: gas-phase adsorption (with both on- and off-site regeneration of the granular activated carbon), thermal incineration, and catalytic oxidation. Methodologies were developed for rapidly selecting the least-cost off-gas treatment option [for volatile organic compound (VOC) sources such as an air stripping tower], for selecting the least-cost overall (liquid and gas phase treatment) system, and for selecting the least-cost overall system for a multicomponent mixture. The comparison methodology is based on physical parameters of the target chemical: Henry`s constant and the solute distribution parameter. The results are a set of diagrams and heuristics for rapid identification of cases for which one treatment option is significantly less expensive than the other.

Dvorak, B.I. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Civil Engineering; Herbeck, C.J. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Meurer, C.P. [Bee County Coll., Beeville, TX (United States); Lawler, D.F.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1996-07-01

30

Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species  

PubMed Central

The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatographmass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

2014-01-01

31

Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species.  

PubMed

The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph-mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

2014-01-01

32

Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution  

NASA Astrophysics Data System (ADS)

Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

2014-07-01

33

Indium sulfide thin films deposited by chemical spray of aqueous and alcoholic solutions  

Microsoft Academic Search

In2S3 films were grown by pneumatic chemical spray method using aqueous and alcoholic solutions containing InCl 3 and SC(NH2)2 at molar ratios of [In]\\/[S]=1\\/3 and 1\\/6. Films were deposited onto preheated glass sheets in air at heater (molten Sn bath) temperatures of 250 and 330C. Films were characterized by means of XRD, SEM, UV-VIS spectra and XPS. ?- In2S3 films

K. Otto; A. Katerski; O. Volobujeva; A. Mere; M. Krunks

2011-01-01

34

Chemical characterization of some aqueous leachates from crop residues in 'CELSS'  

NASA Technical Reports Server (NTRS)

Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.

Madsen, Brooks C.

1992-01-01

35

Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads  

Microsoft Academic Search

A batch system was applied to study the adsorption of reactive dye (reactive red 189) from aqueous solutions by cross-linked chitosan beads. The ionic cross-linking reagent sodium tripolyphosphate was used to obtain more rigid chitosan beads. To stabilize chitosan in acid solutions, chemical cross-linking reagent epichlorohydrin (ECH), glutaraldehyde and ethylene glycol diglycidyl ether was used and ECH shows a higher

M. S Chiou; H. Y Li

2003-01-01

36

Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.  

PubMed

An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C. PMID:19485372

Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

2009-07-21

37

Phyto-chemical evaluation of dried aqueous extract of Jivanti [Leptadenia reticulata (Retz.) Wt. et Arn].  

PubMed

Jivanti (Leptadenia reticulata (Retz.) Wt. et Arn) is a well known climber used for its innumerable therapeutic properties like antioxidant, antibacterial, vasodilator, galactogogue, Jivaniya, etc., Its use in veterinary practice is tremendous due to its lactogenic effect. The Ghana (dried aqueous extract) of the whole plant was prepared and evaluated phyto-chemically by subjecting it to various tests like physico-chemical, qualitative analysis; TLC and HPTLC. Qualitative tests revealed the presence of flavonoids and TLC also inferred positive Rf value (0.30), indicating the presence of quercetin in the Ghana. PMID:23723676

Pal, Atanu; Sharma, Parmeshwar P; Pandya, Tarulata N; Acharya, Rabinarayan; Patel, Bhupesh R; Shukla, Vinay J; Ravishankar, B

2012-10-01

38

Methods and additives for delaying the release of chemicals in aqueous fluids  

SciTech Connect

Additives are provided for bringing about the delayed release of a chemical such as a gel breaker or demulsifier in an aqueous fluid such as a gelled oil well hydraulic fracturing or fracture-acidizing fluid. The additives are pelletized solids consisting of the chemical to be released such as sodium laryl sulfate. A gelling agent capable of being hydrated such as a polysaccharide, and a breaker for the gel produced by the gelling agent when hydrated such as a persulfate or an enzyme. 33 claims.

Burnham, J.W.; Briscoe, J.E.; Elphingstone, E.A.

1980-05-13

39

Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions  

PubMed Central

The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earths climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl]>?1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl]

Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

2010-01-01

40

Dynamic sodium chemical shift imaging for the study of aqueous humor flow.  

PubMed

Ocular images were obtained using sodium chemical shift imaging (CSI) and 1,4,7,10-tetraazacyclododecane-N,N'N",N"'-tetramethylenephospho nate thulium (III) [Tm(DOTP)5-], a paramagnetic chemical shift reagent. After injecting the shift reagent into the anterior chamber of rabbits, serial imaging was done, monitoring the change in chemical shift with time. Sodium CSI produced images of the eye in three dimensions, quantitatively depicting the spatial and temporal changes in the concentration of a paramagnetic tracer substance. The Tm(DOTP)5- is eliminated from the anterior chamber by first-order kinetics with a half-life of 49 min. These data suggest that this substance is eliminated from the anterior chamber at the same rate as aqueous humor is replaced. Sodium CSI shows promise as a valuable technique for monitoring fluid dynamics in the living eye. PMID:2071335

Weinberg, D V; Kolodny, N H; Kohler, S J; Burr, T A; Celi, A; D'Amico, D J; Gragoudas, E S

1991-07-01

41

Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.  

PubMed

Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. PMID:24552655

Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peuela, Gustavo A

2014-04-15

42

Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories.  

PubMed

The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions). PMID:25479067

Husar, Richard; Hbner, Ren; Hennig, Christoph; Martin, Philippe M; Chollet, Mlanie; Weiss, Stephan; Stumpf, Thorsten; Znker, Harald; Ikeda-Ohno, Atsushi

2014-12-23

43

Solubility of platinum in aqueous solutions at 25C and pHs 4 to 10 under oxidizing conditions  

E-print Network

Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions to those found in such environments. The solubility of platinum metal was measured at 25°C in several strength of the aqueous solutions did not exceed 0.30 (molal scale). The interpretation of the solubility

Boyer, Edmond

44

Impact of imposed anaerobic conditions and microbial activity on aqueous-phase solubility of polycyclic aromatic hydrocarbons from soil.  

PubMed

The influence of anaerobic conditions on aqueous-phase polycyclic aromatic hydrocarbon (PAH) bioavailability was investigated in laboratory microcosms. Highly aged (>70 years), PAH-contaminated soil was incubated under anaerobic conditions by using various anaerobic headspaces, anaerobic headspaces with an oxygen-scavenging complex (titanium(III) citrate) in the aqueous phase, or anaerobic headspaces with electron-acceptor amendments in the aqueous phase. Incubation of soil solely under anaerobic conditions resulted in increased aqueous concentrations of all PAHs tested (fluoranthene, pyrene, benz[a]anthracene, and benzo[a]pyrene). Benz[a]anthracene and benzo[a]pyrene extractable concentrations were above aqueous solubility, by as much as an order of magnitude for the latter. The degree of solubility increase observed was a function of molecular weight of the PAH regardless of initial soil concentration, suggesting formation of stable PAH-soluble organic matter associations. The soil samples incubated aerobically for 90 d before imposition of anaerobic conditions did not release PAHs to the aqueous phase. Methanogenic organisms and sulfate-reducing bacteria were seen to have the most significant effect on increases in aqueous-phase PAHs. Polycyclic aromatic hydrocarbons made more soluble under anaerobic conditions was available to be degraded or transformed under aerobic conditions. PMID:15719987

Pravecek, Tasha L; Christman, Russell F; Pfaender, Frederic K

2005-02-01

45

Assessment and Correction of Turbidity Effects on Raman Observations of Chemicals in Aqueous Solutions.  

PubMed

Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in-lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements,yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 ?m were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution. PMID:25357083

Sinfield, Joseph V; Monwuba, Chike

2014-11-01

46

Chemical disinfection under conditions of microgravity  

NASA Astrophysics Data System (ADS)

There is enormous potential for point-of-use water purifiers where central water treatment does not exist or distribution systems are faulty and allow incursion of pathogenic organisms after primary treatment. Manned space missions on the Space Shuttle and planned missions on the Space Station also employ point-of-use water purifiers termed microbial check valves (MCVs). Polyiodide resin materials in use on the Space Shuttle within the MCV and in terrestrial water purifiers, silver and copper chelex resins, zirconium peroxide chelex resin, and a quaternary ammonium compound-Dow Corning 5700-polymerized to carbon and polystyrene beads, were compared for disinfection ability. Experiments were conducted in fluid processing apparatus (FPAs) at unit gravity and in microgravity conditions aboard seven STS missions. These new materials may have applications in both space and terrestrial water treatment devices.

Marchin, George L.

1997-01-01

47

Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution  

NASA Technical Reports Server (NTRS)

This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

Catling, David C.

2004-01-01

48

Reaction mechanisms of aqueous monoethanolamine with carbon dioxide: a combined quantum chemical and molecular dynamics study.  

PubMed

Aqueous monoethanolamine (MEA) has been extensively studied as a solvent for CO2 capture, yet the underlying reaction mechanisms are still not fully understood. Combined ab initio and classical molecular dynamics simulations were performed to revisit and identify key elementary reactions and intermediates in 25-30 wt% aqueous MEA with CO2, by explicitly taking into account the structural and dynamic effects. Using static quantum chemical calculations, we also analyzed in more detail the fundamental interactions involved in the MEA-CO2 reaction. We find that both the CO2 capture by MEA and solvent regeneration follow a zwitterion-mediated two-step mechanism; from the zwitterionic intermediate, the relative probability between deprotonation (carbamate formation) and CO2 removal (MEA regeneration) tends to be determined largely by the interaction between the zwitterion and neighboring H2O molecules. In addition, our calculations clearly demonstrate that proton transfer in the MEA-CO2-H2O solution primarily occurs through H-bonded water bridges, and thus the availability and arrangement of H2O molecules also directly impacts the protonation and/or deprotonation of MEA and its derivatives. This improved understanding should contribute to developing more comprehensive kinetic models for use in modeling and optimizing the CO2 capture process. Moreover, this work highlights the importance of a detailed atomic-level description of the solution structure and dynamics in order to better understand molecular mechanisms underlying the reaction of CO2 with aqueous amines. PMID:25382097

Hwang, Gyeong S; Stowe, Haley M; Paek, Eunsu; Manogaran, Dhivya

2015-01-14

49

Theoretical study of the dimerization of calcium carbonate in aqueous solution under natural water conditions  

NASA Astrophysics Data System (ADS)

First principles calculations have been used to investigate the condensation reactions of hydrated calcium bicarbonate monomers in a simulated aqueous environment. The reaction pathway for the calcium bicarbonate dimerization process has been computed at the density functional theory-PBE level with the COSMO dielectric continuum model to simulate the hydrated environment. The results indicate that calcium bicarbonate dimers form via an associative mechanism: the first step involves a sevenfold calcium bicarbonate intermediate followed by the loss of one water molecule from the first coordination shell of calcium. Both steps are characterised by a low energy barrier of approximately 2 kcal mol -1, suggesting that the dimerization process is not kinetically hindered in aqueous solution. However, the Gibbs free energies for the condensation reactions to form the calcium bicarbonate dimers and the species Ca(HCO 3) 2(H 2O) 4, Ca(HCO 3) 3(H 2O) 3- and Ca 2(HCO 3)(H 2O) 103+, computed using the PBE and mPW1B95 density functional theory levels for the gas-phase component and the UAHF-CPCM solvation model for the hydration contribution, are all positive, which indicates that the formation of these early calcium bicarbonate clusters is thermodynamically unfavourable in aqueous solutions. Our calculations therefore suggest that the oligomerization of calcium carbonate is not spontaneous in water, at the conditions considered in our simulations, i.e. T = 298 K and neutral pH, which indicates that the nucleation of calcium carbonate cannot occur through a homogeneous process when calcium-bicarbonate ion pairs are the major source of CaCO 3 in the aqueous environment.

Di Tommaso, Devis; de Leeuw, Nora H.

2009-09-01

50

CO? carbonation under aqueous conditions using petroleum coke combustion fly ash.  

PubMed

Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. PMID:25000300

Gonzlez, A; Moreno, N; Navia, R

2014-12-01

51

Chemical and Isotopic Study of Lab-formed Carbonates Under Cryogenic and Hydrothermal Conditions  

NASA Technical Reports Server (NTRS)

Aqueous environments on early Mars were probably relatively short-lived and localized, as evidenced by the lack of abundant secondary minerals detected by the TES instrument. In order to better understand the aqueous history of early Mars we need to be able to interpret the evidence preserved in secondary minerals formed during these aqueous events. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments as illustrated by the carbonates preserved in ALH84001. Carbonates formed in short-lived, dynamic aqueous events often preserve kinetic rather than equilibrium chemical and isotopic processes, and predicting the behavior of such systems is facilitated by empirical data.

Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Golden, D. C.; Ming, D. W.; Gibson, E. K.

2004-01-01

52

Comprehensive study of the chemical reactions resulting from the decomposition of chloroform in alkaline aqueous solution  

NASA Astrophysics Data System (ADS)

Chloroform (CHCl3) is a volatile liquid, which has a rather slow rate of decomposition in ground water. It is a known carcinogen and one of the most common contaminants found at toxic waste sites. The dominant degradation process for chloroform in both the atmosphere and the groundwater is the reaction with the hydroxyl radical or hydroxide ion. This process triggers a sequence of reactions which ultimately yield carbon monoxide, hydrogen chloride, and formic acid. The rate of chloroform degradation is considerably larger in solution than that in the gas phase and it increases dramatically with increasing pH. However, only one of the viable reactions had been studied previously at a high level of theory in solution. It is of great interest to gain a deeper understanding of the decomposition reaction mechanism. Quantum mechanical methods are well suited for studying the mechanism of organic reactions. However, a full quantum mechanical treatment of the entire fluid system is not computationally feasible. In this work, combined quantum mechanical and molecular mechanical (QM/MM) methods are used for studying chemical reactions in condensed phases. In these calculations, the solute molecules are treated quantum mechanically (QM), whereas the solvent molecules are approximated by empirical (MM) potential energy functions. The use of quantum mechanics and statistical sampling simulation is necessary to determine the reaction free energy profile. In the present study, the ab initio Hartree-Fock theory along with the 3-21G basis set was used in the quantum mechanical calculations to elucidate the reaction pathways of chloroform decomposition, with a focus on basic reaction conditions. Statistical mechanical Monte Carlo approach was then applied in molecular mechanical simulations, employing the empirical TIP3P model for water. We employed state-of-the-art electronic structure methods to determine the gas-phase inter-nuclear potential energy profile for all the relevant reactions. Each gas-phase potential energy profile obtained at a high level of theory was used as a post-correction of the corresponding reaction free energy profile in aqueous solution. A detailed picture of the actual mechanism driving the decomposition pathway of chloroform has emerged from these simulations.

Estevez Mews, Jorge

53

EVALUATION OF CHEMICAL AMENDMENTS FOR PH AND REDOX STABILIZTION IN AQUEOUS SUSPENSIONS OF THREE CALIFORNIA SOILS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Many chemically and biologically important trace element, heavy metal, and organic contaminant reactions in soils are constrained by pH and redox conditions and changes in these conditions can significantly affect reaction rates. Although closed-system, batch methods have been used for many years to...

54

Detailed investigation of the radical-induced destruction of chemical warfare agent simulants in aqueous solution.  

PubMed

The persistence of delivered chemical warfare agents (CWAs) in a variety of environmental matrices is of serious concern to both the military and civilian populations. Ultimately understanding all of the degradation pathways of the various CWAs in different environmental matrices is essential for determining whether native processes would offer sufficient decontamination of a particular material or if active chemical decontamination is required. Whereas much work on base-promoted chemical degradation has been reported, additional remediation strategies such as the use of advanced oxidation or reduction process free radical treatments may also be a viable option. We have examined here the primary kinetics and reaction mechanisms for an extensive library of chemical warfare agent simulants with the oxidizing hydroxyl radical and reducing hydrated electrons in water. From these values, it is seen that the reductive destruction occurs primarily through a single mechanism, consisting of hydrated electron capture at the phosphorus group with subsequent elimination, whereas hydroxyl radical oxidation shows two separate reaction mechanisms, dependent on the aqueous pK(a) of the leaving group. PMID:20469938

Abbott, Amberashley; Sierakowski, Tim; Kiddle, James J; Clark, Kristin K; Mezyk, Stephen P

2010-06-10

55

Validity conditions for moment closure approximations in stochastic chemical kinetics  

NASA Astrophysics Data System (ADS)

Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.

Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

2014-08-01

56

Resistance to chemical disinfection under conditions of microgravity  

NASA Astrophysics Data System (ADS)

In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

Marchin, George L.

1998-01-01

57

Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol  

NASA Astrophysics Data System (ADS)

Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

Kitanovski, Z.; ?usak, A.; Grgi?, I.; Claeys, M.

2014-08-01

58

Semiconducting Polymer Encapsulated Mesoporous Silica Particles with Conjugated Europium Complexes: Toward Enhanced Luminescence under Aqueous Conditions.  

PubMed

Immobilization of lanthanide organic complexes in meso-organized hybrid materials for luminescence applications have attracted immense interest due to the possibility of controlled segregation at the nanoscopic level for novel optical properties. Aimed at enhancing the luminescence intensity and stability of the hybrid materials in aqueous media, we developed polyvinylpyrrolidone (PVP) stabilized, semiconducting polymer (poly(9-vinylcarbazole), PVK) encapsulated mesoporous silica hybrid particles grafted with Europium(III) complexes. Monosilylated ?-diketonate ligands (1-(2-naphthoyl)-3,3,3-trifluoroacetonate, NTA) were first co-condensed in the mesoporous silica particles as pendent groups for bridging and anchoring the lanthanide complexes, resulting in particles with an mean diameter of ?450 nm and a bimodal pore size distribution centered at 3.5 and 5.3 nm. PVK was encapsulated on the resulted particles by a solvent-induced surface precipitation process, in order to seal the mesopores and protect Europium ions from luminescence quenching by producing a hydrophobic environment. The obtained polymer encapsulated MSN-EuLC@PVK-PVP particles exhibit significantly higher intrinsic quantum yield (?Ln = 39%) and longer lifetime (?obs = 0.51 ms), as compared with those without polymer encapsulation. Most importantly, a high luminescence stability was realized when MSN-EuLC@PVK-PVP particles were dispersed in various aqueous media, showing no noticeable quenching effect. The beneficial features and positive attributes of both mesoporous silica and semiconducting polymers as lanthanide-complex host were merged in a single hybrid carrier, opening up the possibility of using these hybrid luminescent materials under complex aqueous conditions such as biological/physiological environments. PMID:25289897

Zhang, Jixi; Prabhakar, Neeraj; Nreoja, Tuomas; Rosenholm, Jessica M

2014-11-12

59

Aqueous suspension of anise Pimpinella anisum protects rats against chemically induced gastric ulcers  

PubMed Central

AIM: To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise, Pimpinella anisum L. on experimentally-induced gastric ulceration and secretion in rats. METHODS: Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol, 0.2 mol/L NaOH, 25% NaCl and indomethacin. Anti-secretory studies were undertaken using pylorus-ligated Shay rat technique. Levels of gastric non-protein sulfhydryls (NP-SH) and wall mucus were estimated and gastric tissue was also examined histologically. Anise aqueous suspension was used in two doses (250 and 500 mg/kg body weight) in all experiments. RESULTS: Anise significantly inhibited gastric mu-cosal damage induced by necrotizing agents and indomethacin. The anti-ulcer effect was further confirmed histologically. In pylorus-ligated Shay rats, anise suspension significantly reduced the basal gastric acid secretion, acidity and completely inhibited the rumenal ulceration. On the other hand, the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration. CONCLUSION: Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions. The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties. PMID:17373749

Al Mofleh, Ibrahim A; Alhaider, Abdulqader A; Mossa, Jaber S; Al-Soohaibani, Mohammed O; Rafatullah, Syed

2007-01-01

60

In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions  

NASA Astrophysics Data System (ADS)

Carbonate minerals may be recycled into the mantle at subduction zones. However, the evolution of carbonate minerals in equilibrium with aqueous fluids as well as the nature of the chemical species of dissolved carbon in the deep crust and mantle at high PT conditions are still unknown. In this study, we report an integrated experimental and theoretical study of the equilibration of CaCO3 minerals with pure water at subduction zone conditions over the pressure and temperature ranges 5-80 kbar and 300-400 C. The fluid speciation was studied using in situ Raman spectroscopy. The relative amounts of dissolved carbonate and bicarbonate were estimated from the corrected areas of the Raman bands of the carbonate and bicarbonate ions and used to constrain a theoretical thermodynamic model of the fluid speciation and solubility of aragonite. At 300-400 C, our results indicate that the proportion of dissolved C present as CO2 strongly decreases in fluids in equilibrium with aragonite at P > 10 kbar. CO2 is replaced by HCO3- and CaHCO3+ which predominate until P > 40 kbar, where CO32- and CaCO30 become the dominant C-species. At higher temperatures, the theoretical model indicates that CO2 again becomes a major species in fluids in equilibrium with aragonite depending on the pressure.

Facq, Sbastien; Daniel, Isabelle; Montagnac, Gilles; Cardon, Herv; Sverjensky, Dimitri A.

2014-05-01

61

Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents.  

PubMed

Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd(2+) and Pb(2+) ions at pH 2.0-9.0 and agitation time of 30-390 min. Optimum biosorption conditions were pH 4 for Pb(2+) ions and pH 5 for Cd(2+) ions, contact time was 3.5 hours at 24 1 C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10-17% biosorption efficiency enhancement for Cd(2+) ions and a 1.6-2.3% reduction effect for Pb(2+) ions. The sorption capacities for Cd(2+) and Pb(2+) ions for treated biosorbents were 1.760-1.738 mg g(-1) compared to 1.415-1.539 mg g(-1) for untreated materials. The pseudo second-order model suitably fitted the Cd(2+) and Pb(2+) ions biosorption data with regression coefficients (R(2)) of 0.9784-0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd(2+) ions and the untreated materials suitable for removing Pb(2+) ions from contaminated aqueous media. PMID:24901616

Bakyayita, G K; Norrstrm, A C; Nalubega, M; Kulabako, R N

2014-01-01

62

Chemical bonding in aqueous ferrocyanide: experimental and theoretical X-ray spectroscopic study.  

PubMed

Resonant inelastic X-ray scattering (RIXS) and X-ray absorption (XA) experiments at the iron L- and nitrogen K-edge are combined with high-level first-principles restricted active space self-consistent field (RASSCF) calculations for a systematic investigation of the nature of the chemical bond in potassium ferrocyanide in aqueous solution. The atom- and site-specific RIXS excitations allow for direct observation of ligand-to-metal (Fe L-edge) and metal-to-ligand (N K-edge) charge-transfer bands and thereby evidence for strong ?-donation and ?-backdonation. The effects are identified by comparing experimental and simulated spectra related to both the unoccupied and occupied molecular orbitals in solution. PMID:24450820

Engel, Nicholas; Bokarev, Sergey I; Suljoti, Edlira; Garcia-Diez, Raul; Lange, Kathrin M; Atak, Kaan; Golnak, Ronny; Kothe, Alexander; Dantz, Marcus; Khn, Oliver; Aziz, Emad F

2014-02-13

63

Helical CdS nanowire ropes by simple aqueous chemical growth  

NASA Astrophysics Data System (ADS)

Long and flexible crystalline CdS nanowire ropes were synthesized in bulk quantities via a simple aqueous chemical growth route, which has previously been successful for the growth of short CdS nanorods. The as-grown CdS nanoropes exhibit a unique helically twisted structural feature, as confirmed by both microscopic observation and circular dichroism spectroscopic characterization. The nucleation and growth kinetics of these related CdS one-dimensional(1D) nanocrystals was investigated by monitoring the temporal evolution of the UV-visible spectrum. It was found that cadmium and sulfide monomers were first nucleated out as "magic number" CdS nanoclusters in the initial nucleation stage, and then grew to regular sized CdS 1D nanocrystals during the subsequent Ostwald ripening process.

Wang, Wenlong; Bai, Fenglian

2005-11-01

64

Structure of a Novel Enzyme That Catalyzes Acyl Transfer to Alcohols in Aqueous Conditions  

SciTech Connect

The unusual architecture of the enzyme (MsAcT) isolated from Mycobacterium smegmatis forms the mechanistic basis for favoring alcoholysis over hydrolysis in water. Unlike hydrolases that perform alcoholysis only under anhydrous conditions, MsAcT demonstrates alcoholysis in substantially aqueous media and, in the presence of hydrogen peroxide, has a perhydrolysis:hydrolysis ratio 50-fold greater than that of the best lipase tested. The crystal structures of the apoenzyme and an inhibitor-bound form have been determined to 1.5 {angstrom} resolution. MsAcT is an octamer in the asymmetric unit and forms a tightly associated aggregate in solution. Relative to other structurally similar monomers, MsAcT contains several insertions that contribute to the oligomerization and greatly restrict the shape of the active site, thereby limiting its accessibility. These properties create an environment by which MsAcT can catalyze transesterification reactions in an aqueous medium and suggests how a serine hydrolase can be engineered to be an efficient acyltransferase.

Mathews, I.; Soltis, M.; Saldajeno, M.; Ganshaw, G.; Sala, R.; Weyler, W.; Cervin, M.A.; Whited, G.; Bott, R.

2009-06-03

65

"Studying the electrochemical and chemical conditions of corrosion in  

E-print Network

"Studying the electrochemical and chemical conditions of corrosion in mission critical systems of Virginia Charlottesville, VA 434.982.5783 Center for Electrochemical Science & Engineering Corrosion, the degradation of materials, has a massive economic impact. The estimated annual cost of corrosion to the U

Acton, Scott

66

Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products  

NASA Astrophysics Data System (ADS)

One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4-nitroguaiacol, 6-nitroguaiacol and 4,6-dinitroguaiacol) were examined for their presence in winter aerosol samples by using an optimized HPLC-(-)ESI-MS/MS. 4-nitroguaiacol and 4,6-dinitroguaiacol were unambiguously identified in winter PM10 from Ljubljana, Slovenia, whereas the absence of 6-nitroguaiacol was further explained with the help of long-term reaction monitoring. To our knowledge, our study represents the first report on the identification of 4,6-dinitroguaiacol in ambient aerosols. Laskin, A. et al. (2009) Environ. Sci. Technol. 43, 3764-3771. Maenhaut, W. et al. (2012) Sci. Tot. Environ. 437, 226-236. Claeys, M. et al. (2012) Environ. Chem. 9, 273-284. Iinuma, Y. et al. (2010) Environ. Sci. Technol. 44, 8453-8459. Kitanovski, Z. et al. (2012)J. Chromatogr. A 1268, 35-43.

Grgi?, Irena; Kitanovski, Zoran; Krofli?, Ana; ?usak, Alen

2014-05-01

67

Aqueous Dissolution of Silver Iodide and Associated Iodine Release Under Reducing Conditions with Sulfide  

SciTech Connect

Aqueous dissolution tests of silver iodide (AgI) were performed in Na{sub 2}S solutions in order to evaluate, empirically, dissolution of AgI to release iodine under reducing conditions with sulfide. The results indicated that AgI dissolves to release iodine being controlled by mainly precipitation of Ag{sub 2}S. However, the dissolution of AgI can be depressed to proceed, and the thermodynamic equilibrium cannot be attained easily. Solid phase analysis for the reacted AgI suggested that a thin layer of solid silver forming at AgI surface may evolve to be protective against transportation of reactant species, which can lead to the depression in the dissolution of AgI. (authors)

Yaohiro Inagaki; Toshitaka Imamura; Kazuya Idemitsu; Tatsumi Arima [Kyushu University, Fukuoka, 819-0395 (Japan); Osamu Kato [Kobe Steel Inc., Kobe, 657-0845 (Japan); Hidekazu Asano; Tsutomu Nishimura [RWMC, Tokyo, 105-0001 (Japan)

2007-07-01

68

IMPROVED DECONTAMINATION: INTERFACIAL, TRANSPORT, AND CHEMICAL PROPERTIES OF AQUEOUS SURFACTANT CLEANERS  

EPA Science Inventory

This investigation is focused on decontamination using environmentally benign aqueous solutions, specifically the removal of organics and associated radionuclide and heavy metal contaminants by synthetic surfactants. Aqueous-based solutions promise several advantages for deconta...

69

QUANTITATIVE ANALYSIS OF 68 POLAR COMPOUNDS FROM TEN CHEMICAL CLASSES BY DIRECT AQUEOUS INJECTION GAS CHROMATOGRAPHY  

EPA Science Inventory

Porous polymer packings have been used successfully in many applications of direct aqueous injection gas chromatography. The authors have expanded the use of aqueous injection to the quantitative analysis of 68 alcohols, acetates, ketones, ethers, sulfides, aldehydes, diols, dion...

70

Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition.  

PubMed

Oxidative degradation of organic pollutants and its mechanism were investigated in aqueous solution using zero valent copper (ZVC) under aerobic atmosphere condition. Diethyl phthalate (DEP) was completely oxidized after 120 min reaction by ZVC at initial pH 2.5 open to the air. DEP degradation followed the pseudo-first-order kinetics after the lag period, and the degradation rate of DEP increased gradually with the increase of ZVC dosage, and the decrease of initial pH from 5.8 to 2.0. ZVC required a shorter induction time and exhibited persistent oxidation capacity compared to that of zero valent iron and zero valent aluminium. The mechanism investigation showed that remarkable amount of Cu(+)/Cu(2+) and H2O2 were formed in ZVC acidic system, which was due to the corrosive dissolution of ZVC and the concurrent reduction of oxygen. The addition of tert-butanol completely inhibited the degradation of DEP and the addition of Fe(2+) greatly enhanced the degradation rate, which demonstrated that hydroxyl radical was mainly responsible for the degradation of DEP in ZVC acidic system under aerobic atmosphere condition, and the formation of hydroxyl radical was attributed to the Fenton-like reaction of in situ formed Cu(+) with H2O2. PMID:24857902

Wen, Gang; Wang, Sheng-Jun; Ma, Jun; Huang, Ting-Lin; Liu, Zheng-Qian; Zhao, Lei; Xu, Jin-Lan

2014-06-30

71

Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones  

NASA Astrophysics Data System (ADS)

Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa, since limited by the sample size. Hence, in order to gain similar data at higher pressures, we begun in situ measurements in an externally heated diamond anvil cell, that allows to reach 10 GPa. Composition of aqueous fluids could be measured at the ppm level by synchrotron X-ray fluorescence. The first results and the perspectives will be presented. Koga K.T., I. Daniel, B. Reynard (2005), Geochem. Geophys. Geosyst., 6, Q09014, doi:10.1029/2005GC000944

Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.

2006-12-01

72

Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.  

PubMed

A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry. PMID:21561111

Schreiner, Eduard; Nair, Nisanth N; Wittekindt, Carsten; Marx, Dominik

2011-06-01

73

Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa  

USGS Publications Warehouse

Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (??) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: ?? > K > aw. The transposition between K and ?? is due to a more accurate model for estimating K than for estimating ??. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements. To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4. 12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic. Copyright ?? 2005 Elsevier Ltd.

Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.

2005-01-01

74

Oxidation of cyanide in aqueous solution by chemical and photochemical process.  

PubMed

Cyanide waste is found predominantly in industrial effluents generated from metallurgical operations. The toxicity of cyanide creates serious environmental problems. In this paper, oxidation of cyanide in aqueous solution was investigated using chemical and photochemical process. Chemical oxidation was studied at room temperature using H2O2 as oxidant and Cu2+ as catalyst. Photochemical oxidation was studied in an annular type batch photoreactor of 1l capacity using 25 W low-pressure (81.7% transmission at 254 nm wavelength) ultraviolet (UV) lamp along with H2O2 as oxidant. The effect of Cu2+ catalysis was also studied. It was observed that in absence of UV source, the degradation of cyanide by H2O2 alone was very slow, whereas copper ions accelerated the rate of reaction thereby acting as catalyst. Copper formed a complex with cyanide ion, i.e. tetracyanocuprate which had greater affinity for H2O2. Cyanate hydrolysis was also favoured by copper ions. As Cu2+ ion concentration was increased, rate of degradation also increased. Photochemical oxidation by H2O2 and Cu2+ was found to be the best system for cyanide degradation. CN- (100 mg/l) was degraded to non-detectable level in 9 min at pH 10.0 with optimum H2O2 dose of 35.5 mM and Cu2+ dose of 19 mg/l. Reaction kinetics of cyanide oxidation was found to be pseudo-first order and the rate constant has been determined for different processes. PMID:15561362

Sarla, M; Pandit, M; Tyagi, D K; Kapoor, J C

2004-12-10

75

Relationship of fatigue-crack growth rate in an aqueous corrosive medium to the electrochemical conditions at the crack tip  

Microsoft Academic Search

p of this data with the fatiguecrack growth rate in samples of 40Kh13 steel in an aqueous solution with pH 8 was studied. The electrochemical investigations and cyclic crack resistance tests were made on i0 20 150 mm beam samples of rectangular cross section of 40Kh13 steel, the chemical composition, heat-treat cycles, and mechanical properties of which were

V. V. Panasyuk; L. V. Ratych; I. N. Dmytrakh

1984-01-01

76

A lithography-free pathway for chemical microstructuring of macromolecules from aqueous solution based on wrinkling.  

PubMed

We report on a novel lithography-free method for obtaining chemical submicron patterns of macromolecules on flat substrates. The approach is an advancement of the well-known microcontact printing scheme: While for classical microcontact printing lithographically produced masters are needed, we show that controlled wrinkling can serve as an alternative pathway to producing such masters. These can even show submicron periodicities. We expect upscaling to larger areas to be considerably simpler than that for existing techniques, as wrinkling results in a macroscopic deformation process that is not limited in terms of substrate size. Using this approach, we demonstrate successful printing of aqueous solutions of polyelectrolytes and proteins. We study the effectiveness of the stamping process and its limits in terms of periodicities and heights of the stamps' topographical features. We find that critical wavelengths are well below 355 nm and critical amplitudes are below 40 nm and clarify the failure mechanism in this regime. This will permit further optimization of the approach in the future. PMID:18950207

Pretzl, Melanie; Schweikart, Alexandra; Hanske, Christoph; Chiche, Arnaud; Zettl, Ute; Horn, Anne; Bker, Alexander; Fery, Andreas

2008-11-18

77

Chemically induced compaction bands: Triggering conditions and band thickness  

NASA Astrophysics Data System (ADS)

compaction band formation, various mechanisms can be involved at different scales. Mechanical and chemical degradation of the solid skeleton and grain damage are important factors that may trigger instabilities in the form of compaction bands. Here we explore the conditions of compaction band formation in quartz- and carbonate-based geomaterials by considering the effect of chemical dissolution and grain breakage. As the stresses/deformations evolve, the grains of the material break, leading to an increase of their specific surface. Consequently, their dissolution is accelerated and chemical softening is triggered. By accounting for (a) the mass diffusion of the system, (b) a macroscopic failure criterion with dissolution softening, and (c) the reaction kinetics at the microlevel, a model is proposed and the conditions for compaction instabilities are investigated. Distinguishing the microscale (grain level) from the macrolevel (representative elementary volume) and considering the heterogeneous microstructure of the representative elementary volume, it is possible to discuss the thickness and periodicity of compaction bands. Two case studies are investigated. The first one concerns a sandstone rock reservoir which is water flooded and the second one a carbonate rock in which CO2 is injected for storage. It is shown that compaction band instabilities are possible in both cases.

Stefanou, Ioannis; Sulem, Jean

2014-02-01

78

Dynamic nuclear polarization of 13C in aqueous solutions under ambient conditions  

NASA Astrophysics Data System (ADS)

The direct enhancement of the 13C NMR signal of small molecules in solution through Overhauser-mediated dynamic nuclear polarization (DNP) has the potential to enable studies of systems where enhanced signal is needed but the current dissolution DNP approach is not suitable, for instance if the sample does not tolerate a freeze-thaw process or if continuous flow or rapid re-polarization of the molecules is desired. We present systematic studies of the 13C DNP enhancement of 13C-labeled small molecules in aqueous solution under ambient conditions, where we observe both dipolar and scalar-mediated enhancement. We show the role of the three-spin effects from enhanced protons on 13C DNP through DNP experiments with and without broadband 1H decoupling and by comparing DNP results with H 2O and D 2O. We conclude that the efficiency of 13C Overhauser DNP in small molecules strongly depends on the distance of closest approach between the electron and 13C nucleus, the presence of a scalar contribution to the coupling factor, and the magnitude of the three-spin effect due to adjacent polarized protons. The enhancement appears to depend less on the translational dynamics of the 13C-labeled small molecules and radicals.

Lingwood, Mark D.; Han, Songi

2009-12-01

79

A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1 - bromide solutions  

NASA Astrophysics Data System (ADS)

Reactive halogen species (X*=X•, •X2-, X2 and HOX, where X=Br, Cl, or I) in seawater, sea-salt particles, and snowpacks play important roles in the chemistry of the marine boundary layer. Despite this, relatively little is known about the steady-state concentrations or kinetics of reactive halogens in these environmental samples. In part this is because there are few instruments or techniques that can be used to characterize aqueous reactive halogens. To better understand this chemistry, we have developed a chemical probe technique that can detect and quantify aqueous reactive bromine and chlorine species (Br*(aq) and Cl*(aq)). This technique is based on the reactions of short-lived X*(aq) species with allyl alcohol (CH2=CHCH2OH) to form stable 3-halo-1,2-propanediols that are analyzed by gas chromatography. Using this technique in conjunction with competition kinetics allows determination of the steady state concentrations of the aqueous reactive halogens and, in some cases, the rates of formation and lifetimes of X* in aqueous solutions. We report here the results of the method development for aqueous solutions containing only bromide (Br-).

Matthew, B. M.; Anastasio, C.

2006-06-01

80

A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1 - bromide solutions  

NASA Astrophysics Data System (ADS)

Reactive halogen species (X*=X?, ?X2-, X2 and HOX, where X=Br, Cl, or I) in seawater, sea-salt particles, and snowpacks play important roles in the chemistry of the marine boundary layer. Despite this, relatively little is known about the steady-state concentrations or kinetics of reactive halogens in these environmental samples. In part this is because there are few instruments or techniques that can be used to characterize aqueous reactive halogens. To better understand this chemistry, we have developed a chemical probe technique that can detect and quantify aqueous reactive bromine and chlorine species (Br*(aq) and Cl*(aq)). This technique is based on the reactions of short-lived X*(aq) species with allyl alcohol (CH2=CHCH2OH) to form stable 3-halo-1,2-propanediols that are analyzed by gas chromatography. Using this technique in conjunction with competition kinetics allows determination of the steady state concentrations of the aqueous reactive halogens and, in some cases, the rates of formation and lifetimes of X* in aqueous solutions. We report here the results of the method development for aqueous solutions containing only bromide (Br-).

Matthew, B. M.; Anastasio, C.

2006-02-01

81

Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate  

NASA Astrophysics Data System (ADS)

Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

Wray, James J.; Squyres, S. W.

2010-10-01

82

Removal of Cu and Ag from aqueous solution on a chemically-carbonized sorbent from date palm leaflets  

Microsoft Academic Search

A chemically-carbonized sorbent was prepared from date palm leaflets by sulphuric acid treatment at 170C. Carbonization took place via the dehydration effect of the hot sulphuric acid producing a carbon with reduction property. Sorption of Cu and Ag from aqueous solution was investigated in terms of pH, contact time, metal concentration and temperature. A peculiar behaviour was found for the

El-Said Ibrahim El-Shafey; Salma Muhammed Zahran Al-Kindy

2012-01-01

83

Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its Metabolism  

NASA Technical Reports Server (NTRS)

The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction half-life at 50 C, and to reveal the effect of functional groups on reactivity. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable (i. e. acetate decarboxylation half-life was l0(exp 18) years at 50 C); whereas, organic substances containing two oxygenated groups in which one group was a beta-positioned carbonyl group were the most reactive (i. e. acetoacetate decarboxylation half-life was l0(exp-2) years at 50 C). Of all functional groups the beta-positioned carbonyl group (aldehyde or ketone) was the strongest activating group, giving rates of reaction that were up to 10(exp 24)-times faster than rates of similar molecules lacking the beta-carbonyl group. From this knowledge of organic reactivity and the inherent constraints of autocatalytic processes, we concluded that an origins-of-life process based on autocatalytic transformation of C,H,O-substrates was constrained to using the most reactive organic molecules that contain alpha- or beta-carbonyl groups, since small autocatalytic domains of plausible catalytic power that used less reactive substrates could not carry out chemical transformations fast enough to prevent catastrophic efflux (escape) of reaction intermediates. Knowledge of the kinetics of organic transformations is useful, not only in constraining the chemistry of the earliest autocatalytic process related to the origin of life, but also in establishing the relative reactivity of organic molecules on the early Earth and other planets that may or may not be related to the origin of life.

Weber, Arthur L.

2003-01-01

84

Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems.  

PubMed

The objective of this study was to evaluate the transdermal delivery potential of diclofenac-containing microemulsion system in vivo and in vitro. It was found that the transdermal administration of the microemulsion to rats resulted in 8-fold higher drug plasma levels than those obtained after application of Voltaren Emulgel. After s.c. administration (3.5 mg/kg), the plasma levels of diclofenac reached a peak of 0.94 microg/ml at t=1 h and decreased rapidly to 0.19 microg/ml at t=6 h, while transdermal administration of the drug in microemulsion maintained constant levels of 0.7-0.9 microg/ml for at least 8 h. The transdermal fluxes of diclofenac were measured in vitro using skin excised from different animal species. In three rodent species, penetration fluxes of 53.35+/-8.19 (furry mouse), 31.70+/-3.83 (hairless mouse), 31.66+/-4.45 (rat), and 22.89+/-6.23 microg/cm(2)/h (hairless guinea pig) were obtained following the application of the microemulsion. These fluxes were significantly higher than those obtained by application of the drug in aqueous solution. In contrast to these results, a 'flip-flop' phenomenon was observed when frozen porcine skin (but not fresh skin) was significantly more permeable to diclofenac-in-water than to the drug-in-microemulsion. In fact, the drug penetration from the microemulsion was not affected by the skin storage conditions, but it was increased when an aqueous solution was applied. However, this unusual phenomenon observed in non-freshly used porcine skin places a question mark on its relevancy for in vitro penetration studies involving aqueous vehicle systems. PMID:16431047

Sintov, Amnon C; Botner, Shafir

2006-03-27

85

One-step growth of structured ZnO thin films by chemical bath deposition in aqueous ammonia solution  

NASA Astrophysics Data System (ADS)

Structured ZnO films have been fabricated on soda-lime glass slides at a low temperature (80-85 C) by a chemical bath deposition method in one step without seed layers. Mixed aqueous solutions of zinc sulfate, ammonia and thiourea were used at alkaline conditions. The influence of the ammonia concentration in the initial solution on the property of the deposited film was investigated systematically. The morphology, structural and optical properties of the deposited films were examined and characterized by x-ray diffraction (XRD), energy-dispersive spectroscopy x-ray diffraction (EDX), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy. Structural analyses with XRD, EDX and SEM revealed that the formed films exhibit a wurtzite hexagonal phase. The deposited film was more preferentially oriented in the (0 0 2) direction with an increase in the ammonia concentration from 0.75 to 2 mol l-1. The optical-phonon E2 mode at 437 cm-1 in the Raman spectrum, together with the XRD and EDX analyses, showed that flower-like and columnar crystalline ZnO films were formed in two ammonia concentration ranges, 0.75-1.4 mol l-1 and 1.6-2.0 mol l-1, respectively. Furthermore, PL spectra showed strong and high intensity peaks of UV emission with suppressed green emission for these deposited ZnO films. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2 and ZnS phases were discussed.

Huang, S M; Bian, Z Q; Chu, J B; Wang, Z A; Zhang, D W; Li, X D; Zhu, H B; Sun, Z

2009-03-01

86

Mass spectrometric elucidation of triacylglycerol content of Brevoortia tyrannus (menhaden) oil using non-aqueous reversed-phase liquid chromatography under ultra high pressure conditions.  

PubMed

A non-aqueous reversed phase high performance liquid chromatography method was developed, and optimized for triacylglycerol analysis in a Brevoortia tyrannus (menhaden) oil sample. Four columns were serially coupled to tackle such a task, for a total length of 60 cm of shell-packed stationary phase, and operated under ultra high pressure conditions. As detection, positive-ion atmospheric pressure chemical ionization mass spectrometry was used to attain identification of the analyzed sample components. A number of 137 triacylglycerols containing up to 19 fatty acids, with 14-22 carbon atom alkyl chain length and 0-6 double bonds, were positively identified in the complex lipidic sample. This is the first work that reports an extensive characterization of the triacylglycerol fraction of menhaden oil. PMID:22503927

Dugo, Paola; Beccaria, Marco; Fawzy, Nermeen; Donato, Paola; Cacciola, Francesco; Mondello, Luigi

2012-10-12

87

FINAL REPORT. CHEMICAL SPECIATION OF INORGANIC COMPOUNDS UNDER HYDROTHERMAL CONDITIONS  

EPA Science Inventory

We have conducted measurements at 400 degrees C of the oxidation of Cr (III) to Cr (VI) by NO3-/NO2-. These spectra are to the best of our knowledge the first reported in situ spectroscopic observation of homogeneous aqueous redox chemistry at temperatures beyond the critical...

88

Chemical speciation of metal complexes from chemical shift calculations: the interaction of 2-amino-N-hydroxypropanamide with V(V) in aqueous solution.  

PubMed

The chemical speciation of 2-amino-N-hydroxypropanamide (?-alaninohydroxamic acid, HL) and vanadium (V) in aqueous solution has been investigated through calculations of the thermodynamic properties and the (51)V nuclear magnetic resonance (NMR) chemical shifts of the species formed at equilibrium. The results have been compared directly with the experimental (51)V NMR data. The (51)V NMR chemical shifts have been calculated by using a density functional theory (DFT) approach accounting for relativistic corrections and solvent effects. All tautomers of the 1:1 and 1:2 VO2(+)/?-ala complexes with different degrees of protonation have been calculated and thermodynamic and structural properties are presented for the most stable species. The system is better modeled as tautomeric equilibria, and species lying down in the range of 10 kcalmol(-1) cannot be neglected at the BP/TZ2P/COSMO approach. In fact, the metal complex speciation in aqueous solution should not be investigated based solely on the thermodynamic analysis, but together with spectroscopic calculations such as NMR. PMID:23971999

Duarte, Hlio Anderson; Vankova, Nina; Ferreira, Isabella Pires; Paniago, Eucler B; Heine, Thomas

2013-10-01

89

Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems  

USGS Publications Warehouse

The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

Pankow, J.F.; McKenzie, S.W.

1991-01-01

90

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOEpatents

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

1994-01-01

91

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOEpatents

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

Vijayan, S.; Wong, C.F.; Buckley, L.P.

1994-11-22

92

Kinetics of growth and chemical composition of Fusarium moniliforme cultivated on carob aqueous extract for microbial protein production  

Microsoft Academic Search

The kinetics of growth and the chemical composition ofFusarium moniliforme cultivated on aqueous carob pod extract were investigated. The extract was adjusted to provide 0.5, 1.0, 2.0 and 4.0% carob sugars supplemented with inorganic salts at the ratio: carob sugar: NH4H2PO4: MgSO4.7H2O=1:0.6:0.012. The extract contained 16 mg tannic acid (Folin-Dennis) per g of carob sugar.

B. J. Macris; R. Kokke

1977-01-01

93

CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA  

EPA Science Inventory

The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

94

Nature of the chemical bond of aqueous Fe2+ probed by soft X-ray spectroscopies and ab initio calculations.  

PubMed

Aqueous iron(II) chloride is studied by soft X-ray absorption, emission, and resonant inelastic Raman scattering techniques on the Fe L-edge and O K-edge using the liquid-jet technique. Soft X-ray spectroscopies allow in situ and atom-specific probing of the electronic structure of the aqueous complex and thus open the door for the investigation of chemical bonding and molecular orbital mixing. In this work, we combine theoretical ab initio restricted active space self-consistent field and local atomic multiplet calculations with experimental soft X-ray spectroscopic methods for a description of the local electronic structure of the aqueous ferrous ion complex. We demonstrate that the atomic iron valence final states dominate the resonant inelastic X-ray scattering spectra of the complex over the ligand-to-metal charge transfer transitions, which indicates a weak interaction of Fe(2+) ion with surrounding water molecules. Moreover, the oxygen K-edge also shows only minor changes due to the presence of Fe(2+) implying a small influence on the hydrogen-bond network of water. PMID:24063525

Atak, Kaan; Bokarev, Sergey I; Gotz, Malte; Golnak, Ronny; Lange, Kathrin M; Engel, Nicholas; Dantz, Marcus; Suljoti, Edlira; Khn, Oliver; Aziz, Emad F

2013-10-17

95

CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 2. THE AQUEOUS-PHASE CHEMISTRY  

EPA Science Inventory

This study focuses on the review and evaluation of mechanistic and kinetic data for aqueous-phase reactions that lead to the production of acidic substances in the environment. The intent of this research is to provide a framework that can be used to develop a state-of-the-art aq...

96

Screening of carob bean yeasts. Chemical composition of Schizosaccharomyces versatilis grown on aqueous carob extract  

Microsoft Academic Search

Summary An improved extraction procedure for soluble sugars and tannins from carob bean is described. The yeast flora of the carob is rich, withSaccharomyces predominant; an isolate ofSchizosaccharomyces versatilis cultured in the aqueous extract utilizes tannins as well as sugars to give a high biomass and protein yield of good quality.

S. G. Marakis; A. D. Karagouni

1985-01-01

97

A quantum chemical consideration of ligand exchange in palladium(ii) aqueous and chloride complexes  

Microsoft Academic Search

The behavior of potassium tetrachloropalladate(II) in media simulating biological fluids has been studied. In aqueous solutions of NaCl, the aquation rate is higher than the rate of chloro ligand introduction into the internal coordination sphere of palladium. In HCl solutions, on the contrary, the process of palladium chloro complex formation predominates. The latter is apparently due to protonation of water

Alexei N. Pankratov; Vladimir B. Borodulin; Olga A. Chaplygina

2004-01-01

98

Effect of different annealing conditions on the properties of chemically deposited ZnS thin films on ITO coated glass substrates  

Microsoft Academic Search

The effects of different annealing conditions such as atmospheres, temperatures and times on the structural, morphological and optical properties of ZnS thin films prepared on ITO coated glass substrates by chemical bath deposition were studied. Aqueous solutions of zinc acetate and thiourea were used as precursors along with stable complexing agents, such as Na2EDTA and Na3-citrate, in an alkaline medium.

Seung Wook Shin; So Ra Kang; Jae Ho Yun; A. V. Moholkar; Jong-Ha Moon; Jeong Yong Lee; Jin Hyeok Kim

2011-01-01

99

Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions  

USGS Publications Warehouse

A field investigation of multispecies reactive transport was conducted in a well-characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and BDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal-EDTA complexes was affected by aqueous complexation, adsorption, and dissolution-precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb-EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu-EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb-EDTA complex is greater than Cu-EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb-EDTA complex to disassociate to a greater degree than the Cu-EDTA complex. The mass of dissolved Zn-EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage-derived Zn. Dissolved Ni-EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible adsorption reactions. The results of the field experiment provide a chemically complex data set that can be used in the testing of reactive transport models of flow coupled with chemical reactions.

Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

2000-01-01

100

Chemical Composition of an Aqueous Oxalato-/Citrato-VO(2+) Solution as Determinant for Vanadium Oxide Phase Formation.  

PubMed

Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 C, which then turns into crystalline V6O13 at 500 C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 C that crystallizes into VO2 M1 and V6O13 at 500 C. PMID:25517211

Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K

2015-01-01

101

Control of Convective Dissolution by Chemical Reactions: General Classification and Application to CO2 Dissolution in Reactive Aqueous Solutions  

NASA Astrophysics Data System (ADS)

In partially miscible two-layer systems within a gravity field, buoyancy-driven convective motions can appear when one phase dissolves with a finite solubility into the other one. We investigate the influence of chemical reactions on such convective dissolution by a linear stability analysis of a reaction-diffusion-convection model. We show theoretically that a chemical reaction can either enhance or decrease the onset time of the convection, depending on the type of density profile building up in time in the reactive solution. We classify the stabilizing and destabilizing scenarios in a parameter space spanned by the solutal Rayleigh numbers. As an example, we experimentally demonstrate the possibility to enhance the convective dissolution of gaseous CO2 in aqueous solutions by a classical acid-base reaction.

Loodts, V.; Thomas, C.; Rongy, L.; De Wit, A.

2014-09-01

102

Control of convective dissolution by chemical reactions: general classification and application to CO(2) dissolution in reactive aqueous solutions.  

PubMed

In partially miscible two-layer systems within a gravity field, buoyancy-driven convective motions can appear when one phase dissolves with a finite solubility into the other one. We investigate the influence of chemical reactions on such convective dissolution by a linear stability analysis of a reaction-diffusion-convection model. We show theoretically that a chemical reaction can either enhance or decrease the onset time of the convection, depending on the type of density profile building up in time in the reactive solution. We classify the stabilizing and destabilizing scenarios in a parameter space spanned by the solutal Rayleigh numbers. As an example, we experimentally demonstrate the possibility to enhance the convective dissolution of gaseous CO_{2} in aqueous solutions by a classical acid-base reaction. PMID:25259984

Loodts, V; Thomas, C; Rongy, L; De Wit, A

2014-09-12

103

Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae.  

PubMed

The photoenhanced toxicity of weathered Alaska North Slope crude oil (ANS) was investigated in the eggs and larvae of Pacific herring (Clupea pallasi) with and without the chemical dispersant Corexit 9527. Oil alone was acutely toxic to larvae at aqueous concentrations below 50 microg/L total polycyclic aromatic hydrocarbons (tPAH), and median lethal (LC50s) and effective concentrations (EC50s) decreased with time after initial oil exposure. Brief exposure to sunlight (approximately 2.5 h/d for 2 d) significantly increased toxicity 1.5- to 48-fold over control lighting. Photoenhanced toxicity only occurred when oil was present in larval tissue and increased with increasing tPAH concentration in tissue. Ultraviolet radiation A (UVA) treatments were less potent than natural sunlight, and UVA + sunlight caused greater toxicity than sunlight alone. The toxicity of chemically dispersed oil was similar to oil alone in control and UVA treatments, but oil + dispersant was significantly more toxic in the sunlight treatments. The chemical dispersant appeared to accelerate PAH dissolution into the aqueous phase, resulting in more rapid toxicity. In oil + dispersant exposures, the 96-h no-observed-effect concentrations in the UVA + sunlight treatment were 0.2 microg/L tPAH and 0.01 microg/g tPAH. Exposure of herring eggs to oil caused yolk sac edema, but eggs were not exposed to sun and UVA treatment did not cause phototoxicity. These results are consistent with the hypothesis that weathered ANS is phototoxic and that UV can be a significant and causative factor in the mortality of early life stages of herring exposed to oil and chemically dispersed oil. PMID:12627655

Barron, Mace G; Carls, Mark G; Short, Jeffrey W; Rice, Stanley D

2003-03-01

104

Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide  

SciTech Connect

The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na{sub 2}S and subsequent annealing in vacuum at 150 Degree-Sign C, the surface layer consisting of complex antimony and indium oxides of nonstoichiometric composition is removed completely with the formation of a continuous layer of chemisorbed sulfur atoms coherently bound to indium atoms. According to atomic-force microscopy data, no etching of the host substrate material occurs during sulfide passivation. A shift (by 0.37 eV) of the In-Sb bulk photoemission towards higher binding energies is found, which indicates that the surface Fermi level shifts deeper into the conduction band.

Lvova, T. V., E-mail: tatyana.lvova.12@mail.ru; Dunaevskii, M. S.; Lebedev, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Shakhmin, A. L. [St. Petersburg State Polytechnical University (Russian Federation); Sedova, I. V.; Ivanov, S. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

2013-05-15

105

The effect of precipitation conditions and aging upon characteristics of particles precipitated from aqueous solutions  

SciTech Connect

Precipitation of a dissolved species from aqueous solutions is one of the techniques used to grow particles with certain size or composition characteristics. Various factors affecting the particle properties for sparingly soluble substances are briefly discussed here, including homogeneous versus heterogeneous nucleation, the effect of relative supersaturation on the number of nuclei and their relative size, particle growth by way of Ostwald Ripening, the Ostwald Step Rule and nucleation of metastable phases, diffusion-controlled versus surface reaction-controlled growth, incorporation of dopants into the precipitate, and dendritic growth. 13 refs.

Rard, J.A.

1989-10-01

106

Separation of sulfur containing chemical warfare related compounds in aqueous samples by micellar electrokinetic chromatography  

Microsoft Academic Search

A method is described in which micellar electrokinetic chromatography (MEKC) is used to separate thiodiglycol, 2,2?-sulfinyldiethanol, 1,4-dithiane, 1,4-thioxane, O-isobutyl methylphosphonothioic acid and O-ethyl methylphosphonothioic acid in aqueous samples. Detection limits range from 1 to 10 ?g\\/ml and the calibration curves are linear over two orders of magnitude. The compounds are separated in under 10 min. The method fulfills our requirements

Richard L. Cheicante; H. Dupont Durst

1995-01-01

107

LITERATURE VALUES FOR SELECTED CHEMICAL PHYSICAL PROPERTIES OF AQUEOUS BORIC ACID SOLUTIONS  

Microsoft Academic Search

Data are given for properties of aqueous solutions of boric acid: ; solubility for orthoboric acid (HBO), specific gravity, pH, ionic-; dissociation constants, colligative properties (vapor-pressure lowering, boiling-; point elevation, freezing-point depression), solute volatility, thermal ; conductivity, electric conductivity, corrosion effects, and mistion and dilution). ; An attempt was made to secure complete literature coverage through mid-1957. ; (P.C.H.);

D. E. Byrnes; W. E. Foster

1961-01-01

108

Physico-chemical factors influencing autologous conditioned serum purification.  

PubMed

Autologous conditioned serum (ACS) is a recent biotherapy based on certain cytokines anti-inflammatory properties mainly used for the reduction of osteoarthritis (OA) symptoms. Here we investigated different physico-chemical factors influencing ACS purification and cytokine production. Human venous blood was incubated in the presence of different diameter beads (respectively 2.5, 3, 3.5, and 4?mm) or glass beads with different types of coating (polished or coated with CrSO4). Sera were recovered, and the concentrations of pro-inflammatory and anti-inflammatory relevant cytokines were measured using Luminex() technology. Fresh whole blood incubated for 24?h highly increased production of interleukin (IL)-6 and IL-8 cytokines. At the same time, the concentrations of IL-1?, IL-1 receptor agonist (IL-1Ra), IL-10, and tumor necrosis factor (TNF)-? were slightly induced. The highest cytokine concentrations were obtained with the exposure of whole blood to 3-mm glass beads and 3.5-mm polished beads. The minimum IL-1?/IL-1Ra ratio obtained was 3.21.3 after 24-h incubation without any beads. ACS has been shown to alleviate clinical symptoms of OA in clinical studies. This descriptive study demonstrated that different pro- and anti-inflammatory cytokines are present in ACS since no selective anti-inflammatory cytokines were produced based on the different protocols. Furthermore, we showed that CrSO4-treated glass beads are not necessary and that the absence of beads combined with a 24-h incubation could also lead to an enriched serum. PMID:24570844

Magalon, Jeremy; Bausset, Olivier; Veran, Julie; Giraudo, Laurent; Serratrice, Nicolas; Magalon, Guy; Dignat-George, Franoise; Sabatier, Florence

2014-02-01

109

Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105  

NASA Technical Reports Server (NTRS)

Carbonaceous chondrites are primitive meteorites that are valuable because they preserve evidence of processes that occurred in the solar nebula and on asteroidal parent bodies. Among the carbonaceous chondrite groups, the CR group appears to contain a particularly pristine record of early solar system processes. Distinguishing characteristics of CR2 chondrites include a high abundance of chondrules (50-60 vol.%) and Fe, Ni metal (5-8 vol. %). These meteorites preserve evidence for varying degrees of aqueous alteration, manifested by progressive replacement of chondrule mesostasis by phyllosilicates. Recent studies have suggested that even in weakly altered chondrites, mass transfer occurred between chondrules and fine-grained matrices, implying that aqueous alteration must have followed lithification of the final meteorite parent body. Although petrographic characteristics of alteration in CR chondrites have been documented, mechanisms of alteration are still only poorly understood. For example, the relative rates and scales of elemental mobility as well as the sources and sinks for key elements are currently not constrained. An improved knowledge of these issues will contribute to an increased understanding of aqueous alteration reactions on meteorite parent bodies. This study expands on research conducted on Type IIA chondrules and chondrule fragments from two CR2 chondrites, EET 87770 and EET 92105. These chondrites have been weakly altered; chondrule mesostases show incipient alteration primarily where they are in direct contact with fine-grained matrices.

Burger, Paul V.; Brearley, Adrian J.

2005-01-01

110

ROS Initiated Oxidation of Dopamine under Oxidative Stress Conditions in Aqueous and Lipidic Environments  

PubMed Central

Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (OH) and hydroperoxyl (OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 105 and 8.16 105 M1 s1, in aqueous and lipidic environment, respectively, which makes dopamine a very good OOH, and presumably OOR, radical scavenger. PMID:21919526

2011-01-01

111

CHEMICAL AND BIOLOGICAL TREATMENT OF THERMALLY CONDITIONED SLUDGE RECYCLE LIQUORS  

EPA Science Inventory

The objective of this research project was to demonstrate and evaluate the feasibility of treating undiluted heat treatment liquor prior to its rerouting back to the head of the sewage treatment plant. Chemical and biological treatment processes were studied. Chemical treatment w...

112

Chemical Speciation of Inorganic Compounds under Hydrothermal Conditions  

SciTech Connect

Measurements of oxidation. These spectra are to the best of our knowledge the first reported in situ spectroscopic observation of homogeneous aqueous redox chemistry at temperatures beyond the critical temperature of waste. We also observed a time-dependence for the growth of the Cr(VI) XANES peak and have therefore obtained both kinetic information as well as structural information on the reactants and products at the reaction temperature. We feel that these new techniques, when employed on actual waste components will elucidate the underlying chemistry.

Edward A Stern; John Fulton

2002-02-21

113

Diffusion behavior of lysozyme in aqueous ammonium sulfate solutions under varying solution conditions as determined by dynamic light scattering  

SciTech Connect

As proteins gain significance in commercial applications such as pharmaceuticals, detergents, organic waste management and cosmetics, efficient and economical recovery of these valuable biomolecules is of increasing importance. the salting-out process has found widespread application in the area of protein separations. To date, salt-induced precipitation of proteins from complex aqueous solutions remains largely an empirical process; no comprehensive model exists to predict salting-out phase equilibria in protein solutions. Rational predictive models for salt-induced precipitation will therefore be of great value in protein purification, both on the preparative and the analytical scale. Any attempt to model theoretically salt-induced protein precipitation must include the known physics of protein interactions in aqueous solution. With this in mind, it is crucial to acknowledge that protein precipitation is fundamentally an aggregation process. In order to incorporate aggregation effects into ongoing efforts to model salting out of proteins, it is necessary to quantify the degree of aggregation as a function of solution conditions. Therefore, dynamic light scattering measurements were performed with a well-studied protein, hen-egg-white lysozyme, under several solution conditions.

Fornefeld, U.M.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M. (Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.)

1994-12-01

114

Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades  

SciTech Connect

Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs.

Wright, H.A.; Hamm, R.N.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

1989-01-01

115

Oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite under phase transfer conditions  

SciTech Connect

In the industrial process for the production of chloroprene from butadiene, the problem of reducing the organic impurities in the waste water to 2000 mg/liter has not yet been solved. A method has been patented for the oxidation of organic compounds by sodium hypochlorite at high temperatures and high pressure but this method is limited by the oxidation of soluble organic compounds. The oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite was studied. A sharp increase in the reaction rate was found in the presence of phase transfer catalysts and surfactants. The involvement of oxygen as a cooxiant and the effect of surfactants on the absorption of atmospheric oxygen by the reaction system were demonstrated.

Grigoryan, G.S.; Karoyan, I.L.; Malkhasyan, A.Ts.; Martirosyan, G.T.; Artamkina, G.A.; Beletskaya, I.P.

1987-11-10

116

A purge and trap integrated microGC platform for chemical identification in aqueous samples.  

PubMed

The majority of current micro-scale gas chromatography (?GC) systems focus on air sampling to detect volatile organic compounds (VOCs). However, purging the VOCs from a water sample using microsystems is an unchartered territory. Various organic compounds used in everyday life find their way to water bodies. Some of these water organic compounds (WOCs) persist or degrade slowly, threatening not just human existence but also aquatic life. This article reports the first micro-purge extractor (?PE) chip and its integration with a micro-scale gas chromatography (?GC) system for the extraction and analysis of water organic compounds (WOCs) from aqueous samples. The 2 cm 3 cm ?PE chip contains two inlet and outlet ports and an etched cavity sealed with a Pyrex cover. The aqueous sample is introduced from the top inlet port while a pure inert gas is supplied from the side inlet to purge WOCs from the ?PE chip. The outlets are assigned for draining water from the chip and for directing purged WOCs to the micro-thermal preconcentrator (?TPC). The trapped compounds are desorbed from the ?TPC by resistive heating using the on-chip heater and temperature sensor, are separated by a 2 m long, 80 ?m wide, and 250 ?m deep polydimethylsiloxane (OV-1) coated ?GC separation column, and are identified using a micro-thermal conductivity detector (?TCD) monolithically integrated with the column. Our experiments indicate that the combined system is capable of providing rapid chromatographic separation (<1.5 min) for quaternary WOCs namely toluene, tetrachloroethylene (PCE), chlorobenzene and ethylbenzene with a minimum detection concentration of 500 parts-per-billion (ppb) in aqueous samples. The proposed method is a promising development towards the future realization of a miniaturized system for sensitive, on-site and real-time field analysis of organic contaminants in water. PMID:24837988

Akbar, Muhammad; Narayanan, Shree; Restaino, Michael; Agah, Masoud

2014-07-01

117

Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment  

SciTech Connect

Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing conditions. In order to simulate substantial reaction progress over geologic time, one can benefit from the quasi-stationary state (QSS) approximation. A significant saving of computing time using QSS is demonstrated through the example. In addition, changes in porosity and permeability due to mineral dissolution and precipitation are also addressed in some degree. Even though oxidative weathering is sensitive to many factors, this work demonstrates that our model provides a comprehensive suite of process modeling capabilities, which could serve as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications.

Xu, Tianfu; Pruess, K.; Brimhall, G.

1999-04-01

118

Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol  

NASA Astrophysics Data System (ADS)

Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

Kitanovski, Z.; ?usak, A.; Grgi?, I.; Claeys, M.

2014-04-01

119

Chromatographic characterisation, under highly aqueous conditions, of a molecularly imprinted polymer binding the herbicide 2,4-dichlorophenoxyacetic acid.  

PubMed

The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8x10(4) M(-1)) and NIPA (K = 1.9x10(4) M(-1)), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0x10(2) M(-1)). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples. PMID:17456420

Legido-Quigley, C; Oxelbark, J; De Lorenzi, E; Zurutuza-Elorza, A; Cormack, P A G

2007-05-15

120

Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate  

USGS Publications Warehouse

A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

1985-01-01

121

Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.  

PubMed

Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

2010-02-15

122

Chemical enrichment and physical conditions in I Zw 18  

NASA Astrophysics Data System (ADS)

Context. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H i region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H i region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims: Our primary objective is to study the enrichment of the H i region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H i and H ii regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H i region. Methods: We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H i, C ii, C ii*, N i, O i, ...) and are compared to the abundances in the H ii region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H i region through physical diagnostics drawn from the fine-structure level of C+. Results: We find that H i region abundances are lower by a factor of ~2 as compared to the H ii region. There is no differential depletion on dust between the H i and H ii region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z? (vs. 1/31 Z? in the H ii region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H i envelope may contain pockets of pristine gas with a metallicity essentially null. Finally, we derive the physical conditions in the H i region by investigating the C ii* absorption line. The cooling rate derived from C ii* is consistent with collisions with H0 atoms in the diffuse neutral gas. We calculate the star-formation rate from the C ii* cooling rate assuming that photoelectric effect on dust is the dominant gas heating mechanism. Our determination is in good agreement with the values in the literature if we assume a low dust-to-gas ratio (~2000 times lower than the Milky Way value). Appendix A is available in electronic form at http://www.aanda.org

Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

2013-05-01

123

Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions.  

PubMed

Organochlorine (OC) contaminants are transported to the Polar Regions, where they have the potential to bioaccumulate, presenting a threat to the health of wildlife and indigenous communities. They deposit onto snowpack during winter, and accumulate until spring, when they experience prolonged solar irradiation until snowmelt occurs. Photochemical degradation rates for aldrin and dieldrin, in frozen aqueous solution made from MilliQ water, 500?M hydrogen peroxide solution or locally-collected melted snow were measured inafield campaign near Barrow, AK, during spring-summer 2008. Significant photoprocessing of both pesticides occurs; the reactions depend on temperature, depth within the snowpack and whether the predominant phase is ice or liquid water. The effect of species present in natural snowpack is comparable to 500?M hydrogen peroxide, pointing to the potential significance of snowpack-mediated reactions. Aldrin samples frozen at near 0C were more reactive than comparable liquid samples, implying that the microenvironments experienced on frozen ice surfaces are an important consideration. PMID:21396757

Rowland, Glenn A; Bausch, Alexandra R; Grannas, Amanda M

2011-05-01

124

Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials  

NASA Astrophysics Data System (ADS)

Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the surface charge of the small clay particles upon AO treatment.

Clobes, Jason Kenneth

125

Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  

ERIC Educational Resources Information Center

Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,

Tellinghuisen, Joel

2006-01-01

126

Resistance to chemical disinfection under conditions of microgravity  

Microsoft Academic Search

In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their

George L. Marchin

1998-01-01

127

"GREENER" CHEMICAL SYNTHESES USING AN ALTERNATE REACTION CONDITIONS OR AQUEOUS MEDIA  

EPA Science Inventory

A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

128

'GREENER' CHEMICAL SYNTHESES USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA  

EPA Science Inventory

A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

129

Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solutions up to supercritical conditions  

USGS Publications Warehouse

A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.

Bassett, W.A.; Anderson, A.J.; Mayanovic, R.A.; Chou, I.-M.

2000-01-01

130

Characterization of the Effects of Nonspecific XenonProtein Interactions on 129Xe Chemical Shifts in Aqueous Solution: Further Development of Xenon as a Biomolecular Probe  

Microsoft Academic Search

The sensitivity of 129Xe chemical shifts to weak nonspecific xenonprotein interactions has suggested the use of xenon to probe biomolecular structure and interactions. The realization of this potential necessitates a further understanding of how different macromolecular properties influence the 129Xe chemical shift in aqueous solution. Toward this goal, we have acquired 129Xe NMR spectra of xenon dissolved in amino acid,

Seth M. Rubin; Megan M. Spence; Alexander Pines; David E. Wemmer

2001-01-01

131

Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media  

Microsoft Academic Search

A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities

Mohamed E. Mahmoud; Tarek M. Abdel-Fattah; Maher M. Osman; Somia B. Ahmed

2012-01-01

132

The decay of chemical weapons agents under environmental conditions  

SciTech Connect

The rate and mechanism of decay of chemical agents in the environment was studied via live agent field trials at the chemical and Biological Defence Establishment, Porton Down, UK. The plan was to deposit the agents GD (Soman), VX, and H (sulfur mustard) on separate l-m{sup 2} plots on three successive days; i.e., Tuesday through Thursday. The depositions were to be made so as to give an areal concentration of 10 g/m{sup 2}. Four felt pads of approximately 25 cm{sup 2} each were placed at the corners of each of the test plots. These were subsequently extracted and analyzed by CBDE to determine the actual agent concentration. Samples for LLNL (two different types of soil, disks of silicone rubber gasket material, and short cylinders of concrete were to be contaminated and analyzed. Results are described.

McGuire, R.R.; Haas, J.S.; Eagle, R.J.

1993-04-09

133

Definitive SOx control process evaluations: aqueous carbonate and WellmanLord (acid, allied chemical, and resox) FGD (flue gas desulfurization) technologies. Final report Apr 78Apr 81  

Microsoft Academic Search

The report gives results of economic evaluations of two processes: the Rockwell International aqueous carbonate process (ACP) and the Wellman-Lord process, the latter applied to a sulfuric acid plant, the Foster Wheeler Resox process, and the Allied Chemical coal reduction process, all for sulfur production. The ACP uses a spray dryer flue gas desulfurization (FGD) system and molten salt reduction

J. R. Byrd; K. D. Anderson; S. V. Tomlinson; R. L. Torstrick

1981-01-01

134

DEFINITIVE SOX CONTROL PROCESS EVALUATIONS: AQUEOUS CARBONATE AND WELLMAN-LORD (ACID, ALLIED CHEMICAL, AND RESOX) FGD (FLUE GAS DESULFURIZATION) TECHNOLOGIES  

EPA Science Inventory

The report gives results of economic evaluations of two processes: the Rockwell International aqueous carbonate process (ACP) and the Wellman-Lord process, the latter applied to a sulfuric acid plant, the Foster Wheeler Resox process, and the Allied Chemical coal reduction proces...

135

APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE  

SciTech Connect

Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

FRYE JM; KUNKEL JM

2009-03-05

136

Experimental Investigation and Modeling of Uranium (VI) Transport Under Variable Chemical Conditions  

NASA Astrophysics Data System (ADS)

The transport of adsorbing and complexing metal ions in porous media was investigated with a series of batch and column experiments and with reactive solute transport modeling. Pulses of solutions containing U(VI) were pumped through columns filled with quartz grains, and the breakthrough of U(VI) was studied as a function of variable solution composition (pH, total U(VI) concentration, total fluoride concentration, and pH-buffering capacity). Decreasing pH and the formation of nonadsorbing aqueous complexes with fluoride increased U(VI) mobility. A transport simulation with surface complexation model (SCM) parameters estimated from batch experiments was able to predict U(VI) retardation in the column experiments within 30%. SCM parameters were also estimated directly from transport data, using the results of three column experiments collected at different pH and U(VI) pulse concentrations. SCM formulations of varying complexity (multiple surface types and reaction stoichiometries) were tested to examine the trade-off between model simplicity and goodness of fit to breakthrough. A two-site model (weak- and strong-binding sites) with three surface complexation reactions fit these transport data well. With this reaction set the model was able to predict (1) the effects of fluoride complexation on U(VI) retardation at two different pH values and (2) the effects of temporal variability of pH on U(VI) transport caused by low pH buffering. The results illustrate the utility of the SCM approach in modeling the transport of adsorbing inorganic solutes under variable chemical conditions.

Kohler, M.; Curtis, G. P.; Kent, D. B.; Davis, J. A.

1996-12-01

137

Hydroperoxides of DNA model systems in aqueous solution: A radiation chemical study  

NASA Astrophysics Data System (ADS)

The method of acid hydrolysis was applied to the structural identification and the quantification of the yields of the hydroperoxides formed in the gg-radiolysis of O 2 saturated aqueous solution of di-isopropyl ether (DIPE), 2,5-dimethyltetrahydrofuran (DMTHF), 2-methyl-2-propanol ( t-butanol), acetone and uracil. All the hydroperoxides have been found to undergo a pseudofirst order decomposition in the pH range 3.5-5.5 and the second order rate constants for the acid catalysed decomposition are 3.6 (DIPE), 2.5 and 1.1 (DMTHF), 0.5 ( t-butanol), 0.1 (acetone) and 0.4 (uracil) dm 3 mol -1 s -1, at ambient temperature. The distribution of protonation at the hydroperoxyl O-atoms is 1:1 for the hydroperoxides formed from DIPE and t-butanol while it is 2:1 for acetone and one of the hydroperoxides from DMTHF. The role of O 2-, in the formation of these hydroperoxides is discussed.

Phulkar, S.; Sharma, S. B.; Rao, B. S. M.

1997-02-01

138

Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films  

SciTech Connect

We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature, multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.

Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

2001-06-30

139

Biosorption of zinc from aqueous solution using chemically treated rice husk.  

PubMed

In this study, adsorption of zinc onto the adsorbent (untreated rice husk and NaOH-treated rice husk) was examined. During the removal process, batch technique was used, and the effects of pH and contact time were investigated. Langmuir isotherm was applied in order to determine the efficiency of NaOH-treated rice husk used as an adsorbent. The zinc adsorption was fast, and equilibrium was attained within 30?min. The maximum removal ratios of zinc for untreated rice husk and NaOH-treated rice husk after 1.5?h were 52.3% and 95.2%, respectively, with initial zinc concentration of 25?mg/L and optimum pH of 4.0. Data obtained from batch adsorption experiments fitted well with the Langmuir isotherm model. Maximum adsorption capacity of zinc onto untreated rice husk and NaOH-treated rice husk was 12.41?mg/g, and 20.08?mg/g respectively, at adsorbent dosage of 1?g/L at 25C. The nature of functional groups (i.e., amino, carboxyl, and hydroxyl) and metal ion interactions was examined by the FT-IR technique. It was concluded that the NaOH-treated rice husk had stronger adsorption capacity for Zn(2+) compared with the untreated rice husk. The NaOH-treated rice husk is an inexpensive and environmentally friendly adsorbent for Zn(2+) removal from aqueous solutions. PMID:23841065

Zhang, Ying; Zheng, Ru; Zhao, Jiaying; Zhang, Yingchao; Wong, Po-Keung; Ma, Fang

2013-01-01

140

[Physico-chemical properties of aqueous solutions, prepared in a membrane electrolyzer].  

PubMed

The physicochemical properties of aqueous solutions resulting from membrane electrolysis were studied. It was shown that the catholyte contains hydrogen peroxide at a concentration of 10(-7), which is formed during the reduction of soluble oxygen. It was found that the relaxation of the catholyte redox potential is caused by the transition of the reducing agent to the gaseous phase. The relaxation characteristics of the redox potentials of the catholyte and molecular hydrogen solution were compared. The similarity of the relaxation characteristics of the catholyte and the hydrogen solution as well as the fact that the catholyte, despite its low redox potential, does not reduce either potassium ferricyanide or 5-5'-dithiobis(2-nitrobenzoic acid) support the suggestion that the redox potential of the catholyte is due to molecular hydrogen. However, based on this suggestion, it is impossible to explain the increase in the relaxation time of the catholyte with increasing ionic strength and the fact that, as the redox potential of the catholyte decreases, the concentration of other gases dissolved in the catholyte remains unchanged. Thus, the question regarding the nature of the reducing agent remains open. PMID:15029717

Petrushanko, I Iu; Lobyshev, V I

2004-01-01

141

Biosorption of Zinc from Aqueous Solution Using Chemically Treated Rice Husk  

PubMed Central

In this study, adsorption of zinc onto the adsorbent (untreated rice husk and NaOH-treated rice husk) was examined. During the removal process, batch technique was used, and the effects of pH and contact time were investigated. Langmuir isotherm was applied in order to determine the efficiency of NaOH-treated rice husk used as an adsorbent. The zinc adsorption was fast, and equilibrium was attained within 30?min. The maximum removal ratios of zinc for untreated rice husk and NaOH-treated rice husk after 1.5?h were 52.3% and 95.2%, respectively, with initial zinc concentration of 25?mg/L and optimum pH of 4.0. Data obtained from batch adsorption experiments fitted well with the Langmuir isotherm model. Maximum adsorption capacity of zinc onto untreated rice husk and NaOH-treated rice husk was 12.41?mg/g, and 20.08?mg/g respectively, at adsorbent dosage of 1?g/L at 25C. The nature of functional groups (i.e., amino, carboxyl, and hydroxyl) and metal ion interactions was examined by the FT-IR technique. It was concluded that the NaOH-treated rice husk had stronger adsorption capacity for Zn2+ compared with the untreated rice husk. The NaOH-treated rice husk is an inexpensive and environmentally friendly adsorbent for Zn2+ removal from aqueous solutions. PMID:23841065

Zheng, Ru; Zhao, Jiaying; Zhang, Yingchao; Wong, Po-keung; Ma, Fang

2013-01-01

142

Hyphenation of sequential- and flow injection analysis with FTIR-spectroscopy for chemical analysis in aqueous solutions  

NASA Astrophysics Data System (ADS)

A survey of the principles of sequential (SIA)-and flow injection analysis (FIA) systems with FTIR spectroscopic detection is presented to introduce these hyphenations as powerful techniques for performing chemical analysis in aqueous solution. The strength of FIA/SIA-FTIR systems lies in the possibility to perform highly reproducible and automated sample manipulations such as sample clean-up and/or chemical reactions prior to spectrum acquisition. It is shown that the hyphenation of FIA/SIA systems with an FTIR spectrometer enhances the problem solving capabilities of the FTIR spectrometer as also parameters which can not be measured directly (e.g. enzyme activities) can be determined. On the other hand application of FTIR spectroscopic detection in FIA or SIA is also of advantage as it allows to shorten conventional analysis procedures (e.g. sucrose or phosphate analysis) or to establish and apply a multivariate calibration model for simultaneous determinations (e.g. glucose, fructose and sucrose analysis). In addition to these examples two recent instrumental developments in miniaturized FIA/SIA-FTIR systems, a ?-Flow through cell based on IR fiber optics and a micromachined SI-enzyme reactor are presented in this paper.

Lendl, B.; Schindler, R.; Kellner, R.

1998-06-01

143

Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution  

Microsoft Academic Search

Silver nanoplates, with average size tunable from 50 to 500nm, have been synthesized via a simple room-temperature tannic acid (TA) solution-phase chemical reduction method. The synthesis was a seedless process in which tannic acid was used as a reducing as well as a capping agent, and did not need any other surfactant or capping agent to direct the anisotropic growth

Zao Yi; Xibo Li; Xibin Xu; Binchi Luo; Jiangshan Luo; Weidong Wu; Yougen Yi; Yongjian Tang

144

Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel.  

PubMed

A cost-effective biosorbent was prepared by a green chemical modification process from muskmelon peel by saponification with alkaline solution of Ca(OH)2. Its adsorption behavior for lead ions was investigated and found to exhibit excellent adsorption properties. Results showed that the optimal equilibrium pH range for 100% adsorption is from 4 up to 6.4. Adsorption equilibrium was attained within 10 min. The adsorption process can be described well by Langmuir model and pseudo-second-order kinetics equation, respectively. The maximum adsorption capacity for lead ions was found to be 0.81 mol/kg. Pectic acid contained in the muskmelon peel is the main factor responsible for the uptake of lead ions onto the gel, and the chemical modification process presented in this study can be assumed effective to prepare other similar biomaterials. The large adsorption capacity and the fast adsorption rate indicated that chemically saponified muskmelon peel gel in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water. PMID:23212270

Huang, Kai; Zhu, Hongmin

2013-07-01

145

Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions  

NASA Astrophysics Data System (ADS)

The chemical durability of glasses with the composition 40P2O5-55ZnO-1Ga2O3-4Ag2O and 41P2O5-51ZnO-8Ga2O3 (mol%) was studied by measuring the rates of aqueous dissolution in neutral, acidic and alkaline aqueous solutions and discussed as a function of the glass composition. The change in the pH of the solutions as a function of the immersion time of the samples was used to study the dissolution mechanism. Using XRD and SEM/EDXA, we showed that the dissolution in deionized (DI) water and HCl consists of the leaching of the phosphate chains into the medium along with (i) the formation of a hydrated layer with the composition Zn2P2O73H2O and also of AgCl agglomerates when immersed in HCl and (ii) a leaching out of P, Ga and Ag when immersed for more than 180 min in DI water and for more than 60 min in HCl. The dissolution in NaOH-Na2CO3 consists of a net consumption of the OH- along with the formation of layers of Zn3(PO4)2(H2O)4 and Zn(H2PO2)2H2O with no apparent diffusion of P, Ga and Ag when immersed for as long as 240 min. Increasing the Ga2O3 concentration in zinc-phosphate glass at the expense of Ag2O lowers the dissolution rate when immersed in DI water, HCl and NaOH-Na2CO3 probably due to a reinforcement of the glass network.

Massera, J.; Bourhis, K.; Petit, L.; Couzi, M.; Hupa, L.; Hupa, M.; Videau, J. J.; Cardinal, T.

2013-01-01

146

Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat  

PubMed Central

Objective(s): Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L.) aqueous extract (SAE) on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG)-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum) and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen) were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner. PMID:23638290

Bathaie, S. Zahra; Miri, Hamidreza; Mohagheghi, Mohammad-Ali; Mokhtari- Dizaji, Manijeh; Shahbazfar, Amir-Ali; Hasanzadeh, Hadi

2013-01-01

147

Inhibitory Effect of Berberis vulgaris Aqueous Extract on Acquisition and Reinstatement Effects of Morphine in Conditioned Place Preferences (CPP) in Mice  

PubMed Central

Background: It has been elucidated that Berberis vulgaris (barberry) can alleviate morphine withdrawal syndrome. Also it has been reported that aqueous extract of barberry possibly have inhibitory effect on NMDA receptors. Objectives: In this study, we decided to evaluate the effects of aqueous extract of B. vulgaris fruit on morphine tendency in mice using conditioned place preference (CPP) method. Materials and Methods: In experiment 1 (acquisition phase), mice underwent morphine-induced conditioned place preference (CPP) training with injections of morphine (40 mg/kg). In experiment 2 (extinction and reinstatement phases), mice underwent the same CPP training as in experiment 1 and subsequent extinction training on day 16th a reinstatement by CPP was done by injection of reminding 10 mg/kg morphine. Results: The administration of morphine (40 mg/kg for four days) produced place preference. In the first method, the aqueous extract of barberry (200 mg/kg) prevented morphine tendency to white cell in CPP method. In the second method, after inter-peritoneal injection of aqueous extracts of barberry at 100 and 200 mg/kg, the animals tendency toward the white cells of CPP chamber on the sixteenth day (after a reminder injection of morphine 10 mg/kg) was significantly reduced. Conclusions: These results show that aqueous extract of barberry can reduce the acquisition and reinstatement of morphine-induced conditioned place preference. PMID:25237645

Imenshahidi, Mohsen; Qaredashi, Reza; Hashemzaei, Mahmoud; Hosseinzadeh, Hossein

2014-01-01

148

Sorption of nickel (II) from aqueous system by chemically modified pungan (pongamia pinnata) seedpod carbon  

NASA Astrophysics Data System (ADS)

The adsorption of Ni (II) on chemically modified bicarbonate impregnated sulphuric acid treated pungan (pongamia pinnata) seedpod carbon (BSPAC) was investigated as a function of equilibrium time, solution pH and carbon dosage. The adsorption of nickel (II) was also studied by using Freundlich, Langmuir and Temkin isotherm models. Kinetic studies were conducted using reversible-first-order, pseudo-first-order and pseudo-second-order kinetic equations. The results obtained were compared with commercially available activated carbon (CAC) of same 20-50 ASTM mesh size.

Senthil, M.; Arulanantham, A.

2013-06-01

149

Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl  

NASA Astrophysics Data System (ADS)

In proposed high level radioactive waste repositories a large part of the spent nuclear fuel (SNF) canisters are commonly composed of iron. Selenium is present in spent nuclear fuel as a long lived fission product. This study investigates the influence of iron on the uptake of dissolved selenium in the form of selenate and the effect of the presence of dissolved uranyl on the above interaction of selenate. The iron oxide, and selenium speciation on the surfaces was investigated by Raman spectroscopy. X-ray Absorption Spectroscopy was used to determine the oxidation state of the selenium and uranium on the surfaces. Under the simulated groundwater conditions (10 mM NaCl, 2 mM NaHCO 3, <0.1 ppm O 2) the immobilized selenate was found to be reduced to oxidation states close to zero or lower and uranyl was found to be largely reduced to U(IV). The near simultaneous reduction of uranyl was found to greatly enhance the rate of selenate reduction. These findings suggest that the presence of uranyl being reduced by an iron surface could substantially enhance the rate of reduction of selenate under anoxic conditions relevant for a repository.

Puranen, Anders; Jonsson, Mats; Dhn, Rainer; Cui, Daqing

2009-08-01

150

Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.  

PubMed

A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 ?mol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 ?mol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 ?mol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 3.0-5.0 %). PMID:22217091

Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

2012-01-01

151

Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions  

SciTech Connect

Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs.

Boukis, N.; Kritzer, P. [Forschungszentrum Karlsruhe (Germany)

1997-08-01

152

Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow  

NASA Technical Reports Server (NTRS)

This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

1988-01-01

153

Diffusion and polymerization of styrene in an aqueous solution of potassium persulfate under static conditions  

SciTech Connect

The potassium persulfate-initiated polymerization of styrene in a mechanically agitated mixture of water and monomer leads to the formation of a stable, monodisperse latex. In order to explain the mechanism of the stabilization of the latex particles in this system, the authors present a detailed investigation of the polymerization of styrene in a specially constructed electrochemical cell under static conditions. A schematic of the cell is shown. Results show that the capacity of the electrical double layer on the platinum electrode remains constant with time in a system containing only a solution of electrolyte, either K/sub 2/SO/sub 4/ or K/sub 2/S/sub 2/O/sub 8/.

Oganesyan, A.A.; Boyadzhyan, V.G.; Gritskova, I.A.; Gukasyan, A.V.; Matsoyan, S.G.; Pravednikov, A.N.

1985-10-01

154

Differing chemical weathering conditions in meltwater catchments of western Greenland  

NASA Astrophysics Data System (ADS)

Chemical weathering in the proglacial environment is limited by moisture availability rather than by temperature and proceeds at rates comparable to more temperate catchments of similar specific discharge. Moisture originates from two sources during the ablation season in proglacial environments: snow melt from non-glacierized catchments and directly from glacial melt. The magnitudes of these water sources create differences in stream size and ecology, which may result in different styles and rates of weathering due to differences in water rock interaction time and acid sources. We test this hypothesis through observations of specific conductance (SpC) and stable isotopes of water collected from streams in the Paakitsoq region of western Greenland in July 2011. In the Paakitsoq region, snow and glacier melt waters flow through distinct drainage basins with different types and amounts of vegetation. Basins that only receive water from snow melt have small clear streams that flow through vegetated marshlands. In contrast, basins where the greatest water flux is derived from glacial melt host larger turbid streams that drain across frontal moraines and continue along largely unvegetated flow paths. Snow and glacier end members can be separated by stable isotopic compositions (snow: ?D: -107.3 %; ?18O: -14.8 % and glacier: ?D: -229.8 %; ?18O: -29.7 %). Water isotopes from the two types of streams fall between the snow and glacier end member compositions, reflecting addition of snow melt to the turbid streams and isotopic fractionation of the snow as it melts. Isotopic compositions of water in the turbid streams lie along the global meteoric water line (GMWL), but isotopic compositions from the clear streams lie to the left of the GMWL and reflect preferential weathering in the more highly vegetated watersheds. The greatest amount of chemical weathering occurs in flat, marshy areas in the clear stream catchments, presumably as a result of decreased pH caused by plant metabolism and/or microbial reactions, lower specific discharge, and longer residence times. Higher chemical weathering rates in the clear streams are supported by field measurements of SpC that increase downstream from the snow source. SpC of turbid streams are lower than clear streams but increase downstream as they discharge to a single braided, turbid channel that flows ~20 km to the ocean. Future work on these samples will include analyses of major and trace elements, inorganic and organic carbon species, and Sr and Nd isotopes of water and compositions of rock, suspended and bedload sediments. These measurements will aid in understanding which phases contribute the most weathering products to the water and how these products interact with the local ecosystem, as well as quantify the delivery of weathering products to the ocean. Our results reflect the control of ecology on weathering in high latitude areas. This linkage of weathering to ecology suggests that weathering rates and magnitudes will vary with time through the ablation season depending on melt rate, residence time of water in the stream channels and ecosystems, and magnitude of primary productivity.

Deuerling, K. M.; Martin, J. B.; Gulley, J.

2011-12-01

155

The Chemical Impact of Physical Conditions in the Interstellar Medium  

NASA Astrophysics Data System (ADS)

We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10 -14 s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR model with a time-dependent UV radiation field and X-ray and cosmic ray flux, scaled to the star formation rate and radiative contributions of different spectral-type stars. The results provide an explanation for OH+, H2O + and water observations, and H3O+ non-detection in the region, as well as make unique predictions for HCO+ and other molecules. These results allow us to constrain the age of the Orion KL region. We predict an age for Orion KL of one hundred thousand to one million years after OB star formation.

Rimmer, Paul Brandon

2012-09-01

156

The Chemical Impact of Physical Conditions in the Interstellar Medium  

NASA Astrophysics Data System (ADS)

We examine the role cosmic rays, X-rays and ultra-violet (UV) photons play in the chemical evolution of the interstellar medium, and how astrophysical processes like massive star formation can change the fluxes of these energetic particles. We connect star formation rates to interstellar chemistry. We first explore the basic effects of cosmic-ray and X-ray ionization and UV photodissociation on the chemistry. For cosmic-ray and X-ray ionization, increasing the ionization rates enriches the chemistry, up to a value of 10(-14) s-1, whereupon molecules and ions are quickly destroyed due to the high electron fraction. Isolated from other effects, the UV field tends to dissociate species much more efficiently than ionizing them, and generally reduces molecular abundances, especially those of complex molecules. The combination of a high ionization rate and a high UV field can enhance the production of some molecular species, such as small hydrocarbons. We investigate the role of cosmic rays and UV photons in the Horsehead Nebula, and determine the impact a column-dependent cosmic ray ionization rate makes on photodissociation region (PDR) chemistry. The column-dependence of cosmic rays is solved using a three-dimensional two-fluid magnetohydrodynamics model, treating the cosmic rays as a fluid governed by the relativistic Boltzmann Transport Equation, and treating the interstellar medium as a second fluid, governed by the standard non-relativistic magnetohydrodynamics equations. We then utilize a modified version of the Morata-Herbst time-dependent PDR model, incorporating our function for cosmic ray ionization. Our results help solve a chemical mystery concerning high abundances of small hydrocarbons at the edge of the nebula. We discuss predictions the model makes for species currently unobserved in the Horsehead Nebula. Finally, we examine the role of star formation on interstellar astrochemistry in the Orion KL region. We develop a new astrochemical gas-grain PDR model with a time-dependent UV radiation field and X-ray and cosmic ray flux, scaled to the star formation rate and radiative contributions of different spectral-type stars. The results provide an explanation for OH+, H2O+ and water observations, and H3O+ non-detection in the region, as well as make unique predictions for HCO+ and other molecules. These results allow us to constrain the age of the Orion KL region. We predict an age for Orion KL of one hundred thousand to one million years after OB star formation.

Rimmer, Paul B.

2012-03-01

157

Chemical water/rock interaction under reservoir condition  

SciTech Connect

A simple model is proposed for water/rock interaction in rock fractures through which geothermal water flows. Water/rock interaction experiments were carried out at high temperature and pressure (200-350 C, 18 MPa) in order to obtain basic solubility and reaction rate data. Based on the experimental data, changes of idealized fracture apertures with time are calculated numerically. The results of the calculations show that the precipitation from water can lead to plugging of the fractures under certain conditions. Finally, the results are compared with the experimental data.

Watanabe, K.; Tanifuji, K.; Takahashi, H.; Wang, Y.; Yamasaki, N.; Nakatsuka, K.

1995-01-26

158

Solubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.  

PubMed

To understand the prenucleation stage of methane hydrate formation, we measured methane solubility under metastable conditions using molecular dynamics simulations. Three factors that influence solubility are considered: temperature, pressure, and the strength of the modeled van der Waals attraction between methane and water. Moreover, the naturally formed water cages and methane clusters in the methane solutions are analyzed. We find that both lowering the temperature and increasing the pressure increase methane solubility, but lowering the temperature is more effective than increasing the pressure in promoting hydrate nucleation because the former induces more water cages to form while the latter makes them less prevalent. With an increase in methane solubility, the chance of forming large methane clusters increases, with the distribution of cluster sizes being exponential. The critical solubility, beyond which the metastable solutions spontaneously form hydrate, is estimated to be ~0.05 mole fraction in this work, corresponding to the concentration of 1.7 methane molecules/nm(3). This value agrees well with the cage adsorption hypothesis of hydrate nucleation. PMID:23639139

Guo, Guang-Jun; Rodger, P Mark

2013-05-30

159

Mars aqueous chemistry experiment  

NASA Technical Reports Server (NTRS)

The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

Clark, Benton C.; Mason, Larry W.

1993-01-01

160

Production of chemical alarm cues in convict cichlids: the effects of diet, body condition and ontogeny  

Microsoft Academic Search

While much is known regarding the role of chemical alarm cues in the mediation of predator-prey dynamics within aquatic ecosystems, little is known regarding the production of these critically important information sources. In a series of labora- tory experiments, we tested the possible effects of diet, body condition and ontogeny on the production of chemical alarm cues in juvenile convict

Grant E. Brown; Patricia E. Foam; Hilary E. Cowell; Palestina Guevara Fiore; Douglas P. Chivers

161

SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS: JOURNAL ARTICLE  

EPA Science Inventory

NRMRL-CIN-1531A Mata, T.M., Smith*, R.L., Young*, D., and Costa, C.A.V. "Simulation of Ecologically Conscious Chemical Processes: Fugitive Emissions versus Operating Conditions." Paper published in: CHEMPOR' 2001, 8th International Chemical Engineering Conference, Aveiro, Portu...

162

Chemical properties of positive singly charged astatine ion in aqueous solution  

Microsoft Academic Search

The mobility of oxidized astatine in solutions H(Na)ClO4 (=0.4 M) 1104M K2Cr2O7 has been measured at 25C in the interval 0.63pH1.68. Under these conditions astatine migrates to the cathode only. The speed of the migration depends upon the concentration of hydrogen ions in solution: pH 1.68 Uc = 1.17 10-4 cm2 V-1 s-1 pH 0.63 Uc = 2.67

M. Milanov; V. Doberenz; V. A. Khalkin; A. Marinov

1984-01-01

163

Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules  

PubMed Central

We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structureproperty relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ?1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.91.0 log S units. PMID:24564264

2014-01-01

164

Current status of chemical-thermodynamic measurements for technetium and its inorganic compounds and aqueous species  

SciTech Connect

From the viewpoint of having an adequate chemical-thermodynamic data base for geochemical modeling, the most critically needed thermodynamic data for solid compounds are values of C{sub p,m}{sup 0}(T) and S{sub m}{sub 0}(T.) for Tc(cr), TcO{sub 2}(cr), Tc{sub 2}0{sub 7}(cr), TcS{sub 2}(cr) and Tc{sub 2}S{sub 7}(cr); {Delta}{sub f}H{sub m}{sup 0}(T{sub 0}) for TcS{sub 2}(cr), Tc{sub 2}S{sub 7}(cr), TcF{sub 6}(cr)and TcO{sub 2}(cr); and more accurate {Delta}{sub f}G{sub m}{sup 0}(T{sub 0}) for Tc(OH){sub 3}(cr). For the solution phase the most critical needs are for {Delta}{sub f}H{sub m}{sup 0}(T{sub 0}) of the aqueousspecies, and for equilibrium constants of complexes of TC(4) and TC(3) with all of the anions normally found in groundwater. In certain cases (especially the phosphates) the actual solution species need to be identified.

Rard, J.A.

1993-04-01

165

Current status of chemical-thermodynamic measurements for technetium and its inorganic compounds and aqueous species  

SciTech Connect

From the viewpoint of having an adequate chemical-thermodynamic data base for geochemical modeling, the most critically needed thermodynamic data for solid compounds are values of C[sub p,m][sup 0](T) and S[sub m][sub 0](T.) for Tc(cr), TcO[sub 2](cr), Tc[sub 2]0[sub 7](cr), TcS[sub 2](cr) and Tc[sub 2]S[sub 7](cr); [Delta][sub f]H[sub m][sup 0](T[sub 0]) for TcS[sub 2](cr), Tc[sub 2]S[sub 7](cr), TcF[sub 6](cr)and TcO[sub 2](cr); and more accurate [Delta][sub f]G[sub m][sup 0](T[sub 0]) for Tc(OH)[sub 3](cr). For the solution phase the most critical needs are for [Delta][sub f]H[sub m][sup 0](T[sub 0]) of the aqueousspecies, and for equilibrium constants of complexes of TC(4) and TC(3) with all of the anions normally found in groundwater. In certain cases (especially the phosphates) the actual solution species need to be identified.

Rard, J.A.

1993-01-01

166

Passivation of Zn{sub 3}P{sub 2} substrates by aqueous chemical etching and air oxidation  

SciTech Connect

Surface recombination velocities measured by time-resolved photoluminescence and compositions of Zn{sub 3}P{sub 2} surfaces measured by x-ray photoelectron spectroscopy (XPS) have been correlated for a series of wet chemical etches of Zn{sub 3}P{sub 2} substrates. Zn{sub 3}P{sub 2} substrates that were etched with Br{sub 2} in methanol exhibited surface recombination velocity values of 2.8 Multiplication-Sign 10{sup 4} cm s{sup -1}, whereas substrates that were further treated by aqueous HF-H{sub 2}O{sub 2} exhibited surface recombination velocity values of 1.0 Multiplication-Sign 10{sup 4} cm s{sup -1}. Zn{sub 3}P{sub 2} substrates that were etched with Br{sub 2} in methanol and exposed to air for 1 week exhibited surface recombination velocity values of 1.8 Multiplication-Sign 10{sup 3} cm s{sup -1}, as well as improved ideality in metal/insulator/semiconductor devices.

Kimball, Gregory M.; Bosco, Jeffrey P.; Mueller, Astrid M.; Tajdar, Syed F.; Brunschwig, Bruce S.; Atwater, Harry A.; Lewis, Nathan S. [Noyes Laboratory, Watson Laboratory, and Beckman Institute, California Institute of Technology, Pasadena, California 91125 (United States)

2012-11-15

167

Chemically Exfoliated MoS2 Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase.  

PubMed

Chemically exfoliated MoS2 (ce-MoS2) nanosheets that incorporate a large fraction of metallic 1T phase have been recently shown to possess a high electrocatalytic activity in the hydrogen evolution reaction, but the potential of this two-dimensional material as a catalyst has otherwise remained mostly uncharted. Here, we demonstrate that ce-MoS2 nanosheets are efficient catalysts for a number of model reduction reactions (namely, those of 4-nitrophenol, 4-nitroaniline, methyl orange, and [Fe(CN)6](3-)) carried out in aqueous medium using NaBH4 as a reductant. The performance of the nanosheets in these reactions is found to be comparable to that of many noble metal-based catalysts. The possible reaction pathways involving ce-MoS2 as a catalyst are also discussed and investigated. Overall, the present results expand the scope of this two-dimensional material as a competitive, inexpensive, and earth-abundant catalyst. PMID:25405770

Guardia, Laura; Paredes, Juan I; Munuera, Jos M; Villar-Rodil, Silvia; Ayn-Varela, Miguel; Martnez-Alonso, Amelia; Tascn, Juan M D

2014-12-10

168

XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell  

USGS Publications Warehouse

The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

Mayanovic, R.A.; Anderson, A.J.; Bassett, W.A.; Chou, I.-M.

1999-01-01

169

Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism  

NASA Technical Reports Server (NTRS)

The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction of half-lifes at 50 degrees C. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable; whereas organic substances containing two oxygenated groups in which one group was an alpha- or beta-positioned carbonyl group were the most reactive. Compounds with an alpha- or beta-positioned carbonyl group (aldehyde or ketone) had rates of reaction that were up to 10(24)-times faster than rates of similar molecules lacking the carbonyl group. This survey of organic reactivity, together with estimates of the molecular containment properties of lipid vesicles and liquid spherules, indicates that an origins process in a small domain that used C,H,O-intermediates had to be catalytic and use the most reactive organic molecules to prevent escape of its reaction intermediates.

Weber, Arthur L.

2004-01-01

170

Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions  

NASA Astrophysics Data System (ADS)

Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.

Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

2012-12-01

171

Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions.  

PubMed

The present study was performed to investigate the weathering and dissolution rates of Pb shot pellets differing in elemental composition (Pb, Sb, and As) exposed under various aqueous and soil conditions using five commercial shot pellet preparations. Upon immersion in distilled water, the dissolution rates of shot pellets, calculated from the difference in weight before versus after immersion, decreased with increasing Sb + As contents and the dominant precipitate was hydrocerussite. These subsidiary ingredients may be related to the difficulty of metallic Pb oxidation (transformation to PbO). Weight losses standardized by the amount of rainfall upon exposure to rainfall on open grassland and under canopies of Japanese cedar (Cryptomeria japonica) and bamboo-leafed oak (Quercus myrsinaefolia) were 1.11, 1.07, and 7.35 mg g pellets(-1) year(-1) L(-1), respectively, and was also related to Sb + As contents in shot pellets. However, annual dissolution rates of Pb standardized by the amount of rainfall as the soluble fraction at the same sites were 0.72, 0.33, and 0.40 mg Pb g pellets(-1) year(-1) L(-1) in the same order. These trends seemed to be related to the rainfall pH, which induces precipitation of Pb dissolved as PbCO(3) under conditions of higher pH at the Q. myrsinaefolia site or organic matter released from leaves, etc., which can form metal complexes. Dissolution rates of shot pellets buried in soils (Cambisol, Fluvisol, Regosol, Andosol) also seemed to be related to the soil pH and dissolved organic matter contents but were about sixfold faster than those with exposure to rainfall. PMID:20039167

Takamatsu, Takejiro; Murata, Tomoyoshi; Koshikawa, Masami K; Watanabe, Mirai

2010-07-01

172

Parametrization for chemical freeze-out conditions from net-charge fluctuations measured at RHIC  

E-print Network

We discuss details of our thermal model applied to extract chemical freeze-out conditions from fluctuations in the net-electric charge and net-proton number measured at RHIC. A parametrization for these conditions as a function of the beam energy is given.

M. Bluhm; P. Alba; W. Alberico; R. Bellwied; V. Mantovani Sarti; M. Nahrgang; C. Ratti

2014-12-18

173

CO-conditioning and dewatering of chemical sludge and waste activated sludge  

Microsoft Academic Search

The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios.

G. R Chang; J. C Liu; D. J Lee

2001-01-01

174

CHEMICAL TRANSFORMATIONS IN ACID RAIN. VOLUME 2. INVESTIGATION OF KINETICS AND MECHANISM OF AQUEOUS-PHASE PEROXIDE FORMATION  

EPA Science Inventory

The aqueous-phase reactions of O3 with a number of species have been studied in an effort to identify pathways leading to the production of hydrogen peroxide in solution. The aqueous-phase systems studied included the decomposition of O3 in pure water and the interaction of O3 wi...

175

Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.  

PubMed

Despite the key role of flavan-3-ols in many foods, very little is yet known concerning the modification of their chemical structures through food processes. Degradation of model media containing (-)-epicatechin and procyanidin B2, either separately or together, was monitored by RP-HPLC-DAD-ESI(-)-MS/MS. Medium composition (aqueous or lipidic) and temperature (60 and 90 C) were studied. In aqueous medium at 60 C, (-)-epicatechin was mainly epimerized to (-)-catechin, but it was also oxidized to "chemical" dimers, a "chemical" trimer, and dehydrodi(epi)catechin A. Unlike oxidation, epimerization was enhanced at 90 C. In lipidic medium, epimerization proved slow but degradation was faster. Procyanidin B2 likewise proved able to epimerize, especially at 90 C and in aqueous medium. At high temperature only, the interflavan linkage was cleaved, yielding the same compounds as those found in the monomer-containing model medium. Oxidation to procyanidin A2 was also evidenced. With little epimerization and slow oxidation even at 90 C, procyanidin B2 proved more stable in lipidic medium. Synergy was also observed: in the presence of the monomer, the dimer degradation rate increased 2-fold at 60 C. This work states for the first time the presence of newly formed flavan-3-ol oligomers in processed cocoa. PMID:25167469

De Taeye, Cdric; Cibaka, Marie-Lucie Kankolongo; Jerkovic, Vesna; Collin, Sonia

2014-09-10

176

Influence of Variable Environmental Conditions on Presence and Concentration of Energetic Chemicals Near Soil Surface in the Vadoze Zone  

NASA Astrophysics Data System (ADS)

Many explosive-related compounds (ERCs) are found near the soil-atmospheric surface in sites containing buried explosive devices, such as landmines and unexploded ordnance, detonation-residual, and munitions residues from explosive manufacturing facilities. Accurate assessment of the fate and transport processes is essential for predicting their movement to the surface, groundwater, or any other important environmental compartment. The transport processes controlling the direction and magnitude of the movement, and chemical and physical processes controlling the fate of the chemicals vary with environmental conditions. This research addresses the effect of variable rainfall, evaporation, temperature, and solar radiation on fate and transport of 2,4,6-Trinitrotoluene (TNT), 2,4-Dinitrotoluene (DNT), and other related chemicals in partially saturated soil. Experiments have been conducted in a laboratory-scale 3D SoilBed placed inside an environmental chamber equipped with rainfall and solar radiation simulators, and temperature control settings. The SoilBed was packed with a sandy soil. Experiments have been conducted by burying a TNT/DNT source, simulating a landmine, and applying different rainfall and light radiation cycles while monitoring DNT, TNT, and other related ERCs solute concentrations temporally and spatially within the SoilBed. Experiments include different source characteristics, rainfall intensities, temperatures, and radiation cycles to evaluate their effect on the detection and movement of ERC in soils in both aqueous and vapor phases. Temporal and spatial data has been analyzed comparatively and quantitatively. Comparative analysis was developed using surfer- and voxler-generated images and 3D visualization models applying spatial interpolation and masking methods. Single and multi-variable statistical analysis has been employed to determine the most important factors affecting the fate, transport and detection of ERC near soil-atmospheric surfaces. Results show that rainfall, radiation, and temperature variations influence the presence, transport, and concentrations of TNT and DNT near the soil surface. Higher concentrations are observed near the end of rainfall events, both in the aqueous and gaseous phases. Higher rainfall intensity results in higher presence and concentrations. Lower TNT and DNT concentrations than their solubility limit indicate rate-limited mass transfer, dissolution limitations, and dilution processes. Radiation events and higher atmospheric temperatures result in greater presence and concentrations of DNT and TNT, indicating influence of these factors on fate and transport processes. TNT degradation by-products measured mostly in the upper segments of the SoilBed, suggest degradation processes resulting from radiation-induced conditions near the soil-atmospheric surface. Although the ERC source consists of equal mass of TNT and DNT, greater detection density and concentrations are observed for DNT. A generalized linear mixed statistical model has been applied to quantify the effect of environmental conditions on ERC detection and concentrations. The statistical analysis indicates that rainfall events and related water contents are the most influential factors affecting the presence and concentrations of ERCs in the aqueous and gaseous phase. Solar radiation, and related heat flux, is the second most influential parameter. Although atmospheric temperature influence the presence and concentration of ERCs in soils, it is the least influential parameter.

Anaya, A. A.; Padilla, I. Y.

2008-12-01

177

Steady-state ?-radiolysis of aqueous methyl ethyl ketone (2-butanone) under postulated nuclear reactor accident conditions  

Microsoft Academic Search

The steady-state ?-radiolysis of aqueous solutions containing 110?3 mol dm?3 methyl ethyl ketone (MEK) has been studied at a dose rate of 0.12 Gy s?1, 25C and an initial pH of 10. Experiments were conducted in air-, Ar- or N2O-purged aqueous solutions, or in Ar-purged solutions with added tert-butanol. MEK, its radiolytic products, and the change in pH resulting from

P. Driver; G. Glowa; J. C. Wren

2000-01-01

178

Influence of processing and curing conditions on beads coated with an aqueous dispersion of cellulose acetate phthalate.  

PubMed

The influence of fluidized-bed processing conditions, as well as curing parameters with and without humidity, on drug release from beads coated with cellulose acetate phthalate (CAP) aqueous dispersion was investigated. Theophylline beads prepared by extrusion-spheronization were coated with diethyl phthalate (DEP)-plasticized CAP dispersion (Aquacoat CPD) using a Strea-1 fluidized-bed coater. The parameters investigated were plasticizer level, outlet temperature, spray rate during coating application and fluidizing air velocities using a half-factorial design. The processing temperature during coating applications was identified as a critical factor among the variables investigated. The release rate significantly decreased when the beads were coated at 36 degrees C compared to those coated at 48 degrees C (P<0.01). Higher coating efficiencies and better coalescence of films were obtained at the lower coating temperature. Above the minimum film-formation temperature (MFFT), drug release in acid decreased as the coating temperature was decreased. Curing at 60 degrees C significantly reduced the drug release for beads coated at 32 degrees C, but had no significant effect on drug release for beads coated at temperatures above 36 degrees C. Curing at 50 degrees C in an atmosphere containing 75% RH (relative humidity), irreversibly converted poor film formation into better coalescence, and increased the mechanical toughness of films. Subsequent removal of the moisture absorbed from beads did not significantly alter the enteric profiles obtained through heat-humidity curing. The extent of coalescence via heat-humidity curing was dependent on the curing temperature, % humidity, curing time and coating temperature. The results demonstrated the importance of the selection of coating temperature for CAP-coated beads and the role of moisture on CAP film formation. Curing with humidity was found to be more effective than without. PMID:10799816

Williams, R O; Liu, J

2000-05-01

179

Ion-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements.  

PubMed

Frequency-dependent electrical conductivities of solutions of aqueous strontium hydroxide and strontium chloride have been measured from T = 295 K to T = 625 K at p = 20 MPa, over a very wide range of ionic strength (3 10(-5) to 0.2 mol kg(-1)), using a high-precision flow AC conductivity instrument. Experimental values for the concentration-dependent equivalent conductivity, ?, of the two electrolytes were fitted with the Turq-Blum-Bernard-Kunz ("TBBK") ionic conductivity model, to determine ionic association constants, K(A,m). The TBBK fits yielded statistically significant formation constants for the species SrOH(+) and SrCl(+) at all temperatures, and for Sr(OH)2(0) and SrCl2(0) at temperatures above 446 K. The first and second stepwise association constants for the ion pairs followed the order K(A1)(SrOH(+)) > K(A1)(SrCl(+)) > K(A2)[Sr(OH)2(0)] > K(A2)[SrCl2(0)], consistent with long-range solvent polarization effects associated with the lower static dielectric constant and high compressibility of water at elevated temperatures. The stepwise association constants to form SrCl(+) agree with previously reported values for CaCl(+) to within the combined experimental error at high temperatures and, at temperatures below ?375 K, the values of log10?KA1 for strontium are lower than those for calcium by up to ?0.3-0.4 units. The association constants for the species SrOH(+) and Sr(OH)2(0) are the first accurate values to be reported for hydroxide ion pairs with any divalent cation under these conditions. PMID:25031185

Arcis, H; Zimmerman, G H; Tremaine, P R

2014-09-01

180

Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis  

SciTech Connect

Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow range of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.

Nauss, M.M.

1986-06-01

181

Modifying Culture Conditions in Chemical Library Screening Identifies Alternative Inhibitors of Mycobacteria?  

PubMed Central

In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection. PMID:19786608

Miller, Christopher H.; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

2009-01-01

182

Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.  

PubMed

Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (?ex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the ?ex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-?ex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average ?ex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-?ex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities. PMID:24932136

Lakkaraju, Sirish Kaushik; Raman, E Prabhu; Yu, Wenbo; MacKerell, Alexander D

2014-06-10

183

Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase  

NASA Astrophysics Data System (ADS)

Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.

Lim, Y. B.; Tan, Y.; Turpin, B. J.

2013-09-01

184

ACCURACY OF PESTICIDE REFERENCE STANDARD SOLUTIONS. PART II. CHEMICAL STABILITY UNDER FOUR STORAGE CONDITIONS  

EPA Science Inventory

A study was undertaken to assess the long-term chemical stability of dilute standard pesticide solutions of 4 compound classes. The solutions were studied under 4 storage conditions: freezer at -15C; refrigerator at 3C; ambient temperature in the dark; and ambient temperature on ...

185

Chemical regeneration of human tooth enamel under near-physiological conditions.  

PubMed

Regenerating the microstructure of human tooth enamel under near-physiological conditions (pH 6.0, 37 degrees C, 1 atm) using a simple chemical approach demonstrates a potential application to repair enamel damage in dental clinics. PMID:19787132

Yin, Yujing; Yun, Song; Fang, Jieshi; Chen, Haifeng

2009-10-21

186

First-principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-, zinc-, aluminum-, yttrium- and iron-doped magnesium alloys.  

PubMed

In the present study, the density functional theory implemented in the Vienna Ab-initio Simulation Package has been used to investigate the alloying effects of different elements of calcium, zinc, yttrium, aluminum and iron when introduced in the Mg crystal lattice. In particular, studies have been conducted to investigate the thermodynamics of the overall hydrolysis reaction of the different alloys with pure water. Phase stability results obtained from the first-principles calculations of the alloys considered are in good agreement with the published phase diagrams. The heats of the aqueous chemical reactions calculated in this study have been compared with that corresponding to the reaction of pure Mg with water. The heats of reactions dependence on the chemical compositions of the alloys have been investigated and, specifically, the role of Ca, Zn, Y, Al and Fe on the aqueous chemical stability and reactivity of these Mg alloys have been discussed. Results of these studies will help understand the biodegradable characteristic of Mg based alloys. PMID:19683600

Velikokhatnyi, Oleg I; Kumta, Prashant N

2010-05-01

187

Constraining the physical-chemical conditions of Pleistocene cavernous weathering in Late Paleozoic granites  

NASA Astrophysics Data System (ADS)

Cavernous weathering such as tafoni, alveoles and honeycomb structures have been recorded from a great variety of bedrocks and landforms. In the present study cavernous weathering from late Variscan granites was discussed as to its physical-chemical regime of formation. U/Pb dating yielded a maximum age of 1.52 0.03 Ma. Supergene U mineralization is accompanied by kaolinite, nontronite and Fe(III) phosphates. Based upon Eh-pH diagrams calculated for U-Fe-P mineralization the physical-chemical conditions may be described as oxidizing with pH values fluctuating around neutral at near-ambient temperatures of 25 C. Alteration occurs in two stages: dissolution of rock-forming minerals and neoformation of hydrosilicates under mildly acidic conditions, followed by phosphate precipitation under near-neutral conditions.

Dill, Harald G.; Weber, Berthold; Gerdes, Axel

2010-09-01

188

Chemistry of the system: Al2O3(c)minus HCL aqueous. [chemical reactions resulting from propellant combustion of rocket propellants  

NASA Technical Reports Server (NTRS)

In order to study exhaust gas chemistry for the space shuttle, the vapor pressure of 2 to 1 weight mixtures of 3-M hydrochloric acid and Al2O3 was studied over a l80 minute reaction period at 31 C. The Al2O3 sample was one of high surface area furnished by NASA Langley Research Center. A brief review is given for aqueous aluminum chemistry, and the chemical reactions of combustion products (exhaust gases) of aluminum propellant binders for the space shuttle are listed.

Tyree, S. Y., Jr.

1975-01-01

189

Development of the FMT chemical transport simulator: Advective transport sensitivity to aqueous density and mineral volume fraction coupled to phase compositions  

SciTech Connect

The Fracture-Matrix Transport (FMT) code couples saturated porous media advection and diffusion with mechanistic chemical models for speciation and interphase reactions. FMT is being developed to support actinide solubility and retardation studies for the Waste Isolation Pilot Plant (WIPP), USDOE facility for demonstrating safe disposal of transuranic waste. Hydrologic studies of water-bearing units above the WIPP indicate double-porosity transport behavior in some locations, with groundwater concentrations ranging which potable to highly concentrated. Previously, FMT simulated such systems in two-dimensions on the continuum from advection- to diffusion-dominated, with a user-specified velocity field that allows double-porosity transport. However, aqueous density was assumed constant, and reactive minerals were assumed to occupy negligible volume. Both of these assumptions can be considered poor for evaporite systems, where large changes in porosity and aqueous density can result from high mineral solubilities. Therefore, further development of FMT has relaxed these restrictions, allowing aqueous density to vary with phase composition, and allowing void volume to change as minerals dissolve and precipitate. This paper describes the additional mathematical complexity required to simulate such systems. The sensitivity of advection-dominated transport to these variables is explored through an extended example.

Novak, C.F.

1993-12-31

190

[Influence of hazardous work conditions of chemical production on health state of the aged workers].  

PubMed

Influence of hazardous work conditions of chemical production on health state of the aged workers. When compared with the group aged under 45 years, prevalence of nervous, cardiovascular and locomotor diseases is 1.5-4 times higher in workers aged over 45 and engaged into main occupations (device operators, operators, fitters) in production of organic glass, dichloroethane, polyurethane foam and subjected continuously to chemicals 2 and more times exceeding MAC. The authors suggest ways to reduce risk of occupationally mediated diseases in aged workers presenting 30-60% of the workshop staffers in the industries studied. PMID:19663179

Kaliaganov, P I; Troshin, V V; Smetanina, O I; Gobeeva, O V; Frolova, S V; Ashirova, S A

2009-01-01

191

Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods  

EPA Science Inventory

Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

192

Chemical Composition and Antimicrobial Potential of Aqueous Distillate Volatiles of Indian Peppermint (Mentha piperita) and Spearmint (Mentha spicata)  

Microsoft Academic Search

During the process of distillation, the hydrophilic part of the essential oil dissolves in the aqueous distillate that is generally considered waste and discarded. The decanted (main essential oil) and hydrophilic (recovered essential oil) fractions of peppermint (Mentha piperita cv Kukrail) and spearmint (Mentha spicata cv MSS-5) essential oils were investigated by gas chromatography and gas chromatographymass spectrometry. The decanted

Ram Swaroop Verma; Vandana Pandey; Rajendra Chandra Padalia; Dharmendra Saikia; Binay Krishna

2011-01-01

193

Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution  

NASA Astrophysics Data System (ADS)

Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

2014-05-01

194

Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution  

NASA Astrophysics Data System (ADS)

Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

2014-10-01

195

DETERMINATION OF STABLE VALENCE STATES OF CHROMIUM IN AQUEOUS AND SOLID WASTE MATRICES - EXPERIMENTAL VERIFICATION OF CHEMICAL BEHAVIOR  

EPA Science Inventory

The objective of the research effort was to experimentally assess the chemical behavior of the stable species of chromium during the preparation, chemical manipulation, and spectrophotometric analyses of simulated and authentic environmental samples for hexavalent chromium. The d...

196

Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation.  

PubMed Central

The proliferative response of murine lymphocytes to interleukin-2 (IL-2) was examined under physico-chemical conditions present in solid tumours, namely low oxygen and glucose concentrations and acidic pH. Lymphocytes were cultured for four days in 30 U ml-1 IL-2 to simulate serum IL-2 concentrations attainable with high-dose systemic IL-2 therapy. Lymphocyte proliferation was significantly (P < 0.05) reduced by low oxygen concentrations (both anoxia [0% O2] and hypoxia [10%, low glucose (6 mg dl-1), or acidic pH (6.7 or 6.4). Moderate glucose concentration (32 mg dl-1), or neutral pH (7.0) did not impair proliferation. This study indicates that impairment of lymphocyte proliferation by tumour physico-chemical conditions may be a factor in the relatively poor success rate of IL-2/LAK cell immunotherapy. PMID:1419598

Loeffler, D. A.; Juneau, P. L.; Masserant, S.

1992-01-01

197

Chemically transferable coarse-grained potentials from conditional reversible work calculations.  

PubMed

The representability and transferability of effective pair potentials used in multiscale simulations of soft matter systems is ill understood. In this paper, we study liquid state systems composed of n-alkanes, the coarse-grained (CG) potential of which may be assumed pairwise additive and has been obtained using the conditional reversible work (CRW) method. The CRW method is a free-energy-based coarse-graining procedure, which, by means of performing the coarse graining at pair level, rigorously provides a pair potential that describes the interaction free energy between two mapped atom groups (beads) embedded in their respective chemical environments. The pairwise nature of the interactions combined with their dependence on the chemically bonded environment makes CRW potentials ideally suited in studies of chemical transferability. We report CRW potentials for hexane using a mapping scheme that merges two heavy atoms in one CG bead. It is shown that the model is chemically and thermodynamically transferable to alkanes of different chain lengths in the liquid phase at temperatures between the melting and the boiling point under atmospheric (1 atm) pressure conditions. It is further shown that CRW-CG potentials may be readily obtained from a single simulation of the liquid state using the free energy perturbation method, thereby providing a fast and versatile molecular coarse graining method for aliphatic molecules. PMID:23083154

Brini, E; van der Vegt, N F A

2012-10-21

198

Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.  

PubMed

Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene. PMID:25386721

Choi, Dong Soo; Kim, Keun Soo; Kim, Hyeongkeun; Kim, Yena; Kim, TaeYoung; Rhy, Se-hyun; Yang, Cheol-Min; Yoon, Dae Ho; Yang, Woo Seok

2014-11-26

199

Determination of Trace Chlorophenols Endocrine Disrupting Chemicals in Water Sample Using [Bmim]BF 4NaH 2PO 4 Aqueous Two-Phase Extraction System Coupled with High Performance Liquid Chromatography  

Microsoft Academic Search

Determination of trace endocrine-disrupting chemicals such as chlorophenols in a water sample was carried out by utilizing ionic liquid aqueous two-phase extraction systems coupled with high-performance liquid chromatography (HPLC). In our study, the target analytes were 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP) and 4-chlorophenol (4-CP). The effects of salt concentration, pH value of aqueous phase, extraction time and the amount of ionic

Yong-Sheng YAN

2011-01-01

200

Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions  

USGS Publications Warehouse

Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

Mayanovic, R.A.; Jayanetti, S.; Anderson, A.J.; Bassett, W.A.; Chou, I.-M.

2003-01-01

201

Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of 'Comice' pears.  

PubMed

'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 C for 25 or 15 days, or storage at 10 C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 C. Fruit held at 10 C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning treatments in sweet or sour taste perception when the fruit fully softened. The results indicate that the various methods of conditioning 'Comice' pear fruits for ripening had different effects on their sensory and chemical properties that may influence their sensory quality. PMID:24844943

Makkumrai, Warangkana; Sivertsen, Hanne; Sugar, David; Ebeler, Susan E; Negre-Zakharov, Florence; Mitcham, Elizabeth J

2014-06-01

202

Chemically synthesized glycosides of hydroxylated flavylium ions as suitable models of anthocyanins: binding to iron ions and human serum albumin, antioxidant activity in model gastric conditions.  

PubMed

Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1) and its more water-soluble 7-O-?-d-glucopyranoside (P2), are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach), the colorless (chalcone) forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA), their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms. PMID:25514218

Al Bittar, Sheiraz; Mora, Nathalie; Loonis, Michle; Dangles, Olivier

2014-01-01

203

Kinetics of OH-initiated oxidation of some oxygenated organic compounds in the aqueous phase under tropospheric conditions  

NASA Astrophysics Data System (ADS)

The interest for multiphase interactions of Volatile Organic Compounds (VOCs) in the troposphere has increased for a few years. Inside the clouds water droplets, soluble VOCs can be oxidized by free radicals thus modifying the droplet composition. This reactivity has an impact on the tropospheric oxidizing capacity as well as the aerosols' properties. In the present work, we measured aqueous phase OH-initiated oxidation rate constants of several oxygenated organic compounds relevant to the atmosphere or chosen as test compounds (ethanol, t-butanol, 1-butanol, iso-propanol, 1-propanol, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, phenol, ethyl ter-butyl ether (ETBE), n-propyl acetate, acetone, methyl ethyl ketone (MEK), methyl iso-butyl ketone (MIBK), ethyl formate). Experiments took place in an aqueous phase photoreactor. The rate constants were determinated using the relative kinetic method. Different OH-radical sources were tested, as well as different reference compounds in order to detect any artifact. The results have shown validation of the experimental protocol on test compounds. The overall results allowed to propose a structure reactivity method in order to predict OH-oxidation rate constant of new compounds. Finally, tropospheric life times of the studied compounds were compared inside and outside a cloud.

Poulain, L.; Grubert, S.; Franois, S.; Monod, A.; Wortham, H.

2003-04-01

204

Chemical residence time and hydrological conditions influence treatment of fipronil in vegetated aquatic mesocosms.  

PubMed

Fipronil, a phenyl-pyrazole insecticide, is often used in rice (Oryza sativa L.) production agriculture, with elevated runoff concentrations and loads having potential toxicological effects on downstream aquatic environments. This study evaluated two species of aquatic plants-broadleaf cattail (Typha latifolia L.) and powdery alligator-flag (Thalia dealbata Fraser ex Roscoe)-placed in series against a nonvegetated mesocosm in reducing concentrations and loads of fipronil, and associated metabolites. Vegetation type and hydrological condition (inundated vs. dry) were treatment effects used for comparison. The vegetated mesocosms significantly reduced higher loads and concentrations of fipronil, fipronil sulfone, and sulfide in both inundated and dry hydrological conditions over nonvegetated nesocosms. Under inundation conditions, vegetated mesocosms reduced >50% of influent fipronil concentrations and betweeen 60 and 70% of fipronil loads, which was significantly higher than the dry conditions (10-32% concentration and load). These results show that agricultural management strategies usingephemeral aquatic zones, such as drainage ditches, can be optimized to couple chemical applications with vegetation presence and hydrology to facilitate the reduction in chemical waste loads entering downstream aquatic ecosystems. Such reduction is critical for use with fipronil, where negative impacts have been demonstrated with several nontarget species. PMID:21520763

Krger, Robert; Moore, Matthew T

2011-01-01

205

Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.  

PubMed

Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3?:?3 and 3?:?2 U?:?Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution. PMID:25469487

Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

2014-12-01

206

Corrosion phenomena of alloy 625 in aqueous solutions containing sulfuric acid and oxygen under subcritical and supercritical conditions  

SciTech Connect

Corrosion phenomena of alloy 625 pressure tubes were investigated in aqueous solutions containing up to 0.2 mol/kg sulfuric acid and up to 1.44 mol/kg oxygen. Applied maximum temperatures and pressures were 500 C, and 38 MPa, respectively. Corrosion started at temperatures around 150 C with intergranular attack. Above 250 C, the whole surface of the alloy was attacked, shallow pits and deep intergranular attack appeared. This behavior can be explained by transpassive dissolution of the protecting Cr(III) oxide layer and leads to severe material loss. The upper temperature limit of severe corrosion at an experimental pressure of 24 MPa was about 390 C. As temperature was increased further and the density of the solution dropped to low values, only slight corrosion was detected.

Kritzer, P.; Boukis, N.; Dinjus, E. [Forschungszentrum Karlsruhe (Germany)

1998-12-31

207

Looking for the best experimental conditions to detail the protein solvation shell in a binary aqueous solvent via small angle scattering  

NASA Astrophysics Data System (ADS)

Protein hydration features attract particular interest in different fields, from biology up to physics, crossing chemistry and medicine. Particular attention is devoted to proteins dissolved in binary aqueous mixtures, since the presence of cosolvent can induce modifications in structural and functional properties. We have recently developed a methodology to obtain a quantitative description on protein solvation shell by a set of in-solution small angle scattering experiments, simultaneously analysed by a global-fit approach. In this paper, numerical simulations of small angle scattering curves are presented to figure out the sensitivity of the technique to different experimental conditions. Simulations concern two model proteins of different molecular weights and an unique cosolvent. A reliability test is introduced in order to find the best experimental conditions to be investigated, together with the most suitable scattering probe (neutrons or X-rays).

Grazia Ortore, Maria; Sinibaldi, Raffaele; Spinozzi, Francesco; Carbini, Andrea; Carsughi, Flavio; Mariani, Paolo

2009-06-01

208

High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers.  

SciTech Connect

An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

2004-06-01

209

On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes  

USGS Publications Warehouse

Synchrotron X-ray spectroscopy experiments were made on the Gd(III) aqua and chloro complexes in low pH aqueous solutions at temperatures ranging from 25 to 500????C and at pressures up to 480??MPa using a hydrothermal diamond anvil cell. Analysis of fluorescence Gd L3-edge X-ray absorption fine structure (XAFS) spectra measured from a 0.006m Gd/0.16m HNO3 aqueous solution at temperatures up to 500????C and at pressures up to 260??MPa shows that the Gd-O distance of the Gd3+ aqua ion decreases steadily at a rate of ??? 0.007??A??/100????C whereas the number of coordinated H2O molecules decreases from 9.0 ?? 0.5 to 7.0 ?? 0.4. The loss of water molecules in the Gd3+ aqua ion inner hydration shell over this temperature range (a 22% reduction) is smaller than exhibited by the Yb3+ aqua ion (42% reduction) indicating that the former is significantly more stable than the later. We conjecture that the anomalous enrichment of Gd reported from measurement of REE concentrations in ocean waters may be attributed to the enhanced stability of the Gd3+ aqua ion relative to other REEs. Gd L3-edge XAFS measurements of 0.006m and 0.1m GdCl3 aqueous solutions at temperatures up to 500????C and pressures up to 480??MPa reveal that the onset of significant Gd3+-Cl- association occurs around 300????C. Partially-hydrated stepwise inner-sphere complexes most likely of the type Gd(H2O)??-nCln+3-n occur in the chloride solutions at higher temperatures, where ?? ??? 8 at 300????C decreasing slightly to an intermediate value between 7 and 8 upon approaching 500????C. This is the first direct evidence for the occurrence of partially-hydrated REE Gd (this study) and Yb [Mayanovic, R.A., Jayanetti, S., Anderson, A.J., Bassett, W.A., Chou, I-M., 2002a. The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 ??C and 270 MPa. J. Phys. Chem. A 106, 6591-6599.] chloro complexes in hydrothermal solutions. The number of chlorides (n) of the partially-hydrated Gd(III) chloro complexes increases steadily with temperature from 0.4 ?? 0.2 to 1.7 ?? 0.3 in the 0.006m chloride solution and from 0.9 ?? 0.7 to 1.8 ?? 0.7 in the 0.1m GdCl3 aqueous solution in the 300-500????C range. Conversely, the number of H2O ligands of Gd(H2O)??-nCln+3-n complexes decreases steadily from 8.9 ?? 0.4 to 5.8 ?? 0.7 in the 0.006m GdCl3 aqueous solution and from 9.0 ?? 0.5 to 5.3 ?? 1.0 in the 0.1m GdCl3 aqueous solution at temperatures from 25 to 500????C. Analysis of our results shows that the chloride ions partially displace the inner-shell water molecules during Gd(III) complex formation under hydrothermal conditions. The Gd-OH2 bond of the partially-hydrated Gd(III) chloro complexes exhibits slightly smaller rates of length contraction (??? 0.005??A??/100????C) for both solutions. The structural aspects of chloride speciation of Gd(III) as measured from this study and of Yb(III) as measured from our previous experiments are consistent with the solubility of these and other REE in deep-sea hydrothermal fluids. ?? 2006 Elsevier B.V. All rights reserved.

Mayanovic, R.A.; Anderson, A.J.; Bassett, W.A.; Chou, I.-M.

2007-01-01

210

Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions  

PubMed Central

To address oil spillage and chemical leakage accidents, the development of efficient sorbent materials is of global importance for environment and water source protection. Here we report on a new type of carbon nanofiber (CNF) aerogels as efficient sorbents for oil uptake with high sorption capacity and excellent recyclability. Importantly, the oil uptake ability of the CNF aerogels can be maintained over a wide temperature range, from liquid nitrogen temperature up to ca. 400C, making them suitable for oil cleanup under harsh conditions. The outstanding sorption performance of CNF aerogels is associated with their unique physical properties, such as low density, high porosity, excellent mechanical stability, high hydrophobicity and superoleophilicity. PMID:24518262

Wu, Zhen-Yu; Li, Chao; Liang, Hai-Wei; Zhang, Yu-Ning; Wang, Xin; Chen, Jia-Fu; Yu, Shu-Hong

2014-01-01

211

Chemical and structural properties of Jordanian zeolitic tuffs and their admixtures with urea and thiourea: Potential scavengers for phenolics in aqueous medium  

SciTech Connect

Native Jordanian zeolitic tuffs, rich in phillipsite, were treated with urea and thiourea. The chemical and structural properties of the tuffs and their urea and thiourea admixtures were studied using SEM, XRF, XRD, and FTIR techniques, and their adsorption capacities were estimated by the methylene blue method. The urea and thiourea treatment has not affected the mineral constitution of the tuffs. The results revealed that urea and thiourea were linked by hydrogen bonding through the NH{sub 2} moiety to the zeolite substrate, with urea showing the strongest effect. Experiments were carried out to investigate the possible use of the prepared materials for the removal of phenol and chlorinated phenols from aqueous solutions. Although thiourea caused a reduction in the relative surface area, both urea and thiourea admixtures were more effective than the free zeolitic tuff in the removal of phenol and chlorinated phenols from water, with urea admixture displaying the largest removal capacity.

Yousef, R.I.; Tutunji, M.F.; Derwish, G.A.W. [Univ. of Jordan, Amman (Jordan). Dept. of Chemistry] [Univ. of Jordan, Amman (Jordan). Dept. of Chemistry; Musleh, S.M. [Natural Resources Authority, Amman (Jordan)] [Natural Resources Authority, Amman (Jordan)

1999-08-15

212

Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product.  

PubMed

Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR. PMID:23764506

Valili, Styliani; Siavalas, George; Karapanagioti, Hrissi K; Manariotis, Ioannis D; Christanis, Kimon

2013-10-15

213

Adsorption of Trace Levels of Arsenic from Aqueous Solutions by Conditioned Layered Double Hydroxides: Batch and Flow  

E-print Network

calcined layered double hydroxide (LDH) adsorbents. Conditioning the adsorbent significantly reduced the dissolution observed with uncalcined and calcined LDH3. The adsorption rates and isotherms have been invariant with particle size4. The removal of As(V) on conditioned, calcined LDH adsorbents was also

Southern California, University of

214

Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.  

PubMed

Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. PMID:25438118

Vega, Esther; Moncls, Hctor; Gonzalez-Olmos, Rafael; Martin, Maria J

2015-03-01

215

Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.  

PubMed

Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints. PMID:23692353

Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

2013-07-01

216

Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.  

PubMed

The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage. PMID:20568743

Navarro, Carla; Daz, Mario; Villa-Garca, Mara A

2010-07-15

217

An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site  

SciTech Connect

West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

Poston, T.M.; Price, K.L.; Newcomer, D.R.

1991-03-01

218

DETERMINATION OF PHTHALATES IN WATER AND SOIL BY TANDEM MASS SPECTROMETRY UNDER CHEMICAL IONIZATION CONDITIONS WITH ISOBUTANE AS REAGENT GAS  

EPA Science Inventory

Phthalate determination is important because phthalates often are major impurities in samples and can have significant health effects. Tandem mass spectrometry under chemical ionization mass spectrometry conditions with isobutane as the reagent gas was used to determine 11 phthal...

219

Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions  

EPA Science Inventory

Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

220

The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions  

NASA Astrophysics Data System (ADS)

Secondary inorganic aerosols play important roles in visibility reduction and in regional haze pollution. To investigate the characteristics of size distributions of secondary sulfates and nitrates as well as their formation mechanisms under hazes, size-resolved aerosols were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) at an urban site in Jinan, China, in all four seasons (December 2007-October 2008). In haze episodes, the secondary sulfates and nitrates primarily formed in fine particles, with elevated concentration peaks in the droplet mode (0.56-1.8 ?m). The fine sulfates and nitrates were completely neutralized by ammonia and existed in the forms of (NH4)2SO4 and NH4NO3, respectively. The secondary formation of sulfates, nitrates and ammonium (SNA) was found to be related to heterogeneous aqueous reactions and was largely dependent on the ambient humidity. With rising relative humidity, the droplet-mode SNA concentration, the ratio of droplet-mode SNA to the total SNA, the fraction of SNA in droplet-mode particles and the mass median aerodynamic diameter of SNA presented an exponential, logarithmic or linear increase. Two heavily polluted multi-day haze episodes in winter and summer were analyzed in detail. The secondary sulfates were linked to heterogeneous uptake of SO2 followed by the subsequent catalytic oxidation by oxygen together with iron and manganese in winter. The fine nitrate formation was strongly associated with the thermodynamic equilibrium among NH4NO3, gaseous HNO3 and NH3, and showed different temperature-dependences in winter and summer.

Wang, Xinfeng; Wang, Wenxing; Yang, Lingxiao; Gao, Xiaomei; Nie, Wei; Yu, Yangchun; Xu, Pengju; Zhou, Yang; Wang, Zhe

2012-12-01

221

Wettability of steel surfaces at CO{sub 2} corrosion conditions. 1: Effect of surface active compounds in aqueous and hydrocarbon media  

SciTech Connect

The wettability of carbon steel surfaces with aqueous media (distilled water, brines) and hydrocarbon media (crude oils) was studied under CO{sub 2} corrosion conditions at 75 and 80 C and 5 bar CO{sub 2} with respect to the effect of surface active compounds (inhibitors, demulsifiers) by quasi-insitu and insitu contact angle measurements in a high pressure test cell. Fatty alcohol ethoxylates, quats, amines and imidazolines influence the hydro-philic/hydrophobic properties of carbonate scales on corroding carbon steel, but inhibiting mechanisms cannot be explained by hydrophobing effects alone. The method yields easy and quick information on substance effects, specifically in case of insitu measurements in oil-in-water systems.

Schmitt, G. [Iserlohn Univ. of Applied Sciences (Germany). Lab. for Corrosion Protection; Stradmann, N. [Corp. para la Investigation de la Corrosion, Bucamaranga (Colombia)

1998-12-31

222

Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA  

NASA Technical Reports Server (NTRS)

The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Kawamura, K.; Nagahama, M.; Kuranoue, K.

2005-01-01

223

Iodine-xenon, chemical, and petrographie studies of Semarkona chondrules: Evidence for the timing of aqueous alteration  

USGS Publications Warehouse

We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.

Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.

1991-01-01

224

ToF SIMS chemical mapping study of protein adsorption onto stainless steel surfaces immersed in saline aqueous solutions  

NASA Astrophysics Data System (ADS)

It is now well established that protein adsorption constitutes the first step of the biofouling process. As seawater contains several salts (mainly, NaCl, MgCl 2 and CaCl 2) and their influence on the protein adsorption is not yet clear, the aim of this contribution was to bring new insight on their role. For this purpose, different aqueous solutions containing salts mixtures have been prepared while keeping the total salt concentration the same as in natural seawater (36 g/l). A model protein, the bovine serum albumin (BSA) was added to these solutions. Stainless steel surfaces were immersed into these different solutions for 24 h then rinsed and freeze-dried. The time-of-flight-secondary ion mass spectrometry (ToF-SIMS) molecular images show that all the salts dissolved in water produce micrometer particles at the sample surfaces. These particles are mainly consist of sodium, magnesium and calcium. Because there are few space correlations with any counter ions (Cl -, SO 4-, etc.), these particles are not pure salt residues. Moreover, these particles were found to be the preferred adsorption sites for the proteins. Indeed, the images show that the BSA surrounds these metallic spots to form annular shape patterns (diameter ?20 ?m).

Poleunis, C.; Rubio, C.; Compre, C.; Bertrand, P.

2003-01-01

225

Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks  

SciTech Connect

Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

2012-07-26

226

Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.  

PubMed

A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. PMID:24462989

Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Catalua, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo

2014-03-15

227

Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design  

Microsoft Academic Search

The dehydration of air, for air conditioning purposes, either for human comfort or for industrial processes, is done most of the times by making it contact a surface at a temperature below its dew point. In this process not only is it necessary to cool that surface continuously, but also the air is cooled beyond the temperature necessary to the

Manuel R. Conde

2004-01-01

228

Application of pervaporation and vapor permeation processes to separate aqueous ethanol solution through chemically modified Nylon 4 membranes  

SciTech Connect

The pervaporation performance of a Nylon 4 membrane, chemically grafted by N,N-dimethylaminoethyl methacrylate (DMAEM), DMAEM-g-N4, was studied by measurement of the permeation ratio and the pervaporation separation index. It was found that the water permselectivity and permeation rate for the chemically modified Nylon 4 membrane were higher than those of the unmodified Nylon 4 membrane. Optimum pervaporation results, a separation factor of 28.3, and a permeation rate of 439 g/m{sup 2}{center_dot}h, were obtained when the degree of grafting was 12.7%. It was also found that all the permeation ratios at low temperature were less than unity. In addition, compared with pervaporation, vapor permeation effectively increases the permselectivity of water.

Wang, Y.H.; Teng, M.Y.; Lee, K.R. [Nanya Junior Coll. of Technology, Chung Li (Taiwan, Province of China). Dept. of Chemical Engineering; Wang, D.M.; Lai, J.Y. [Chung Yuan Univ., Chung Li (Taiwan, Province of China). Dept. of Chemical Engineering

1998-08-01

229

Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions  

NASA Astrophysics Data System (ADS)

Aerosols properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

230

Synthesis of multi-walled carbon nanotube\\/silver nanocomposite powders by chemical reduction in aqueous solution  

Microsoft Academic Search

Carbon nanotube (CNT)\\/silver nanocomposite powders with different volume fractions of CNTs 2.5, 5 and 10?vol.% were prepared by chemical reduction in solution. Multi-walled CNTs underwent surface modifications for functionalisations by acid treatments. The acid-treated CNTs were investigated by FT-IR and X-ray photoelectron spectroscopy. The spectroscopic investigations of the acid-functionalised CNTs detected that several kinds of functional groups attached with the

Walid M. Daoush; Soon H. Hong

2012-01-01

231

Development of a simple aqueous solution based chemical method for synthesis of mesoporous ?-alumina powders with disordered pore structure  

Microsoft Academic Search

A technically simple chemical method for the synthesis of mesoporous ?-alumina has been reported. Mesoporous ?-aluminas with\\u000a different pore structure and surface area were synthesized by using aluminium nitrate as a source of aluminum. Supramolecular\\u000a liquid crystalline phase of acid soap template synthesized via reaction of different carboxylic acids (stearic acid, oliec\\u000a acid and lactic acid) with excess of triethanolamine

Bhanudas Naik; V. S. Prasad; N. N. Ghosh

2010-01-01

232

Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods  

Microsoft Academic Search

The physico-chemical properties of oil from Moringa oleifera seed were determined following extraction either with petroleum ether or 2% Neutrase 0.8L (a neutral bacterial protease from Bacillus amyloiquefaciens, Novozyme Bagsvaerd Denmark). The enzyme was chosen following a preliminary study conducted on the enzymatic extraction of M. oleifera seed oil using four commercial enzymes that showed Neutrase to be the best

S. M. Abdulkarim; K. Long; O. M. Lai; S. K. S. Muhammad; H. M. Ghazali

2005-01-01

233

Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions  

SciTech Connect

Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates.

Gray, W.J.; Einziger, R.E.

1998-04-01

234

Chemical quantification of atomic-scale EDS maps under thin specimen conditions.  

PubMed

We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). With thin specimen conditions and localized EDS scattering potential, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak width are investigated using SrTiO3 (STO) as a model specimen. The relationship between the peak width and spatial resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study cation occupancy in a Sm-doped STO thin film and antiphase boundaries (APBs) present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the APBs likely owing to the effect of strain. PMID:25307942

Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L; Jia, Quanxi

2014-12-01

235

Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids  

PubMed Central

Summary This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones. PMID:22043246

Burguete, M Isabel; Garca-Verdugo, Eduardo

2011-01-01

236

Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.  

PubMed

Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and increasing catchment DOC export. PMID:24753046

Olefeldt, David; Roulet, Nigel T

2014-10-01

237

Effective dispersion in a chemically heterogeneous medium under temporally fluctuating flow conditions  

NASA Astrophysics Data System (ADS)

We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow conditions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is modeled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process. Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respective random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced transverse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coefficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective modeling of reactive transport in heterogeneous media in general.

Zavala-Sanchez, Vanessa; Dentz, Marco; Sanchez-Vila, Xavier

2007-05-01

238

Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study  

Technology Transfer Automated Retrieval System (TEKTRAN)

Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The eff...

239

Development and Analysis of a High-Pressure Micro Jet Pad Conditioning System for Interlayer Dielectric Chemical Mechanical Planarization  

Microsoft Academic Search

Conventional diamond disc pad conditioning methods employed in chemical mechanical planarization (CMP) have presented several problems for integrated circuit (IC) manufacturers. These include diamond wear, which reduces pad life, and diamond fracture, which causes the semiconductor devices to be scratched by loose diamond fragments. In order to attempt to overcome these problems, a high-pressure micro jet (HPMJ) conditioning system, in

Yoshiyuki Seike; Darren DeNardis; Masano Sugiyama; Keiji Miyachi; Toshiro Doi; Ara Philipossian

2005-01-01

240

Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions  

PubMed Central

Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

2014-01-01

241

Differentiation of Human Embryonic Stem Cells to Regional Specific Neural Precursors in Chemically Defined Medium Conditions  

PubMed Central

Background Human embryonic stem cells (hESC) provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. Methodology and Principal Findings The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA) or to human recombinant basic fibroblast growth factor (bFGF) in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF) and caudalizing (RA) signals were confirmed by patch clamp analysis. Conclusions/Significance These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages. PMID:18461168

Erceg, Slaven; Lanez, Sergio; Ronaghi, Mohammad; Stojkovic, Petra; Prez-Arag, Maria Amparo; Moreno-Manzano, Victoria; Moreno-Palanques, Rubn; Planells-Cases, Rosa; Stojkovic, Miodrag

2008-01-01

242

Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam  

SciTech Connect

The in-situ remediation of a lead-contaminated soil (silt loam, K{sub H} = 5 {times} 10{sup {minus}8} cm/s, soil Pb = 1,000 mg/kg) by electrokinetic (EK) soil flushing [60 V (DC)] was studied. Research focused on the chemical conditioning of the electrode reservoirs with either 500 {micro}S/cm (as NaNO{sub 3}, baseline behavior), acetic acid (HAc), HCl, or EDTA. For baseline tests there were significant amounts of lead transported through the soil, but the Pb precipitated or was readsorbed on the soil adjacent to the cathode because of the high soil pH in that region. The addition of 1 M HAc to the cathode reservoir prevented the formation of the basic conditions in the soil, and about 65% of the Pb was transported into the cathode. When HCl was added to the anode and HAc was added to the cathode, more than 75% of the lead resided in the cathode. Pb removals in the EDTA experiments were greater than those observed in the baseline experiments and were similar to those observed in the HCl-HAc experiments. A low anode reservoir pH resulting from a high current was the most likely reason.

Reed, B.E.; Berg, M.T.; Hatfield, J.H. [West Virginia Univ., Morgantown, WV (United States); Thompson, J.C. [ERM-EnviroClean, Inc., Cranberry Township, PA (United States)

1995-11-01

243

Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys.  

PubMed

The environment-assisted cracking (EAC) susceptibility of some aluminum alloys used for airplane structural components currently limits their use in the peak strength condition. Understanding the mechanism of EAC will facilitate the development of crack-resistant alloys with optimum mechanical properties. One component towards understanding the fundamental processes responsible for EAC is a comprehensive knowledge of the chemical conditions within cracks. The present work uses capillary electrophoresis (CE) to quantify the crack chemistry in order to provide insight into the nature of the mechanism controlling cracking. The highly restricted geometry of cracks in metals means that a crack typically contains less than 10 microliters of solution. The high mass sensitivity combined with the inherently robust nature of CE makes it an ideal analytical technique for this application. Complicating factors in the accurate determination of the crack environment include high levels of sodium present from the test solution. Low sample volume and analyte matrix complexity necessitated the development of specific sampling, extraction and analysis methods. Analysis of the crack solutions in EAC-susceptible material revealed high levels of Al3+, Mg2+, Zn2+, and Cl- near the crack tip. Cations arise from the anodic dissolution of the alloy, whereas chloride ingress from the external environment occurs to maintain solution electroneutrality within the crack. In contrast, EAC-resistant material exhibited significantly lower concentrations of dissolution products. PMID:10457501

Cooper, K R; Kelly, R G

1999-07-30

244

Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions  

NASA Technical Reports Server (NTRS)

Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

2004-01-01

245

Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts. (Florence, Italy)  

EPA Science Inventory

The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

246

Sustainable 'Greener' Methods for Chemical Transformations and Applications of Nano-Catalysts  

EPA Science Inventory

The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 Synthesis of heterocyclic compounds, coupling reactions, and name reac...

247

Chemical interactions between Nano-ZnO and Nano-TiO2 in a natural aqueous medium.  

PubMed

The use of diverse engineered nanomaterials (ENMs) potentially leads to the release of multiple ENMs into the environment. However, previous efforts to understand the behavior and the risks associated with ENMs have focused on only one material at a time. In this study, the chemical interactions between two of the most highly used ENMs, nano-TiO2, and nano-ZnO, were examined in a natural water matrix. The fate of nano-ZnO in Lake Michigan water was investigated in the presence of nano-TiO2. Our experiments demonstrate that the combined effects of ZnO dissolution and Zn adsorption onto nano-TiO2 control the concentration of dissolved zinc. X-ray absorption spectroscopy was used to determine the speciation of Zn in the particulate fraction. The spectra show that Zn partitions between nano-ZnO and Zn2+ adsorbed on nano-TiO2. A simple kinetic model is presented to explain the experimental data. It integrates the processes of nano-ZnO dissolution with Zn adsorption onto nano-TiO2 and successfully predicts dissolved Zn concentration in solution. Overall, our results suggest that the fate and toxicity potential of soluble ENMs, such as nano-ZnO, are likely to be influenced by the presence of other stable ENMs, such as nano-TiO2. PMID:24918623

Tong, Tiezheng; Fang, Kaiqi; Thomas, Sara A; Kelly, John J; Gray, Kimberly A; Gaillard, Jean-Franois

2014-07-15

248

Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions.  

PubMed

The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation. PMID:25202837

Sippula, O; Stengel, B; Sklorz, M; Streibel, T; Rabe, R; Orasche, J; Lintelmann, J; Michalke, B; Abbaszade, G; Radischat, C; Grger, T; Schnelle-Kreis, J; Harndorf, H; Zimmermann, R

2014-10-01

249

Unusual atmospheric pressure chemical ionization conditions for detection of organic peroxides.  

PubMed

Organic peroxides such as the cumene hydroperoxide I (M(r) = 152 u), the di-tert-butyl peroxide II (M(r) = 146 u) and the tert-butyl peroxybenzoate III (M(r) = 194 u) were analyzed by atmospheric pressure chemical ionization mass spectrometry using a water-methanol mixture as solvent with a low flow-rate of mobile phase and unusual conditions of the source temperature (< or =50 degrees C) and probe temperature (70-200 degrees C). The mass spectra of these compounds show the formation of (i) an [M + H](+) ion (m/z 153) for the hydroperoxide I, (ii) a stable adduct [M + CH(3)OH(2)](+) ion (m/z 179) for the dialkyl peroxide II and (iii) several protonated adduct species such as protonated molecules (m/z 195) and different protonated adduct ions (m/z 227, 389 and 421) for the peroxyester III. Tandem mass spectrometric experiments, exact mass measurements and theoretical calculations were performed for characterize these gas-phase ionic species. Using the double-well energy potential model illustrating a gas-phase bimolecular reaction, three important factors are taken into account to propose a qualitative interpretation of peroxide behavior toward the CH(3)OH(2) (+), i.e. thermochemical parameters (DeltaHdegrees(reaction)) and two kinetic factors such as the capture constant of the initial stable ion-dipole and the magnitude of the rate constant of proton transfer reaction into the loose proton bond cluster. PMID:14505320

Rondeau, David; Vogel, Ren; Tabet, Jean-Claude

2003-09-01

250

Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions  

PubMed Central

Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415

Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vincius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.

2010-01-01

251

DES-code: A metacode to aid calculation of the chemical potential of aqueous solutions at elevated temperatures and pressures  

NASA Astrophysics Data System (ADS)

The DH-ASF (Debye-Hckel-asymmetric formalism) model is a recently developed activity-composition model that can be used to calculate the thermodynamic effects of mixing in strong electrolyte and mixed solvent supercritical solutions at high pressures ( >3kbar) and temperatures ( >400C). The model uses a mole fraction concentration scale, and calculations are based on a pre-defined independent set of end-members that define speciation within the solution. This differs from the conventional use of molal concentration scales with sets of end-members that define the composition of the solution, but not the speciation (apparent end-members). This work presents DES (dual end-member sets)-code, a code that takes a conventional molal scale description of solution composition and implements the DH-ASF model for that solution. The code converts between apparent and independent end-member sets, and calculates standard state chemical potentials, ideal activities and activity coefficients using the DH-ASF model for molal and mole fraction concentration scales. The code runs in MathematicaTM 4.1 onwards, but it is written in a general meta-code form so that it can be implemented on a variety of platforms. Inputs to the code can be made manually, read from an auxiliary file, or presented to the input modules as passed variables. The code is provided with thermodynamic data from the Holland and Powell data set, but can be used with any data specified by the user. Outputs are designed to be modified by the user. Calculations on the systems NaCl- H2O, NaCl- CaCl2- H2O and NaCl- CO2- H2O are used to demonstrate the utility of the DES-code. Calculations predict that ion association increases with increasing temperature and concentration of salt and CO2, and with decreasing pressure. This is consistent with experimental observation and the results of molecular simulations. The DES-code is suitable for use as it stands, or for modification and incorporation into existing or new Gibbs energy minimisation or equilibrium solving thermodynamic codes.

Evans, Katy; Powell, Roger

2007-06-01

252

Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions.  

PubMed

Reduced graphene oxide (RGO) supported rhodium nanoparticles (Rh-NPs/RGO) was synthesized through one-pot polyol co-reduction of graphene oxide (GO) and rhodium chloride. The catalytic property of Rh-NPs/RGO was investigated for the aqueous phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP). A complete conversion of 4-CP into high valued products of cyclohexanone (selectivity: 23.2%) and cyclohexanol (selectivity: 76.8%) was successfully achieved at 303K and balloon hydrogen pressure in a short reaction time of 50 min when 1.5 g/L of 4-CP was introduced. By comparing with Rh-NPs deposited on the other supports, Rh-NPs/RGO delivered the highest initial rate (111.4 mmol/gRh min) for 4-CP HDC reaction under the identical conditions. The substantial catalytic activity of Rh-NPs/RGO can be ascribed to the small and uniform particle size of Rh (average particle size was 1.7 0.14 nm) on the surface of the RGO sheets and an electron-deficient state of Rh in the catalyst as a result of the strong interaction between the active sites and the surface function groups of RGO. PMID:24762698

Ren, Yanlin; Fan, Guangyin; Wang, Chenyu

2014-06-15

253

The influence of physico-chemical properties of TiO 2 on photocatalytic generation of C 1C 3 hydrocarbons and hydrogen from aqueous solution of acetic acid  

Microsoft Academic Search

The present study was focused on the influence of physico-chemical properties of TiO2 on a photocatalytic generation of useful C1C3 hydrocarbons (mainly methane) and hydrogen from aqueous solution of acetic acid under N2 atmosphere. The photocatalysts applied in the study were prepared from a crude TiO2 obtained by the sulphate technology. The crude TiO2 was calcined at the temperatures of

Sylwia Mozia; Aleksandra Heciak; Antoni W. Morawski

2011-01-01

254

Chemical and Physical Environmental Conditions Underneath Mat and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals  

Microsoft Academic Search

Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal

Claudine Hauri; Katharina E. Fabricius; Britta Schaffelke; Craig Humphrey; Stuart Humphries

2010-01-01

255

The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts  

ERIC Educational Resources Information Center

The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade

Bilgin, Ibrahim; Geban, Omer

2006-01-01

256

Time-resolved chemically induced dynamic nuclear polarization studies of structure and reactivity of methionine radical cations in aqueous solution as a function of pH.  

PubMed

Using time-resolved chemically induced dynamic nuclear polarization (CIDNP) techniques, we have studied the mechanism of the photoreactions of triplet excited 4-carboxybenzophenone (CBP) with l-methionine (Met) and 3-(methylthio)propylamine (MTPA) in aqueous solution and the details of the formation of CIDNP at pH from 6.7 to 13.6. At a pH below the pKa of the nitrogen atom of Met, the CIDNP is strongly affected by degenerate electron exchange between the S-S cationic radical dimer and the zwitterionic form of Met with the rate constant kex = 3.4 x 10(8) s(-1) providing an exhaustive explanation of the pH dependence of steady-state CIDNP that was previously interpreted as a manifestation of fast interconversion among three different methionine radical species (Goez, M.; Rozwadowski, J. J. Phys. Chem. A 1998, 102, 7945-7953). By analyzing the polarization of different protons formed in geminate recombination as a function of the pH, we obtained the branching ratio between two reaction pathways for oxidative quenching of (T)CBP via electron transfer from the sulfur and nitrogen atoms of Met and MTPA. Nuclear spin-lattice relaxation times were determined in the dimeric cation radical of Met (T1,S = 8.5 micros). In the cyclic radical cation of MTPA with a three-electron two-center S-N bond, the estimated paramagnetic relaxation is comparatively slow for all protons. Fast deprotonation of the primary aminium radical cation of MTPA and Met in strongly basic solution takes place on the submicrosecond time scale leading to efficient formation of CIDNP in the neutral aminyl radical. PMID:16833344

Morozova, Olga B; Korchak, Sergey E; Sagdeev, Renad Z; Yurkovskaya, Alexandra V

2005-11-17

257

Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "chemical and ecotoxicological studies".  

PubMed

As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer. PMID:17240054

Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L

2007-07-19

258

Integrating 31P DOSY NMR spectroscopy and molecular mechanics as a powerful tool for unraveling the chemical structures of polyoxomolybdate-based amphiphilic nanohybrids in aqueous solution.  

PubMed

Novel organic-inorganic hybrids of various sizes were generated by reaction of 1,8-octanediphosphonic acid (ODP) and (NH4)6Mo7O24 in aqueous solution. The formation of rodlike hybrids with variable numbers of covalently bound ODP and polyoxomolybdate (POM) units can be tuned as a function of increasing (NH4)6Mo7O24 concentration at fixed ODP concentration. The chemical structure of the ODP/POM hybrids was characterized by (1)H, (31)P, and (95)Mo NMR spectroscopy. Heteronuclear (31)P DOSY (diffusion- ordered NMR spectroscopy) and molecular mechanics (MM) calculations were applied to determine the size and shape of the nanosized hybrids generated at various ODP/POM ratios. For this purpose, the structures of ODP/POM hybrids with variable numbers of ODP and POM units were optimized by MM and then approximated as cylinder-shaped objects by using a recently described mathematical algorithm. The thus-obtained cylinder length and diameter were further used to calculate the expected diffusion coefficients of the ODP/POM hybrids. Comparison of the calculated and experimentally determined diffusion coefficients led to the most probable ODP/POM hybrid length for each sample composition. The (31)P DOSY results show that the length of the hybrids increases with increasing POM concentration and reaches a maximum corresponding to an average of 8?ODP/7?POM units per chain at a sample composition of 20?mM ODP and 14?mM POM. With excess POM, above the latter concentration, the formation of shorter-chain hybrids terminated by Mo7 clusters at one or both ends was evidenced on further increasing the POM concentration. The results demonstrate that the combination of (31)P DOSY and MM, although virtually unexplored in POM chemistry, is a powerful innovative strategy for the detailed characterization of nanosized organic-inorganic POM-based hybrids in solution. PMID:24729454

Shestakova, Pavletta; Absillis, Gregory; Martin-Martinez, Francisco J; De Proft, Frank; Willem, Rudolph; Parac-Vogt, Tatjana N

2014-04-25

259

Study of Chemical Surface Structure of Natural Sorbents Used for Removing of Pb2+ Ions from Model Aqueous Solutions (part Ii)  

NASA Astrophysics Data System (ADS)

This article presents the results of the chemical structure research of organic sorbent surface such as walnut shells, plums stones and sunflower hulls with using such methods as infrared spectrometry (FTIR) and elemental analysis. Based on the IR spectra identification of functional groups present on the surface of studied materials has been done as well as determination of their effect on the sorption mechanism of Pb2+ ions from aqueous model solutions W artykule przedstawiono wyniki bada? chemicznej struktury powierzchni sorbentw organicznych takich jak: ?upiny orzecha w?oskiego, pestki ?liwek oraz ?uski s?onecznika z wykorzystaniem metody spektrometrii w podczerwieni (FTIR) oraz analizy elementarnej. W oparciu o uzyskane widma IR dokonano identyfikacji grup funkcyjnych obecnych na powierzchni tych materia?w i okre?lono ich wp?yw na mechanizm sorpcji jonw Pb2+ z modelowych roztworw wodnych. Analiza elementarna wykaza?a, ?e spo?rd badanych sorbentw, najwi?ksz? zawarto?? w?gla (49,91%) i wodoru (5,93%) maj? pestki ?liwek. Najwi?cej azotu (1,59%) zawieraj? ?uszczyny s?onecznika (tabela 1). Zawarto?? siarki we wszystkich badanych materia?ach jest znikoma, dlatego nie uda?o si? jej oznaczy? t? metod?. Obecno?? pozosta?ych pierwiastkw mo?e ?wiadczy? o istnieniu zarwno alifatycznych jak i aromatycznych po??cze? organicznych. Potwierdzeniem tego s? rwnie? zarejestrowane widma IR (rysunki 1-3). W oparciu o uzyskane wyniki mo?na przypuszcza? tak?e, i? udzia? procesu wymiany jonowej w sorpcji o?owiu z roztworw wodnych jest znacz?cy. ?wiadcz? o tym m.in. intensywno?ci pasm na widmach IR dla prbek badanych materia?w po ich kontakcie z roztworami jonw Pb2+ (rysunki 4-6).

Bo??cka, Agnieszka; Bo??cki, Piotr; Sanak-Rydlewska, Stanis?awa

2014-03-01

260

Chemical oven technology and its application in AlN composites fabricated under microgravity condition  

Microsoft Academic Search

The microgravity experiments of fabrication materials by using TiC chemical ovens have been performed on the parabolic flight plane. The gravity behaviors in the combustion reactions of chemical ovens themselves during the aircraft parabolic flight were investigated. The results show that, the combustion temperatures and reactions vary with different gravity levels. These influences are related with the function of gravity

Guojian J. Jiang; Qingxue X. Zhang; Hanrui R. Zhuang; Wenlan L. Li; Maozi Z. Li

2003-01-01

261

Chemical analysis of mucus from certain land snails under Egyptian conditions  

Microsoft Academic Search

The present investigation was carried out to study the chemical analysis of the mucus of three common land snails, Eobania vermiculata, Theba pisana and Monacha obstructa, and identification of the chemical compositions by using GC-MS. Results revealed that several variations in composition were observed between all species. Oxime, methoxy-phenyl and cyclotrisiloxane, hexamethyl were major components found that in three species,

A. A. A. Sallam; S. A. El-Massry; I. N. Nasr

2009-01-01

262

Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical  

EPA Science Inventory

The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

263

Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization  

NASA Astrophysics Data System (ADS)

This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated he

Sulyma, Christopher Michael

264

Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment.  

PubMed

A highly productive chemically defined fed-batch process was developed to maximize titer and volumetric productivity for Chinese hamster ovary cell-based recombinant protein manufacturing. Two cell lines producing a recombinant antibody (cell line A) and an Fc-fusion protein (cell line B) were used for development. Both processes achieved product titers of 10 g/L on day 18 under chemically defined conditions. For cell line B, the use of plant derived hydrolysates combined with the optimized chemically defined medium increased the titer to 13 g/L. Volumetric productivities were increased from a base line of about 200 mg/L/d to about 500 mg/L/d under chemically defined conditions and as high as 700 mg/L/d with cell line B using plant derived hydrolysates. Peak cell densities reached greater than 20E6 vc/mL, and cell viabilities were maintained above 80% on day 18 without the use of antiapoptotic genes or temperature shift. A rapid compound screening method was developed to effectively test positive factors within 72 h. Peak volumetric oxygen uptake rates (OUR) more than tripled from the baseline condition. Oxygen demand continued to increase after maximum cell density was reached with a maximal OUR of 3.7 mmol/L/h. The new process format was scaled up and verified at 100 L pilot scale using reactor equipment of similar configuration as used at manufacturing scale. PMID:20945494

Huang, Yao-Ming; Hu, WeiWei; Rustandi, Eddie; Chang, Kevin; Yusuf-Makagiansar, Helena; Ryll, Thomas

2010-01-01

265

Effect of chemical mechanical planarization processing conditions on polyurethane pad properties  

E-print Network

Chemical Mechanical Planarization (CMP) is a vital process used in the semiconductor industry to isolate and connect individual transistors on a chip. However, many of the fundamental mechanisms of the process are yet to ...

Ng, Grace Siu-Yee, 1980-

2003-01-01

266

Potential of Sawdust for the Decontamination of Lead from Aqueous Media  

Microsoft Academic Search

The sorption of lead ions on sawdust has been exploited to evaluate its potential for the decontamination of lead ions from aqueous solutions. Various physico?chemical parameters such as selection of appropriate electrolyte, equilibration time, amount of adsorbent, concentration of adsorbate, effect of diverse ions and temperature were studied in order to simulate the best conditions in which this material can

Nasir Khalid; Sohaila Rahman; Shujaat Ahmad

2005-01-01

267

Agglomerated Large Particles under Various Slurry Preparation Conditions and Their Influence on Shallow Trench Isolation Chemical Mechanical Polishing  

NASA Astrophysics Data System (ADS)

The effects of various slurry manufacturing conditions, such as suspension pH, abrasive contents, and the calcination temperature of abrasive ceramic particles on the formation of agglomerated large particles of ceria slurry were investigated. The agglomerated large particles in slurry have much influence on the micro-scratches on the wafer surface in shallow trench isolation chemical mechanical polishing (STI CMP). The formation of large agglomerated particles is affected by the conformation of the organic additives in the slurry as a function of the suspension pH and the specific surface area of the abrasive particle. Regarding the solid content, abrasive particles are more easily dispersed at lower solid loading, which prevents additional agglomeration even under acidic conditions. The influence of agglomerated large particles on STI CMP was investigated through a polishing experiment with plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) and a low-pressure chemical vapor deposition (LPCVD) nitride layer.

Kim, Dae-Hyeong; Kang, Hyun-Goo; Kim, Sang-Kyun; Paik, Ungyu; Park, Jea-Gun

2005-11-01

268

Diurnal fluctuations in the physico-chemical conditions of the Shatt al-Arab and the Ashar Canal  

Microsoft Academic Search

Diel fluctuations of temperature, dissolved oxygen, carbon dioxide, pH, total alkalinity and chlorosity in the Shatt al-Arab\\u000a River and the Ashar Canal at Basrah, Iraq were studied. The study covered three 24-hour periods in three different months.\\u000a Appreciable diurnal changes in the physico-chemical conditions and considerable heterogeneity were noted at the three stations\\u000a selected. The ranges of diurnal differences between

A L Sarker; S K Al-Nasiri; S A Hussein

1980-01-01

269

THE INSTABILITY OF ESTROGENIC CHEMICALS DURING LABORATORY STATIC EXPOSURE CONDITIONS WITH MALE FATHEAD MINNOWS  

EPA Science Inventory

Endocrine disrupting chemicals (EDCs) such as Para-nonylphenol (NP), estradiol (E2), estrone (E1), estriol (E3) and ethynylestradiol (EE2) are shown to be ubiquitous in surface waters, sediments and sludge. These EDCs are known to induce vitellogenin gene (Vg) expression in male...

270

The Influence of Growth Conditions on the Chemical Bath Deposited ZnS Thin Films  

Microsoft Academic Search

Highly transparent and nanocrystalline zinc sulfide thin films were grown onto various substrates by chemical bath deposition. The influence of deposition parameters such as type of substrate, concentration of thiourea, temperature and deposition time on the physical properties of films was studied in order to understand the optical properties and surface morphologies. The roughness of substrate can enhance the coalescence

Busarin NOIKAEW; Panita CHINVETKITVANICH; Intira SRIPICHAI; Chanwit CHITYUTTAKAN

271

Numerical simulation of the middle atmosphere chemical composition and temperature under changing solar conditions  

NASA Technical Reports Server (NTRS)

There are given results of the numerical experiments on modelling the influence of solar activity on chemical composition and temperature of the middle atmosphere. The consideration is made for peculiarities of solar activity impact under different values of antropogenic pollution of the atmosphere with chlorofluorocarbons and other stuff.

Zadorozhny, A. M.; Dyominov, I. G.; Tuchkov, G. A.

1989-01-01

272

Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary  

NASA Technical Reports Server (NTRS)

Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

1982-01-01

273

Development of a reduced aqueous phase chemistry mechanism  

NASA Astrophysics Data System (ADS)

Recent model studies have implicated the necessity of more complex aqueous phase processes to be considered in future higher scale chemistry transport models (CTMs). Important chemical cloud effects are mainly not yet considered or less represented in currently available regional scale CTMs. To this end, a mechanism reduction of the detailed aqueous phase chemistry mechanism CAPRAM 3.0i (Chemical Aqueous Phase RAdical Mechanism, Herrmann et al. [2005]) with about 777 reactions have been performed to develop simplified mechanism with less than 250 processes. For the mechanism reduction manual methods including detailed process investigations and automatic techniques [see Mauersberger, 2005] were applied. Both investigations have been done in order to provide a less computationally intensive mechanism which is operational in higher scale CTMs and accurately represents the main chemical aqueous phase processes. The results of the manual reduction have been compared with the output of an automatic reduction. This comparison showed a quite good agreement. Based on the restrictions of both reduction methods, a final reduced mechanism was derived which describes the main characteristics of inorganic and organic aqueous phase processes occurring in tropospheric warm clouds. With less than 200 reactions, the reduced mechanism is nearly a factor of 4 smaller than the detailed CAPRAM 3.0i mechanism. Most of the chemical reduction potential has been realised in the organic chemistry with 393 unimportant reactions. Moreover, the number of aqueous phase species decreased from 380 in the full CAPRAM 3.0i mechanism to 130 in the final reduced version. Furthermore, 11 unimportant phase transfer processes and 36 insignificant chemical equilibriums have been identified according to their minor relevance for the preselected reduction key species. The calculated percentage deviations between the full and reduced mechanism are mostly below 5% for the most important target compounds. Additionally, numerical sensitivity tests have been performed focusing on the relevance of both the relative and absolute integration error tolerances for an accurate and efficient modelling. The sensitivity studies have shown that cloud formation and particularly evaporation periods are circa three times more computationally intensive than in cloud conditions. This indicates the requirement for sufficiently accurate tolerance levels particularly there. Comparisons of the required CPU times between the full and final reduced mechanism showed reductions of approximately 40%. Prospectively, the final reduced aqueous phase mechanism represents the basis for studying chemical cloud effects on regional scale with future CTMs and will be important for a better understanding of the multiphase aerosol cloud processing effects on regional scale as well as the interpretation of field data.

Tilgner, A.; Deguillaume, L.; Wolke, R.; Herrmann, H.

2009-04-01

274

CHEMICAL CHARACTERISATION OF BHUIAVALI (Phyllanthus niruri).  

PubMed

The present article describes the chemical characteristics such as pH of aqueous extract, fluorescence, aqueous and alcoholic extractives, lignans and TLC profile of aqueous extract of Bhuiavli (Phyllanthus niruri). PMID:22556737

Phadnis, A D

1995-10-01

275

Conditions?  

Microsoft Academic Search

Research interests in feral hogs typically involve their negative impacts on ecosystems or their potential as a disease reservoir, especially with disease transmission to domestic swine. Authors within scientific literature state that feral hogs were captured as part of their research, but usually fail to mention specific conditions in which hogs were captured. Novice researchers of feral hogs must rely

A. Christy Wyckoff; Scott E. Henke; Kurt C. VerCauteren

276

Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment  

PubMed Central

Background In the spring of 2013, a novel avian-origin influenza A (H7N9) virus in Eastern China emerged causing human infections. Concerns that a new influenza pandemic could occur were raised. The potential effect of chemical agents and physical conditions on inactivation of the novel avian influenza H7N9 virus had not been assessed. Methods To determine the inactivation effectiveness of the novel avian influenza A (H7N9) virus under various physical conditions and chemical treatments, two H7N9 viruses A/Anhui/1/2013 and A/Shanghai/1/2013 were treated by varied temperatures, ultraviolet light, varied pHs and different disinfectants. The viruses with107.7 EID50 were exposed to physical conditions (temperature, ultraviolet light and pH) or treated with commercial chemical agents (Sodium Hypochlorite, Virkon-S, and Ethanol) respectively. After these treatments, the viruses were inoculated in SPF embryonated chicken eggs, the allantoic fluid was collected after 7296 hours culture at 35C and tested by haemagglutination assay. Results Both of the tested viruses could tolerate conditions under 56C for 15 minutes or 60C for 5 minutes, but their infectivity was completely lost under 56C for 30 minutes, 65C for 10 minutes, 70C, 75C and 100C for 1 minute. It was also observed that the H7N9 viruses lost their infectivity totally after exposure of ultraviolet light irradiation for 30 minutes or longer time. Additionally, the viruses were completely inactivated at pH less than 2 for 0.5 hour or pH 3 for 24 hours, however, viruses remained infectious under pH treatment of 412 for 24 hours. The viruses were totally disinfected when treated with Sodium Hypochlorite, Virkon-S and Ethanol at recommended concentrations after only 5 minutes. Conclusions The novel avian influenza A (H7N9) virus can be inactivated under some physical conditions or with chemical treatments, but they present high tolerance to moderately acidic or higher alkali conditions. The results provided the essential information for public health intervention of novel H7N9 avian influenza outbreak. PMID:24034697

2013-01-01

277

Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition  

Microsoft Academic Search

The growth of vertically aligned carbon nanotubes using a direct current plasma enhanced chemical vapor deposition system is reported. The growth properties are studied as a function of the Ni catalyst layer thickness, bias voltage, deposition temperature, C2H2:NH3 ratio, and pressure. It was found that the diameter, growth rate, and areal density of the nanotubes are controlled by the initial

M. Chhowalla; K. B. K. Teo; C. Ducati; N. L. Rupesinghe; G. A. J. Amaratunga; A. C. Ferrari; D. Roy; J. Robertson; W. I. Milne

2001-01-01

278

High-temperature sulphur removal under fluidized bed combustion conditions A chemical interpretation  

Microsoft Academic Search

Theoretical and experimental studies were conducted on coal sulphur removal under chaotically changing oxidizing and reducing conditions, which occur in the dense zone of bubbling fluidized beds. Experimental desulphurization trends were analyzed by comparison with multi-species (50 gas-phase, 7 solid-phase species) equilibrium calculations for coal\\/steam\\/sorbent\\/air system. It was shown, that under fluctuating reducing\\/oxidizing conditions, sulphur capture as CaS in locally

S. V. Makarytchev; K. F. Cen; Z. Y. Luo; X. T. Li

1995-01-01

279

The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater.  

PubMed

Catalytic hydrotreating of chlorophenols was carried out in water with Pd/C at 25 degrees C under atmospheric pressure. 1.0% (w/w) monocholophenols was completely dechlorinated within 60 min. Phenol, cyclohexanone and cyclohexanol were formed. In contrast to the dechlorination of monochlorophenols, the hydrogenation reaction of polychlorinated phenols became difficult and reaction rates were strongly dependent upon the number of the chlorine atoms. The solvent property had a considerably important influence on the dechlorination reaction. Water as a solvent showed more advantages than organic solvents. It was much easier to be hydrodechlorinated for chlorophenols in aqueous solutions. However, the presence of THF, dioxane, DMSO or DMF in water was disadvantageous to the reaction and easily to cause Pd/C deactivation. Additionally, when different halogenated organic compounds were present in aqueous solution, the dehalogenation reaction was the competitive hydrogenation process. PMID:19477071

Xia, Chuanhai; Liu, Ying; Zhou, Shiwei; Yang, Cuiyun; Liu, Sujing; Xu, Jie; Yu, Junbao; Chen, Jiping; Liang, Xinmiao

2009-09-30

280

A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts  

Microsoft Academic Search

We have recently developed a single-step, low-temperature process for the catalytic production of fuels, such as hydrogen and\\/or alkanes, from renewable biomass-derived oxygenated hydrocarbons. This paper reviews our work in the development of this aqueous-phase reforming (APR) process to produce hydrogen or alkanes in high yields. First, the thermodynamic and kinetic considerations that form the basis of the process are

R. R. Davda; J. W. Shabaker; G. W. Huber; R. D. Cortright; J. A. Dumesic

2005-01-01

281

All-aqueous multiphase microfluidics  

PubMed Central

Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

Song, Yang; Sauret, Alban; Cheung Shum, Ho

2013-01-01

282

Photolysis of oxyfluorfen in aqueous methanol.  

PubMed

Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 1C. Sunlight irradiation was conducted at 28 1C in borosilicate Erlenmeyer flasks containing 250ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20hours and 2.7days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction. PMID:23998303

Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim

2013-01-01

283

Studies on percutaneous penetration of chemicals - Impact of storage conditions for excised human skin.  

PubMed

According to international guidelines skin penetration experiments can be carried out using freshly excised or frozen stored skin. However, this recommendation refers to data obtained in experiments with human cadaver skin. In our study, the percutaneous penetration of the occupationally relevant chemicals anisole, cyclohexanone and 1,4-dioxane was investigated for freshly excised as well as for 4 and 30 days at -20C stored human skin using the diffusion cell technique. As indicator for the impairment of skin barrier by freezing cholesterol dissolution was determined in the solvents in exposure chambers of diffusion cells. Considering the percutaneously penetrated amounts, the following ranking was determined: 1,4-dioxane>anisole>cyclohexanone (decline to a factor of 5.9). The differences of fluxes between freshly excised and frozen stored skin (4 and 30 days) were not significant (p>0.05). Cholesterol dissolved from the skin indicates no significant differences between freshly excised and frozen stored skin. This study shows that freezing of human skin for up to 30 days does not alter the skin barrier function and the permeability of chemicals. PMID:23219852

Dennerlein, Kathrin; Schneider, Dsire; Gen, Thomas; Schaller, Karl Heinz; Drexler, Hans; Korinth, Gintautas

2013-03-01

284

Nitrate and ammonium nutrition in ryegrass: Changes in growth and chemical composition under hydroponic conditions  

Microsoft Academic Search

Nitrogen (N) is one of the most critical elements affecting grass seed yield. In soil and cropping conditions of Western Oregon, ammonium?N may play an important role in the growth and development of ryegrass grown for seed. Our objectives were to determine the physiological and biochemical effects of ammonium and nitrate nutrition on ryegrass vegetative growth and subsequent expression of

Stephen M. Griffith; Donald J. Streeter

1994-01-01

285

Rapid screening procedures for the hydrolysis products of chemical warfare agents using positive and negative ion liquid chromatographymass spectrometry with atmospheric pressure chemical ionisation  

Microsoft Academic Search

Qualitative screening procedures have been developed for the rapid detection and identification of the hydrolysis products of chemical warfare agents in aqueous samples and extracts, using liquid chromatographymass spectrometry with positive and negative atmospheric pressure chemical ionisation (APCI). Previously reported screening procedures, which used positive APCI or electrospray ionisation (ESI), were modified by using LC conditions that allowed acquisition of

Robert W Read; Robin M Black

1999-01-01

286

Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.  

PubMed

Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). PMID:22902143

Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

2012-10-15

287

Aqueous solubilities and transformations of tetrahalogenated benzenes and effects of aquatic fulvic acids  

SciTech Connect

The fate of organic pollutants in the environment is largely dependent on their physical and chemical properties. Many of the previous studies on halogenated benzenes have been focused on their photochemistry in an organic solvent system. Studies of halogenated benzenes in aqueous conditions without photochemical effect are rare. Recently, aqueous solubility enhancement of hydrophobic organic pollutants by humic substances was studied. Aqueous solubility enhancement did not occur with all test compounds. In this paper, the authors investigated the transformation of the three most symmetrical tetrahalogenated (fluoro, chloro, bromo) benzenes in absence of the photo effect. Solute and solvent interactions, and influence of aquatic fulvic acids (FA) on aqueous solubilities and transformation of the three tetrachlorobenzenes and 1,2,4,5-TeBB were studied.

Kim, Inyoung; Saleh, F.Y. (Univ. of North Texas, Denton (USA))

1990-06-01

288

A Study on the Aqueous Formation of Secondary Organic Aerosols  

NASA Astrophysics Data System (ADS)

The effect aerosols have on radiative forcing in the atmosphere is recognized as one of the largest uncertainties in the radiation budget. About 80% of organic aerosol mass in the atmosphere is estimated to be created though secondary processes. Recently, the aqueous formation of secondary organic aerosols (SOA) has become recognized as important when considering the source, transformation and radiative impacts of SOA. This work focuses on implementing a mechanism for aqueous SOA formation that can be used in atmospheric chemistry and models of all scales, from box to global. A box model containing a simplified chemical mechanism for the aqueous production of precursors of aqueous SOA (Myriokefalitakis et al. (2011) is coupled to gas-phase chemistry which uses the carbon bond mechanism (CBM) IV is presented. The model implements aqueous chemistry of soluble gases, both in-cloud and aerosol water, including organic compounds such as glyoxal and methylglyoxal, which have been shown as potentially significant sources for dissolved secondary organic aerosols. This mechanism implements aqueous phase mass transfer and molecular dissociation. The model's performance is evaluated against previous box model studies from the literature. A comparison is conducted between the detailed GAMMA model (McNeill et al., 2012), which is constrained with chamber experiments and the one developed here. The model output under different atmospheric conditions is explored and differences and sensitivities are assessed. The objective of this work is to create a robust framework for simulating aqueous phase formation of SOA and maximizing the computational efficiency of the model, while maintaining accuracy, in order to later use the exact mechanism in global climate simulations.

Sinclair, K.; Tsigaridis, K.

2013-12-01

289

Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr 6+ removal efficiencies from aqueous medium  

Microsoft Academic Search

The hexavalent chromium biosorption onto untreated and heat-, acid- and alkali-treated Lentinus sajor-caju mycelia were studied from aqueous solutions. The particles sizes of the fungal mycelia ranged from 100 to 200?m. The effect of pH, temperature, biosorbent dose, initial concentration of chromium ions, contact time parameters were investigated in a batch system. Biosorption equilibrium was established in about 4h. The

Glay Bayramo?lu; Gke elik; Emine Yal?n; Meltem Y?lmaz; M. Yakup Ar?ca

2005-01-01

290

In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions  

USGS Publications Warehouse

A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

Lu, W.J.; Chou, I.-M.; Burruss, R.C.; Yang, M.Z.

2006-01-01

291

Chemical and physical environmental conditions underneath mat- and canopy-forming macroalgae, and their effects on understorey corals.  

PubMed

Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m(-2) dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation. PMID:20856882

Hauri, Claudine; Fabricius, Katharina E; Schaffelke, Britta; Humphrey, Craig

2010-01-01

292

Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals  

PubMed Central

Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m?2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation. PMID:20856882

Hauri, Claudine; Fabricius, Katharina E.; Schaffelke, Britta; Humphrey, Craig

2010-01-01

293

Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.  

PubMed

Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

2010-05-15

294

Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions.  

PubMed

The recent identification of hemogenic endothelium (HE) in human pluripotent stem cell (hPSC) cultures presents opportunities to investigate signaling pathways that are essential for blood development from endothelium and provides an exploratory platform for de novo generation of hematopoietic stem cells (HSCs). However, the use of poorly defined human or animal components limits the utility of the current differentiation systems for studying specific growth factors required for HE induction and manufacturing clinical-grade therapeutic blood cells. Here, we identified chemically defined conditions required to produce HE from hPSCs growing in Essential 8 (E8) medium and showed that Tenascin C (TenC), an extracellular matrix protein associated with HSC niches, strongly promotes HE and definitive hematopoiesis in this system. hPSCs differentiated in chemically defined conditions undergo stages of development similar to those previously described in hPSCs cocultured on OP9 feeders, including the formation of VE-Cadherin(+)CD73(-)CD235a/CD43(-) HE and hematopoietic progenitors with myeloid and T lymphoid potential. PMID:25448067

Uenishi, Gene; Theisen, Derek; Lee, Jeong-Hee; Kumar, Akhilesh; Raymond, Matt; Vodyanik, Maxim; Swanson, Scott; Stewart, Ron; Thomson, James; Slukvin, Igor

2014-12-01

295

A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.  

PubMed

Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion, differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded, that affords: (i) uniform high cell loading density in individual cell-laden constructs (?10(7) cells/ml); (ii) quick recovery of encapsulated cells (<10min at 37C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with >17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype invitro and the ability to form derivatives of the three germ layers both invitro and invivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications. PMID:22196900

Lu, Hong Fang; Narayanan, Karthikeyan; Lim, Sze-Xian; Gao, Shujun; Leong, Meng Fatt; Wan, Andrew C A

2012-03-01

296

Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal  

NASA Astrophysics Data System (ADS)

Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40 and over 40 in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 C in winter and rose to above 30 C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 81-83, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 ? M, phosphate between 01 and 08 ? M and nitrate between 4-10 ? M; nitrite varied in a more complex manner, usually between 025 and 04 ? M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

El-Serehy, H. A. H.; Sleigh, M. A.

1992-02-01

297

Strength change and chemical reactivity of ceramic breeder materials near operation conditions  

NASA Astrophysics Data System (ADS)

Measurements of mechanical strength achieved on pellet samples of various ceramic breeder materials which had been irradiated in the COMPLIMENT experiment (1.8 dpa, 0.4-1.4% lithium burnup, 400-450C and 650-700C) indicated a general strength reduction. The Young's modulus decreased to 70-80%, and the compressive strength down to about 30% of the initial values. Concerning the fracture strength, increasing irradiation sensitivity was indicated in the order: LiAlO 2, Li 2ZrO 3 ? Li 2SiO 3, Li 4SiO 4. The largest irradiation effect seems to be due to coarse microstructure damage and could be advanced by the tritium production. The cladding attack observed in the sealed breeder rod samples was compared with the amount expected from tritium water production and, on the other hand, with that in annealing tests at 1 Pa H 2O. Such tests were found to be conservative. Major chemical attack of the steel cladding seemed to be connected with an unusual content of oxidizing impurities in the breeder material.

Dienst, W.; Zimmermann, H.

1994-09-01

298

Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions  

PubMed Central

Chemically defined medium (CDM) conditions for controlling human embryonic stem cell (hESC) fate will not only facilitate the practical application of hESCs in research and therapy but also provide an excellent system for studying the molecular mechanisms underlying self-renewal and differentiation, without the multiple unknown and variable factors associated with feeder cells and serum. Here we report a simple CDM that supports efficient self-renewal of hESCs grown on a Matrigel-coated surface over multiple passages. Expanded hESCs under such conditions maintain expression of multiple hESC-specific markers, retain the characteristic hESC morphology, possess a normal karyotype in vitro, as well as develop teratomas in vivo. Additionally, several growth factors were found to selectively induce monolayer differentiation of hESC cultures toward neural, definitive endoderm/pancreatic and early cardiac muscle cells, respectively, in our CDM conditions. Therefore, this CDM condition provides a basic platform for further characterization of hESC self-renewal and directed differentiation, as well as the development of novel therapies. PMID:16632596

Yao, Shuyuan; Chen, Shuibing; Clark, Julie; Hao, Ergeng; Beattie, Gillian M.; Hayek, Alberto; Ding, Sheng

2006-01-01

299

Meteorites and the physico-chemical conditions in the early solar nebula  

E-print Network

Chondritic meteorites constitute the most ancient rock record available in the laboratory to study the formation of the solar system and its planets. Detailed investigations of their mineralogy, petrography, chemistry and isotopic composition and comparison with other primitive solar system samples such as cometary dust particles have allowed through the years to decipher the conditions of formation of their individual components thought to have once been free-floating pieces of dust and rocks in the early solar nebula. When put in the context of astrophysical models of young stellar objects, chondritic meteorites and cometary dust bring essential insights on the astrophysical conditions prevailing in the very first stages of the solar system. Several exemples are shown in this chapter, which include (1) high temperature processes and the formation of chondrules and refractory inclusions, (2) oxygen isotopes and their bearing on photochemistry and large scale geochemical reservoirs in the nebula, (3) organosynthesis and cold cloud chemistry recorded by organic matter and hydrogen isotopes, (4) irradiation of solids by flares from the young Sun and finally (5) large scale transport and mixing of material evidenced in chondritic interplanetary dust particles and samples returned from comet Wild2 by the Stardust mission.

Jerome Aleon

2008-09-10

300

Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study  

NASA Technical Reports Server (NTRS)

Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

1982-01-01

301

Influence of Aqueous-Salt Conditions on the Structure and Dynamics of the Monomeric and Novel Dimeric forms of the Alzheimer s ABeta21-30 protein fragment  

NASA Astrophysics Data System (ADS)

The behavior of the Alzheimer's related peptide Abeta is the subject of much study. In typical computational studies the environment local to the peptide is assumed to be pure water; however, in vivo the peptide is found in the extracellular space near the plasma membrane which is rich in ionic species. In this thesis, the hypothesis that the presence of group I/IIA salts will result in increased sampling of disordered structures as well as modify the dynamics of meta-stable structural motifs in the small folding nucleus of the Abeta peptide (Abeta21-30) is examined under a variety of ionic environments and was shown that of the tested salts, CaCl2 (and MgCl2, to a much lesser degree) did increase the propensity for disordered states; while, the group IA salts, KCl and NaCl, had little effect on the secondary structure of the peptide. Further, study of three familial mutations of this peptide region is also performed under aqueous salt-environments to elucidate further mechanistic details of how aqueous salts modify the region's behavior. Finally, as experimental results have highlighted that aggregation rates of the full-length peptide are modified by the presence of CaCl2, this work examines novel dimers states of Abeta21-30 and their stabilities when exposed to CaCl2.

Smith, Micholas Dean

302

MODEL OF CHEMICAL REACTION EQUILIBRIUM OF SULFURIC ACID SALTS OF TRIOCTYLAMINE  

Microsoft Academic Search

The chemical reaction of trioctylamine (TOA) and sulfuric acid in organic solvent\\/aqueous solution was carried out. TOA salt products of various kinds were obtained based on different conditions of operation and organic solvents. An equilibrium model, based on the chemical reaction of sulfuric acid and trioctylamine, is proposed. The equilibrium constants of various reactions of trioctylamine and sulfuric acid were

MAW-LING WANG; KWAN-HUA HU

1993-01-01

303

Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery  

PubMed Central

Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200C, 250C, 300C, and 350C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200C300C and completely degraded at 350C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300C and 350C. Heat-induced depolymerization of starch to maltodextrin started between 200C and 250C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235C and efficiently just below 300C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

2014-01-01

304

Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources  

NASA Astrophysics Data System (ADS)

Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus with a network of soil and atmospheric sensors and a head space for air flow to simulate the atmospheric boundary layer. Experiments were performed under varying temperature values at the soil surface bounded by the atmospheric boundary layer. The model of Smits et al. [2011], accounting for non-equilibrium phase change and coupled heat, water vapor and liquid water flux through soil, was amended to include organic vapor in the gas phase and migration mechanisms often overlooked in models (thermal and Knudsen diffusion, density driven advection). Experimental results show increased vapor mass flux across the soil/atmospheric interface due to heat applied from the atmosphere and coupling of heat and mass transfer in the shallow subsurface for both steady and diurnal temperature patterns. Comparison of model results to experimental data shows dynamic interactions between transport in porous media and boundary conditions. Results demonstrate the value of considering interactions of the atmosphere and subsurface to better understand chemical gas transport through unsaturated soils and the land/atmospheric interface.

Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

2013-12-01

305

Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO  

SciTech Connect

Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

Phelan, James, M.; Webb, Stephen W.

1999-06-14

306

Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical  

NASA Astrophysics Data System (ADS)

Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (\\centerdot OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than \\centerdot OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

2014-08-01

307

Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites  

SciTech Connect

Samples of four type 3 chondrites have been annealed at 400-850/sup 0/C and 0.77-1 kbar for 10-500 h in the presence of various amounts of water (0-10 wt.%) and sodium disilicate (0-2 molal) and their thermoluminescence properties measured. After annealing for > 20 h at temperatures > 600/sup 0/C, the TL sensitivity of the samples increased by factors of up to 40. After annealing at < 600/sup 0/C for 10-500 h, or relatively short periods at high temperatures (e.g., less than or equal to 20 h at 850/sup 0/C), the TL sensitivity of the samples decreased by up to 2 orders of magnitude (depending on the original value). The TL peak temperatures observed in the present experiments are consistent with a low form of feldspar (the TL phosphor) being produced at < 800/sup 0/C and a high form being produced at > 800/sup 0/C. When both high and low forms were present originally, the low-form was destroyed preferentially. The authors suggest that these data are consistent with the TL-metamorphism trends observed in type > 3.2 chondrites, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types < 3.2, the TL data are equally consistent with these types experiencing lower levels of metamorphism than the higher types, or with type 3.0 being produced from higher types by aqueous alteration. The presence of water with non-terrestrial D/H ratios, and petrographic evidence for aqueous alteration in Semarkona, lead to favoring the aqueous alteration hypothesis.

Guimon, R.K.; Lofgren, G.E.; Sears, D.W.G.

1988-01-01

308

Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical  

SciTech Connect

Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

2014-12-23

309

Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical  

NASA Astrophysics Data System (ADS)

Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical ( OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.

Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

2014-12-01

310

The use of the magnetic field effect for studying a chemiluminescent chemical reaction in aqueous solution. Reaction rate constants and lifetimes of intermediate molecules  

NASA Astrophysics Data System (ADS)

The phase shift magnetic field effect technique is applied for investigation of the chemiluminescent (ChL) reaction of luminol oxidation by potassium ferricyanide in aqueous alkali solution. The external modulated magnetic field changed the rate constant of recombination of luminol radicals. Rate constants of intermediate stages of the reaction are obtained: 10 8 M -1 s -1 for diazaquinone reaction with hydrogen peroxide, 2 X 10 6 M -1 s -1 for diazaquinone hydrolysis and 2 X 10 5 s -1 for the decomposition of hydroperoxide, which is a precursor of the light emitter.

Triebel, Michael M.; Totrov, Maxim M.; Zorinyants, George E.; Frankevich, Eugene L.

1993-11-01

311

Photophysical, electro- and spectroelectro-chemical properties of the nonplanar porphyrin [ZnOEP(Py) 4 4+,4Cl ?] in aqueous media  

Microsoft Academic Search

The photophysical and electrochemical properties of the tetracationic zinc 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(N-pyridiniumyl) porphyrin chloride (ZnOEP(Py)44+,4Cl?) were studied in aqueous solutions. The steady state and time-resolved absorption and emission measurements indicate that the porphyrin skeleton adopts a severely nonplanar conformation which minimizes steric crowding between the 12 peripheral substituents. The absorption spectrum of [ZnOEP(Py)44+,4Cl?] in water exhibits significant red shifts of the visible

N. Karakostas; D. Schaming; S. Sorgues; S. Lobstein; J.-P. Gisselbrecht; A. Giraudeau; I. Lampre; L. Ruhlmann

2010-01-01

312

Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor.  

PubMed

This study focuses on the performance of a submerged membrane photocatalytic reactor for the removal of 17beta-oestradiol (E2) in the presence of humic acid (HA). In addition to the impact of operating parameters, such as membrane pore size, ultraviolet (UV) intensity and hydraulic retention time (HRT), the influence of long-term operation was also assessed by advanced characterization of the fouling layer formed on the membrane. The tighter (0.04 microm) hollow fibre polyvinylydene fluoride (PVDF) membrane was found to exhibit not only higher HA removal than the (0.2 microm) module (85% and 75%, respectively), but also greater transmembrane pressure (TMP) values and higher irreversible fouling. Long-term operation conditions have been simulated by conducting an ageing catalyst process and demonstrated a decrease in performance obtained with time. The artificially aged TiO2 resulted in higher TMP values and lower HA removals (about 10-20% decrease) compared with the non-aged catalyst. For E2 removal in the presence of HA, the passive adsorption of the oestrogen onto the organic matter was found to be significant (40% of the E2 adsorbed after I h), demonstrating the importance of the nature of the water matrix for this type of treatment process. An increase in the UV light intensity was observed to favour the E2 elimination, leading to more than 90% removal when using 64 W combined with PVDF membrane and an HRT of 3 h. PMID:24956801

Lpez Fernndez, Raquel; Coleman, Heather M; Le-Clech, Pierre

2014-08-01

313

Conditioned place avoidance of zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia.  

PubMed

Zebrafish are becoming one of the most used vertebrates in developmental and biomedical research. Fish are commonly killed at the end of an experiment with an overdose of tricaine methanesulfonate (TMS, also known as MS-222), but to date little research has assessed if exposure to this or other agents qualifies as euthanasia (i.e. a "good death"). Alternative agents include metomidate hydrochloride and clove oil. We use a conditioned place avoidance paradigm to compare aversion to TMS, clove oil, and metomidate hydrochloride. Zebrafish (n = 51) were exposed to the different anaesthetics in the initially preferred side of a light/dark box. After exposure to TMS zebrafish spent less time in their previously preferred side; aversion was less pronounced following exposure to metomidate hydrochloride and clove oil. Nine of 17 fish exposed to TMS chose not to re-enter the previously preferred side, versus 2 of 18 and 3 of 16 refusals for metomidate hydrochloride and clove oil, respectively. We conclude that metomidate hydrochloride and clove oil are less aversive than TMS and that these agents be used as humane alternatives to TMS for killing zebrafish. PMID:24505365

Wong, Devina; von Keyserlingk, Marina A G; Richards, Jeffrey G; Weary, Daniel M

2014-01-01

314

Aqueous electrolyte modeling in ASPEN PLUS{trademark}  

SciTech Connect

The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

1995-02-01

315

Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.  

PubMed

The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these conditions will depend on the depth of the secondary minimum and that some transition between secondary and primary depositions should occur when the height of the energy barrier is on the order of several kT. When deposition in secondary minima predominates, observed deposition should increase with increasing ionic strength, particle size, and Hamaker constant. Since an equilibrium can develop between bound and bulk particles, the collision efficiency [alpha] can no longer be considered a constant for a given physical and chemical system. Rather, in many cases it can decrease over time until it eventually reaches zero as equilibrium is established. PMID:14740738

Hahn, Melinda W; O'Meliae, Charles R

2004-01-01

316

Is Vanadate Reduced by Thiols under Biological Conditions?: Changing The Redox Potential of V(V)/V(IV) by Complexation in Aqueous solution  

PubMed Central

Although dogma states that vanadate is readily reduced by glutathione, cysteine and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercaptoethanol have been investigated using multinuclear NMR, EPR and UV-vis spectroscopy. Vanadate forms a stable complex of 2:2 stoichiometry with 2-mercaptoethanol at neutral and alkaline pH. In contrast, vanadate can oxidize 2-mercaptoethanol; this process is favored at low pH and high solute concentrations. The complex that forms between aqueous vanadium(IV) and 2-mercaptoethanol has a 1:2 stoichiometry and can be observed at high pH and high 2-mercaptoethanol concentration. The solution structures have been deduced and speciation diagrams prepared. This work demonstrates that both vanadium(IV) and (V)-thiol complexes form and that redox chemistry also takes place. Whether reduction of vanadate takes place is governed by a combination of parameters: pH, solute- and vanadate-concentrations and the presence of other complexing ligands. Based on these results it is now possible to understand the distribution of vanadium in oxidation states (IV) and (V) in the presence of glutathione, cysteine and other thiols and begin to evaluate the forms of the vanadium compounds that exert a particular biological effect including the insulin-enhancing agents, anti-amoebic agents and interactions with vanadium binding proteins. PMID:20359175

Crans, Debbie C.; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D.; Willsky, Gail R.; Roberts, Chris R.

2010-01-01

317

Chemical and morphological characterization of Chardonnay and Gewrztraminer grapes and changes during chamber-drying under controlled conditions.  

PubMed

In this work, the morphological and chemical properties of Chardonnay and Gewrztraminer aromatic grapes (northern Spain) have been studied with the aim to assess their response to chamber-drying under controlled conditions and compare it with that of Pedro Ximenez grapes (southern Spain). Morphological characteristics, such as weight, size and roundness, and other of the skin such as thickness, enabled discrimination of the two types of grapes varieties. Changes in browning index, colour, antioxidant activity, aroma compounds determined by GC-MS and flavan-3-ols and flavonols concentrations determined by HPLC-DAD were studied during drying. Based on the results, Chardonnay and Gewrztraminer grapes contained increased amounts of flavan-3-ol derivatives, which are the greatest contributors to polymerization and condensation reactions. Also, their smaller size resulted in faster drying and leads to sugary musts that were lighter-coloured, less brown and more aromatic than Pedro Ximenez grapes. PMID:24767035

Serratosa, Maria P; Marquez, Ana; Moyano, Lourdes; Zea, Luis; Merida, Julieta

2014-09-15

318

Collisions of small ice particles under microgravity conditions (II): Does the chemical composition of the ice change the collisional properties?  

E-print Network

Context: Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied. Aims: Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes. Methods: The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 m s^-1, temperatures between 131 and 160 K and a pressure of around 10^-5...

Hill, C R; Blum, J; Fraser, H J

2015-01-01

319

Transport and chemical conversion of air pollutants under convective conditions - Results of the COPS-TRACKS campaign  

NASA Astrophysics Data System (ADS)

Embedded in the COPS project, the TRACKS campaign (Transport and Chemical Conversion in Convective Systems) was carried out in summer 2007 in order to study the transport of atmospheric trace gases and aerosols under convective conditions. One focus of this experiment was to investigate the dilution of air pollutants in the surroundings of a metropolitan area in complex terrain due to dynamical and chemical processes. Therefore, trace gas distributions in the lee of the city of Karlsruhe had been detected by coordinated measurements of different airborne platforms, including several aircraft and a zeppelin. We study a summer day with convective boundary layer, characterized not by extreme but standard weather conditions with typical atmospheric pollution. The relevance of urban sources of atmospheric pollutants located in Karlsruhe is considered in relation to meteorological and transport conditions in the Upper Rhine Valley. The observed ozone concentrations inside the TRACKS area are moderate during this day and reach maximum values around 60 ppb. However, the measurements reveal specific horizontal structures in several trace gas distributions lee-side of Karlsruhe. At a distance of 40 km away from the city, the ozone concentration increases by about 10 ppb, although NO2 does not show a clear horizontal gradient. The correlation of O3 and CO provides an indicator for the origin of air masses. Near to Karlsruhe, the O3/CO correlation is not significant. However, in the remote lee area a significant positive correlation with a coefficient of determination R2 = 0.71 was found which refers to additional insertion of air pollutants by longer distance transport or vertical transport processes. A model simulation with COSMO-ART shows low NO2 concentrations in the lee of Karlsruhe which vary around 5 ppb and indicate that Karlsruhe does not develop a distinctive city plume by the combination of local emissions and atmospheric conditions at this day. In the afternoon around 15 UTC, the modeled O3/CO correlation is positive in different parts easterly of the Upper Rhine Valley (R2 ? 0.58). In the lee of Karlsruhe, horizontal transport of air masses which are originated in north-eastern parts of France and Southwestern Germany predominate the impact of local gas emission sources. This can be seen in the whole vertical extension of the boundary layer.

Wilms-Grabe, W.; Corsmeier, U.; Vogel, H.; Kottmeier, Ch.

2012-04-01

320

Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.  

PubMed

The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. PMID:21185228

Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

2011-03-01

321

Testing Insecticidal Activity of Novel Chemically Synthesized siRNA against Plutella xylostella under Laboratory and Field Conditions  

PubMed Central

Background Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. Methodology/Principal Findings Six small interfering RNAs (siRNAs) were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 g cm?2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 g/ml and 759.71 g/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2) were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. Conclusions The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P. xylostella and to develop bio-pesticides based on the RNA interference technology. PMID:23667556

Gong, Liang; Chen, Yong; Hu, Zhen; Hu, Meiying

2013-01-01

322

The effect of variety and growing conditions on the chemical composition and nutritive value of wheat for broilers.  

PubMed

The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed rate of 40 compared to 640 seeds/m(2). It was concluded that the type of wheat sample and environmental growing conditions significantly affects bird performance when fed wheat-based diets. PMID:25049800

Ball, M E E; Owens, B; McCracken, K J

2013-03-01

323

Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions  

NASA Astrophysics Data System (ADS)

The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars' exploration. Understanding the chemical evolution of organic molecules under current martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? This paper presents the results of laboratory investigations dedicated to monitor the evolution of organic molecules when submitted to simulated Mars surface ultraviolet radiation (190-400 nm), mean temperature (218 2 K) and pressure (6 1 mbar) conditions. Experiments are done with the MOMIE simulation setup (for Mars Organic Molecules Irradiation and Evolution) allowing both a qualitative and quantitative characterization of the evolution the tested molecules undergo (Poch, O. et al. [2013]. Planet. Space Sci. 85, 188-197). The chemical structures of the solid products and the kinetic parameters of the photoreaction (photolysis rate, half-life and quantum efficiency of photodecomposition) are determined for glycine, urea, adenine and chrysene. Mellitic trianhydride is also studied in order to complete a previous study done with mellitic acid (Stalport, F., Coll, P., Szopa, C., Raulin, F. [2009]. Astrobiology 9, 543-549), by studying the evolution of mellitic trianhydride. The results show that solid layers of the studied molecules have half-lives of 10-103 h at the surface of Mars, when exposed directly to martian UV radiation. However, organic layers having aromatic moieties and reactive chemical groups, as adenine and mellitic acid, lead to the formation of photoresistant solid residues, probably of macromolecular nature, which could exhibit a longer photostability. Such solid organic layers are found in micrometeorites or could have been formed endogenously on Mars. Finally, the quantum efficiencies of photodecomposition at wavelengths from 200 to 250 nm, determined for each of the studied molecules, range from 10-2 to 10-6 molecule photon-1 and apply for isolated molecules exposed at the surface of Mars. These kinetic parameters provide essential inputs for numerical modeling of the evolution of Mars' current reservoir of organic molecules. Organic molecules adsorbed on martian minerals may have different kinetic parameters and lead to different endproducts. The present study paves the way for the interpretation of more complex simulation experiments where organics will be mixed with martian mineral analogs.

Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.

2014-11-01

324

Applicability of DLVO Approach to Predict Trends in Iron Oxide Colloid Mobility Under Various Physical And Chemical Soil Conditions  

NASA Astrophysics Data System (ADS)

In soil and groundwater, highly mobile iron oxide colloids can act as "shuttles" for transport of adsorbed contaminants such as heavy metals and radionuclides. Artificial iron oxide colloids are injected into polluted porous media to accelerate bacterial degradation of pollutants in the context of bioremediation purposes. The mobility of iron oxide colloids is strongly affected by the hydraulic, physical and chemical conditions of the pore space, the solid particle surface properties, the fluid phase, and the colloids themselves. Most pioneering studies focused on iron oxide colloid transport and retention in simplified model systems. The aim of this study is to investigate iron oxide colloid mobility under more complex, soil-typical conditions that have as yet only been applied for model microspheres, i.e. functionalized latex colloids. Among these conditions is the pivotal impact of organic matter, either dissolved or adsorbed onto solid particles, modifying wettability properties. Of particular importance was to determine if effective chemical surface parameters derived from contact angle and zeta potential measurements can be used as a tool to predict general tendencies for iron oxide colloid mobility in porous media. In column breakthrough experiments, goethite colloids (particle size: 200-900 nm) were percolated through quartz sand (grain size: 100-300 m) at pH 5. The impact of a multitude of conditions on colloid mobility was determined: dissolved organic matter (DOM) concentration, ionic strength, flow velocity, flow interruption, partial saturation, and drying with subsequent re-wetting. The solid matrix consisted of either clean sand, organic matter-coated sand, goethite-coated sand, or sand hydrophobized with dichlorodimethylsilane. Additionally, contact angles and zeta potentials of the materials applied in the column experiments were measured. By means of these surface parameters, traditional DLVO interaction energies based on zeta potential as well as extended DLVO energies including Lewis acid-base parameters based on contact angle measurements were estimated. The results elucidate that high mobility of goethite colloids was distinctly restricted to a narrow set of conditions: presence of DOM, sufficient flow velocity and constant flow, low ionic strength, full saturation as well as an uncoated and hydrophilic quartz sand matrix. Any deviation from these favorable transport conditions led from varying degrees of colloid retention up to complete immobilization. Results yielded by both traditional and extended DLVO interaction energy calculations demonstrated that increasing secondary minimum depth correlated well with higher colloid retention. Extended DLVO calculations revealed strong repulsive forces due to Lewis acid-base interactions at close distances that did not comply with experimental data. It is likely that Lewis acid-base interactions were limited due to surface roughness of the sand grains and colloids. It can be concluded that the impact of various soil and hydraulic conditions on goethite colloid mobility is in principle assessable with column flow experiments. Moreover, with restrictions for the interpretation of close-distance interactions, DLVO interaction energies are capable of predicting general trends of goethite colloid mobility.

Florian Carstens, Jannis; Bachmann, Jrg; Neuweiler, Insa

2014-05-01

325

Standard partial molar volumes of some aqueous alkanolamines and alkoxyamines at temperatures up to 325 degrees C: functional group additivity in polar organic solutes under hydrothermal conditions.  

PubMed

Apparent molar volumes of dilute aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N,N-dimethylethanolamine (DMEA), ethylethanolamine (EAE), 2-diethylethanolamine (2-DEEA), and 3-methoxypropylamine (3-MPA) and their salts were measured at temperatures from 150 to 325 degrees C and pressures as high as 15 MPa. The results were corrected for the ionization and used to obtain the standard partial molar volumes, Vo2. A three-parameter equation of state was used to describe the temperature and pressure dependence of the standard partial molar volumes. The fitting parameters were successfully divided into functional group contributions at all temperatures to obtain the standard partial molar volume contributions. Including literature results for alcohols, carboxylic acids, and hydroxycarboxylic acids yielded the standard partial molar volume contributions of the functional groups >CH-, >CH2, -CH3, -OH, -COOH, -O-, -->N, >NH, -NH2, -COO-Na+, -NH3+Cl-, >NH2+Cl-, and -->NH+Cl- over the range (150 degrees C aqueous organic solutes composed of these groups at temperatures up to approximately 310 degrees C and pressures of 10-20 MPa to within a precision of +/-5 cm3 x mol(-1). The model could not be extended to higher temperatures because of uncertainties caused by thermal decomposition. At temperatures above approximately 250 degrees C, the order of the group contributions to Vo2 changes from that observed at 25 degrees C, to become increasingly consistent with the polarity of each functional group. The effect of the dipole moment of each molecule on the contribution to Vo2 from long-range solvent polarization was calculated from the multipole expansion of the Born equation using dipole moments estimated from restricted Hartree-Fock calculations with Gaussian 03 (Gaussian, Inc., Wallingford, CT) and the Onsager reaction-field approximation for solvent effects. Below 325 degrees C, the dipole contribution was found to be less than 2 cm3 x mol(-1) for all the solute molecules studied. At higher temperatures and pressures near steam saturation, the effect is much larger and may explain anomalies in functional group additivity observed in small, very polar solutes. PMID:18412415

Bulemela, E; Tremaine, Peter R

2008-05-01

326

Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study.  

PubMed

Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)-an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer-Emmett-Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions. PMID:22739768

Shah, Bhavna; Mistry, Chirag; Shah, Ajay

2013-04-01

327

Prediction of Hydrolysis Pathways and Kinetics for Antibiotics under Environmental pH Conditions: A Quantum Chemical Study on Cephradine.  

PubMed

Understanding hydrolysis pathways and kinetics of many antibiotics that have multiple hydrolyzable functional groups is important for their fate assessment. However, experimental determination of hydrolysis encounters difficulties due to time and cost restraint. We employed the density functional theory and transition state theory to predict the hydrolysis pathways and kinetics of cephradine, a model of cephalosporin with two hydrolyzable groups, two ionization states, two isomers and two nucleophilic attack directions. Results showed that the hydrolysis of cephradine at pH = 8.0 proceeds via opening of the ?-lactam ring followed by intramolecular amidation. The predicted rate constants at different pH conditions are of the same order of magnitude as the experimental values, and the predicted products are confirmed by experiment. This study identified a catalytic role of the carboxyl group in the hydrolysis, and implies that the carboxyl group also plays a catalytic role in the hydrolysis of other cephalosporin and penicillin antibiotics. This is a first attempt to quantum chemically predict hydrolysis of an antibiotic with complex pathways, and indicates that to predict hydrolysis products under the environmental pH conditions, the variation of the rate constants for different pathways with pH should be evaluated. PMID:25590945

Zhang, Haiqin; Xie, Hongbin; Chen, Jingwen; Zhang, Shushen

2015-02-01

328

Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic-aqueous conditions.  

PubMed

Four commercially available immobilized amylose-derived CSPs (Chiralpak IA-3, Chiralpak ID-3, Chiralpak IE-3 and Chiralpak IF-3) were used in the HPLC analysis of the chiral sulfoxides albendazole (ABZ-SO) and fenbendazole (FBZ-SO) and their in vivo sulfide precursor (ABZ and FBZ) and sulfone metabolite (ABZ-SO2 and FBZ-SO2) under organic-aqueous mode. U-shape retention maps, established by varying the water content in the acetonitrile- and ethanol-water mobile phases, were indicative of two retention mechanisms operating on the same CSP. The dual retention behavior of polysaccharide-based CSPs was exploited to design greener enantioselective and chemoselective separations in a short time frame. The enantiomers of ABZ-SO and FBZ-SO were baseline resolved with water-rich mobile phases (with the main component usually being 50-65% water in acetonitrile) on the IF-3 CSP and ethanol-water 100:5 mixture on the IA-3 and IE-3 CSPs. A simultaneous separation of ABZ (or FBZ), enantiomers of the corresponding sulfoxide and sulfone was achieved on the IA-3 using ethanol-water 100:60 (acetonitrile-water 100:100 for FBZ) as a mobile phase. PMID:24411094

Materazzo, Sabrina; Carradori, Simone; Ferretti, Rosella; Gallinella, Bruno; Secci, Daniela; Cirilli, Roberto

2014-01-31

329

Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.  

PubMed

Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity, exchangeable cations, total 90Sr, and pH values of layers within the soil columns and of column effluents. PMID:11347611

Spalding, B P; Spalding, I R

2001-01-15

330

Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface.  

PubMed

In this paper, we chose diffident kinds of ionic liquids to optimal selection an optimal one to extract alkaloids from Phellodendron amurense Rupr. Four ionic liquids with diffident carbon chains or anions have been investigated and 1-butyl-3-methylimidazolium bromide with best productivity. Then, selections have been optimized in different conditions, including concentration of ionic liquid, time for ultrasonic treatment, ultrasonic power and solid-liquid ratio. Moreover, three conditions have been comprehensively assessment by response surface methodology, the optimal conditions were determined as follows ultrasonic power 100W, extraction time 75min and ratio of solvent to raw material 1:14. Under these conditions, the yield% (MIX) was 106.7% (extracted by heat reflux being defined 100%). Comparing with other methods, the advantages are saving conserving, time saving, high yield% and especially pollution-free. PMID:25443277

Wang, Wenchao; Li, Qingyong; Liu, Yuhui; Chen, Binbin

2015-05-01

331

Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: Model systems and environmental samples.  

PubMed

The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60d of incubation. The cis-DCE concentration peaked at 4.0cm from the DNAPL (inert sand) while it was at 3.4cm (sand+HFO), 1.7cm and 2.5cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. PMID:25460750

Paul, Laiby; Smolders, Erik

2015-01-01

332

Corrosion problems with aqueous coolants, final report  

SciTech Connect

The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

Diegle, R B; Beavers, J A; Clifford, J E

1980-04-11

333

Removal of Indigo Carmine and Pb(II) Ion from Aqueous Solution by Polyaniline  

Microsoft Academic Search

In this work, we report the synthesis of polyaniline emaraldine salt (PAni-ES) by a chemical oxidative polymerization method. The obtained PAni-ES samples prepared under different conditions were used for the removal of indigo carmine anionic dye and Pb(II) ion from aqueous solutions. The results also showed that the pseudosecond-order kinetic model fitted better than the data obtained from pseudofirst-order model

Murat Ya?ar; Hseyin Deligz; Gamze Gl

2011-01-01

334

New Class of Aggregates in Aqueous Solution: An NMR, Thermodynamic, and Dynamic Light Scattering Study  

Microsoft Academic Search

We investigated the aggregation properties of two classes of aromatic and hydrophobic compounds, namely chloroacetamides and ethyl 3-phenyl-2-nitropropionates, in moderately concentrated aqueous solution (millimolar range). The identification of all species present in solution under specific experimental conditions was performed by 1D and 2D NMR, pulsed gradient spin-echo NMR, and dynamic light scattering techniques. Some physical-chemical properties (viscosity, surface tension, and

Cecilia Sanna; Camillo La Mesa; Luisa Mannina; Pasquale Stano; Stphane Viel; Annalaura Segre

2006-01-01

335

Physical Conditions, Dust Extinction, and Chemical Abundances in Star- forming Galaxies at z~ 2.0-2.5  

NASA Astrophysics Data System (ADS)

We propose to obtain GNIRS observations of rest-frame optical emission lines including [OII], H(beta), [OIII], H(alpha), [NII], and [SII] for 10 galaxies at 2.0<=z < 2.5, drawn from the largest spectroscopic sample of star-forming galaxies in that redshift range. This proposal serves as a continuation of our approved 2005B program, for which we are about to obtain data. The 10 target objects already have precise Keck II/NIRSPEC H(alpha) redshifts and fluxes, which are essential for demonstrating the feasibility of GNIRS follow-up. The proposed GNIRS data will play a key role in the study of these galaxies because only with GNRIS can we simultaneously measure the full set of rest-frame optical emission lines spanning in wavelength from [OII] to [SII]. This special capability of GNIRS will reveal the physical conditions, dust extinction, and chemical abundances in high-redshift H II regions to an unprecedented degree of detail. These observations will provide a new window into galaxy formation, during a critical epoch that hosts the peak of AGN and star-formation activity, and the emergence of the most massive galaxies in the universe.

Shapley, Alice; Pettini, Max; Erb, Dawn; Steidel, Charles

2006-02-01

336

Physical Conditions, Dust Extinction, and Chemical Abundances in Star- forming Galaxies at z~ 2.0-2.5  

NASA Astrophysics Data System (ADS)

We propose to obtain GNIRS observations of rest-frame optical emission lines including [OII], H(beta), [OIII], H(alpha), [NII], and [SII] for a subsample of galaxies at 2.0<=z < 2.5, drawn from the largest spectroscopic sample of star-forming galaxies in that redshift range. This proposal serves as a continuation of our approved 2006A program, for which we have not yet obtained data. The 10 target objects already have precise Keck II/NIRSPEC H(alpha) redshifts and fluxes, which are essential for demonstrating the feasibility of GNIRS follow- up. The proposed GNIRS data will play a key role in the study of these galaxies because only with GNRIS can we simultaneously measure the full set of rest-frame optical emission lines spanning in wavelength from [OII] to [SII]. This special capability of GNIRS will reveal the physical conditions, dust extinction, and chemical abundances in high- redshift H II regions to an unprecedented degree of detail. These observations will provide a new window into galaxy formation, during a critical epoch that hosts the peak of AGN and star-formation activity, and the emergence of the most massive galaxies in the universe.

Shapley, Alice; Steidel, Charles; Pettini, Max; Erb, Dawn

2006-08-01

337

Thermal response of intravascular and rectal tissue to temperature changes and chemical conditions in the rumen of sheep  

PubMed Central

1. Experiments were conducted with two wether sheep which were fitted with rumen cannulae and chronically implanted intravascular thermocouples. An attempt was made to study the thermal response of intravascular and rectal tissue to temperature changes and chemical conditions in the rumen. 2. When ice or hot water were placed in the rumen there was an immediate fall or rise in the intravascular temperature accompanied by a similar change in rectal temperature. The intravascular temperatures returned to their precooling or preheating level of 40 C within 130 min, the rectal temperatures required 6-8 hr to return to their pretreatment values. 3. When 05 M acetic acid was infused into the rumen there was a marked rise in the intravascular temperature, over and above the diurnal rhythm but not in rectal temperatures. Infusion of mixtures of acetic plus propionic or acetic plus n-butyric acids caused an intravascular temperature rise on feeding within the range of the diurnal pattern. In fasted animals, infusions of volatile fatty acids resulted in no rise in intravascular temperature. PMID:5937414

Mendel, V. E.; Raghavan, G. V.

1966-01-01

338

Short-term variability of the phytoplankton community in coastal ecosystem in response to physical and chemical conditions' changes  

NASA Astrophysics Data System (ADS)

The short-term dynamics (time scale of a few days) of phytoplankton communities in coastal ecosystems, particularly those of toxic species, are often neglected. Such phenomena can be important, especially since these very species can endanger the sustainability of shellfish farming. In this study, we investigated the short-term changes in phytoplankton community structure (species succession) in two coastal zones in parallel with physical and chemical conditions. Mixing events with allochtonous waters could thus be distinguished from local processes associated with population growth when it was associated with a change in light or nutrient limitation. Mixing events and water advection influenced fluctuations in total phytoplankton biomass and concentration of dominant species, while local processes influenced delayed changes in community structure. The estuarine species Asterionellopsis glacialis increased in concentration when the water mass mixed with the nearest estuarine water masses. The biological response, measured as photosynthetic capacity, occurred after a time-lag of a few hours, while the changes in community structure occurred after a time-lag of a few days. Finally, the coastal water mass was constantly mixed with both the nearest estuarine and marine water masses, leading in turn to delayed changes in phytoplankton community structure. These changes in species composition and dominance were observed on a time scale of a few days, which means that some toxic species may be missed with a bi-weekly sampling strategy.

Pannard, Alexandrine; Claquin, Pascal; Klein, Ccile; Le Roy, Bertrand; Vron, Benot

2008-11-01

339

Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions.  

PubMed

Salvia officinalis L. can be found worldwide and its leaves are commonly used as ingredient in food industry. Sage essential oil is applied in the treatment of a range of diseases and has been shown to possess different biological activities. The objectives of our research were to study the effects of environment on crop, chemical composition and anticancer activity on S. officinalis essential oil. Sage was cultivated at eighteen experimental sites in south-central Italy (Molise) in different growing environments. The essential oils (S1-S18), extracted by hydrodistillation, were analyzed by GC and CG/MS. Results show that the main components were ?-thujone, camphor, borneol, ?-muurolene and sclareol for all the samples, but the percentages of these compounds varied depending on environmental factors such as altitude, water availability and pedo-climatic conditions. The growth-inhibitory and proapoptotic effects of the eighteen sage essential oils were evaluated in three human melanoma cell lines, A375, M14, and A2058. PMID:23291326

Russo, Alessandra; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Delfine, Sebastiano; Cardile, Venera; Rosselli, Sergio; Bruno, Maurizio

2013-05-01

340

Coordination Modes of Multidentate Ligands in fac-[Re(CO)3(polyaminocarboxylate)] Analogues of 99mTc Radiopharmaceuticals. Dependence on Aqueous Solution Reaction Conditions  

PubMed Central

We study Re analogues of 99mTc renal agents to interpret previous results at the 99mTc tracer level. The relative propensities of amine donors vs. carboxylate oxygen donors of four L = polyaminocarboxylate ligands to coordinate in fac-[ReI(CO)3L]n complexes were assessed by examining the reaction of fac-[ReI(CO)3(H2O)3]+ under conditions differing in acidity and temperature. All four L [N,N-bis-(2-aminoethyl)glycine (DTGH), N,N-ethylenediaminediacetic acid, diethylenetriamine-N-malonic acid, and diethylenetriamine-N-acetic acid] can coordinate as tridentate ligands while creating a dangling chain terminated in a carboxyl group. Dangling carboxyl groups facilitate renal clearance in fac-[99mTcI(CO)3L]n agents. Under neutral conditions, the four ligands each gave two fac-[ReI(CO)3L]n products with HPLC traces correlating well with known traces of the fac-[99mTcI(CO)3L]n mixtures. Such mixtures are common in renal agents because the needed dangling carboxyl group can compete for a coordination site. However, the HPLC separations needed to assess the biodistribution of a single tracer are impractical in a clinical setting. One goal in investigating this Re chemistry is to identify conditions for avoiding this problem of mixtures in preparations of fac-[99mTcI(CO)3L]n renal tracers. After separation and isolation of the fac-[ReI(CO)3L]n products, NMR analysis of all products and single crystal X-ray crystallographic analysis of both DTGH products as well as one product each from the other L allowed us to establish coordination mode unambiguously. The product favored in acidic conditions has a dangling amine chain and more bound oxygen. The product favored in basic conditions has a dangling carboxyl chain and more bound nitrogen. At the elevated temperatures used for simulating tracer preparation, equilibration was facile (ca. one hour or less), allowing selective formation of one product by utilizing acidic or basic conditions. The results of this fundamental study offer protocols and guidance useful for the design and preparation of fac-[99mTcI(CO)3L]n agents consisting of a single tracer. PMID:20201565

Lipowska, Malgorzata; He, Haiyang; Xu, Xiaolong; Taylor, Andrew T.; Marzilli, Patricia A.; Marzilli, Luigi G.

2010-01-01

341

Well aligned ZnO nanorods growth on the gold coated glass substrate by aqueous chemical growth method using seed layer of Fe3O4 and Co3O4 nanoparticles  

NASA Astrophysics Data System (ADS)

In this study, Fe3O4 and Co3O4 nanoparticles were prepared by co-precipitation method and sol-gel method respectively. The synthesised nanoparticles were characterised by X-ray diffraction [XRD] and Raman spectroscopy techniques. The obtained results have shown the nanocrystalline phase of obtained Fe3O4 and Co3O4 nanoparticles. Furthermore, the Fe3O4 and Co3O4 nanoparticles were used as seed layer for the fabrication of well-aligned ZnO nanorods on the gold coated glass substrate by aqueous chemical growth method. Scanning electron microscopy (SEM), high resolution transmission electron microscopy [HRTEM], as well as XRD and energy dispersive X-ray techniques were used for the structural characterisation of synthesised ZnO nanorods. This study has explored highly dense, uniform, well-aligned growth pattern along 0001 direction and good crystal quality of the prepared ZnO nanorods. ZnO nanorods are only composed of Zn and O atoms. Moreover, X-ray photoelectron spectroscopy was used for the chemical analysis of fabricated ZnO nanorods. In addition, the structural characterisation and the chemical composition study and the optical investigation were carried out for the fabricated ZnO nanorods and the photoluminescence [PL] spectrum have shown strong ultraviolet (UV) peak at 381 nm for Fe3O4 nanoparticles seeded ZnO nanorods and the PL spectrum for ZnO nanorods grown with the seed layer of Co3O4 nanoparticles has shown a UV peak at 382 nm. The green emission and orange/red peaks were also observed for ZnO nanorods grown with both the seed layers. This study has indicated the fabrication of well aligned ZnO nanorods using the one inorganic nanomaterial on other inorganic nanomaterial due to their similar chemistry.

Ibupoto, Z. H.; Khun, K.; Lu, Jun; Liu, Xianjie; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Willander, M.

2013-04-01

342

MICROWAVE-ASSISTED CYCLOCONDENSATION OF HYDRAZINE DERIVATIVES WITH ALKYL DIHALIDES OR DITOSYLATES IN AQUEOUS MEDIA: SYNTHESES OF PYRAZOLE, PYRAZOLIDINE AND PHTHALAZINE DERIVATIVES  

EPA Science Inventory

Direct synthesis of 4,5-dihydro-pyrazole, pyrazolidine, and 1,2-dihydro-phthalazine derivatives via double alkylation of hydrazines by alkyl dihalides or ditosylates were accomplished in aqueous media under microwave irradiation conditions; the environmentally friendlier chemical...

343

Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration  

NASA Technical Reports Server (NTRS)

Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.

Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.

1988-01-01

344

A 13C CP\\/MAS NMR evaluation of the structural changes in wheat straw subjected to different chemical and biological pulping conditions  

Microsoft Academic Search

Wheat straw pulps prepared by chemical (soda) and biological (enzymatic or fungal) treatments were analyzed by 13C CP\\/MAS NMR spectrometry under quantitative acquisition conditions. The most significant changes reflected in the spectra as a result of soda cooking correspond to: (i) decrease of methoxyl content of the residual lignin (56, 153, 147 and 135 ppm), and (ii) deacetylation of hemicellulose

M. E. Guadalix; G. Almendros; A. T. Martnez; F. J. Gonzlez-Vila; U. Lankes

1997-01-01

345

Large-scale green chemical synthesis of adjacent quaternary chiral centers by continuous flow photodecarbonylation of aqueous suspensions of nanocrystalline ketones.  

PubMed

To demonstrate the ease of scale-up and synthetic potential of some organic solid state reactions, we report the synthesis, crystallization, and solid state photochemistry of acyclic, homochiral, hexasubstituted (+)-(2R,4S)-2-carbomethoxy-4-cyano-2,4-diphenyl-3-pentanone 1. We demonstrate that solid state photodecarbonylation of (+)-(2R,4S)-1 affords (+)-(2R,3R)-2-carbomethoxy-3-cyano-2,3-diphenyl-butane 2 with two adjacent stereogenic, all-carbon substituted quaternary centers, in quantitative chemical yield and 100% diastereoselectivity and enantiomeric excess. The efficient multigram photodecarbonylation of (+)-(2R,4S)-1 as a nanocrystalline suspension in water using a continuous flow photoreactor shows that the large-scale synthesis of synthetically challenging compounds using photochemical synthesis in the solid state can be executed in a remarkably simple manner. PMID:25578232

Hernndez-Linares, Mara Guadalupe; Guerrero-Luna, Gabriel; Prez-Estrada, Salvador; Ellison, Martha; Ortin, Maria-Mar; Garcia-Garibay, Miguel A

2015-02-01

346

PLD deposition of tungsten carbide contact for diamond photodiodes. Influence of process conditions on electronic and chemical aspects  

NASA Astrophysics Data System (ADS)

Tungsten carbide, WC, contacts behave as very reliable Schottky contacts for opto-electronic diamond devices. Diamond is characterized by superior properties in high-power, high frequency and high-temperature applications, provided that thermally stable electrode contacts will be realized. Ohmic contacts can be easily achieved by using carbide-forming metals, while is difficult to get stable Schottky contacts at elevated temperatures, due to the interface reaction and/or inter-diffusion between metals and diamond. Novel type of contacts, made of tungsten carbide, WC, seem to be the best solution, for their excellent thermal stability, high melting point, oxidation and radiation resistance and good electrical conductivity. Our research was aimed at using pulsed laser deposition for WC thin film deposition, optimizing experimental parameters, to obtain a final device characterized by excellent electronic properties, as a detector for radiation in deep UV or as X-ray dosimeter. We deposited our films by laser ablation from a target of pure WC, using different reaction conditions (i.e., substrate heating, vacuum or reactive atmosphere (CH4/Ar), RF plasma activated), to optimize both the stoichiometry of the film and its structure. Trying to obtain a material with the best electronic response, we used also two sources of laser radiation for target ablation, i.e., nano-second pulsed excimer laser ArF, and ultra-short fs Ti:Sapphire laser. The structure and chemical aspects have been evaluated by Raman and X-ray photoelectron spectroscopy (XPS), while the dosimeter photodiode response has been tested by the I-V measurements, under soft X-ray irradiation.

Cappelli, E.; Bellucci, A.; Orlando, S.; Trucchi, D. M.; Mezzi, A.; Valentini, V.

2013-08-01

347

Norepinephrine stimulates progesterone production in highly estrogenic bovine granulosa cells cultured under serum-free, chemically defined conditions  

PubMed Central

Background Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Methods Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a doseresponse study. The highest tested concentration of NE (10 (?7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (?8) M), a non-selective beta-adrenergic antagonist. Conclusions The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation. PMID:23171052

2012-01-01

348

Inverse hydrochemical models of aqueous extracts tests  

SciTech Connect

Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

Zheng, L.; Samper, J.; Montenegro, L.

2008-10-10

349

Multiresidue screening of endocrine-disrupting chemicals and pharmaceuticals in aqueous samples by multi-stir bar sorptive extraction-single desorption-capillary gas chromatography/mass spectrometry.  

PubMed

A multiresidue method for screening endocrine-disrupting chemicals (EDCs) and pharmaceuticals in aqueous samples is presented. Four 10-mL aliquots of water were taken for stir bar sorptive extraction (SBSE) and they were treated in the following way. In sample one, in situ derivatization was performed with acetic acid anhydride to improve the extraction efficiencies and chromatographic analysis of phenolic compounds. For the same reasons, aliquot two was treated with ethyl chloroformate to improve amine and acid extraction and analysis, and aliquot three with tetraethylborate to enhance organotin compound extraction and analysis. Methanol was added to sample four to stop adsorption of apolar solutes on the wall. After SBSE, the four stir bars, together with a plug of glass wool impregnated with bis(trimethylylsilyl)trifluoroacetamide (BSTFA) to derivatize hydroxyl functionalities, were introduced into the same thermal desorption tube, heat-desorbed, and analyzed simultaneously by capillary GC/MS. The figures of merit of the method were evaluated with an EDC model mixture. In scan-mode MS, the limits of detection (LODs) were in the range 1-500 ng/L, while the LODs dropped by a factor of 50-100 when ion monitoring MS was applied to the targets. The performance of the method was illustrated by analysing some real-world water samples. PMID:18779956

Van Hoeck, Els; Canale, Francesca; Cordero, Chiara; Compernolle, Sien; Bicchi, Carlo; Sandra, Pat

2009-02-01

350

Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction  

SciTech Connect

The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

2006-06-01

351

Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction  

SciTech Connect

The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

2006-06-01

352

Synthesis, Chemical and Enzymatic Hydrolysis, and Aqueous Solubility of Amino Acid Ester Prodrugs of 3-Carboranyl Thymidine Analogues for Boron Neutron Capture Therapy of Brain Tumors  

PubMed Central

Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogues (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48 to 6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K.; Abd alla, Mosaad S. M.; Tjarks, Werner

2012-01-01

353

Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave.  

PubMed

Bamboo charcoal (BC) was used as starting material to prepare Co-Fe binary oxideloaded adsorbent (Co-Fe-MBC) through its impregnation in Co(NO3)2, FeCl3 and HNO3 solutions simultaneously, followed by microwave heating. The low-cost composite was characterized and used as an adsorbent for Cr(VI) removal from water. The results showed that a cobalt and iron binary oxide (CoFe2O4) was uniformly formed on the BC through redox reactions. The composite exhibited higher surface area (331 m2/g) than that of BC or BC loaded with Fe alone (Fe-MBC). The adsorption of Cr(VI) strongly depended on solution pH, temperature and ionic strength. The adsorption isotherms followed the Langmuir isotherm model well, and the maximum adsorption capacities for Cr(VI) at 288 K and pH 5.0 were 35.7 and 51.7 mg/g for Fe-MBC and Co-Fe-MBC, respectively. The adsorption processes were well fitted by the pseudo second-order kinetic model. Thermodynamic parameters showed that the adsorption of Cr(VI) onto both adsorbents was feasible, spontaneous, and exothermic under the studied conditions. The spent Co-Fe-MBC could be readily regenerated for reuse. PMID:24520714

Wang, Wei; Wang, Xuejiang; Wang, Xin; Yang, Lianzhen; Wu, Zhen; Xia, Siqing; Zhao, Jianfu

2013-09-01

354

Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase  

NASA Astrophysics Data System (ADS)

The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and ?-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for ?-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

Mouchel-Vallon, C.; Bruer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

2013-01-01

355

Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase  

NASA Astrophysics Data System (ADS)

The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and ?-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2%) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for ?-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

Mouchel-Vallon, C.; Bruer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

2012-09-01

356

The influence of storage conditions of tuna viscera before fermentation on the chemical, physical and microbiological changes in fish sauce during fermentation.  

PubMed

Effect of storage condition of tuna viscera on chemical, physical and microbiological changes of its sauce were monitored. Results based on microbial counts, protein degradation products, total volatile base (TVB), and trimethylamine (TMA) contents, showed that tuna viscera stored at room temperature underwent more deterioration than that kept in ice, especially with increasing storage time. As a result, fish sauce obtained from tuna viscera stored at room temperature for a longer time rendered the greater amino nitrogen, TVB, TMA contents as well as browning intensity. However, storage conditions had no marked effect on overall changes in chemical, physical and microbiological characteristics of sauce generated during fermentation. Additionally, fish sauce produced from tuna viscera kept at room temperature comprised lower histamine content than that prepared from fresh or ice-stored viscera. Therefore, tuna viscera stored at room temperature for up to 8h could be used for the production of fish sauce with no detrimental effect on the quality. PMID:16298523

Dissaraphong, Sirima; Benjakul, Soottawat; Visessanguan, Wonnop; Kishimura, Hideki

2006-11-01

357

Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition  

NASA Technical Reports Server (NTRS)

The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

Reynolds, E E; Freeman, J W; White, A E

1951-01-01

358

Effects of pH and temperature on dimerization rate of glycine: Evaluation of favorable environmental conditions for chemical evolution of life  

Microsoft Academic Search

To evaluate favorable environmental conditions for the chemical evolution of life, we studied the effects of pH and temperature on the dimerization rate of glycine (Gly: NH2CH2COOH), one of the simplest amino acids. Gly dimerizes to form glycylglycine (GlyGly), and GlyGly further reacts to form diketopiperazine (DKP). Gly solutions with pH ranging from 3.1 to 10.9 were heated for 114days

Kasumi Sakata; Norio Kitadai; Tadashi Yokoyama

2010-01-01

359

Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.  

PubMed

Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field. PMID:19157465

Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

2009-05-01

360

PHYSICAL, CHEMICAL AND BIOLOGICAL CONDITIONS OF THE SAGAVANIRKTOK RIVER AND NEARBY CONTROL STREAMS, SHAVIOVIK AND CANNING RIVERS  

EPA Science Inventory

Biological, physical and chemical data were collected from 28 stations on the Sagavanirktok River and five of its tributaries, the Canning River, Shaviovik River, two tundra lakes and Galbraith Lake. These stations are located on the North Slope of Alaska and in the area impacted...

361

OVIPOSITION OF THE SOUTHERN GREEN STINK BUG, NEZARA VIRIDULA (L.) ON ARTIFICIAL SUBSTRATES CONDITIONED BY CHEMICAL EXTRACTS FROM SOYBEAN PLANTS  

Technology Transfer Automated Retrieval System (TEKTRAN)

A laboratory bioassay was developed for testing oviposition preference of the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae) toward chemicals extracted from soybean pods and leaves. In this bioassay, an artificial substrate (cheesecloth) was stretched over a wooden ring ...

362

Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: Effects of earthworms and millipedes  

Microsoft Academic Search

The effects of tropical earthworms (Eudrilus eugeniae) and millipedes (Spirostreptidae) on the breakdown of plant residues [Acioa (presently, Dactyladenia) barteri, Gliricidia sepium and Leucaena leucocephala prunings, maize (Zea mays) stover and rice (Oryza sativa) straw], with contrating chemical compositions, were studied in the field under humid tropical circumstances. Addition of earthworms significantly increased the breakdown of maize stover. Addition of

G. Tian; L. Brussaard; B. T. Kang

1995-01-01

363

Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors  

PubMed Central

Background The detection of biological and chemical species is of key importance to numerous areas of medical and life sciences. Therefore, a great interest exists in developing new, rapid, miniature, biocompatible and highly sensitive sensors, capable to operate under physiological conditions and displaying long-term stabilities (e.g. in-body implantable sensors). Silicon nanostructures, nanowires and nanotubes, have been extensively explored as building blocks for the creation of improved electrical biosensing devices, by virtue of their remarkably high surface-to-volume ratios, and have shown exceptional sensitivity for the real time label-free detection of molecular species adsorbed on their surfaces, down to the sensitivity of single molecules. Yet, till this date, almost no rigorous studies have been performed on the temporal morphological stability of these nanostructures, and their resulting electrical devices, under physiological conditions (e.g. serum, blood), as well as on the chemical stability of the molecular recognition over-layers covering these structures. Results Here, we present systematic time-resolved results on the morphological stability of bare Si nanowire building blocks, as well on the chemical stability of siloxane-based molecular over-layers, under physiological conditions. Furthermore, in order to overcome the observed short-term morpho-chemical instabilities, we present on the chemical passivation of the Si nanostructures by thin metal oxide nanoshells, in the range of 310nm. The thickness of the metal oxide layer influences on the resulting electrical sensitivity of the fabricated FETs (field effect transistors), with an optimum thickness of 34nm. Conclusions The core-shell structures display remarkable long-term morphological stability, preventing both, the chemical hydrolytic dissolution of the silicon under-structure and the concomitant loss of the siloxane-based chemical over-layers, for periods of at least several months. Electrical devices constructed from these nanostructures display excellent electrical characteristics and detection sensitivities, with exceptionally high morphological and functional stabilities. These results pave the road for the creation of long-term implantable biosensing devices in general, and nanodevices in particular. PMID:24606762

2014-01-01

364

Oxidation pathways for formic acid under low temperature hydrothermal conditions: Implications for the chemical and isotopic evolution of organics on Mars  

NASA Astrophysics Data System (ADS)

In order to evaluate the oxidation effect of dissolved hydrogen peroxide and the catalytic role of iron oxides on the kinetics of formic acid decarboxylation, a series of flow-through hydrothermal experiments was conducted at temperatures ranging from 80 to 150 C and pressures of 172-241 bar. ? 13C composition of residual HCOOH (aq) was also monitored to examine kinetic isotope effects associated with oxidation processes. Our results reveal that decomposition of H 2O 2(aq) in presence of magnetite follows pseudo first order kinetics, highly enhanced relative to the homogeneous H 2O 2(aq)-HCOOOH (aq)-H 2O system, which possibly reflect synthesis of hydroxyl radicals ( rad OH) through Fenton processes. The kinetic rate constants of HCOOH (aq) decarboxylation to CO 2(aq) are also elevated relative to those previously measured in H 2O 2(aq) free experiments. However, reaction kinetics are slightly slower in the case of H 2O 2(aq) aqueous solutions coexisting with magnetite than in the absence of mineral phases. This behavior is attributed to the possible formation of Fe-bearing hydroxyl formate aqueous species that could serve as stable transition states leading to a decrease in the activation entropy of formic acid decomposition. ? 13C values of residual formic acid in the homogeneous H 2O 2(aq)-HCOOH (aq)-H 2O system are consistent with previous studies. However, magnetite-bearing experiments produce a negative shift in ? 13C of residual formic acid, perhaps specific to rad OH-imposed oxidation of organic compounds. This would indicate that isotopic fractionations by this oxidation pathway are opposite to kinetic fractionation effects expected in biologically driven oxidation processes. This could have important implications for putative H 2O 2(aq)-bearing Martian subsurface environments and the evolution of organics at low-temperature hydrothermal conditions.

Foustoukos, Dionysis I.; Stern, Jennifer C.

2012-01-01

365

Low temperature aqueous desulfurization of coal  

DOEpatents

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01

366

Low temperature aqueous desulfurization of coal  

DOEpatents

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18

367

Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death  

NASA Astrophysics Data System (ADS)

A biomass combustion reactor with a moving grate was utilised as a model system to produce three different combustion conditions corresponding to efficient, intermediate, and smouldering combustion. The efficient conditions (based on a CO level of approximately 7mgMJ-1) corresponded to a modern pellet boiler. The intermediate conditions (CO level of approximately 300mgMJ-1) corresponded to non-optimal settings in a continuously fired biomass combustion appliance. The smouldering conditions (CO level of approximately 2200mgMJ-1) approached a batch combustion situation. The gaseous and particle emissions were characterised under each condition. Moreover, the ability of fine particles to cause cell death was determined using the particle emissions samples. The physico-chemical properties of the emitted particles and their toxicity were considerably different between the studied combustion conditions. In the efficient combustion, the emitted particles were small in size and large in number. The PM1 emission was low, and it was composed of ash species. In the intermediate and smouldering combustion, the PM1 emission was higher, and the particles were larger in size and smaller in number. In both of these conditions, there were high-emission peaks that produced a significant fraction of the emissions. The PAH emissions were the lowest in the efficient combustion. The smouldering combustion conditions produced the largest PAH emissions. In efficient combustion conditions, the emitted fine particles had the highest potential to cause cell death. This finding was most likely observed because these fine particles were mainly composed of inorganic ash species, and their relative contents of Zn were high. Thus, even the PM1 from optimal biomass combustion might cause health effects, but in these conditions, the particle emissions per energy unit produced were considerably lower.

Leskinen, J.; Tissari, J.; Uski, O.; Virn, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; Jalava, P. I.; Sippula, O.; Hirvonen, M.-R.; Jokiniemi, J.

2014-04-01

368

Influence of chemical extraction conditions on the physicochemical and functional properties of polysaccharide gum from durian (Durio zibethinus) seed.  

PubMed

Durian seed is an agricultural biomass waste of durian fruit. It can be a natural plant source of non-starch polysaccharide gum with potential functional properties. The main goal of the present study was to investigate the effect of chemical extraction variables (i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical properties of durian seed gum. The physicochemical and functional properties of chemically-extracted durian seed gum were assessed by determining the particle size and distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The present work revealed that the soaking time should be considered as the most critical extraction variable affecting the physicochemical properties of crude durian seed gum. PMID:22643356

Mirhosseini, Hamed; Amid, Bahareh Tabatabaee

2012-01-01

369

Surface chemical characteristics of coal fly ash particles after interaction with seawater under natural deep sea conditions  

SciTech Connect

The surface chemical characteristics of coal fly ash (CFA) before and after interaction with Mediterranean deep seawater was studied by X-ray photoelectron spectroscopy (XPS). Significantly lower values of Si, Ca, and S and higher values of Mg and Cl were found in the retrieved CFA as compared to fresh CFA. It is suggested that hydrolysis of the oxide matrixes results in an alkaline environment which rapidly leads to several chemical reactions. The two most important are (a) dissolution of the amorphous silicate and the calcium phases and (b) precipitation of Mg(OH){sub 2}-brucite. A depth profile of the retrieved CFA was measured by both line-shape analysis of the XPS spectra and by consecutive cycle of sputtering. The thickness of the brucite layer is estimated to be 1.3 nm.

Brami, Y.; Shemesh, A.; Cohen, H. [Weizmann Inst. of Science, Rehovot (Israel)] [Weizmann Inst. of Science, Rehovot (Israel); Herut, B. [National Inst. of Oceanography, Haifa (Israel)] [National Inst. of Oceanography, Haifa (Israel)

1999-01-15

370

Published on Web 09/13/2008 Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization  

E-print Network

The development of small molecules that modulate protein function in a tunable fashion has been a major focus in chemical biology. First described by Schreiber and co-workers, 1 chemical inducers of dimerization (CIDs) are cell-permeable, bidentate molecules capable of dimerizing two substrates. The prototype is the immunosuppressive natural product rapamycin, which binds simultaneously 2 to the FK506/rapamycin binding protein FKBP 3 and a domain of the mTOR protein termed FRB. 4 A variety of biological processes have been probed by rapamycin-induced dimerization of proteins fused to FKBP and FRB. 1,5 We have recently employed the CID technique in studies of glycobiology. 6 Golgi-resident glycosyltransferases and sulfotransferases comprise discrete catalytic (Cat) and localization (Loc) domains that are both required for cellular function. 7 Taking advantage of their modular nature, we separated the two domains

Jennifer L. Czlapinski; Michael W. Schelle; Lawrence W. Miller; Scott T. Laughlin; Jennifer J. Kohler; Virginia W. Cornish; Carolyn R. Bertozzi

2008-01-01

371

Effects of Extrusion Variables and Chemicals on the Properties of Starch-Based Binders and Processing Conditions 1  

Microsoft Academic Search

Cereal Chem. 75(4):541-546 The effects of extrusion variables (moisture, screw speed, and temper- ature) and chemicals (urea and sodium bicarbonate) on the properties of starch-based binders (water absorption, bulk density, binder yield, expan- sion ratio, solubility, pH) and processing c onditions (die temperature and pressure, feed rate, and specific mechanical energy) were studied using a central composite design. All quadratic

Z. Pan; S. Zhang; J. Jane

1998-01-01

372

Modeling the pH dependent hydrolysis of VX for aqueous releases.  

PubMed

The fate of chemical warfare agents (CWAs) in aqueous environments is not well characterized. Limited physical and kinetic data are available in the open literature for this class of chemicals, in part due to the dangers associated with exposure to these compounds. As a result, the development of methods for determining the persistence and extent of impact of a waterborne chemical agent release remains largely unanswered. In this study a basic hydrolysis model was developed to track the fate of VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate) from an instantaneous point source aqueous release. Hydrolysis product generation tracking was developed to determine the instantaneous pH within the local dispersive environment. Using instantaneous local pH values, the impact of pH on the persistence of VX hydrolysis rate was investigated for three different aqueous environments with varying dispersive conditions. Modeling results indicate that an accurate characterization of the pH dependence of the hydrolysis rate constant becomes more important in lower pH and lower turbulence environments. With this basic model, estimates of the time and extent of lethality of a VX release can be made. PMID:19520502

Cragan, J A; Ward, M C; Mueller, C B

2009-10-15

373

Cr(VI) adsorption on functionalized amorphous and mesoporous silica from aqueous and non-aqueous media  

SciTech Connect

A mesoporous silica (SBA-15) and amorphous silica (SG) have been chemically modified with 2-mercaptopyridine using the homogeneous route. This synthetic route involved the reaction of 2-mercaptopyridine with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT-IR and MAS NMR spectroscopy, thermogravimetry and elemental analysis. The solid was employed as a Cr(VI) adsorbent from aqueous and non-aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration and solvent polarity) has been studied using the batch technique. The results indicate that under the optimum conditions, the maximum adsorption value for Cr(VI) was 1.83 {+-} 0.03 mmol/g for MP-SBA-15, whereas the adsorption capacity of the MP-SG was 0.86 {+-} 0.02 mmol/g. On the basis of these results, it can be concluded that it is possible to modify chemically SBA-15 and SG with 2-mercaptopyridine and to use the resulting modified silicas as effective adsorbents for Cr(VI)

Perez-Quintanilla, Damian [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)]. E-mail: damian.perez@urjc.es; Hierro, Isabel del [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fajardo, Mariano [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Sierra, Isabel [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)]. E-mail: isabel.sierra@urjc.es

2007-08-07

374

Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties  

Microsoft Academic Search

A low temperature chemical deposition method has been developed to deposit iron\\/sulfur thin films onto soda lime glass substrates. The chemical bath deposition (CBD) consists of aqueous solution ferrous sulphate, disodium salt of ethylenediaminetetra-acetic acid (Na2EDTA), sodium thiosulphate and organic solutions of ethylenediamine and methanol. The experiments were performed at room temperature and under two different conditions. The films were

P. Prabukanthan; R. J. Soukup; N. J. Ianno; A. Sarkar; S. Kment; H. Kmentova; C. A. Kamler; C. L. Exstrom; J. Olejnicek; S. A. Darveau

2010-01-01

375

Chemical Models for Aqueous Biodynamical Processes  

E-print Network

-fructose. These values indicate that hydrogens are more tightly bound in these molecules than in bulk water. A theoretical calculation of deuterium isotope effects was made on a gem-diol model. The isotope effect K.JK^ increases with an increase in the hydroxylic D li...

Mata-Segreda, Julio F.

1975-05-01

376

Chemical geodynamics  

Microsoft Academic Search

Consideration is given to the following three principal boundary conditions relating to the nature and development of chemical structure in the earth's mantle: (1) inferred scale lengths for mantle chemical heterogeneities, (2) interrelationships of the various isotopic tracers, and (3) the bulk composition of the earth. These boundary conditions are integrated with geophysical constraints in order to evaluate models for

A. Zindler; S. R. Hart

1986-01-01

377

Microscopic textures in rocks deformed by chemical explosion and experimental stick-slip as a guide to conditions of palaeoseismicity  

NASA Astrophysics Data System (ADS)

Both underground chemical explosions and stick-slip fractures are high-speed deformation events that can leave particular marks in the deformed materials. We distinguish the characteristics of high-speed deformation by direct microscopic comparison of the deformation products. Our results show that typical microscopic indicators of high-speed deformation include quartz-shock lamellae, thetomorphic glass, calcite recrystallization, mineral twists and kinks, gravel-cutting microfractures, collision wedges, radial cracks, random gravel arrangement and saw-tooth shaped cracks. These results provide a basis for the identification of palaeoseisms.

Daquan, Yao; Yucheng, Chu; Xuezheng, Li; Jie, Li

2000-02-01

378

Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)  

NASA Astrophysics Data System (ADS)

It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from ?-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25 C, under supersaturated O2 initial conditions).

Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clment, J.; Ervens, B.; Monod, A.

2013-12-01

379

Ions in Aqueous Solution  

NSDL National Science Digital Library

This 11-page PDF document is part of an environmental geochemistry course taught by Dr. David Sherman at the University of Bristol. Topics include the aqueous behavior of ions based on their size and charge, the meaning of activity of ions in aqueous solution, the equilibrium constant, complexation of ions and hydrolysis of cations. Also included are informative illustrations, diagrams and equations.

Sherman, David M.; Bristol, University O.

380

Aqueous foam toxicology evaluation and hazard review  

SciTech Connect

Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

Archuleta, M.M.

1995-10-01

381

Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation.  

PubMed

Investigations were conducted to evaluate the effects of pod storage (as a means of pulp preconditioning) and fermentation on the chemical composition and physical characteristics of Ghanaian cocoa beans. A 4??2 full factorial design with factors as pod storage (0, 7, 14, 21days) and cocoa treatment (fermented and unfermented) were conducted. Samples were analyzed for their chemical composition (moisture, crude fat, crude protein, ash and carbohydrate content) and mineral content using standard analytical methods. The physical qualities of the beans were analyzed for their proportions of cocoa nibs, shells and germ. Fermentation and increasing pod storage resulted in significant (P?

Afoakwa, Emmanuel Ohene; Quao, Jennifer; Takrama, Jemmy; Budu, Agnes Simpson; Saalia, Firibu Kwesi

2013-12-01

382

Phytoplankton and physical-chemical conditions in selected rivers and the coastal zone of Lake Michigan, 1972  

SciTech Connect

A very large data set was obtained on the nearshore environment of Lake Michigan during 1972. The data set is probably unique in that samples were collected and analyzed for a number of physical-chemical parameters and for phytoplankton standing crop and species composition. Phytoplankton identified during the study totaled 431 taxa of which 306 were diatoms, which serves to illustrate the magnitude of available data. Results are presented for eleven different transects sampled in April and for three of these transects which were sampled in September. In addition, transects for the St. Joseph, Kalamazoo, and Grand Rivers were sampled four or five times and each of these rivers were sampled from seven to eleven times in July. Data collected with depth presented in this report include water temperature. Secchi disc transparency, pH, specific conductance, dissolved reactive silica, nitrate nitrogen, and total phosphorus as physical-chemical variables. On transects samples with depth were obtained at stations 0, .2, .8, 1.6, 3.2, 6.4, 13, 26, and 52 km from shore, although the stations from 13 to 52 km were not sampled on every transect. Data related to phytoplankton include species composition and abundance, species diversity, chlorophyll a, and rates of carbon fixation. All these data were obtained only at 2 meters.

Schelske, C.L.; Feldt, L.E.; Simmons, M.S.

1980-01-01

383

Formulation of an aqueous injection of flurbiprofen.  

PubMed

Flurbiprofen (1) is an analgesic, antipyretic and antiinflammatory agent which is practically insoluble in water. The aqueous solubility of 1 using various hydrotropes was attempted. The solubility increased up to 63 times in the case of sodium benzoate. Using selected hydrotropes, aqueous injections of 1 were formulated. Formulations were studied for physical and chemical stability. Some of the formulations showed reasonable stability which can be further enhanced by incorporation of appropriate formulation additives. These formulations were evaluated for antiinflammatory and analgesic activity and showed promising results. PMID:9347572

Gupta, G D; Jain, S; Jain, N K

1997-09-01

384

Body Condition Affects Blood Alkaloid and Monoterpene Kinetics and Voluntary Intake of Chemically-Defended Plants by Livestock  

Technology Transfer Automated Retrieval System (TEKTRAN)

Poisonous plants are a substantial component of grazinglands worldwide. Higher losses to poisonous plants are often observed in times of drought or at high stocking rates. Increased incidences of fatal poisoning may occur because plants can be more toxic under these conditions or because limited acc...

385

IMPROVEMENT OF SOIL PHYSICAL AND CHEMICAL CONDITIONS TO PROMOTE SUSTAINABLE CROP PRODUCTION IN AGRICULTURAL AREAS OF KAZAKHSTAN  

Technology Transfer Automated Retrieval System (TEKTRAN)

Kazakhstan is the ninth largest country in the world with vast resources for development; one of those resources is its soil. Soils have developed under a variety of conditions though most of the country is semi-arid to arid steppe with much of its agriculture dependent on irrigation. Soils have deg...

386

Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.  

PubMed

The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. PMID:21216096

Durn-Moreno, A; Garca-Gonzlez, S A; Gutirrez-Lara, M R; Rigas, F; Ramrez-Zamora, R M

2011-02-28

387

CHEMICAL AND PHYSICAL CONDITIONS IN MOLECULAR CLOUD CORE DC 000.4-19.5 (SL42) IN CORONA AUSTRALIS  

SciTech Connect

Chemical reactions in starless molecular clouds are heavily dependent on interactions between gas phase material and solid phase dust and ices. We have observed the abundance and distribution of molecular gases in the cold, starless core DC 000.4-19.5 (SL42) in Corona Australis using data from the Swedish ESO Submillimeter Telescope. We present column density maps determined from measurements of C{sup 18}O (J = 2-1, 1-0) and N{sub 2}H{sup +} (J = 1-0) emission features. Herschel data of the same region allow a direct comparison to the dust component of the cloud core and provide evidence for gas phase depletion of CO at the highest extinctions. The dust color temperature in the core calculated from Herschel maps ranges from roughly 10.7 to 14.0 K. This range agrees with the previous determinations from Infrared Space Observatory and Planck observations. The column density profile of the core can be fitted with a Plummer-like density distribution approaching n(r) {approx} r {sup -2} at large distances. The core structure deviates clearly from a critical Bonnor-Ebert sphere. Instead, the core appears to be gravitationally bound and to lack thermal and turbulent support against the pressure of the surrounding low-density material: it may therefore be in the process of slow contraction. We test two chemical models and find that a steady-state depletion model agrees with the observed C{sup 18}O column density profile and the observed N(C{sup 18}O) versus A{sub V} relationship.

Hardegree-Ullman, E.; Whittet, D. C. B. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)] [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Harju, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500, Piikkioe (Finland)] [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500, Piikkioe (Finland); Juvela, M.; Sipilae, O. [Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)] [Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Hotzel, S., E-mail: hardee@rpi.edu [Observatory, FI-00014, University of Helsinki (Finland)

2013-01-20

388

Drying kinetics and physico-chemical characteristics of Osmo- dehydrated Mango, Guava and Aonla under different drying conditions.  

PubMed

Mango (Mangiferra indica L), guava (Psiduim guajava L.) slices and aonla (Emblica officinalis L) segments were osmo-dried under four different dying conditions viz., cabinet drier (CD), vacuum oven drier (VOD), low temperature drier (LTD) and solar drier (SD) to evaluate the best drying condition for the fruits. It was found that vacuum oven drying was superior to other mode of drying as it holds maximum nutrients like acidity, ascorbic acid, sugar and water removal and moisture ratio of products. It was found through regression analysis that drying ratio and rehydration ratio was also superior in vacuum drying followed by cabinet drying. In addition, descriptive analysis on sensory score was also found best with vacuum drying while the Non-enzymatic browning (NEB), which is undesirable character on dried product, was more with solar drier. PMID:25114345

Kumar, P Suresh; Sagar, V R

2014-08-01

389

Influence of the experimental conditions on porosity and structure of adsorbents elaborated from Moroccan oil shale of Timahdit by chemical activation.  

PubMed

This study records experiments undertaken to determine the suitable conditions for the use of the oil shale of Timahdit, as an adsorbent for water treatment. A simple process was proposed based on chemical activation. The preparation has been carried out by carbonization after impregnation of the precursor with phosphoric acid. The effect of different conditions of preparation on the specific surface area is discussed. These parameters are H3PO4/shale weight ratio, carbonization temperature, carbonization time and concentration of H3PO4. The properties and surface structure of the adsorbent were investigated by XPS and FT-IR. Their total surface acidity and basicity were also determined. The retention process of methylene blue (MB) by adsorbents has been studied. It was found that MHP2 and MHP7 have relatively high retention ability as compared to activated carbons. PMID:15721527

Ichcho, S; Khouya, E; Fakhi, S; Ezzine, M; Hannache, H; Pallier, R; Naslain, R

2005-02-14

390

Processes controlling aqueous concentrations for riverine spills.  

PubMed

The aqueous concentrations of sparingly soluble compounds resulting from oil, fuel, or chemical spills onto rivers predicted by numerical spill models contain an inherent degree of uncertainty due to the inaccuracies, or bias, of the user supplied rate coefficients. Methods for estimating the values of spreading, evaporation, dissolution, volatilization, and longitudinal dispersion coefficients for a small sheltered river are reviewed, and the uncertainties associated with each coefficient are estimated. The uncertainties in the predicted aqueous concentrations are then computed using a concurrently developed riverine spill model for a simulated spill of 10,000 kg of jet fuel. The resulting aqueous concentrations were found to be most sensitive to the saturation concentrations and the dissolution rates, moderately sensitive to the evaporation rates and longitudinal dispersion coefficient, and nearly completely insensitive to the volatilization coefficient. PMID:10337393

Hibbs, D E; Gulliver, J S

1999-01-01

391

Radiolysis of Bicarbonate and Carbonate Aqueous Solutions: Product Analysis and Simulation of Radiolytic Processes  

SciTech Connect

An understanding of the radiation-induced effects in groundwater is essential to evaluate the safe geological disposal of spent fuel. In groundwater, the bicarbonate ion is the predominant and common anion; this work investigated radiation-induced chemical reactions of (bi)carbonate aqueous solutions with steady-state irradiation and pulse radiolysis methods. Aqueous solutions of sodium (bi)carbonate as high as 50 mmol.dm{sup -3} were used. The formation of formate, oxalate, and H{sub 2}O{sub 2} were measured under different conditions. A complete set of reaction steps and reliable kinetic data for the radiolysis of (bi)carbonate aqueous solutions at ionic strength close to the groundwater were proposed. Kinetic calculations were completed based on the proposed reaction steps and the kinetic data obtained in the present work. The results from the calculation are in good agreement with the experimental results. With these proposed reaction steps and kinetic data, computer simulation can be performed to predict the yield of radiolytic products of (bi)carbonate aqueous solutions as a function of irradiation time and used to evaluate the safety of geological disposal options of spent fuel.

Cai Zhongli; Li Xifeng; Katsumura, Yosuke; Urabe, Osamu [University of Tokyo (Japan)

2001-11-15

392

Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia  

PubMed Central

Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value was found to be 0.9607 and the coefficient of variance was 6.77. The optimal pretreatment conditions were a temperature of 42.75C, an aqueous ammonia concentration of 20.93%, and a reaction time of 48h. The optimal enzyme concentration for saccharification was 30 filter paper units. The crystallinity index was approximately 60.23% and the Fourier transform infrared results showed the distinct peaks of glucan. Ethanol production using Saccharomyces cerevisiae K35 was performed to verify whether the glucose saccharified from rice straw was fermentable. Conclusions The combined pretreatment using dilute sulfuric acid and aqueous ammonia on rice straw efficiently yielded fermentable sugar and achieved almost the same crystallinity index as that of ?-cellulose. PMID:23898802

2013-01-01

393

New class of aggregates in aqueous solution: an NMR, thermodynamic, and dynamic light scattering study.  

PubMed

We investigated the aggregation properties of two classes of aromatic and hydrophobic compounds, namely chloroacetamides and ethyl 3-phenyl-2-nitropropionates, in moderately concentrated aqueous solution (millimolar range). The identification of all species present in solution under specific experimental conditions was performed by 1D and 2D NMR, pulsed gradient spin-echo NMR, and dynamic light scattering techniques. Some physical-chemical properties (viscosity, surface tension, and colligative properties) of the aqueous solutions were also determined. Both classes of compounds behave quite similarly: in solution, three distinct species, namely a monomeric species, small and mobile aggregates, and large and stiff aggregates, are observed. The results give insight into a new class of aggregates, held together by pi-pi interactions, which show an unusual associative behavior in water. PMID:16800656

Sanna, Cecilia; La Mesa, Camillo; Mannina, Luisa; Stano, Pasquale; Viel, Stphane; Segre, Annalaura

2006-07-01

394

Chemical composition and selected mechanical properties of Al-Zn alloy modified in plasma conditions by RF CVD  

NASA Astrophysics Data System (ADS)

The paper reports results of the study of surface composition and selected functional properties of 7075 (Al-Zn) alloys modified in Ar, N2, SiH4 and CH4 atmosphere at reduced pressure. RF CVD (Radio Frequency Chemical Vapour Deposition) technique was used in the study. The type or weight percentage of carbon in each modification varied in the resultant SiN:H and SiCN:H coatings. Alloy samples were treated with Ar+ plasma etching and N+ ion implantation at reduced pressure. The tests proved the values of selected mechanical properties (hardness ca. 10.5 GPa, Young modulus ca. 95 GPa) and adhesion (delamination force ca. 11.5 mN) to be higher in the case of SiCN:H anti-wear coating (deposited in SiH4:CH4:N2 = 1:1:2 gas mixture) than the values of the respective parameters obtained in the remaining modifications. Further, carbon doped coatings (SiCN:H) exhibited significantly improved hardness (by about 50 to 70%) and nearly threefold increase in delamination force in comparison with SiCN:H coatings.

Kyzio?, Karol; Kluska, Stanis?awa; Janu?, Marta; ?roda, Marcin; Jastrz?bski, Witold; Kaczmarek, ?ukasz

2014-08-01

395

Assay of Antioxidant Potential of Two Aspergillus Isolates By Different Methods Under Various Physio-Chemical Conditions  

PubMed Central

The objective of this work was to screen fungi isolated from soil of different areas of Punjab, India for antioxidant activity by dot blot assay and around 45% of fungal isolates demonstrated antioxidant potential. Two selected strains of Aspergillus spp (Aspergillus PR78 and Aspergillus PR66) showing quantitatively best antioxidant activity by DPPH assay were further tested for their reducing power, ferrous ion and nitric oxide ion scavenging activity, FRAP assay and total phenolic content. Different physio-chemical parameters were optimized for enhancement of the activity. This revealed stationary culture grown for 10 days at 25 oC at pH 7 to be the best for antioxidant activity. Sucrose in the medium as carbon source resulted in highest antioxidant activity. Sodium nitrate, yeast extract, and peptone were good sources of nitrogen but sodium nitrate was the best among these. The extraction of the broth culture filtrates with different solvents revealed ethyl acetate extract to possess the best antioxidant activity. The activity as expressed by ethyl acetate extract of Aspergillus PR78 was equally effective as that of commonly used antioxidant standard, ascorbic acid. PMID:24031554

Arora, Daljit Singh; Chandra, Priyanka

2010-01-01

396

Effects of chlorine on freshwater fish under various time and chemical conditions: toxicity of chlorine to freshwater fish. Final report  

SciTech Connect

Laboratory bioassays to determine the acute toxicity of monochloramine, dichloramine, hypochlorous acid, and hypochlorite ion to emerald shiners, channel catfish, and rainbow trout were conducted. Four exposure regimes typical of chlorination schedules at operating steam electric power plants were used. Fish were exposed to single 15-minute, 30-minute, 120-minute, and quadruple 30-minute periods. No mortality or LC50 values were determined for each species of fish and chemical species of chlorine. Hypochlorous acid was the most toxic form of chlorine studied, followed closely by dichloramine. Monochloramine and hypochlorite ion were three to four times less toxic than hypochlorous acid and dichloramine. On the average, emerald shiners were 1.8 times more sensitive to chlorine than channel catfish and 3.3 times more sensitive than rainbow trout to the four forms of chlorine. The fish were more tolerant of chlorine during short duration exposures and most sensitive during the continuous 120-minute exposures. The significant differences in toxicity noted among the various chlorine species suggest that careful attention should be paid not only to total residual chlorine but to both the chlorine and fish species present and the duration of exposure expected in establishing chlorination regimes.

Brooks, A.S.; Bartos, J.M.; Danos, P.T.

1982-07-01

397

Roller milling fractionation of green gram (Vigna radiata): optimization of milling conditions and chemical characterization of millstreams.  

PubMed

In the view of recent growing interest in utilization of grain fractions as food ingredient, present investigation was carried out to evaluate the roller milling potential of green gram. The effect of conditioning moistures on green gram roller milling were studied. The results showed decrease in flour yield from 85.56 to 58.74% with increase in conditioning moisture from 10 to 16%. Higher yield of flour was observed from the first (C1), second (C2) and third (C3) reduction passages; whereas, the first (B1), second (B2) and third (B3) break passages produced less flour. The distribution of protein, dietary fiber, ash and fat in different flour streams and by-products from roller milled fractions of green gram showed wide variation. The protein content increased with increasing numbers of breaks and reductions in the flour streams. The highest protein content of 30.16% was found in bran duster flour and lowest (11.32%) in fine seed coat. The protein content of break streams was found lower than reduction streams. The dietary fiber content of coarse seed coat was highest (71.17%) followed by the fine seed coat (57.22%). The microstructure studies of milled fractions of green gram showed more deformed and damaged starch granules in reduction flour streams than break flour streams. PMID:25477653

Sakhare, Suresh D; Inamdar, Aashitosh A; Gaikwad, Shwetha B; D, Indrani; G, Vekateswara Rao

2014-12-01

398

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-print Network

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

Oleg P. Ledenyov; Ivan M. Neklyudov

2013-06-14

399

Optimisation of chemical purification conditions for direct application of solid metal salt coagulants: treatment of peatland-derived diffuse runoff.  

PubMed

The drainage of peatland areas for peat extraction, agriculture or bioenergy requires affordable, simple and reliable treatment methods that can purify waters rich in particulates and dissolved organic carbon. This work focused on the optimisation of chemical purification process for the direct dosage of solid metal salt coagulants. It investigated process requirements of solid coagulants and the influence of water quality, temperature and process parameters on their performance. This is the first attempt to provide information on specific process requirements of solid coagulants. Three solid inorganic coagulants were evaluated: aluminium sulphate, ferric sulphate and ferric aluminium sulphate. Pre-dissolved aluminium and ferric sulphate were also tested with the objective of identifying the effects of in-line coagulant dissolution on purification performance. It was determined that the pre-dissolution of the coagulants had a significant effect on coagulant performance and process requirements. Highest purification levels achieved by solid coagulants, even at 30% higher dosages, were generally lower (5%-30%) than those achieved by pre-dissolved coagulants. Furthermore, the mixing requirements of coagulants pre-dissolved prior to addition differed substantially from those of solid coagulants. The pH of the water samples being purified had a major influence on coagulant dosage and purification efficiency. Ferric sulphate (70 mg/L) was found to be the best performing solid coagulant achieving the following load removals: suspended solids (59%-88%), total organic carbon (56%-62%), total phosphorus (87%-90%), phosphate phosphorus (85%-92%) and total nitrogen (33%-44%). The results show that the use of solid coagulants is a viable option for the treatment of peatland-derived runoff water if solid coagulant-specific process requirements, such as mixing and settling time, are considered. PMID:23923774

Heiderscheidt, Elisangela; Saukkoriipi, Jaakko; Ronkanen, Anna-Kaisa; Klve, Bjrn

2013-04-01

400

In vitro production of llama (Lama glama) embryos by intracytoplasmic sperm injection: effect of chemical activation treatments and culture conditions.  

PubMed

Assisted reproductive technologies in the llama (Lama glama) are needed to provide alternative methods for the propagation, selection and genetic improvement; however, recovery of adequate quantity and quality of spermatozoa for conventional IVF is problematic. Therefore, an effort was made to adapt the intracytoplasmic sperm injection (ICSI) procedure for the in vitro production of llama embryos. The specific objectives of this study were: (1) to determine in vitro maturation rates of oocytes recovered by transvaginal ultrasound-guided oocyte aspiration (TUGA) or flank laparotomy; (2) to evaluate the effects of activation treatments following ICSI; (3) to evaluate the development of llama ICSI embryos in CR1aa medium or in an oviduct cell co-culture system. Llamas were superstimulated by double dominant follicle reduction followed by oFSH administered in daily descending doses over a 3-day interval. Oocytes were harvested by flank laparotomy or TUGA and matured in vitro for 30 h. Mature oocytes were subjected to ICSI followed by no chemical activation (Treatment A), ionomycin only (Treatment B) or ionomycin/DMAP activation (Treatment C). More oocytes were recovered by flank laparotomy procedure compared with TUGA (94% versus 61%, P<0.05) and a greater number of oocytes harvested by flank laparotomy reached the metaphase-II stage (77% versus 44%, P<0.05). After ICSI, the proportion of cleaved and 4-8-cell stages embryos was significantly greater when injected oocytes were activated with ionomycin/DMAP combination (63% and 38%, respectively, P<0.05). The co-culture of ICSI embryos with llama oviduct epithelial cells resulted in progression to morula (25%) and blastocyst (12%) stages; whereas, all embryos cultured in CR1aa medium arrested at the 8-16-cell developmental stage. PMID:16846701

Sansinena, M J; Taylor, S A; Taylor, P J; Schmidt, E E; Denniston, R S; Godke, R A

2007-06-01

401

EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS  

SciTech Connect

This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use in a flow and transport model were estimated for 27 elements in each of the chemical stages generated in the grout simulations plus local groundwater. The grout simulations were run with the initial infiltrating fluid in equilibrium with atmospheric oxygen to account for degradation of the reduction capacity of the grout. However, a lower Eh was used in pore fluids in the oxidizing conditions used to estimate solubilities to be more consistent with measured Eh values and natural systems. Solubilities of plutonium are affected by this decision, but those of other elements are not. In addition, the baseline for H-Area tanks is that they will be washed with oxalic acid prior to being filled with grout. Hence, oxalate was included in the pore fluids by assuming equilibrium with calcium oxalate. Solubility estimates were done by equilibrating a solubility controlling phase for each element with the pore fluid compositions using The Geochemists Workbench. Condition B pore fluids are similar to Condition D. Therefore, solubilities for Condition B were not estimated, but assumed to be the same as in Condition D. In general solubility controlling phases were selected to bias solubilities to higher values. Several elements had no solubility controls and solubility estimates for other elements were omitted because the elements had short half-lives or were present in residual waste in very low amounts. For these it is recommended that release from the tank be instantaneous when the tank liner is breached. There is considerable uncertainty in this approach to enabling a flow and transport model to account for variable waste release. Yet, it is also flexible and requires much less computing time than a fully coupled reactive transport model. This allows some of the uncertainty to be addressed by multiple flow and transport sensitivity cases. Some of the uncertainties are addressed within this document. These include uncertainty in infiltrate composition, grout mineralogy, and disposition of certain components during the simulations. Uncertainty in the solubility estima

Denham, M.; Millings, M.

2012-08-28

402

Aqueous Alteration on Mars. Chapter 23  

NASA Technical Reports Server (NTRS)

Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).

Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.

2007-01-01

403

Corrosion inhibited aqueous slurries  

SciTech Connect

This invention relates to the use of phospho-compositions, for example phosphates, pyrophosphates, polyphosphates, organophosphates, etc., as corrosion inhibitors in oxygen-containing aqueous systems of particulate matter such as slurries of solids, such as coal, etc.

French, E.; Braga, Th.G.

1985-02-19

404

Phase formation and chemical phase equilibria in aqueous-based systems pertinent to waste-management: calcium oxide-alluminum oxide-borate-water, calcium oxide-lead oxide-phosphate-water and calcium oxide-arsenate-water  

NASA Astrophysics Data System (ADS)

This thesis explores three aqueous-based systems that have importance in the area of waste-management: (1) CaO-Alsb2Osb3-Bsb2Osb3-Hsb2O, (2) CaO-PbO-Psb2Osb5-Hsb2O and (3) CaO-Assb2Osb5-Hsb2O. More specifically, the objective of this research is to identify various precipitated compounds that can effectively immobilize certain elements that either directly or indirectly have an adverse effect on the environment. In the first quaternary system, CaO-Alsb2Osb3-Bsb2Osb3-Hsb2O, boron is the element desired to be ``fixed'' because ``free'' boron is the cause of delayed hardening in cement paste intended for the encapsulation of nuclear waste. Soluble boron also causes the cement paste to prematurely set, a phenomenon called ``flash-set.'' Isothermal calorimetry was used to track the progress of tricalcium aluminate hydration in the presence of boric acid and Ca(OH)sb2 and revealed the presence of a pronounced induction period, the length of which varied with both temperature and boric acid concentration. It was determined that a diffusion barrier, most likely an amorphous calcium borate, deposited onto the active anhydrous tricalcium aluminate grains inhibiting further hydration. Also, under certain conditions, the precipitation of crystalline 4CaO{*}Alsb2Osb3{*}1/2Bsb2Osb3{*}12Hsb2O may be responsible for the observed flash-set due to its flat, plate-like morphology. Another quaternary hydrate, 6CaO{*}Alsb2Osb3{*}2Bsb2Osb3{*}39Hsb2O (boro-ettringite) was also synthesized during this research and crystallized as hexagonal prisms. In contrast to the fast crystallization of 4CaO{*}Alsb2Osb3{*}1/2Bsb2Osb3{*}12Hsb2O, boro-ettringite was observed to form slowly and in stages with the precipitation of the transient phase CaO-Bsb2Osb3{*}6Hsb2O preceding it. Further investigation of these two hydrates lead to the construction of a quaternary phase diagram and to the determination of their solubility products (pKsp = -logKsp), which were determined to be 44.23 for boro-ettringite and 28.51 for 4CaO{*}Alsb2Osb3{*}1/2Bsb2Osb3{*}12Hsb2O. The formation of a solid-solution series between the two apatites, Casb{10}(POsb4)sb6(OH)sb2 and Pbsb{10}(POsb4)sb6(OH)sb2, under ambient conditions and using only oxide starting materials was studied. It was observed that under those conditions, a very limited range of miscibility occurred resulting in the formation of the quaternary apatite, Pbsb{x}Casb{10-x}(POsb4)sb6(OH)sb2 where 5? x<6. The ternary system, CaO-Assb2Osb5-Hsb2O, was also studied under ambient conditions in order to identify a potential host compound suitable for the stabilization of soluble arsenic. Analyses of the solid precipitates and their saturated solutions have revealed the following compounds along with their solubility products (pKsp = -logKsp): Casb4(OH)sb2(AsOsb4)sb2{*}4Hsb2O (29.20), Casb5(AsOsb4)sb3OH (38.04), Casb3(AsOsb4)sb2{*}3{2/3}Hsb2O (21.00), Casb3(AsOsb4)sb2{*}4{1/4}Hsb2O (21.00), Casb5Hsb2(AsOsb4)sb4{*}9Hsb2O-ferrarisite (31.49), Casb5Hsb2(AsOsb4)sb4{*}9Hsb2O-guerinite (30.69), and CaHAsOsb4{*}Hsb2O (4.79). The conditions under which the hydrates Casb4(OH)sb2(AsOsb4)sb2{*}4Hsb2O and Casb5(AsOsb4)sb3OH (arsenate-apatite) precipitated were determined to be best in terms of immobilizing soluble arsenic. Both are highly insoluble and are associated with the lowest concentrations of dissolved arsenic under equilibrium conditions. However, the conditions under which they preferentially form are slightly different. Casb4(OH)sb2(AsOsb4)sb2{*}4Hsb2O was observed to form consistently in the presence of magnesium impurity, whereas the arsenate-apatite formed phase-pure only in the absence of magnesium impurity. This can be advantageous in the sense that the arsenate ion is assured to be stabilized via the precipitation of either one or the other, making the presence of magnesium impurity inconsequential under those conditions which precipitate these two stable hydrates.

Bothe, James Vincent, Jr.

405

Reactions of potential organic water contaminants with aqueous chlorine and monochloramine. Final report  

SciTech Connect

Aqueous chlorine and monochloramine are the two most widely used disinfectants of drinking waters in the U.S. The reactions of these two disinfectants with various organic functional groups in order to predict which classes of chemical substrates might be most likely to undergo transformations under drinking water conditions are reviewed. For those reactions for which kinetic data are available, the half-lives of substances containing these functional groups is estimated. Where possible, known reaction mechanisms are identified and structure activity relationships are discussed.

Scully, F.E.; White, W.N.

1991-09-01

406

Reflectance of aqueous solutions  

NASA Technical Reports Server (NTRS)

The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

Querry, M. R.

1972-01-01

407

Role of intra-hippocampal orexin 1 and orexin 2 receptors in conditioned place preference induced by chemical stimulation of the lateral hypothalamus.  

PubMed

Evidence from animal models suggests a role for orexinergic system in reward processing and drug addiction. The lateral hypothalamus (LH) orexin neurons send projections to the dorsal hippocampus (CA1 region) which plays a pivotal role in reward processes. Moreover, it has been shown that orexin containing terminals and orexin receptors are distributed in the hippocampal formation. In this study, we assessed the role of orexin 1 (OX1r) and orexin2 (OX2r) receptors in the CA1 on the development of LH stimulation-induced conditioned place preference (CPP). Animals weighing 230-280g were unilaterally implanted by two separate cannulae into the LH and CA1. The CPP paradigm was done; SB334867 and TCSOX229, as selective OX1r and OX2r antagonists (1, 3, 10 and 30nM/0.5?l DMSO) administrated into the CA1 prior to intra-LH carbachol microinjection (250nM; the most effective dose) during the 3-days conditioning phase, respectively. Conditioning scores and locomotor activities were recorded by Ethovision software on the test day. The results showed that the administration of OX1r and OX2r antagonists into the CA1 attenuated the development of CPP induced by chemical stimulation of the LH. However, this decrease in OX1r antagonist treated groups was more significant than that in OX2r antagonist treated animals. Our findings suggest that OX1 and OX2 receptors in the CA1 region of the hippocampus were involved in the development of CPP induced by chemical stimulation of the LH and the efficiency of OX1 receptors in this phenomenon was more considerable than OX2 receptors in rats. PMID:25446766

Rashidy-Pour, Ali; Moradi, Marzieh; Fatahi, Zahra; Haghparast, Amir; Haghparast, Abbas

2015-02-15

408

Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments  

NASA Astrophysics Data System (ADS)

Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxyl