Science.gov

Sample records for aqueous chemical conditions

  1. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  2. Chemical Constraints Governing the Origin of Metabolism: The Thermodynamic Landscape of Carbon Group Transformations under Mild Aqueous Conditions

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2002-08-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3

  3. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (delta

  4. Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin

    2015-05-19

    To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage. PMID:25893278

  5. Plasmon-driven sequential chemical reactions in an aqueous environment

    PubMed Central

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-01-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

  6. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  7. Chemical conditioning of sludge.

    PubMed

    Novak, J T; Park, C

    2004-01-01

    With all the advances made in understanding the structure and composition of sewage sludges, chemical conditioning remains a trial and error process, both with regard to the type and dose of conditioner needed. Recent studies at Virginia Tech have found that biological floc consists of two types of biopolymer, material associated with iron and aluminium and material associated with calcium and magnesium. These materials behave differently when sludges undergo digestion. This results in very different material being released into solution during digestion and very different conditioning requirements. This study shows that the primary materials released during anaerobic digestion are proteins and coagulation of the colloidal protein fraction in solution is the primary mechanism for conditioning. For aerobically digested sludges, both proteins and polysaccharides make up the colloid fraction, which interferes with dewatering. This research also shows that the effectiveness of the digestion process as characterized by volatile solids destruction is directly related to the chemical dose required for conditioning. That is, as the solids destruction increases, the conditioning chemical requirement also increases. Well digested sludges dewater more poorly and require more conditioning chemical than those with less volatile solids destruction. PMID:15259940

  8. CHEMICAL TRANSFORMATIONS USING NON-TRADITIONAL APPROACHES: MICROWAVE-ASSISTED GREENER SYNTHESES IN AQUEOUS MEDIA OR UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a 'greener' chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N<...

  9. Chemical Equilibrium Composition of Aqueous Systems

    Energy Science and Technology Software Center (ESTSC)

    1996-12-30

    MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.

  10. Aqueous Alteration and Martian Bulk Chemical Composition

    NASA Astrophysics Data System (ADS)

    Taylor, J.; Boynton, W. V.; McLennan, S. M.

    2009-12-01

    The bulk compositions of the terrestrial planets are fundamentally important in testing models for planetary accretion. This is particularly true for the abundances of volatile elements. In the absence of direct samples of the mantle, we must rely on samples of surface materials obtained from orbit (specifically from the Mars Odyssey Gamma-Ray Spectrometer, GRS), Martian meteorites, and in situ analyses. Use of these databases requires understanding the processes that formed and modified the igneous rocks composing the crust; aqueous processes are particularly important. Halogens are useful elements for understanding Martian bulk composition and surface aqueous alteration. Here, we focus on Cl, which is an incompatible element during partial melting. Cosmochemically, Cl is a moderately volatile element with a condensation temperature of 948 Kelvin, only slightly below that of K (1006 Kelvin), another incompatible lithophile element. Cl is substantially lost during magma degassing at or near the surface, making it difficult to determine its abundances in the interior through analyses of rocks, leading to an underestimate of Cl abundance in bulk silicate Mars. GRS data for Mars between approximately 52 degrees north and south show that K and Cl are uncorrelated. This is not surprising as they fractionate easily by release of Cl-bearing gases from magmas near the surface and during eruptions, by aqueous alteration of surface materials, and by the large solubility of Cl salts in water. A positive correlation of Cl with H supports the role of water in Cl redistribution. In spite of the lack of correlation between K and Cl, the mean Cl/K ratio is roughly chondritic: 1.5 ±0.1 compared to 1.28 in CI chondrites. However, Cl appears to be enriched at least in the uppermost few tens of cm analyzed by the GRS: Cl correlates with both H and S, but a linear fit to the data shows a positive Cl intercept of about 0.3, which suggests a decoupling of Cl from S and H. Adjusting the

  11. CHEMICAL SYNTHESES IN AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    The development of efficient, selective and eco-friendly synthetic methods has remained a major focus of our research group. Microwave (MW) irradiation as alternative energy source in conjunction with water as reaction media has proven to be a successful 'greener' chemical appro...

  12. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B., Jr.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  13. Thermodynamics of Water and Aqueous Solutions under Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Vance, S.; Bollengier, O.; Shaw, G. H.; Abramson, E.

    2014-12-01

    Interactions between aqueous solutions and rocks extending from the surface and through the deep mantle control the state and evolution of Earth. The accurate representation of the fluid chemical energy as a function of pressure, temperature and composition over a wide range of conditions is prerequisite in understanding phase equilibria and solubilities in multicomponent systems. End-member thermodynamic properties of water (densities, specific heats, sound speeds, and more) have been extensively explored in a regime below about 100 MPa and an available complex formulation for the Helmholtz free energy (IAPWS-95) accurately represents these data and a smaller number of measurements extending to 1 GPa. However, this parameterization systematically misfits higher pressure data and is not easily adjusted to provide a better description. To address these points, we developed a flexible framework for the acquisition and description of Gibbs' free energy of water and aqueous solutions. Through use of local basis functions, the thermodynamic state surface can be adjusted to account for improved experimental constraints or for results in new regimes of pressure and temperature. Based on our experimental work on pure water, MgSO4(aq), Na2SO4(aq), and ammonia-water mixtures, new insights are provided on the volumetric behavior of fluids at high pressure. For the ionic solutions, where the partial molar volume at infinite dilution, Vo, is dominated by electrostriction at low pressure, the initial pressure derivative of Vo is large. At high pressure, where Vo is more related to the "size" of the ions, it is only weakly pressure dependent. The non-ideal behavior of these ionic solutions over an extended range of pressures and temperatures is successfully described using a standard three-term parameterization representing solvent (Debye-Hückel), solvent-ion, and ion-ion interactions. The solvent-ion and ion-ion interaction parameters show less dependence on pressure and

  14. Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs-Duhem equation consistency tests

    NASA Astrophysics Data System (ADS)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R.

    2013-09-01

    This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

  15. Timescales and conditions for the aqueous alteration of chondrites

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.

    It has become well-recognized that water played a critical role in the early geological evolution of materials through observation of hydrated phases in chondritic meteorites. However, details about the mechanism, timing, and conditions of aqueous alteration are poorly constrained. This dissertation investigates water-driven processes in Renazzo-like (CR) carbonaceous chondrites, with some comparison to the heavily altered and Mighei-like (CM) chondrites. CR chondrites were chosen as the focus of this study, as they are the only chondrite group to range from practically anhydrous to completely hydrated, providing petrographic context for the aqueous alteration process. The central goal of the thesis is to elucidate the complete mechanism of aqueous alteration, from primary anhydrous components to secondary minerals. This research uses a variety of micro-analytical techniques to address three main objectives: 1) to detail the petrographic context, 2) to quantify the onset and duration of alteration using radiometric dating, and 3) to constrain the fluid chemistry and conditions for aqueous alteration. On a microscopic scale, fine-grained matrices and glassy mesostases were the first phases to become altered, allowing for elemental transport over short distances (< 100 microns). As alteration progressed, the iron-metal was oxidized, and silicate phenocrysts were pseudomorphically replaced. 53Mn-53 Cr radiometric dating of secondary carbonates in CR chondrites show that aqueous alteration began quickly after accretion of the parent body, ~4 Myr after the beginning of the Solar System. This is contemporaneous with dolomite formation in the CM chondrite Sutter's Mill and with carbonate formation in other CM chondrites. However, the calcite age from a heavily hydrated CR lithology indicates that late-stage alteration occurred ~12 Myr after the beginning of the Solar System. The oxygen isotopic compositions of magnetite and carbonate minerals reveal that altering fluid

  16. Chemical Reactivity at Metal Oxide-Aqueous Solution Interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.

    2005-03-01

    The chemical reactivity of metal oxide surfaces in contact with aqueous solutions, with respect to cations and anions, is controlled by the composition, structure, and charging properties of the surface, the dielectric properties of the bulk oxide, and the stability of the aqueous cation or anion complex versus its sorption complex. These points will be illustrated for selected cations, anions, and metal oxides using macroscopic uptake and EXAFS spectroscopy results, x-ray standing wave data, and crystal truncation rod diffraction data. The reactivity of metal oxide surfaces with respect to low molecular weight (LMW) carboxylic acids is also dependent on the types of ring structures formed between surface functional groups and the LMW organic molecules. These types of interactions will be illustrated using ATR-FTIR data and dissolution measurements as a function of pH for oxalate, maleate, phthalate, and pyromellitate interacting with boehmite (AlOOH). Co-Authors are Tae Hyun Yoon, Stephen B. Johnson, Dept. of Geological & Environmental Sciences, Stanford University, Stanford CA 94305-2115; Thomas P. Trainor, Dept. of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775; Anne M. Chaka, National Institute of Standards and Technology, Gaithersburg, MD 20899

  17. Biocatalysis in semi-aqueous and nearly anhydrous conditions.

    PubMed

    Hudson, Elton P; Eppler, Ross K; Clark, Douglas S

    2005-12-01

    In the past few years there have been prolific advances in activating enzymes for nonaqueous biocatalysis. Molecular dynamics simulations complement recent experimental results and offer new insights into the deleterious effects of organic solvents, such as water stripping and active-site penetration. Methods for activating enzymes in semi-aqueous or nonaqueous media include protein engineering, chemical modification, and co-lyophilization with non-buffer salts. Enzyme immobilization on novel polymeric supports and the use of zeolite molecular sieves can also increase solvent tolerance, enhance activity, and improve enantioselectivity. The recent implementation of enzymes in ionic liquids has also led to better long-term stability relative to traditional organic solvents and the simultaneous solubilization of enzymes, cofactors and substrates. PMID:16256329

  18. Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions.

    PubMed

    Baumgartner, Rebekka; McNeill, Kristopher

    2012-09-18

    Fluorinated organic compounds are increasingly used in many applications, and their release to the environment is expected. It is therefore important to find suitable methods for degradation of fluorinated compounds under environmentally relevant conditions. In this study, a simple heterogeneous rhodium-based catalytic system (Rh/Al(2)O(3) and H(2)) for hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions (1 atm of H(2), ambient temperature) was developed and the underlying reaction mechanism was investigated. Fluorobenzene degraded rapidly (t(1/2) ≈ 0.2 h) to form cyclohexane and fluoride (F(-)) as the stable end products, with benzene and cyclohexene observed as intermediates. Cyclohexadiene intermediates were not observed but were expected to form during the hydrogenation of benzene. Three postulated but unobserved fluorinated intermediates were subjected to the catalytic reaction conditions, and it was concluded that they most likely do not form during the fluorobenzene degradation reaction. Isotope labeling experiments showed that the unsaturated intermediates undergo rapid and reversible hydrogenation/dehydrogenation under the reaction conditions and also that fully saturated compounds are unreactive in the catalytic system. Both molecular hydrogen and water were sources of hydrogen in the final cyclohexane product. Kinetic fitting indicated that sorption/desorption of fluorobenzene onto the catalyst surface plays an important role in the mechanism. PMID:22871102

  19. Optical spectroscopy of simple aqueous solutions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Vass, H.; Edington, D.; Crain, J.

    2003-06-01

    We report the results of an extensive series of Brillouin scattering experiments on simple aqueous solutions with a view to exploring their dynamical properties over a wide range of temperatures and pressures. For all solutes studied that inhibit freezing and allow access to temperatures far below the normal supercooling limit of water, we find clear spectroscopic evidence of GHz-range viscoelastic behavior below ≈-40 °C. This is manifested by a dramatic rise in the Brillouin mode frequencies accompanied by initial broadening and subsequent narrowing of the spectral linewidths on cooling. We find similar behavior in pure compressed (to between 2 and 4 kbar) supercooled water. This suggests that the low-temperature viscoelastic dynamics of these solutions is dominated by the behavior of the aqueous component which evidently exhibits a pronounced decrease in relaxation time though the temperature range over which it occurs is inaccessible unless freezing is suppressed either by pressure or the presence of solutes. No firm conclusion can be drawn concerning the proposed second critical point at these very low temperatures though it is not required for a consistent interpretation of the data. In the high-temperature regime, where the hydrogen bond structure is disrupted, we find considerable chemical sensitivity (even among the three chloride salts NaCl, CsCl, and CaCl2) in the dynamics especially in the vicinity of the liquid-gas critical point. This is in contrast to the low-temperature case where the cooperative dynamics of the water network dominates and appears to remain intact in the presence of a wide variety of solutes.

  20. DERMAL ABSORPTION OF CHEMICALS: EFFECT OF APPLICATION OF CHEMICAL AS A SOLID, AQUEOUS PASTE, SUSPENSION OR IN VOLATILE VEHICLE

    EPA Science Inventory

    The purpose of this study was to investigate the dermal absorption of chemicals applied to female F344 rats in different physical forms. hese forms included chemical as a solid, aqueous paste, suspension or dissolved in the volatile vehicle ethanol. he chemicals investigated were...

  1. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200 °C as a function of pH, aqueous solution composition and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Gautier, Quentin; Oelkers, Eric H.

    2012-04-01

    Magnesite precipitation rates were measured at temperatures from 100 to 200 °C as a function of saturation state and reactive fluid composition in mixed flow reactors. Measured rates were found to increase systematically with increasing saturation state but to decrease with increasing reactive fluid aqueous CO32- activity and pH. Measured rates are interpreted through a combination of surface complexation models and transition state theory. In accord with this formalism, constant saturation state BET surface area normalized magnesite precipitation rates (rMg) are a function of the concentration of protonated Mg sites at the surface (>MgOH2+) and can be described using: rMg=kMg-Kn 1-ΩMgn where kMg- represents a rate constant, KOH and KCO3 stand for equilibrium constants, ai designates the activity of the subscripted aqueous species, n refers to a reaction order equal to 2, and ΩMg denotes the saturation state of the reactive solution with respect to magnesite. Retrieved values of n are consistent with magnesite precipitation control by a spiral growth mechanism. The temperature variation of the rate constant can be described using kMg-=Aaexp(-Ea/RT), where Aa represents a pre-exponential factor equal to 5.9 × 10-5 mol/cm2/s, Ea designates an activation energy equal to 80.2 kJ/mol, R denotes the gas constant, and T corresponds to the absolute temperature. Comparison of measured magnesite precipitation rates with corresponding forsterite dissolution rates suggest that the relatively slow rates of magnesite precipitation may be the rate limiting step in mineral carbonation efforts in ultramafic rocks.

  2. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. PMID:26965669

  3. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  4. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  5. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  6. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae.

    PubMed

    Tommaso, Giovana; Chen, Wan-Ting; Li, Peng; Schideman, Lance; Zhang, Yuanhui

    2015-02-01

    This study examined the chemical characteristics and the anaerobic degradability of the aqueous product from hydrothermal liquefaction (HTL-ap) from the conversion of mixed-culture algal biomass grown in a wastewater treatment system. The effects of the HTL reaction times from 0 to 1.5 h, and reaction temperatures from 260 °C to 320 °C on the anaerobic degradability of the HTL-ap were quantified using biomethane potential assays. Comparing chemical oxygen demand data for HTL-ap from different operating conditions, indicated that organic matter may partition from organic phase to aqueous phase at 320 °C. Moderate lag phase and the highest cumulative methane production were observed when HTL-ap was obtained at 320 °C. The longest lag phase and the smallest production rate were observed in the process fed with HTL-ap obtained at 300 °C. Nevertheless, after overcoming adaptation issues, this HTL-ap led to the second highest accumulated specific methane production. Acetogenesis was identified as a possible rate-limiting pathway. PMID:25455086

  7. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  8. Conditions of aqueous alteration of 9 CM chondrites estimated from mineralogy and compositional variations of matrix

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Nakamura, T.; Fujimaki, H.

    2011-12-01

    those from Murry and Nogoya meteorites) in a Mg-Fe-Si ternary diagram. Nine samples have different compositional trends and PCP/(PCP+serpentine) ratios, suggesting that these 9 samples have suffered various extents of aqueous alteration. The matrix compositions reflect the conditions of aqueous alteration, because of its fine-grained nature. Therefore, it is expected that, for instance, GroupA samples show compositional trends similar within the Group, but different from other Groups. However, GroupA sample (LAP03178) has the same trend as GroupB sample (GRO95566), and GroupB sample (MET01072) has the same trend as GroupC sample (MAC88100).This suggests that aqueous alteration process is very complex: the starting matrix compositions are variable, and the resultant matrix compositions are also different. This indicates that matrix chemical composition alone is not enough to define the alteration degree. [1]McSween (1986), GCA 51, 2469-2477 [2]Clayton and Mayeda (1984) Earth and Planetary Science Letters 67, 151-161 [3]Zolensky et.al (1997) GCA 61, 5099-5115 [4]Rubin et al. (2007) GCA 71, 2361-2382

  9. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  10. A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Nizkorodov, S. A.

    2012-09-01

    Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. For example, we find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.

  11. A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Nizkorodov, S. A.

    2012-04-01

    Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. We find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.

  12. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  13. Optical techniques for nanoscale probing and chemical detection in aqueous environments

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis

    substrates from aqueous solution. We have shown that the coverage density of Ag nanoparticles on the glass substrates correlates with the amount of adsorbed PAH. The SERS-active substrates were robust and stable in 0.5 M NaCl solutions, as well in extreme acidic and basic conditions. Rhodamine 6G dye (R6G) was chosen as a model molecule for SERS spectra acquisition. The glass substrates with immobilized non-aggregated Ag nanoparticles exhibited SERS enhancement and provided in situ detection sensitivity of R6G at 5 ppt level, with estimated surface coverage of 2 to 4 R6G molecules per silver particle. The results will improve the design of SERS-active photonic crystal fibers for highly sensitive chemical and biological detection.

  14. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product. PMID:25116442

  15. Effect of surface condition on the aqueous corrosion behavior of iron aluminies

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1995-08-01

    The effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion characteristics of Fe-Al-based alloys were evaluated by electrochemical methods. Cyclic anodic polarization evaluations were conducted at room temperature in a mild acid-chloride solution (pH = 4,200 ppm Cl{sup {minus}}) on the Fe{sub 3}Al-based iron aluminides, FA-84 (Fe-28Al-2Cr-0.05B, at %), FA-129 (Fe-28Al-5Cr-0.5Nb-0.2C, at %), and FAL-Mo (Fe-28Al-5Cr-1Mo-0.04B-0.08Zr, at %), on the FeAl-based iron aluminide, FA-385 (Fe-35.65Al-0.20Mo-0.05Zr-0.11C, at %). The surface conditions evaluated were: As received (i.e. with the retained high-temperature oxides), mechanically cleaned (ground through 600-grit SiC paper), and chemically cleaned (10% HNO{sub 3}, 2%HF, at 43 {degree}C). The principal electrochemical parameter of interest was the critical putting potential with lower values indicating less resistance to chloride-induced localized corrosion. For all materials evaluated, the critical pitting potential was found to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. Mechanisms responsible for the detrimental high-temperature-oxide effect are under study.

  16. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    PubMed Central

    Sharifipour, Farideh; Idani, Esmaeil; Zamani, Mitra; Helmi, Toktam; Cheraghian, Bahman

    2013-01-01

    Purpose To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group) in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV) and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V). Results Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001) and mean arterial PO2 was 85.7±7.9, 184.6±46, and379.1±75.9 mmHg, respectively (P values <0.001). Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001). There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001). The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels. PMID:23943686

  17. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Ravier, S.; Clément, J.-L.; Monod, A.

    2014-08-01

    We developed a chemical mechanism based on laboratory experiments that have shown efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. The mechanism is then implemented into a multiphase box model that simulates (i) oligomer formation upon uptake of MVK from the gas phase, and (ii) SOA formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. Model results show that under atmospheric conditions, the oligomer formation rate strongly depends on the availability of dissolved oxygen. If oxygen is consumed too quickly or its solubility is kinetically or thermodynamically limited, oligomerization is accelerated, in agreement with the laboratory studies. The comparison of predicted oligomer formation shows that for most model assumptions (e.g. depending on the assumed partitioning of MVK and MACR), SOA formation from isoprene in the gas phase exceeds aqueous SOA formation by a factor 3-4. However, at high aerosol liquid water content and potentially high partitioning of oligomer precursors into the aqueous phase, SOA formation in both phases might be equally efficient.

  18. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  19. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    PubMed

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  20. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:25828545

  1. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  2. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    PubMed

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer. PMID:23285641

  3. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  4. Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions

    NASA Astrophysics Data System (ADS)

    Monod, A.; Chevallier, E.; Durand Jolibois, R.; Doussin, J. F.; Picquet-Varrault, B.; Carlier, P.

    The photooxidation of methylhydroperoxide (MHP) and ethylhydroperoxide (EHP) was studied in the aqueous phase under simulated cloud droplet conditions. The kinetics and the reaction products of direct photolysis and OH-oxidation were studied for both compounds. The photolysis frequencies obtained were JMHP=4.5 (±1.0)×10 -5 s -1 and JEHP=3.8 (±1.0)×10 -5 s -1 for MHP and EHP respectively at 6 °C. The rate constants of OH-oxidation of MHP at 6 °C were 6.3 (±2.6)×10 8 M -1 s -1 and 5.8 (±1.9)×10 8 M -1 s -1 relative to ethanol and 2-propanol respectively, and the rate constant of OH-oxidation of EHP was 2.1 (±0.6)×10 9 M -1 s -1 relative to 2-propanol at 6 °C. The reaction products obtained were not only the corresponding aldehydes, but also the corresponding acids, and hydroxyhydroperoxides as primary reaction products. The yields for these products were sensitive to the pH value. The carbon balance was higher than 85% for all experiments, showing that most reaction products were detected. A chemical mechanism was proposed for each reaction, and the atmospheric implications were discussed.

  5. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro

    2016-05-01

    A reaction model describing the reactivity of metal and semimetal species with aqueous tetrahydridoborate (THB) has been drawn taking into account the mechanism of chemical vapor generation (CVG) of hydrides, recent evidences on the mechanism of interference and formation of byproducts in arsane generation, and other evidences in the field of the synthesis of nanoparticles and catalytic hydrolysis of THB by metal nanoparticles. The new "non-analytical" reaction model is of more general validity than the previously described "analytical" reaction model for CVG. The non-analytical model is valid for reaction of a single analyte with THB and for conditions approaching those typically encountered in the synthesis of nanoparticles and macroprecipitates. It reduces to the previously proposed analytical model under conditions typically employed in CVG for trace analysis (analyte below the μM level, borane/analyte ≫ 103 mol/mol, no interference). The non-analytical reaction model is not able to explain all the interference effects observed in CVG, which can be achieved only by assuming the interaction among the species of reaction pathways of different analytical substrates. The reunification of CVG, the synthesis of nanoparticles by aqueous THB and the catalytic hydrolysis of THB inside a common frame contribute to rationalization of the complex reactivity of aqueous THB with metal and semimetal species.

  6. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  7. Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species

    PubMed Central

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  8. Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species.

    PubMed

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph-mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  9. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, R.W.; Wang, P.

    1996-04-30

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

  10. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, Roger W.; Wang, Poguang

    1996-01-01

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##

  11. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  12. Chemical characterization of some aqueous leachates from crop residues in 'CELSS'

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1992-01-01

    Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.

  13. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    PubMed

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased. PMID:26304379

  14. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

    PubMed

    Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

    2009-07-21

    An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C. PMID:19485372

  15. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  16. Methods and additives for delaying the release of chemicals in aqueous fluids

    SciTech Connect

    Burnham, J.W.; Briscoe, J.E.; Elphingstone, E.A.

    1980-05-13

    Additives are provided for bringing about the delayed release of a chemical such as a gel breaker or demulsifier in an aqueous fluid such as a gelled oil well hydraulic fracturing or fracture-acidizing fluid. The additives are pelletized solids consisting of the chemical to be released such as sodium laryl sulfate. A gelling agent capable of being hydrated such as a polysaccharide, and a breaker for the gel produced by the gelling agent when hydrated such as a persulfate or an enzyme. 33 claims.

  17. Modelling the multiphase chemical processing of Monoethanolamine from industrial CCS processes in tropospheric aqueous particles and clouds

    NASA Astrophysics Data System (ADS)

    Tilgner, Andreas; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2013-04-01

    Using amine based solvent technology is an option to realise CO2 capture from the exhaust of power plants. Amines such as Monoethanolamine (MEA) may potentially be released in trace amounts during the carbon capture and storage (CCS) process. In order to investigate the tropospheric chemical fate of MEA from CO2 capturing processes and their oxidation products, multiphase modelling was performed and a reduced mechanism for future 3D model applications was developed in the present study. Based on former laboratory investigations and mechanism developments, an up-to-date multiphase mechanism describing the gas and aqueous phase chemistry of MEA has been developed in the present study. The developed multiphase phase oxidation scheme of MEA and its oxidation products, incl. nitrosamines, nitramines and amides, was coupled to the existing multiphase chemistry mechanism (RACM-MIM2ext-CAPRAM3.0i-red, Deguillaume et al. 2010) and the CAPRAM Halogen Module 2.0. Overall, the multiphase mechanism comprises 1276 chemical processes including 668 gas and 518 aqueous phase reactions as well as 90 phase transfers. The multiphase amine module contains in total 138 processes. The final mechanism was used in the Lagrangian parcel model SPACCIM (Wolke et al., 2005) to investigate e.g. the main oxidation pathways, the formation of hazardous oxidation products and seasonal differences. Simulations were performed using a meteorological scenario with non-permanent clouds, different environmental trajectories and seasonal conditions. The simulations revealed the importance of both cloud droplets and deliquescent particles to be an important compartment for the multiphase processing of MEA and its products. Due to the shifted partitioning of MEA towards the aqueous phase, the model investigations implicated that aqueous phase oxidation by OH radicals represents the main sink for MEA under daytime cloud summer conditions. Reaction flux analyses have shown that under deliquescent particle

  18. Tannin (Polyphenol) Stability in Aqueous Solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the chemical stability of tannins (polyphenolics) in soils is critical to understanding their biological activities and fate. We examined the stability of chemically defined tannins in aqueous solutions under conditions simulating natural and laboratory conditions. We evaluated tanni...

  19. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. PMID:21246746

  20. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions

    PubMed Central

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-01-01

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ∼ 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ∼ 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

  1. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.

    PubMed

    Barrera-Díaz, Carlos E; Lugo-Lugo, Violeta; Bilyeu, Bryan

    2012-07-15

    Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium. PMID:22608208

  2. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. PMID:24552655

  3. Chemical disinfection under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1997-01-01

    There is enormous potential for point-of-use water purifiers where central water treatment does not exist or distribution systems are faulty and allow incursion of pathogenic organisms after primary treatment. Manned space missions on the Space Shuttle and planned missions on the Space Station also employ point-of-use water purifiers termed microbial check valves (MCVs). Polyiodide resin materials in use on the Space Shuttle within the MCV and in terrestrial water purifiers, silver and copper chelex resins, zirconium peroxide chelex resin, and a quaternary ammonium compound-Dow Corning 5700-polymerized to carbon and polystyrene beads, were compared for disinfection ability. Experiments were conducted in fluid processing apparatus (FPAs) at unit gravity and in microgravity conditions aboard seven STS missions. These new materials may have applications in both space and terrestrial water treatment devices.

  4. Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-30

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron Fe(0) was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a gournwater remediation technology that replaces the sand in a filter pack of a conventioanl well with a reactive material, such as Fe(0).

  5. Assessment and correction of turbidity effects on Raman observations of chemicals in aqueous solutions.

    PubMed

    Sinfield, Joseph V; Monwuba, Chike K

    2014-01-01

    Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements, yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 μm were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution. PMID:25357083

  6. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions.

    PubMed

    Avanti, Christina; Saluja, Vinay; van Streun, Erwin L P; Frijlink, Henderik W; Hinrichs, Wouter L J

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account. PMID:24465983

  7. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    In recent years, carbon capture and storage (CCS) has emerged as a key technology for limiting anthropogenic CO2 emissions while allowing the continued utilisation of fossil fuels. The most promising geological storage sites are deep saline aquifers because the capacity, integrity and injection economics are most favourable, and the environmental impact can be minimal. Many rock-fluid chemical reactions are known to occur both during and after CO2 injection in saline aquifers. The importance of rock-fluid reactions in the (CO2 + H2O) system can be understood in terms of their impact on the integrity and stability of both the formation rocks and cap rocks. The chemical interactions between CO2-acidified brines and the reservoir minerals can influence the porosity and permeability of the formations, resulting in changes in the transport processes occurring during CO2 storage. Since carbonate minerals are abundant in sedimentary rocks, one of the requirements to safely implement CO2 storage in saline aquifers is to characterise the reactivity of carbonate minerals in aqueous solutions at reservoir conditions. In this work, we reported measurements of the intrinsic rate of carbonate dissolution in CO2-saturated water under high-temperature high-pressure reservoir conditions extending up to 373 K and 14 MPa. The rate of carbonate dissolution in CO2-free HCl(aq) was also measured at ambient pressure at temperatures up to 353 K. Various pure minerals and reservoir rocks were investigated in this study, including single-crystals of calcite and magnesite, and samples of dolomite, chalks and sandstones. A specially-designed batch reactor system, implementing the rotating disc technique, was used to obtain the intrinsic reaction rate at the solid/liquid interface, free of mass transfer effects. The effective area and mineralogy of the exposed surface was determined by a combination of surface characterisation techniques including XRD, SEM, EDX and optical microscopy. The

  8. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    SciTech Connect

    Yates, Stephen Frederic; DeFilippi, Irene; Gaita, Romulus; Clearfield, Abraham; Bortun, Lyudmila; Bortun, Anatoly

    2000-09-05

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  9. Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth

    NASA Astrophysics Data System (ADS)

    Long, Yunze; Chen, Zhaojia; Wang, Wenlong; Bai, Fenglian; Jin, Aizi; Gu, Changzhi

    2005-04-01

    In this Letter, we report on the temperature-dependent conductivity and current-voltage curve of a single CdS nanowire, which was synthesized by a simple aqueous chemical growth method. A pair of platinum microleads was fabricated on the single CdS nanowire by focused ion-beam deposition. The room-temperature conductivity and the band gap of the single CdS wire are 0.82Ω-1cm-1 and 0.055eV, respectively. When the applied electric field is larger than 1090Vcm-1, the CdS nanowire shows a nonlinear I-V curve at room temperature.

  10. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  11. Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories.

    PubMed

    Husar, Richard; Hübner, René; Hennig, Christoph; Martin, Philippe M; Chollet, Mélanie; Weiss, Stephan; Stumpf, Thorsten; Zänker, Harald; Ikeda-Ohno, Atsushi

    2015-01-25

    The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions). PMID:25479067

  12. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  13. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  14. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  15. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  16. 49 CFR 219.11 - General conditions for chemical tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false General conditions for chemical tests. 219.11 Section 219.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... for chemical tests. (a) Any employee who performs covered service for a railroad is deemed to...

  17. Alumino-silicate speciation in aqueous fluids at deep crustal conditions

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2014-12-01

    Alumina and silica are major oxides in most crustal rocks. While SiO2 is quite soluble in aqueous fluids at metamorphic conditions, behavior of Al2O3 in crustal metamorphic fluids has been poorly understood. It is known that alumina is dramatically less soluble in aqueous fluids and hence it is difficult to explain the common occurrence of quartz with aluminous minerals in metamorphic veins. In order to understand this complex behavior of alumina, we investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 oC. In order to better understand the spectral features of the aqueous fluids, we used first principles simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with KOH solution in equilibrium with Al2O3 show a sharp band at ~620 cm-1 which could be attributed to the [Al(OH)4]1- species. The band grows in intensity with temperature along an isochore. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [Al(OH)4]1- species to dimers [(OH)2-Al-O2-Al(OH)2]2- or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. We are also investigating the effect of SiO2 on the solubility of Al2O3 and the relative energetics of formation of pure alumina dimer [(OH)3-Al-O-Al(OH)3]2- vs. the aluminosilicate dimers, [(OH)3-Al-O-Si(OH)3]2- at deep crustal conditions. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  18. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    wide range of δ13CCH4 values in baseline groundwater samples, no conclusive evidence was found for deep thermogenic gas that had migrated in significant amounts into shallow aquifers either naturally or via anthropogenically induced pathways. This study shows that the combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and/or free gas can yield unprecedented insights into formation or migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  19. Possible interrelations among chemical freeze-out conditions

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; El-Bakry, M. Y.; Habashy, D. M.; Mohamed, M. T.; Abbas, E.

    2016-03-01

    At thermal equilibrium, different chemical freeze-out conditions have been proposed so far. They have an ultimate aim of proposing a universal description for the chemical freeze-out parameters (Tch and μb), which are to be extracted from the statistical fitting of different particle ratios measured at various collision energies with calculations from thermal models. A systematic comparison between these conditions is presented. The physical meaning of each of them and their sensitivity to the hadron mass cuts are discussed. Based on availability, some of them are compared with recent lattice calculations. We found that most of these conditions are thermodynamically equivalent, especially at small baryon chemical potential. We propose that further crucial consistency tests should be performed at low energies. The fireball thermodynamics is another way of guessing conditions describing the chemical freeze-out parameters extracted from high-energy experiments. We endorse the possibility that the various chemical freeze-out conditions should be interpreted as different aspects of one universal condition.

  20. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar. PMID:26100325

  1. EVALUATION OF CHEMICAL AMENDMENTS FOR PH AND REDOX STABILIZTION IN AQUEOUS SUSPENSIONS OF THREE CALIFORNIA SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many chemically and biologically important trace element, heavy metal, and organic contaminant reactions in soils are constrained by pH and redox conditions and changes in these conditions can significantly affect reaction rates. Although closed-system, batch methods have been used for many years to...

  2. Chemical and Isotopic Study of Lab-formed Carbonates Under Cryogenic and Hydrothermal Conditions

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Golden, D. C.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Aqueous environments on early Mars were probably relatively short-lived and localized, as evidenced by the lack of abundant secondary minerals detected by the TES instrument. In order to better understand the aqueous history of early Mars we need to be able to interpret the evidence preserved in secondary minerals formed during these aqueous events. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments as illustrated by the carbonates preserved in ALH84001. Carbonates formed in short-lived, dynamic aqueous events often preserve kinetic rather than equilibrium chemical and isotopic processes, and predicting the behavior of such systems is facilitated by empirical data.

  3. Sulfur removal from Gediz lignite using aqueous sodium hydroxide solutions under mild oxidative conditions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1999-11-01

    Sulfur removal from a high-sulfur Turkish lignite (Gediz) using aqueous sodium hydroxide solutions having dissolved oxygen was investigated under mild oxidative conditions. Effects of the parameters such as sodium hydroxide/lignite weight ratio, temperature, and partial pressure of oxygen were investigated within the ranges of 0.05--0.8, 423--498 K, and 1--2 MPa, respectively. Optimum values of these parameters were determined regarding sulfur removal and coal recovery. Influences of dry oxidation of the lignite sample as a pretreatment at 573 K and subsequent washing of some treated lignite samples with 1 N HCl were investigated.

  4. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. PMID:25000300

  5. Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA.

    PubMed

    Blotevogel, Jens; Borch, Thomas; Desyaterik, Yury; Mayeno, Arthur N; Sale, Tom C

    2010-08-01

    Models used to predict the fate of aqueous phase contaminants are often limited by their inability to address the widely varying redox conditions in natural and engineered systems. Here, we present a novel approach based on quantum chemical calculations that identifies the thermodynamic conditions necessary for redox-promoted degradation and predicts potential degradation pathways. Hexamethylphosphoramide (HMPA), a widely used solvent and potential groundwater contaminant, is used as a test case. Its oxidation is estimated to require at least iron-reducing conditions at low to neutral pH and nitrate-reducing conditions at high pH. Furthermore, the transformation of HMPA by permanganate is predicted to proceed through sequential N-demethylation. Experimental validation based on LC/TOF-MS analysis confirms the predicted pathways of HMPA oxidation by permanganate to phosphoramide via the formation of less methylated as well as singly and multiply oxygenated reaction intermediates. Pathways predicted to be thermodynamically or kinetically unfavorable are similarly absent in the experimental studies. Our newly developed methodology will enable scientists and engineers to estimate the favorability of contaminant degradation at a specific field site, suitable approaches to enhance degradation, and the persistence of a contaminant and its reaction intermediates. PMID:20608732

  6. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-08-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  7. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  8. Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique

    NASA Astrophysics Data System (ADS)

    Kenanakis, G.; Androulidaki, M.; Koudoumas, E.; Savvakis, C.; Katsarakis, N.

    2007-07-01

    Zinc oxide nanostructured films were grown by the aqueous chemical growth technique using equimolar aqueous solutions of zinc nitrate and hexamethylenetetramine as precursors. Silicon(100) and glass substrates were placed in Pyrex glass bottles with polypropylene autoclavable screw caps containing the precursors described above, and heated at 95 ∘C for several hours. X-ray diffraction 2θ/θ scans showed that the only crystallographic phase present was the hexagonal wurtzite structure. Scanning electron microscopy showed the formation of flowerlike ZnO nanostructures, consisting of hexagonal nanorods with a diameter of a few hundred nanometers. The photoluminescence spectra of the ZnO nanostructures were recorded at 18-295 K using a cw He-Cd laser (325 nm) and a pulsed laser (266 nm). The ZnO nanostructures exhibit an ultraviolet emission band centered at ˜3.192 eV in the vicinity of the band edge, which is attributed to the well-known excitonic transition in ZnO.

  9. Aqueous suspension of anise “Pimpinella anisum” protects rats against chemically induced gastric ulcers

    PubMed Central

    Al Mofleh, Ibrahim A; Alhaider, Abdulqader A; Mossa, Jaber S; Al-Soohaibani, Mohammed O; Rafatullah, Syed

    2007-01-01

    AIM: To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise, “Pimpinella anisum L.” on experimentally-induced gastric ulceration and secretion in rats. METHODS: Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol, 0.2 mol/L NaOH, 25% NaCl and indomethacin. Anti-secretory studies were undertaken using pylorus-ligated Shay rat technique. Levels of gastric non-protein sulfhydryls (NP-SH) and wall mucus were estimated and gastric tissue was also examined histologically. Anise aqueous suspension was used in two doses (250 and 500 mg/kg body weight) in all experiments. RESULTS: Anise significantly inhibited gastric mu-cosal damage induced by necrotizing agents and indomethacin. The anti-ulcer effect was further confirmed histologically. In pylorus-ligated Shay rats, anise suspension significantly reduced the basal gastric acid secretion, acidity and completely inhibited the rumenal ulceration. On the other hand, the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration. CONCLUSION: Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions. The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties. PMID:17373749

  10. Resistance to chemical disinfection under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1998-01-01

    In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700®), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

  11. Validity conditions for moment closure approximations in stochastic chemical kinetics

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-08-28

    Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.

  12. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  13. Blue-shifted and picosecond amplified UV emission from aqueous chemical grown ZnO microrods

    NASA Astrophysics Data System (ADS)

    Empizo, Melvin John F.; Yamanoi, Kohei; Santos-Putungan, Alexandra B.; Arita, Ren; Minami, Yuki; Luong, Mui Viet; Shimizu, Toshihiko; Estacio, Elmer S.; Somintac, Armando S.; Salvador, Arnel A.; Sarmago, Roland V.; Sarukura, Nobuhiko

    2015-10-01

    Room-temperature amplified spontaneous emission (ASE) has been observed from aqueous chemical grown zinc oxide (ZnO) microrods. The well-faceted microrods have only a single narrow ultraviolet (UV) emission at 390 nm (3.2 eV) with average lifetimes as fast as 85-100 ps. The characteristic ASE also exhibits blue-shifted peaks and shortened lifetimes. At present, the peak shifting and the lifetime shortening are attributed to the band filling and photo-induced screening effects and to the nonradiative relaxation process, respectively. Results indicate that the ZnO microrods have good structural and optical quality which leads to their suitable use for optoelectronic applications.

  14. Promoted oxidation of phenol in aqueous solution using molecular oxygen at mild conditions

    SciTech Connect

    Vogel, F.; Harf, J.; Hug, A.; Rohr, P.R. von

    1999-05-01

    Wet oxidation with molecular oxygen at mild conditions (temperature < 200 C, pressure {le} 2 MPa) is an economically attractive pretreatment step for non-biodegradable aqueous waste streams. In order to overcome the low reactivity of molecular oxygen towards organic molecules at these mild process conditions, an initiator was used in combination with ferrous ions in the acidic range. The promoted oxidation of phenol in aqueous solution was investigated in a 4 liters stirred autoclave. It was possible to degrade the phenol at temperatures as low as 100 C without observing an induction time. The remaining solution contained mainly acetic and formic acid and was well biodegradable. The oxidative behavior of the oxygen/phenol system could be explained using the well-known autoxidation mechanism for aliphatic molecules. 4-hydroperoxy-phenol is suggested as a key intermediate. Measured products are p-benzoquinone, hydroquinone, catechol, maleic, oxalic, pyruvic, formic, and acetic acid. Dimers could also be identified in sample extracts. A global pathway including all identified products is presented.

  15. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    2,4,6-trinitrotoluene (TNT) and its byproducts are common contaminants on US military installations. Many potential remediation processes are in part limited by the transfer of TNT from the contaminated soil into the aqueous phase. The purpose of this research is to assess the release of TNT from contaminated soil under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and addition of two surfactants is investigated. Uncontaminated soil was collected from a near-surface site at the Alabama Army Ammunition Plant and was artificially contaminated with TNT prior to the mobilization experiments. Results for the pH experiments show that more TNT is mobilized at neutral pH conditions than at low pH conditions. The presence of dissolved organic matter enhances the release of TNT from soil, but not by a large amount. Surfactant addition has the most significant effect on TNT mobilization.

  16. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  17. On hematite as a target for dating aqueous conditions on Mars

    NASA Astrophysics Data System (ADS)

    Kula, Joseph; Baldwin, Suzanne L.

    2012-07-01

    Hematite spherules, identified by the Opportunity Mars Exploration Rover (MER), have been interpreted as in situ evidence for past aqueous conditions on the Martian surface. Hematite has also been demonstrated as a reliable (U-Th)/He chronometer, although it is not widely used. In the absence of post-formational diffusive He loss, (U-Th)/He ages measured from Martian hematite spherules should yield the time since water was present on Mars. Using published morphologic constraints and He diffusion kinetics for hematite we model He diffusive loss to assess whether Martian hematite spherules will retain original (U-Th)/He ages during long residence times (4.0 Ga) at surface conditions (22 °C). Fractional loss calculations predict <2% diffusive loss at 22 °C over 4.0 Ga, indicating Martian hematite will preserve ages within analytical precision of the (U-Th)/He technique. If present Mars conditions persisted since the Noachian (e.g. 4.0 Ga), hematite spherules likely record ages reflecting the timing of aqueous mineralization. For the 'wetting-upwards' Burn Formation at Meridiani Planum, hematite from the lower eolian dune subunit would be postdepositional providing a minimum age on deposition, while hematite from the upper interdune/playa unit may be syndepositional thus yielding the age of the deposit. Therefore (U-Th)/He hematite ages obtained from samples collected along a vertical profile could potentially constrain the timing and rates of water saturation of the rock column, and the timing of the transition from wet to dry conditions at Meridiani Planum. Determining an absolute paleohydrologic timescale on Mars may reveal if water was available for sufficient durations required for the development of life.

  18. Identification of the chemical constituents in aqueous extract of Zhi-Qiao and evaluation of its antidepressant effect.

    PubMed

    Wu, Ming; Zhang, Hongwu; Zhou, Chao; Jia, Hongmei; Ma, Zhuo; Zou, Zhongmei

    2015-01-01

    The immature fruit of Citrus aurantium L. (Zhi-Qiao, ZQ) has been used as a traditional medicine in China. Our previous study has shown that ZQ decoction may contribute to the antidepressant-like action of Chaihu-Shu-Gan-San. However, there are no reports on the chemical constituents of ZQ aqueous extract or its anti-depression effects. Firstly, this research reported the on-line identification of the chemical constituents in the aqueous extract of ZQ by coupling ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A total of 31 chemical constituents were identified in ZQ aqueous extract, including one tannic acid, five flavones, 13 flavanones, one limonoid, three coumarins, three cyclic peptides, and five polymethoxylated flavonoids. The antidepressant effect of ZQ aqueous extract was evaluated in vivo and the results indicated that the mice immobility time during the forced swimming test and the tail suspension test were significantly reduced with ZQ treatment. MTT assays showed both ZQ aqueous extract and its major constituents (naringin, hesperidin, neohesperidin, and nobiletin) had neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells. The in vivo and in vitro results suggest that ZQ has an antidepressant effect. PMID:25913931

  19. IMPROVED DECONTAMINATION: INTERFACIAL, TRANSPORT, AND CHEMICAL PROPERTIES OF AQUEOUS SURFACTANT CLEANERS

    EPA Science Inventory

    This investigation is focused on decontamination using environmentally benign aqueous solutions, specifically the removal of organics and associated radionuclide and heavy metal contaminants by synthetic surfactants. Aqueous-based solutions promise several advantages for deconta...

  20. ZERO-VALENT IRON REMOVAL RATES OF AQUEOUS Cr(VI) MEASURED UNDER FLOW CONDITIONS

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-01

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). Dissolved Cr(VI) concentration, dissolved O2 concentration, and Eh data indicated that Cr(VI) removal from the aqueous phase was mass-transfer limited. All pseudo-first-order regression fits to the data were significant (P≤0.05), however, they did not capture many of the salient aspects of the data, including that the removal rate often decreased as contact time increased. As such, application of these rate coefficients to predict long-term Cr(VI) removal were compromised. The rate coefficients measured under flow conditions were comparable to those measured previously under batch conditions with significantly greater solution:solid ratios. Between the range of 20 and 100 wt-% Fe(0) in the column, there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry (0.2 M NaHCO3, distilled water, and a carbonate-dominated groundwater) had only marginal, if any, effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  1. Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors

    SciTech Connect

    Savilov, Serguei V.; Strokova, Natalia E.; Ivanov, Anton S.; Arkhipova, Ekaterina A.; Desyatov, Andrey V.; Hui, Xia; Aldoshin, Serguei M.; Lunin, Valery V.

    2015-09-15

    Highlights: • N-doped and regular carbon nanomaterials were obtained by pyrolitic technique. • Dynamic vapor sorption of different solvents reveals smaller S{sub BET} values. • Steric hindrance and specific chemical interactions are the reasons for this. • Nitrogen doping leads to raise of capacitance and coulombic efficiency with non-aqueous N-containing electrolyte. - Abstract: This work systematically studies adsorption properties of carbon nanomaterials that are synthesized through hydrocarbons that is a powerful technique to fabricate different kinds of carbon materials, e.g., nanotubes, nanoshells, onions, including nitrogen substituted. The adsorption properties of the as-synthesized carbons are achieved by low temperature nitrogen adsorption and organic vapors sorption. Heptane, acetonitrile, water, ethanol, benzene and 1-methylimidazole, which are of great importance for development of supercapacitors, are used as substrates. It is discovered that while nitrogen adsorption reveals a high specific surface area, this parameter for most of organic compounds is rather small depending not only on the size of its molecule but also on chemical interactions for a pair adsorbent–adsorbate. The experimental values of heat of adsorption for carbon and N-substituted structures, when Coulomb cross-coupling of nitrogen atoms in adsorbent and adsorbate takes place, confirms this supposition.

  2. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  3. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  4. Temporal Changes in Aqu/C60 Physical-Chemical, Deposition, and Transport Characteristics in Aqueous Systems

    EPA Science Inventory

    Little is known about how temporal changes in the physical–chemical properties of C60 aggregates formed in aqueous systems (termed aqu/C60) can impact transport pathways contributing to ecological exposures. In this study three aqu/C60 suspensions of short-term (100 days), interm...

  5. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.

  6. Aqueous Dissolution of Silver Iodide and Associated Iodine Release Under Reducing Conditions with Sulfide

    SciTech Connect

    Yaohiro Inagaki; Toshitaka Imamura; Kazuya Idemitsu; Tatsumi Arima; Osamu Kato; Hidekazu Asano; Tsutomu Nishimura

    2007-07-01

    Aqueous dissolution tests of silver iodide (AgI) were performed in Na{sub 2}S solutions in order to evaluate, empirically, dissolution of AgI to release iodine under reducing conditions with sulfide. The results indicated that AgI dissolves to release iodine being controlled by mainly precipitation of Ag{sub 2}S. However, the dissolution of AgI can be depressed to proceed, and the thermodynamic equilibrium cannot be attained easily. Solid phase analysis for the reacted AgI suggested that a thin layer of solid silver forming at AgI surface may evolve to be protective against transportation of reactant species, which can lead to the depression in the dissolution of AgI. (authors)

  7. Removal Rates of Aqueous Cr(VI) by Zero-Valent Iron Measured Under Flow Conditions

    SciTech Connect

    Kaplan, D.I.

    2002-05-10

    Studies were undertaken to measure the rate of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). The pseudo-first-order rate coefficients measured under flow conditions were comparable to those previously measured under batch conditions that had significantly greater ratios of solution volume to Fe(0) surface area. Between the range of 20 and 100 weight percent Fe(0), there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry had only marginal effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  8. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    USGS Publications Warehouse

    Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.

    2005-01-01

    Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (??) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: ?? > K > aw. The transposition between K and ?? is due to a more accurate model for estimating K than for estimating ??. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte

  9. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.; Catling, David C.; Jakubowski, Scott D.

    2005-01-01

    Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants( K) > activity coefficients (γ) > activity of water (a w). The errors (%) in our model associated with these properties, however, fall in the order: γ > K > a w. The transposition between K and γ is due to a more accurate model for estimating K than for estimating γ. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte

  10. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  11. Evaluation of an evanescent fiber optic chemical sensor for monitoring aqueous volatile organic compounds

    SciTech Connect

    Blair, D.S.

    1997-04-01

    Linear chemometric algorithms were used to model the quantitative response of an evanescent fiber optic chemical sensor in aqueous mixtures with concentrations between 20 and 300 ppm. Four data sets were examined with two different experimental arrangements. Two data sets contained trichloroethene, 1,1,2 trichloroethane, and toluene. Partial Least Squares, PLS, and Principal Component Regression, PCR, algorithms performed comparably on these calibration sets with cross-validated root mean squared errors of prediction (RMSEP) for trichloroethene, 1,1,1 trichloroethane, and toluene of approximately 26, 29 and 22 ppm, respectively. The third data set contained trichloroethene, 1,1,2 trichloroethane, toluene, and chloroform and the fourth contained these four analytes as well as tetrachloroethene. Again, both chemometric algorithms performed comparably on a given data set with RMSEP for trichloroethene, 1,1,2 trichloroethane, toluene, and chloroform of approximately 6, 6, 9, and 16 ppm from the first set, and 7, 11, 13, and 31 ppm from the second set with tetrachloroethene RMSEP of 31 ppm. The decrease in the quantitative performance of the sensor for modeling toluene and chloroform upon addition of tetrachloroethene to the sample solutions is due to increased cladding absorption features in the spectral response matrix. These features overlap with the analyte absorption features of toluene and chloroform. These results suggest one of the limitations with this type of sensing format.

  12. Neutron Diffraction of Aqueous Tetramethylammonium Chloride (TMA) Solutions and TMA Intercalated Swelling Clays Under Burial Conditions

    NASA Astrophysics Data System (ADS)

    Patel, R.; Howard, C. A.; Greenwell, C.; Youngs, T.; Soper, A. K.; Skipper, N. T.

    2014-12-01

    There is a need for the improvement and optimisation of clay swelling inhibitors for the enhancement of oil and gas exploration. The hydration region of both ions and the possibility of ion pairing in 1 molar aqueous solution of clay swelling inhibitor, tetramethylammonium chloride (TMACl), in D2O, under elevated hydrostatic-pressures and temperatures has been determined with unprecedented detail using a combination of neutron diffraction and small-angle scattering in conjunction with hydrogen/deuterium isotopic labeling. The O-H correlation function (H-bonds) for the water in the 1.0M solution is measured and compared with that for pure D2O. Also investigated is the effect of burial conditions on the d-spacing of TMA-intercalated vermiculite. Contrary to expectations, no aggregation of TMA ions due to hydrophobic interactions is observed, nor are any ionic pairs of TMA+ and Cl- at these burial conditions. The data revealed a more ordered water-water structure with the addition of TMACl from bulk D2O. There is no change in the hydration structure measured at the applied elevated conditions. This is in remarkable contrast to pure water at the same conditions which is well known to be compressible. The dry d-spacing of the TMA-exchanged Eucatex vermiculite is measured at 13.66 Å which increases to 14.03 Å with the addition of D2O. Beyond this, there is no change in d-spacing with increasing pressure and temperature indicating the strength of the TMA ions binding to the clay interlayers and therefore its performance as a clay-swelling inhibitor.

  13. Fate of hydraulic fracturing chemicals under down-hole conditions

    NASA Astrophysics Data System (ADS)

    Blotevogel, J.; Kahrilas, G.; Corrin, E. R.; Borch, T.

    2013-12-01

    Hydraulic fracturing is a method to increase the yield of oil and natural gas extraction from unconventional rock formations. The process of hydrofracturing occurs via injecting water, sand, and chemicals into the production well and subjecting this mixture to high pressures to crack the rock shale, allowing increased amounts of gas and oil to seep out of the target formation. Typical constituents of the chemical mixtures are biocides, which are applied to inhibit growth of sulfate reducing bacteria in order to prevent pipe corrosion and production of hazardous gases. However, very little is known about the persistence, fate, and activity of biocides when subjected to the high temperatures and pressures of down-hole conditions. Thus, the objective of this talk is to present data from ongoing experiments focused on determining the fate of biocides commonly used for hydraulic fracturing under conditions simulating down-hole environments. Using stainless steel reactors, the high pressures and temperatures of down-hole conditions in the Marcellus shale are simulated, while concentration, speciation, and degradation of priority biocides are observed as a function of time, using primarily LC/MS techniques. The impact of water quality, shale, temperature, and pressure on the transformation kinetics and pathways of biocides will be discussed. Finally, field samples (both sediments and flowback brine) from the Marcellus shale are analyzed to verify that our lab simulations mirror real-life conditions and results.

  14. Chemically induced compaction bands: Triggering conditions and band thickness

    NASA Astrophysics Data System (ADS)

    Stefanou, Ioannis; Sulem, Jean

    2014-02-01

    During compaction band formation, various mechanisms can be involved at different scales. Mechanical and chemical degradation of the solid skeleton and grain damage are important factors that may trigger instabilities in the form of compaction bands. Here we explore the conditions of compaction band formation in quartz- and carbonate-based geomaterials by considering the effect of chemical dissolution and grain breakage. As the stresses/deformations evolve, the grains of the material break, leading to an increase of their specific surface. Consequently, their dissolution is accelerated and chemical softening is triggered. By accounting for (a) the mass diffusion of the system, (b) a macroscopic failure criterion with dissolution softening, and (c) the reaction kinetics at the microlevel, a model is proposed and the conditions for compaction instabilities are investigated. Distinguishing the microscale (grain level) from the macrolevel (representative elementary volume) and considering the heterogeneous microstructure of the representative elementary volume, it is possible to discuss the thickness and periodicity of compaction bands. Two case studies are investigated. The first one concerns a sandstone rock reservoir which is water flooded and the second one a carbonate rock in which CO2 is injected for storage. It is shown that compaction band instabilities are possible in both cases.

  15. Improved Decontamination: Interfacial Transport, and Chemical Properties of Aqueous Surfactant Cleaners

    SciTech Connect

    Robert M. Counce

    2003-05-30

    The aqueous cleaning parameter of interest in this series of studies was the pH of the aqueous cleaning solution. A sessile droplet of industrial quench oil was analyzed to determine the effect of varied solution pH its removal from a stainless steel surface.

  16. Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution.

    PubMed

    He, Hui; Qian, Ting-Ting; Liu, Wu-Jun; Jiang, Hong; Yu, Han-Qing

    2014-10-01

    Biochar, a massive byproduct of biomass pyrolysis during biofuel generation, is a potential P source for the mitigation of P depletion. However, the chemical and biological effect of the release of P from biochar is still unclear. In this study, two types of Lysinibacillus strains (Lysinibacillussphaericus D-8 and Lysinibacillus fusiformis A-5) were separated from a sediment and their P-solubilizing characteristics to biochar was first reported. Compared with the bacterial mixture W-1 obtained from a bioreactor, the introduction of A-5 and D-8 significantly improved P solubilization. The release of P from biochar by A-5 and D-8 reached 54% and 47%, respectively, which is comparable to that under rigorous chemical conditions. SEM images and XPS spectra demonstrated that the physicochemical properties of the biochar surface have changed in the process which may be caused by the activities of the microbes. PMID:25065807

  17. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Forteschi, Mauro; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2015-01-01

    Epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research. PMID:26230943

  18. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-08-13

    The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates). PMID:19477253

  19. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions

    PubMed Central

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Forteschi, Mauro; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2015-01-01

    Epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research. PMID:26230943

  20. Radiolysis of pyridoxine (vitamin B 6) in aqueous solution under different conditions

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Ramírez-Cahero, Fernando; Aliev, Roustam

    2008-05-01

    Aqueous solutions of pyridoxine (1 mM) without or with additive of K 3[Fe(CN) 6] (2.5 mM) were gamma-irradiated at different doses and dose rate of 2.16 kGy/h in the absence of air, in the presence of air or by their saturation with N 2O. The radiolytic products were analyzed with HPLC, mass spectrometry and UV spectroscopy. 2,4,5-Trihydroxymethyl-3-pyridinol, pyridoxal, isopyridoxal and 6-hydroxypyridoxine were formed by radiolysis in the absence of K 3[Fe(CN) 6], and their concentrations were much higher in samples saturated with N 2O. Pyridoxi-3,6-quinone was found by radiolysis under all the above-mentioned conditions but only in the presence of K 3[Fe(CN) 6]. Besides, the pyridoxal formation increased in the presence of this oxidizing agent. G values of pyridoxal formation and pyridoxine degradation were quantified. Some details of the radiolytic product formation were discussed.

  1. Structure sensitive chemical reactivity by palladium concave nanocubes and nanoflowers synthesised by a seed mediated procedure in aqueous medium.

    PubMed

    Sreedhala, S; Sudheeshkumar, V; Vinod, C P

    2014-07-01

    Palladium nanocubes and their transformation to concave nanocubes and nanoflowers are realised by a seed mediated procedure in aqueous medium and at room temperature using cationic surfactants. The concave nanocubes and nanoflowers were found to be enclosed by high index facets. The under co-ordinated atoms present on the high index facets make these nanostructures chemically more active towards Suzuki coupling and Heck coupling reactions compared to the conventional nanocubes and spherical nanoparticles of similar size. PMID:24882223

  2. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    Residual explosives and their byproducts are common contaminants at several US military installations. One of the major explosive contaminants is 2,4,6-Trinitrotoluene (TNT) (a hydrophobic organic compound). Contamination from TNT has resulted from manufacturing and handling processes which occurred at military installations, especially Army Ammunition Plants (AAP), over many decades until environmental regulations were implemented. TNT causes adverse effects to the environment, including growth inhibition to plants, toxicity to aquatic life, and possible mutagenicity, and also is toxic to humans. As a result of the effects of TNT on the environment and current environmental regulations, substantial research effort has been focused on determining the fate of TNT in natural systems and the development of remediation processes. Many potential remediation processes, such as those involving plants or microorganisms, are in part limited by the transfer of TNT from solid phases (e.g., sorbed to soil or present as TNT granules) to the aqueous phase. The purpose of this research is to assess the release of TNT from a soil phase to a mobile aqueous phase under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and surfactants are investigated.

  3. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations. PMID:16295862

  4. Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Squyres, S. W.

    2010-10-01

    Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

  5. Physical beneficiation of char and chemically conditioned coal

    SciTech Connect

    Warzinski, R.P.; Cavallaro, J.A.

    1986-04-01

    Demineralization of coals and coal-derived chars is part of an effort to develop alternative fuels from coal. Pyrolysis and some gasification processes yield chars containing a large fraction of the calorific value of the feed coal and essentially all of its mineral matter. In the work reported here, three gasification chars produced from anthracite, bituminous, and subbituminous coals have been subjected to specific gravity separation to determine their yield-ash relationships. Either low yields or high ash levels in the float products were observed. Also reported is preliminary work concerning the use of chemical conditioning to enhance the cleanability of coal prior to physical beneficiation. Conditioning of an Illinois No. 6 River King Mine coal with either supercritical methanol or cyclohexane resulted in an improved yield-ash relationship, whereas similar treatment with supercritical toluene had a negative effect.

  6. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  7. Experimental study of the influence of chemical reactions on convective dissolution of CO2 in aqueous solutions.

    NASA Astrophysics Data System (ADS)

    Thomas, Carelle; Lemaigre, Lorena; Haudin, Florence; Zalts, Anita; D'Onofrio, Alejandro; De Wit, Anne

    2014-05-01

    Within the global context of climate change, carbon dioxide (CO2) sequestration into deep saline aquifers is one of the technologies being considered in order to tackle the accumulation of anthropogenic CO2 in the atmosphere. Upon injection of CO2 into these porous geological formations, the less dense CO2 rises above the aqueous phase, spreads laterally under the upper impermeable cap rock and starts to dissolve into the underlying brine. This leads to a buoyantly unstable stratification of denser CO2-enriched brine on top of less dense brine, which can give rise to density-driven convective fingering in the fluid. This hydrodynamic instability is a favorable process for CO2 sequestration as it accelerates the mixing of CO2 into the aqueous phase and therefore enhances the safety of the storage in the saline aquifer (by reducing the risks of leaks of CO2 to the atmosphere). The influence of chemical reactions and of the physico-chemical characteristics of the geological reservoir on the development of this instability is, however, still not completely understood. In this context, we study experimentally in a laboratory-scale reactor the influence of chemical reactions on convective fingering occurring during dissolution of CO2 in reactive aqueous solutions. Experiments are performed in Hele-Shaw cells (constructed of two vertical transparent plates separated by a thin gap) in which gaseous CO2 at atmospheric pressure flows above aqueous solutions containing chemical reactants. Dynamics occurring within the transparent fluids are visualized by Schlieren techniques, which track dynamical changes in refractive index related to density gradients in the solutions. We show that in some cases the convection can be enhanced by chemical reactions as they accelerate the development of the fingers, shorten their onset time and increase the number of fingers. In particular, we show that the presence of a color indicator (for instance bromocresol green) in the aqueous solution

  8. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: Implication for the nuclear waste storage

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Berger, Gilles; Destrigneville, Christine; Pages, Alain; Guillaume, Damien; Giffaut, Eric; Jacquot, Emmanuel

    2009-08-01

    Sulphate reduction by hydrogen, likely to occur in deep geological nuclear waste storage sites, was studied experimentally in a two-phase system (water + gas) at 250-300 °C and under 4-16 bars H 2 partial pressure in hydrothermal-vessels. The calculated activation energy is 131 kJ/mol and the half-life of aqueous sulphate in the presence of hydrogen and elemental sulphur ranges from 210,000 to 2.7 × 10 9 years at respective temperatures of 90 °C, the thermal peak in the site and 25 °C, the ambient temperature far from the site. The features and rate of the sulphate reduction by H 2 are close to those established for TSR in oil fields. The experiments also show that the rate of sulphate reduction is not significantly affected in the H 2 pressure range of 4-16 bars and in the pH range of 2-5, whereas a strong increase is measured at pH below 2. We suggest that the condition for the reaction to occur is the speciation of sulphate dominated by non symmetric species ( HSO4- at low pH), and we propose a three steps reaction, one for each intermediate-valence sulphur species, the first one requiring H 2S as electron donor rather than H 2. We distinguish two possible reaction pathways for the first step, depending on pH: reduction of sulphate into sulphur dioxide below pH 2 or into thiosulphate or sulphite + elemental sulphur in the pH range 2-5.

  9. The Aqueous Complexation of Thorium with Citrate under Neutral to Basic Conditions

    SciTech Connect

    Felmy, Andrew R; Cho, Herman M; Dixon, David A; Xia, Yuanxian; Hess, Nancy J; Wang, Zheming

    2006-04-20

    The aqueous complexation of thorium with citrate was investigated under neutral to basic conditions and over a broad range of ionic strengths. The solubility data for ThO2(am) as a function of citrate concentration indicate the presence of stable species with citrate-to-metal ratios of between two to three. The dependence of the ThO2(am) solubilities on hydrogen ion concentration can also be readily explained by the classical assumption of hydrolysis of the central Th(IV) ion to form mixed thorium-hydroxide-citrate complexes. 13C NMR spectra of the species in solution confirm that the citrate-to-metal ratio of the species in solution is between two and three and show that the citrate attaches to the metal in a bidentate fashion through oxygens on the -carboxylate and -alkoxyl groups, rather than through the carboxylate groups. The 13C NMR spectra, as well as a density functional theory (DFT) electronic structure study of the presumptive complexes, suggests that the associated α-hydroxyl proton can be displaced during complex formation. These findings indicate an alternative explanation for the observed changes in solubility as a function of hydrogen ion concentration, the displacement of protons from the citrate alkoxyl groups via metal binding. Removal of protons from the alkoxyl groups or hydrolysis of the central Th(IV) cannot be distinguished by thermodynamic measurements, however the species with the α-hydroxyl proton removed (i.e., ThOH(Cit)25- and Th(Cit)38-) would appear to better represent the microscopic binding. Apparent equilibrium constants for the solution phase reactions of these species and the hydrous thorium oxide have been calculated as a function of ionic strength.

  10. Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its Metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2003-01-01

    The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction half-life at 50 C, and to reveal the effect of functional groups on reactivity. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable (i. e. acetate decarboxylation half-life was l0(exp 18) years at 50 C); whereas, organic substances containing two oxygenated groups in which one group was a beta-positioned carbonyl group were the most reactive (i. e. acetoacetate decarboxylation half-life was l0(exp-2) years at 50 C). Of all functional groups the beta-positioned carbonyl group (aldehyde or ketone) was the strongest activating group, giving rates of reaction that were up to 10(exp 24)-times faster than rates of similar molecules lacking the beta-carbonyl group. From this knowledge of organic reactivity and the inherent constraints of autocatalytic processes, we concluded that an origins-of-life process based on autocatalytic transformation of C,H,O-substrates was constrained to using the most reactive organic molecules that contain alpha- or beta-carbonyl groups, since small autocatalytic domains of plausible catalytic power that used less reactive substrates could not carry out chemical transformations fast enough to prevent catastrophic efflux (escape) of reaction intermediates. Knowledge of the kinetics of organic transformations is useful, not only in constraining the chemistry of the earliest autocatalytic process related to the origin of life, but also in establishing the relative reactivity of organic molecules on the early Earth and other planets that may or may not be related to the origin of life.

  11. Sample preparation followed by HPLC under harmless 100% aqueous conditions for determination of oxytetracycline in milk and eggs.

    PubMed

    Furusawa, Naoto

    2004-05-01

    A simple and hazardous chemical-free method for the high-performance liquid chromatographic determination of oxytetracycline (OTC) residues in milk and eggs has been developed. Sample preparation consists in homogenization with an aqueous solution by means of a handheld ultrasonic homogenizer followed by centrifugal ultrafiltration. HPLC is performed with an isocratic aqueous mobile phase and a photodiode array detector. Average recoveries of OTC (0.05, 0.1, and 0.2 microg mL(-1) for milk; 0.1, 0.2, and 0.4 microg mL(-1) for eggs) were > or =84% with relative standard deviations of < or =2.3%. The total time required for the analysis of one sample and LOQs were <30 min and <0.1 microg mL(-1), respectively. In all the processes, no organic solvents or hazardous reagents were used. PMID:15335039

  12. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to

  13. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  14. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  15. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration

    NASA Astrophysics Data System (ADS)

    Jones, Catherine L.; Brearley, Adrian J.

    2006-02-01

    We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende's anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO 4, CaCO 3, and MgSO 4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral

  16. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 2. THE AQUEOUS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for aqueous-phase reactions that lead to the production of acidic substances in the environment. The intent of this research is to provide a framework that can be used to develop a state-of-the-art aq...

  17. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems

    USGS Publications Warehouse

    Pankow, J.F.; McKenzie, S.W.

    1991-01-01

    The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

  18. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  19. Arsenic mobility in soils contaminated with metallurgical wastes as a function of variable chemical conditions

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Villalobos, M.; Ceniceros, A.; Lopez, J. L.; Gutierrez, M.

    2008-12-01

    Arsenic is a pervasive contaminant of natural aqueous systems, such as groundwater and soils, its sources being both natural and anthropogenic. The present investigation was performed on soils contaminated with residues from ore processing activities and revealed the presence of arsenate [As(V)] species with a very low mobility, through natural attenuation processes. The stability of this attenuation was investigated by varying two specific equilibrium chemical conditions: pH and presence of bicarbonate ions. One-unit changes in equilibrium pH generally caused small increases in As mobility, whereas the presence of bicarbonate ions considerably increased this mobility. The results were compared to thermodinamic simulations of equilibrium conditions using the total elemental composition of each individual soil, but excluding sorption reactions. Close matches between experimental data and simulations revealed the predominance of solubility-controlled As mobility via heavy-metal arsenate solid formation. Bicarbonate ions were found to be highly unsuitable for extraction of sorbed arsenate fractions due to indirect As release from solid arsenates, via heavy-metal carbonate precipitation processes.

  20. Radiation chemical behavior of aqueous butanal oxime solutions irradiated with helium ion beams

    NASA Astrophysics Data System (ADS)

    Costagliola, A.; Venault, L.; Deroche, A.; Garaix, G.; Vermeulen, J.; Omnee, R.; Duval, F.; Blain, G.; Vandenborre, J.; Fattahi-Vanani, M.; Vigier, N.

    2016-02-01

    Samples of butanal oxime in aqueous solution have been irradiated with the helion (4He2+) beam of the ARRONAX (Nantes) and the CEMHTI (Orléans) cyclotrons. The consumption yield of butanal oxime has been measured by gas-chromatography coupled with mass spectrometry. Yields of gaseous products (mainly H2) have also been measured by micro-gas-chromatography. Butanal oxime can react with H• radicals by abstraction mechanism to enhance H2 production. Yields of liquid phase products (hydrogen peroxide and nitrite ion) have been measured by colorimetric methods. Butanal oxime acts as a scavenger of OH• radical to inhibit the production of H2O2. The observation of the radiolytic products allows then to discuss a degradation mechanism of butanal oxime in aqueous solutions.

  1. Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide

    SciTech Connect

    Lvova, T. V. Dunaevskii, M. S.; Lebedev, M. V.; Shakhmin, A. L.; Sedova, I. V.; Ivanov, S. V.

    2013-05-15

    The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na{sub 2}S and subsequent annealing in vacuum at 150 Degree-Sign C, the surface layer consisting of complex antimony and indium oxides of nonstoichiometric composition is removed completely with the formation of a continuous layer of chemisorbed sulfur atoms coherently bound to indium atoms. According to atomic-force microscopy data, no etching of the host substrate material occurs during sulfide passivation. A shift (by 0.37 eV) of the In-Sb bulk photoemission towards higher binding energies is found, which indicates that the surface Fermi level shifts deeper into the conduction band.

  2. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    PubMed

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products. PMID:23034627

  3. Immiscible Hydrocarbon and Aqueous Fluids Under Subduction Zone Conditions and Implications for the Deep Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Huang, F.; Daniel, I.; Cardon, H.; Montagnac, G.; Sverjensky, D. A.

    2015-12-01

    Subducting slabs recycle rocks into the deep Earth releasing fluids which may cause partial melting and possible oxidation of the mantle wedge. Recent theoretical studies1 indicate that at pressures greater than about 3.0 GPa these fluids could contain high concentrations of organic and inorganic C-species with a wide range of C-oxidation states at equilibrium. If so, such fluids could play an important role in the deep carbon cycle, including the formation of diamond. However, direct experimental observations of the speciation in the fluids are needed. We studied 1.0 M aqueous Na-formate and 1.0 M Na-acetate solutions in the diamond anvil cell using Raman spectroscopy at 300 ºC and 3.0 GPa for up to 60 hours. Our preliminary results indicate that formate rapidly decomposed to bicarbonate/carbonate species and methane, with no detectable H2. Acetate decomposed much more slowly. Within the first two hours of heating, crystals of Na2CO3 precipitated in the fluid, and kept growing while immiscible droplets of hydrocarbon appeared and persisted throughout the experiments at elevated temperature and pressure. In the aqueous fluid, acetate and HCO3- were present during the first 6 hours, and then CO32- and acetate after 20 hours of heating. The final HCO3- /CO32- ratio was constant indicating a constant pH. This is the first in situ observation of persistent immiscible fluid hydrocarbons formed from an aqueous precursor at upper mantle pressures. Our results suggest that Earth's subduction zone fluids at high pressures might involve fluid hydrocarbon species as well as inorganic and organic aqueous C-species, which considerably broadens the picture of deep carbon sources, cycles and sinks. [1] Sverjensky et at. (2014), Nat. Geosci. 7, 909-913.

  4. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  5. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  6. Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105

    NASA Technical Reports Server (NTRS)

    Burger, Paul V.; Brearley, Adrian J.

    2005-01-01

    Carbonaceous chondrites are primitive meteorites that are valuable because they preserve evidence of processes that occurred in the solar nebula and on asteroidal parent bodies. Among the carbonaceous chondrite groups, the CR group appears to contain a particularly pristine record of early solar system processes. Distinguishing characteristics of CR2 chondrites include a high abundance of chondrules (50-60 vol.%) and Fe, Ni metal (5-8 vol. %). These meteorites preserve evidence for varying degrees of aqueous alteration, manifested by progressive replacement of chondrule mesostasis by phyllosilicates. Recent studies have suggested that even in weakly altered chondrites, mass transfer occurred between chondrules and fine-grained matrices, implying that aqueous alteration must have followed lithification of the final meteorite parent body. Although petrographic characteristics of alteration in CR chondrites have been documented, mechanisms of alteration are still only poorly understood. For example, the relative rates and scales of elemental mobility as well as the sources and sinks for key elements are currently not constrained. An improved knowledge of these issues will contribute to an increased understanding of aqueous alteration reactions on meteorite parent bodies. This study expands on research conducted on Type IIA chondrules and chondrule fragments from two CR2 chondrites, EET 87770 and EET 92105. These chondrites have been weakly altered; chondrule mesostases show incipient alteration primarily where they are in direct contact with fine-grained matrices.

  7. Tertiary recovery process. [conditioning the research with a solution of a vinylpyrrolidone polymer, then an aqueous surfactant is injected and then waterflooding

    SciTech Connect

    Haltmar, W.C.; Lacey, E.S.

    1980-06-17

    A process for recovering hydrocarbons from a hydrocarbon-bearing formation penetrated by an injection well and a production well which comprises injecting an aqueous solution of a vinylpyrrolidone polymer into the formation to condition the reservoir, in a first step injecting an aqueous surfactant solution into the formation and recovering hydrocarbons via the said production well. The pretreatment of the formation with the vinylpyrrolidone polymer reduces the consumption or loss of surfactant and thus improves the efficiency of the process. Optionally, after the injection of the aqueous surfactant solution an aqueous drive fluid is injected into the formation.

  8. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. PMID:26109238

  9. Dermal uptake of 18 dilute aqueous chemicals: in vivo disappearance-method measures greatly exceed in vitro-based predictions.

    PubMed

    Bogen, Kenneth T

    2013-07-01

    Average rates of total dermal uptake (Kup ) from short-term (e.g., bathing) contact with dilute aqueous organic chemicals (DAOCs) are typically estimated from steady-state in vitro diffusion-cell measures of chemical permeability (Kp ) through skin into receptor solution. Widely used ("PCR-vitro") methods estimate Kup by applying diffusion theory to increase Kp predictions made by a physico-chemical regression (PCR) model that was fit to a large set of Kp measures. Here, Kup predictions for 18 DAOCs made by three PCR-vitro models (EPA, NIOSH, and MH) were compared to previous in vivo measures obtained by methods unlikely to underestimate Kup . A new PCR model fit to all 18 measures is accurate to within approximately threefold (r = 0.91, p < 10(-5) ), but the PCR-vitro predictions (r > 0.63) all tend to underestimate the Kup measures by mean factors (UF, and p value for testing UF = 1) of 10 (EPA, p < 10(-6) ), 11 (NIOSH, p < 10(-8) ), and 6.2 (MH, p = 0.018). For all three PCR-vitro models, log(UF) correlates negatively with molecular weight (r(2) = 0.31 to 0.84, p = 0.017 to < 10(-6) ) but not with log(vapor pressure) as an additional predictor (p > 0.05), so vapor pressure appears not to explain the significant in vivo/PCR-vitro discrepancy. Until this discrepancy is explained, careful in vivo measures of Kup should be obtained for more chemicals, the expanded in vivo database should be compared to in vitro-based predictions, and in vivo data should be considered in assessing aqueous dermal exposure and its uncertainty. PMID:23051616

  10. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.

    PubMed

    Serrano-Ruiz, Juan Carlos; Luque, Rafael; Sepúlveda-Escribano, Antonio

    2011-11-01

    Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals. PMID:21713268

  11. Structure sensitive chemical reactivity by palladium concave nanocubes and nanoflowers synthesised by a seed mediated procedure in aqueous medium

    NASA Astrophysics Data System (ADS)

    Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P.

    2014-06-01

    Palladium nanocubes and their transformation to concave nanocubes and nanoflowers are realised by a seed mediated procedure in aqueous medium and at room temperature using cationic surfactants. The concave nanocubes and nanoflowers were found to be enclosed by high index facets. The under co-ordinated atoms present on the high index facets make these nanostructures chemically more active towards Suzuki coupling and Heck coupling reactions compared to the conventional nanocubes and spherical nanoparticles of similar size.Palladium nanocubes and their transformation to concave nanocubes and nanoflowers are realised by a seed mediated procedure in aqueous medium and at room temperature using cationic surfactants. The concave nanocubes and nanoflowers were found to be enclosed by high index facets. The under co-ordinated atoms present on the high index facets make these nanostructures chemically more active towards Suzuki coupling and Heck coupling reactions compared to the conventional nanocubes and spherical nanoparticles of similar size. Electronic supplementary information (ESI) available: Additional HRTEM images, UV-Vis spectra and details of TOF calculation. See DOI: 10.1039/c4nr01283f

  12. Organic chemical degradation by remote study of the redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  13. Chemical Speciation of Inorganic Compounds under Hydrothermal Conditions

    SciTech Connect

    Edward A Stern; John Fulton

    2002-02-21

    Measurements of oxidation. These spectra are to the best of our knowledge the first reported in situ spectroscopic observation of homogeneous aqueous redox chemistry at temperatures beyond the critical temperature of waste. We also observed a time-dependence for the growth of the Cr(VI) XANES peak and have therefore obtained both kinetic information as well as structural information on the reactants and products at the reaction temperature. We feel that these new techniques, when employed on actual waste components will elucidate the underlying chemistry.

  14. CHEMICAL AND BIOLOGICAL TREATMENT OF THERMALLY CONDITIONED SLUDGE RECYCLE LIQUORS

    EPA Science Inventory

    The objective of this research project was to demonstrate and evaluate the feasibility of treating undiluted heat treatment liquor prior to its rerouting back to the head of the sewage treatment plant. Chemical and biological treatment processes were studied. Chemical treatment w...

  15. A purge and trap integrated microGC platform for chemical identification in aqueous samples.

    PubMed

    Akbar, Muhammad; Narayanan, Shree; Restaino, Michael; Agah, Masoud

    2014-07-01

    The majority of current micro-scale gas chromatography (μGC) systems focus on air sampling to detect volatile organic compounds (VOCs). However, purging the VOCs from a water sample using microsystems is an unchartered territory. Various organic compounds used in everyday life find their way to water bodies. Some of these water organic compounds (WOCs) persist or degrade slowly, threatening not just human existence but also aquatic life. This article reports the first micro-purge extractor (μPE) chip and its integration with a micro-scale gas chromatography (μGC) system for the extraction and analysis of water organic compounds (WOCs) from aqueous samples. The 2 cm × 3 cm μPE chip contains two inlet and outlet ports and an etched cavity sealed with a Pyrex cover. The aqueous sample is introduced from the top inlet port while a pure inert gas is supplied from the side inlet to purge WOCs from the μPE chip. The outlets are assigned for draining water from the chip and for directing purged WOCs to the micro-thermal preconcentrator (μTPC). The trapped compounds are desorbed from the μTPC by resistive heating using the on-chip heater and temperature sensor, are separated by a 2 m long, 80 μm wide, and 250 μm deep polydimethylsiloxane (OV-1) coated μGC separation column, and are identified using a micro-thermal conductivity detector (μTCD) monolithically integrated with the column. Our experiments indicate that the combined system is capable of providing rapid chromatographic separation (<1.5 min) for quaternary WOCs namely toluene, tetrachloroethylene (PCE), chlorobenzene and ethylbenzene with a minimum detection concentration of 500 parts-per-billion (ppb) in aqueous samples. The proposed method is a promising development towards the future realization of a miniaturized system for sensitive, on-site and real-time field analysis of organic contaminants in water. PMID:24837988

  16. Solvent Effects in Chemical Processes. Water-Assisted Proton Transfer Reaction of Pterin in Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Jaramillo, Paula; Coutinho, Kaline; Canuto, Sylvio

    2009-09-01

    Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for the isolated pterin by quantum mechanical second-order Møller-Plesset perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier. The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pKa value of 8.2 ± 0.6 that is in excellent agreement with the experimental result of 7.9.

  17. The effect of precipitation conditions and aging upon characteristics of particles precipitated from aqueous solutions

    SciTech Connect

    Rard, J.A.

    1989-10-01

    Precipitation of a dissolved species from aqueous solutions is one of the techniques used to grow particles with certain size or composition characteristics. Various factors affecting the particle properties for sparingly soluble substances are briefly discussed here, including homogeneous versus heterogeneous nucleation, the effect of relative supersaturation on the number of nuclei and their relative size, particle growth by way of Ostwald Ripening, the Ostwald Step Rule and nucleation of metastable phases, diffusion-controlled versus surface reaction-controlled growth, incorporation of dopants into the precipitate, and dendritic growth. 13 refs.

  18. ROS Initiated Oxidation of Dopamine under Oxidative Stress Conditions in Aqueous and Lipidic Environments

    PubMed Central

    2011-01-01

    Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526

  19. Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.

    PubMed

    Kawaguchi, Kentaro; Ito, Hiroshi; Kuwahara, Takuya; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji

    2016-05-11

    We applied our original chemical mechanical polishing (CMP) simulator based on the tight-binding quantum chemical molecular dynamics (TB-QCMD) method to clarify the atomistic mechanism of CMP processes on a Cu(111) surface polished with a SiO2 abrasive grain in aqueous H2O2. We reveal that the oxidation of the Cu(111) surface mechanically induced at the friction interface is a key process in CMP. In aqueous H2O2, in the first step, OH groups and O atoms adsorbed on a nascent Cu surface are generated by the chemical reactions of H2O2 molecules. In the second step, at the friction interface between the Cu surface and the abrasive grain, the surface-adsorbed O atom intrudes into the Cu bulk and dissociates the Cu-Cu bonds. The dissociation of the Cu-Cu back-bonds raises a Cu atom from the surface that is mechanically sheared by the abrasive grain. In the third step, the raised Cu atom bound to the surface-adsorbed OH groups is removed from the surface by the generation and desorption of a Cu(OH)2 molecule. In contrast, in pure water, there are no geometrical changes in the Cu surface because the H2O molecules do not react with the Cu surface, and the abrasive grain slides smoothly on the planar Cu surface. The comparison between the CMP simulations in aqueous H2O2 and pure water indicates that the intrusion of a surface-adsorbed O atom into the Cu bulk is the most important process for the efficient polishing of the Cu surface because it induces the dissociation of the Cu-Cu bonds and generates raised Cu atoms that are sheared off by the abrasive grain. Furthermore, density functional theory calculations show that the intrusion of the surface-adsorbed O atoms into the Cu bulk has a high activation energy of 28.2 kcal/mol, which is difficult to overcome at 300 K. Thus, we suggest that the intrusion of surface-adsorbed O atoms into the Cu bulk induced by abrasive grains at the friction interface is a rate-determining step in the Cu CMP process. PMID:27092706

  20. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  1. Oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite under phase transfer conditions

    SciTech Connect

    Grigoryan, G.S.; Karoyan, I.L.; Malkhasyan, A.Ts.; Martirosyan, G.T.; Artamkina, G.A.; Beletskaya, I.P.

    1987-11-10

    In the industrial process for the production of chloroprene from butadiene, the problem of reducing the organic impurities in the waste water to 2000 mg/liter has not yet been solved. A method has been patented for the oxidation of organic compounds by sodium hypochlorite at high temperatures and high pressure but this method is limited by the oxidation of soluble organic compounds. The oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite was studied. A sharp increase in the reaction rate was found in the presence of phase transfer catalysts and surfactants. The involvement of oxygen as a cooxiant and the effect of surfactants on the absorption of atmospheric oxygen by the reaction system were demonstrated.

  2. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions.

    PubMed

    Andreiadis, Eugen S; Jacques, Pierre-André; Tran, Phong D; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices. PMID:23247177

  3. Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Beyer, K. D.; Seago, S. W.; Chang, H. Y.; Molina, M. J.

    1994-01-01

    The results of laboratory investigations of the freezing behavior of aqueous acid solutions indicate that in the stratosphere H2SO/H2O aerosol droplets would not freeze at temperatures above the ice frost point in the absence of HNO3; however, in the presence of typical levels of HNO3 liquid sulfuric acid aerosols take up significant amounts of HNO3 and H2O vapors and freeze much more readily. This is a consequence of the very rapid change in composition of the liquid droplets as the temperature drops to within two to three degrees of the equilibrium temperature at which HNO3 and H2O vapors would co-condense to form a liquid solution. In the high latitude stratosphere this HNO3/H2O 'dew point' is typically around 192-194 K at 100 mbar.

  4. Experimental and Quantum Chemical Calculations of Imidazolium Appended Naphthalene Hybrid in Different Biomimicking Aqueous Interfaces.

    PubMed

    Yenupuri, Tej Varma; Mydlova, Lucia; Agarwal, Devesh S; Sharma, Ritika; Sakhuja, Rajeev; Makowska-Janusik, Malgorzata; Pant, Debi D

    2016-08-25

    The effect of solvent polarity and micellar headgroup on a newly designed imidazolium based ionic liquid (IL) conjugated with naphthalene, 1,2-dimethyl-3-((6-(octyloxy)naphthalen-2-yl)methyl)-1H-imidazol-3-ium chloride (IN-O8-Cl), was studied using steady state and time-resolved fluorescence techniques. We observed that the dipole moment in the excited state is remarkably higher than the ground state. The effect of micellar surface charge on the photophysics of IN-O8-Cl in aqueous phase at room temperature was investigated. Formation of premicellar aggregates in sodium dodecylsulfate (SDS) was perceived; further the microenvironment of IN-O8-Cl was examined using steady-state fluorescence spectroscopy. Micropolarity of the micellar environment of SDS was found to be lower than that of cetyltrimethylammonium bromide (CTAB) and triton X-100 (TX100) following the order SDS < TX-100 < CTAB. The binding constant (Kb) and edge excitation red shift (EERS) from the emission maximum suggest that the probe binds strongly to the micelles. Multiexponential behavior was observed in time-resolved fluorescence lifetime studies in all micellar environments. We have observed an increase in rotational correlation time as we move from pure aqueous phase to solution containing surfactants of different head charge. Varieties of spectral parameters were used to justify the region in which the probe is present. The experimentally obtained dipole moment data were justified and explained by the DFT calculations of the electronic properties of IN-O8-Cl molecules in gas phase and in selected solvents. PMID:27486828

  5. Chemical effects induced by gamma-irradiation in solid and in aqueous methanol solutions of 4-iodophenol

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.

    2005-05-01

    The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.

  6. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  7. Chemical Analysis and Aqueous Solution Properties of Charged Amphiphilic Block Copolymers PBA-b-PAA Synthesized by MADIX

    SciTech Connect

    Jacquin,M.; Muller, P.; Talingting-Pabalan, R.; Cottet, H.; Berret, J.; Futterer, T.; Theodoly, O.

    2007-01-01

    We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter ?PBA/PAA, determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by liquid chromatography at the point of exclusion and adsorption transition, LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.

  8. Nanofiltration and sensing of picomolar chemical residues in aqueous solution using an optical porous resonator in a microelectrofluidic channel

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Guo, Zhixiong

    2012-02-01

    For the first time the use of a porous microresonator placed in a microelectrofluidic system for integrated functions of nanofiltration and sensing of small biomolecules and chemical analytes in extremely dilute solution was proposed and investigated. As an example, aminoglycosides in drug residues in food and livestock products were considered as the trace chemical analyte. The filtration process of the charged analyte in aqueous solution driven by an applied electrical field and the accompanying optical whispering-gallery modes in the resonator are modeled. The dynamic process of adsorption and desorption of the analyte onto the porous matrix is studied. Deposition of the analyte inside the porous structure will alter the material refractive index of the resonator, and thus induce an optical resonance frequency shift. By measuring the optical frequency shift, the analyte concentration as well as the absorption/desorption process can be analyzed. Through an intensive numerical study, a correlation between the frequency shift and the analyte concentration and the applied electrical voltage gradient was obtained. This reveals a linear relationship between the resonance frequency shift and the analyte concentration. The applied electrical voltage substantially enhances the filtration capability and the magnitude of the optical frequency shift, pushing the porous resonator-based sensor to function at the extremely dilute picomolar concentration level for small bio/chemical molecules down to the sub-nanometer scale. Moreover, use of the second-order whispering-gallery mode is found to provide better sensitivity compared with the first-order mode.

  9. Simulation of gas absorption with chemical reaction: The selective removal of hydrogen sulfide by aqueous methyldiethanolamine in packed columns

    SciTech Connect

    Lindner, J.R.

    1988-01-01

    The design of separation devices, particularly for solvent-based selective removal of H{sub 2}S from CO{sub 2}, requires an accurate mathematical model. Unfortunately, this requirement for high accuracy is often in conflict with the need for efficient computation. The addition of more and more complicated analyses, such as a move from Henry's law to a method incorporating gas and liquid activities for computing vapor liquid equilibria, may give a more accurate solution, but only at the cost of decreased computational efficiency. The efforts in this work have been directed toward two goals. The first was to develop an accurate mathematical model for the aqueous methyldiethanolamine (MDEA) system. The steady-state packed column model developed in this work has been tested with data from Schubert (1988) to verify its accuracy. The second goal was to modify the model to improve its computational efficiency. Areas such as vapor-liquid equilibrium calculations, flow hydrodynamics, and thermal effects were examined to determine what simplifications could be made, and how these simplifications affected both the accuracy and the efficiency of the model. The result of this effort is a mathematical model for multicomponent chemical absorption in a continuous contactor that balances computation efficiency with rigorous physical and chemical treatment. This model is useful not only for the analysis of the MDEA-H{sub 2}S-CO{sub 2} system, but the same framework also could be applied to other chemical absorption systems.

  10. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

  11. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Tlili, S.; Ravier, S.; Clément, J.-L.; Monod, A.

    2015-08-01

    Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found that could reproduce laboratory data over a wide range of experimental conditions. This mechanism is the first that comprehensively describes such radical-initiated oligomer formation. This mechanism was implemented into a multiphase box model that simulates secondary organic aerosol (SOA) formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. While in laboratory experiments oxygen limitation might occur and lead to accelerated oligomer formation, such conditions are likely not met in the atmosphere. The comparison of predicted oligomer formation shows that MVK and MACR likely do negligibly contribute to total SOA as their solubilities are low and even reduced in aerosol water due to ionic strength effects (Setchenov coefficients). Significant contribution by oligomers to total SOA might only occur if a substantial fraction of particulate carbon acts as oligomer precursors and/or if oxygen solubility in aerosol water is strongly reduced due to salting-out effects.

  12. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    PubMed

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  13. Exploration of interactions between bioactive solutes and vitamin B9 in aqueous medium by physico-chemical contrivances

    NASA Astrophysics Data System (ADS)

    Nath Roy, Mahendra; Chakraborti, Palash; Ekka, Deepak

    2014-09-01

    Molecular interaction prevailing in α-amino acids (glycine, L-alanine, L-valine) and aqueous solution of folic acid (FA) has been reported by physico-chemical properties as density (ρ), viscosity (η), refractive index (nD) and ultrasonic speed (u) at 298.15 K. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume (φ0V), viscosity B-coefficient, molar refraction (RM) and limiting apparent molar adiabatic compressibility (φ0K). The trends in transfer volumes, Δφ0V, have been interpreted in terms of solute-cosolute interactions on the basis of a co-sphere overlap model. The role of the cosolute (FA), and the contribution of solute-solute and solute-solvent interactions to the solution complexes, has also been analysed through the derived properties.

  14. Diffusion behavior of lysozyme in aqueous ammonium sulfate solutions under varying solution conditions as determined by dynamic light scattering

    SciTech Connect

    Fornefeld, U.M.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA . Chemical Sciences Div.)

    1994-12-01

    As proteins gain significance in commercial applications such as pharmaceuticals, detergents, organic waste management and cosmetics, efficient and economical recovery of these valuable biomolecules is of increasing importance. the salting-out process has found widespread application in the area of protein separations. To date, salt-induced precipitation of proteins from complex aqueous solutions remains largely an empirical process; no comprehensive model exists to predict salting-out phase equilibria in protein solutions. Rational predictive models for salt-induced precipitation will therefore be of great value in protein purification, both on the preparative and the analytical scale. Any attempt to model theoretically salt-induced protein precipitation must include the known physics of protein interactions in aqueous solution. With this in mind, it is crucial to acknowledge that protein precipitation is fundamentally an aggregation process. In order to incorporate aggregation effects into ongoing efforts to model salting out of proteins, it is necessary to quantify the degree of aggregation as a function of solution conditions. Therefore, dynamic light scattering measurements were performed with a well-studied protein, hen-egg-white lysozyme, under several solution conditions.

  15. Chemical Enrichment and Physical Conditions in IZw18*

    NASA Technical Reports Server (NTRS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-01-01

    Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H I region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H I region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims. Our primary objective is to study the enrichment of the H I region and the interplay between star-formation history and metallicity evolution. Our secondary obje ctive is to constrain the spatial- and time-scales over which the HI and H II regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H I region. Methods. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H I, CIII, CIIi*, N I, OI,...) and are compared to the abundances in the H II region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the HIi region through physical diagnostics drawn from the fine-structure level of C+. Results. We find that H I region abundances are lower by a factor of approx 2 as compared to the H II region. There is no differential depletion on dust between the H I and H II region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z(solar) (vs. 1/31 Z(solar) in the H II region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H I envelope may contain pockets of pristine gas with a

  16. Chemical enrichment and physical conditions in I Zw 18

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-05-01

    Context. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H i region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H i region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims: Our primary objective is to study the enrichment of the H i region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H i and H ii regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H i region. Methods: We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H i, C ii, C ii*, N i, O i, ...) and are compared to the abundances in the H ii region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H i region through physical diagnostics drawn from the fine-structure level of C+. Results: We find that H i region abundances are lower by a factor of ~2 as compared to the H ii region. There is no differential depletion on dust between the H i and H ii region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z⊙ (vs. 1/31 Z⊙ in the H ii region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H i envelope may contain pockets of pristine gas with a

  17. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  18. Public Health Risk Conditioned by Chemical Composition of Ground Water

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  19. CHEMICAL SPECIATION OF INORGANIC COMPOUNDS UNDER HYDROTHERMAL CONDITIONS

    EPA Science Inventory

    This research will utilize the high-intensity x-rays available at the Advance Photon Source (APS) to study the inorganic chemistry occurring during the hydrothermal oxidation of tank waste and the chemistry associated with tank waste vitrification. Although the chemical conversio...

  20. Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment

    SciTech Connect

    Xu, Tianfu; Pruess, K.; Brimhall, G.

    1999-04-01

    Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing

  1. Chemical Composition of Meridiani Sediments: Traces of Aqueous Past on Martian Surface

    NASA Astrophysics Data System (ADS)

    Brueckner, J.; Gellert, R.; D'Uston, C.; Treguier, E.; Squyres, S. W.

    2007-12-01

    surface. The other mixing component contains various sulfates. Assuming large volcanic exhalations of sulfur, any original aqueous solution became very acidic. 'Normal' rocks were rapidly leached and gradually dissolved to form new compounds and large quantities of sulfates in an aqueous system. To bring the two components together, either wind and/or water did the transport. The small scatter of the concentration data points (mostly around a straight line) suggests that there was a concentration gradient in bodies of standing water on a kilometer-wide scale at least for a short period of time. The concentrations of many elements (Si, Al, Na, K, P, Ti, and Cr) are diluted by increasing sulfur contents. Hence, these elements were mainly part of the siliciclastic component. On the other hand, elements whose concentrations increase with increasing S (e.g. Ca, Mg, and Zn) were part of sulfates and of mafic minerals (in the siliciclastic component). Iron showing some dilution by sulfur was determined by Mössbauer spectroscopy to be present also as ferric sulfate. The above observations reveal that several elements formed sulfates in these sediments: Mg, Ca, Fe, and Zn. An aqueous system existed during the period of sediment formation and left unique traces in the sedimentary composition.

  2. "GREENER" CHEMICAL SYNTHESES USING AN ALTERNATE REACTION CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  3. 'GREENER' CHEMICAL SYNTHESES USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  4. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  5. Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams.

    PubMed

    Rodriguez-Freire, Lucia; Abad-Fernández, Nerea; Sierra-Alvarez, Reyes; Hoppe-Jones, Christiane; Peng, Hui; Giesy, John P; Snyder, Shane; Keswani, Manish

    2016-11-01

    Aqueous film-forming foams (AFFFs) are complex mixtures containing 1-5% w/w fluorocarbons (FCs). Here, we have investigated degradation of two commercial AFFF formulations, 3M and Ansul, using sound field at 500kHz and 1MHz, with varying initial concentrations ranging from 200 to 930× dilution. The foams were readily degraded by 1MHz, with percentage of defluorination ranging from 11.1±1.4% (200× dilution of 3M) to 47.1±5.8% (500× dilution of Ansul). Removal of total organic carbon (TOC) ranged from 16.0±1.4% (200× dilution Ansul) to 39.0±7.2% (500× dilution Ansul). Degradation of AFFF was affected by sound frequency with rates of defluorination 10-fold greater when the frequency was 1MHz than when it was 500kHz. Mineralization of TOC was 1.5- to 3.0-fold greater under 1MHz than 500kHz. Rate of fluoride release was 60% greater for the greatest initial concentration of FC in Ansul compared to the least initial concentration. While the rate of mineralization of AFFF was directly proportional to the initial concentration of Ansul, that was not the case for 3M, where the rates of mineralization were approximately the same for all three initial concentrations. Results of the study demonstrate that sonolysis is a promising technology to effectively treat AFFFs. PMID:27295064

  6. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.

    PubMed

    Demoisson, Frédéric; Mullet, Martine; Humbert, Bernard

    2005-11-15

    Pyrite, an iron sulfide, occurs in many soils and sediments, making it an important natural reductant of toxic metal pollutants. This study investigated the processes leading to aqueous Cr(VI) reduction by pyrite in a closed thermostated (25 +/- 0.1 degrees C) system and under an argon atmosphere. Synthetic pyrite suspensions were reacted with a range of Cr(VI) solutions from 0 to 7 x 10(-4) M and at pH 2-8. Metal species concentrations were continuously monitored during a period lasting approximately 20 h. Preliminary experiments carried out in acidic media without Cr(VI) have shown that some pyrite dissolution occurred. Then, metal species concentration changes with time during pyrite oxidation by Cr(VI) solutions exhibited two distinct trends depending on the complete or incomplete Cr(VI) removal. As long as chromate existed in solution, the Cr-(Ill) to Fe(lIl) ratio was found to be an effective parameter to investigate the pyrite reaction stoichiometry with Cr(VI). Experimental values close to 2 suggest that sulfur compounds with oxidation states between 0 and 2 should be formed during pyrite oxidation by Cr(VI). If Cr(VI) was completely reduced from solution, then the pyrite oxidation by Fe(lll) ions took place to generate ferrous ions. PMID:16323772

  7. Ultrasonic relaxation and fast chemical kinetics of some carbohydrate aqueous solutions

    SciTech Connect

    Behrends, R. |; Cowman, M.K.; Majewski, J.; Petrucci, S.; Eggers, F.; Richmann, K.H.; Eyring, E.M.; Riech, M.; Kaatze, U.

    1997-03-05

    Molecular relaxation properties of the monosaccharides (a) D-glucose, (b) methyl {beta}-D-glucopyranoside, (c) methyl {alpha}-D-mannopyranoside, (d) D-xylose, (e) D-arabinose, (f) methyl {beta}-D-xylopyranoside, (g) methyl {beta}-D-arabinopyranoside, (h) methyl {alpha}-L-(6-deoxy)mannopyranoside, and (i) 1,6-anhydro-{beta}-D-glucopyranoside, all in aqueous solution, have been studied using broad band ultrasonic spectrometry in the frequency range 0.2-2000 MHz. Ultrasonic excess absorption with relaxation characteristics near 80 MHz was found for glucose and the methyl glucosides of D-glucose and D-mannose, but no relaxation process was detected for the other monosaccharides in the same frequency range. From structural aspects it is deduced that the most likely process causing the observed relaxation is the rotation of the exocyclic -CH{sub 2}OH group, placing rotational isomerization on the nanosecond time scale. Relaxation parameters for D-glucose and methyl {beta}-D-glucopyranoside solutions were further investigated as a function of concentration and temperature, in order to confirm the assignment of the relaxation process, and to determine some of its thermodynamic and kinetic parameters. 19 refs., 7 figs., 1 tab.

  8. [Studies on chemical constituents of aqueous extract of Lonicera japonica flower buds].

    PubMed

    Yu, Yang; Song, Wei-xia; Guo, Qing-lan; Lin, Sheng; Wang, Su-juan; Yang, Yong-chun; Shi, Jian-gong

    2015-09-01

    From an aqueous extract of Lonicera japonica flower buds, sixteen compounds were isolated by a combination of various chromatographic techniques including column chromatography over macroporous resin, MCI gel, silica gel, and sephadex LH-20 and reversed-phase HPLC. Their structures were elucidated by spectroscopic data analysis as 6'-O-acetylvogeloside (1), 6'-O-acetylsecoxyloganin (2), dichlorogelignate (3), guanosinyl-(3' --> 5')-adenosine monophosphate(GpA,4) , 5'-O-methyladenosine (5), 2'-O-methyladenosine (6), adenosine (7), syringin (8), methyl 4-O-β-D-glucopyranosyl caffeate (9), (-)-dihydrophaseic acid 4'-O-β-D-glucopyranoside (10), ketologanin (11), 7α-morroniside (12), 7β-morroniside (13), kingiside (14), cryptochlorogenic acid methyl ester (15), and 6-hydroxymethyl-3-pyridinol (16). All the compounds were obtained from this plant for the first time, compounds 1 and 2 are new compounds, 3 and 5 are new natural products, and 4 is the first example of dinucleoside monophosphate isolated from a plant extract. PMID:26978994

  9. Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films

    SciTech Connect

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2001-06-30

    We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature, multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.

  10. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    SciTech Connect

    Iribarren, A.; Hernández-Rodríguez, E.; Maqueira, L.

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  11. Destruction of VX by aqueous-phase oxidation using peroxydisulfate (direct chemical oxidation)

    SciTech Connect

    Cooper, J.F.; Krueger, R.; Farmer, J.C.

    1995-10-11

    Chemical warfare agents may be completely destroyed (converted to H{sub 2}O, CO{sub 2}, salts) by oxidation at 90--100 C using acidified ammonium peroxydisulfate, with recycle of NH{sub 4}SO{sub 4} byproduct. The process requires no toxic or expended catalysts and produces no secondary wastes other than the precipitated inorganic content of the agents. To determine oxidative capability of peroxydisulfate at low reductant contents, we measured rate data for oxidation of 20 diverse compounds with diverse functional groups; 4 of these have bonds similar to those found in VX, HD, and GB. On an equivalence basis, integral first-order rate constants for 100 C oxidation are 0.012{plus_minus}0.005 min{sup {minus}1} for di-isopropyl-methyl-phosphonate, methyl phosphonic acid, triethylamine, and 2,2{prime}-thiodiethanol at low initial concentrations of 50 ppM(as carbon) and pH 1.5. To provide scale-up equations for a bulk chemical agent destruction process, we measured time-dependent oxidation of bulk model chemicals at high concentrations (0.5 N) and developed and tested a quantitative model. A practical process for bulk VX destruction would begin with chemical detoxification by existing techniques (eg, hydrolysis or mild oxidation using oxone), followed by mineralization of the largely detoxified products by peroxydisulfate. Secondary wastes would be avoided by use of commercial electrolysis equipment to regenerate the oxidant. Reagent requirements, mass balance and scaleup parameters are given for VX destruction, using peroxydisulfate alone, or supplemented with hydrogen peroxide. For the use of 2.5 N peroxydisulfate as the oxidant, a 1 m{sup 3} digester will process about 200 kg (as C) per day. The process may be extended to total destruction of HD and hydrolysis products of G agents.

  12. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  13. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents.

    PubMed

    Husch, Tamara; Korth, Martin

    2015-09-21

    Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included). PMID:26256846

  14. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents

    NASA Astrophysics Data System (ADS)

    Husch, Tamara; Korth, Martin

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included).

  15. Quantum chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent.

    PubMed

    Réal, Florent; Trumm, Michael; Vallet, Valérie; Schimmelpfennig, Bernd; Masella, Michel; Flament, Jean-Pierre

    2010-12-01

    In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal-water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic basis sets combined with wave function-based methods (such as the MP2 level) have to be preferred to density functional theory when investigating Th(IV)/water aggregates in gas phase. The information extracted from trajectories in solution shows a well-structured Th(IV) first hydration shell formed of 8.25 ± 0.2 water molecules and located at about 2.45 ± 0.02 Å and a second shell of 17.5 ± 0.5 water molecules at about 4.75 Å. Concerning the first hydration sphere, our results correspond to the lower bounds of experimental estimates (which range from 8 to 12.7); however, they are in very good agreement with the average of existing experimental data, 2.45 ± 0.02 Å. All our results demonstrate the predictable character of the proposed approach, as well as the need of accounting explicitly for the cooperative character of charge-transfer phenomena affecting the Th(IV)/water interaction to build up reliable and accurate force-field approaches devoted to such studies. PMID:21070066

  16. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    PubMed

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. PMID:27213562

  17. Hyphenation of sequential- and flow injection analysis with FTIR-spectroscopy for chemical analysis in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lendl, B.; Schindler, R.; Kellner, R.

    1998-06-01

    A survey of the principles of sequential (SIA)-and flow injection analysis (FIA) systems with FTIR spectroscopic detection is presented to introduce these hyphenations as powerful techniques for performing chemical analysis in aqueous solution. The strength of FIA/SIA-FTIR systems lies in the possibility to perform highly reproducible and automated sample manipulations such as sample clean-up and/or chemical reactions prior to spectrum acquisition. It is shown that the hyphenation of FIA/SIA systems with an FTIR spectrometer enhances the problem solving capabilities of the FTIR spectrometer as also parameters which can not be measured directly (e.g. enzyme activities) can be determined. On the other hand application of FTIR spectroscopic detection in FIA or SIA is also of advantage as it allows to shorten conventional analysis procedures (e.g. sucrose or phosphate analysis) or to establish and apply a multivariate calibration model for simultaneous determinations (e.g. glucose, fructose and sucrose analysis). In addition to these examples two recent instrumental developments in miniaturized FIA/SIA-FTIR systems, a μ-Flow through cell based on IR fiber optics and a micromachined SI-enzyme reactor are presented in this paper.

  18. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    SciTech Connect

    FRYE JM; KUNKEL JM

    2009-03-05

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  19. DEFINITIVE SOX CONTROL PROCESS EVALUATIONS: AQUEOUS CARBONATE AND WELLMAN-LORD (ACID, ALLIED CHEMICAL, AND RESOX) FGD (FLUE GAS DESULFURIZATION) TECHNOLOGIES

    EPA Science Inventory

    The report gives results of economic evaluations of two processes: the Rockwell International aqueous carbonate process (ACP) and the Wellman-Lord process, the latter applied to a sulfuric acid plant, the Foster Wheeler Resox process, and the Allied Chemical coal reduction proces...

  20. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  1. X-ray absorption spectroscopy studies of ionic association in aqueous solutions of zinc bromide from normal to critical conditions

    NASA Astrophysics Data System (ADS)

    Simonet, V.; Calzavara, Y.; Hazemann, J. L.; Argoud, R.; Geaymond, O.; Raoux, D.

    2002-08-01

    Ion-pairing and dehydration phenomena occurring in ZnBr2 aqueous solutions from normal to critical T, P conditions were investigated by x-ray absorption spectroscopy. The respective influences of temperature, pressure, and concentration were studied. The evolution of the density of solute ions, probed by the height of the absorption edge, allowed us to get information on phase diagrams and salt precipitation. The average structural evolution deduced from extended x-ray absorption fine structure was related to the formation of complexes identified from x-ray absorption near edge structure analysis. Consequently, in noncritical conditions, an increase of temperature or concentration produces dehydration and ion-pairing, while a rise of pressure destroys the ion-pairs. In contrast, concentration and pressure have weaker effects on the local order in high P, T conditions. Moreover, ion pairing formation is found not to be specifically enhanced when the fluid is close to supercritical conditions as it also occurs at lower temperatures. In a discussion, the modifications induced by a variation of the different structural parameters are related to the macroscopic properties of the solvent.

  2. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla) Skin Waste

    PubMed Central

    Dailey, Adriana; Vuong, Quan V.

    2015-01-01

    The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM). Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C), time (min), and sample-to-solvent ratio (g/100 mL), and their interactions, did not significantly affect phenolic compound (TPC), flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity. PMID:26783954

  3. Optimization of Aqueous Extraction Conditions for Recovery of Phenolic Content and Antioxidant Properties from Macadamia (Macadamia tetraphylla) Skin Waste.

    PubMed

    Dailey, Adriana; Vuong, Quan V

    2015-01-01

    The macadamia is native to Australia and is now grown commercially around the world. Macadamia skin, known as waste, has been generated abundantly, but this ample source has had limited uses as a byproduct. The aim of this study was to develop optimal aqueous extraction conditions for the recovery of phenolic compounds and antioxidant properties from macadamia skin using Response Surface Methodology (RSM). Water was selected for optimizing the extraction conditions because it is a cheap, safe, and environmentally friendly solvent. The results showed that the RSM models were reliable for the prediction and evaluation of the tested variables. Within the tested ranges, temperature (°C), time (min), and sample-to-solvent ratio (g/100 mL), and their interactions, did not significantly affect phenolic compound (TPC), flavonoid, proanthocyanidin, CUPRAC, and FRAP contents. However, the time and the sample-to-solvent ratio significantly affected DPPH antioxidant activity and the ratio significantly affected ABTS antioxidant capacity. The optimal extraction conditions for the recovery of phenolic compounds and antioxidant properties were predicted and validated at a temperature of 90 °C, a time of 20 min, and a sample-to-solvent ratio of 5 g/100 mL. At these conditions, an extract with TPC of 86 mg GAE/g, flavonoids of 30 mg RUE/g, and proanthocyanidins of 97 mg CAE/g could be prepared with potent antioxidant capacity. PMID:26783954

  4. Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Kent, D.B.; Davis, J.A.

    1996-01-01

    The transport of adsorbing and complexing metal ions in porous media was investigated with a series of batch and column experiments and with reactive solute transport modeling. Pulses of solutions containing U(VI) were pumped through columns filled with quartz grains, and the breakthrough of U(VI) was studied as a function of variable solution composition (pH, total U(VI) concentration, total fluoride concentration, and pH-buffering capacity). Decreasing p H and the formation of nonadsorbing aqueous complexes with fluoride increased U(VI) mobility. A transport simulation with surface complexation model (SCM) parameters estimated from batch experiments was able to predict U(VI) retardation in the column experiments within 30%. SCM parameters were also estimated directly from transport data, using the results of three column experiments collected at different pH and U(VI) pulse concentrations. SCM formulations of varying complexity (multiple surface types and reaction stoichiometries) were tested to examine the trade-off between model simplicity and goodness of fit to breakthrough. A two-site model (weak- and strong-binding sites) with three surface complexation reactions fit these transport data well. With this reaction set the model was able to predict (1) the effects of fluoride complexation on U(VI) retardation at two different pH values and (2) the effects of temporal variability of pH on U(VI) transport caused by low p H buffering. The results illustrate the utility of the SCM approach in modeling the transport of adsorbing inorganic solutes under variable chemical conditions.

  5. Computational Study of the Cation-Modified GSH Peptide Interactions With Perovskite-Type BFO-(111) Membranes Under Aqueous Conditions.

    PubMed

    Bian, Liang; Dong, Fa-Qin; Song, Mian-Xin; Xu, Jin-Bao; Zhang, Xiao-Yan

    2015-12-01

    We elucidated a number of facets regarding glutathione (GSH)-bismuth ferrite (BiFeO3, BFO) interactions and reactivity that have previously remained unexplored on a molecular level. In this approach, the cation-modified reduced GSH (or oxidised glutathione (GS·)) formed on the (111)-oriented BiFeO3 membrane (namely BFO-(111)) can serve as an efficient quencher, and the luminescence mechanism is explained in aqueous conditions. Notably, we suggest the use of Fe(2+)↓ ion as an electron donor and K(+) ion as an electron acceptor to exert a "gluing" effect on the glutamic acid (Glu) and glycine (Gly) side chains, producing an exposed sulfhydryl (-SH) configuration. This method may enable the rational design of a convenient platform for biosensors. PMID:26061445

  6. Computational Study of the Cation-Modified GSH Peptide Interactions With Perovskite-Type BFO-(111) Membranes Under Aqueous Conditions

    NASA Astrophysics Data System (ADS)

    Bian, Liang; Dong, Fa-qin; Song, Mian-xin; Xu, Jin-bao; Zhang, Xiao-yan

    2015-06-01

    We elucidated a number of facets regarding glutathione (GSH)-bismuth ferrite (BiFeO3, BFO) interactions and reactivity that have previously remained unexplored on a molecular level. In this approach, the cation-modified reduced GSH (or oxidised glutathione (GS·)) formed on the (111)-oriented BiFeO3 membrane (namely BFO-(111)) can serve as an efficient quencher, and the luminescence mechanism is explained in aqueous conditions. Notably, we suggest the use of Fe2+↓ ion as an electron donor and K+ ion as an electron acceptor to exert a "gluing" effect on the glutamic acid (Glu) and glycine (Gly) side chains, producing an exposed sulfhydryl (-SH) configuration. This method may enable the rational design of a convenient platform for biosensors.

  7. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solutions up to supercritical conditions

    USGS Publications Warehouse

    Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Chou, I.-Ming

    2000-01-01

    A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26482562

  9. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions

    PubMed Central

    Vasiloiu, Maria; Gaertner, Peter; Zirbs, Ronald; Bica, Katharina

    2015-01-01

    Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities. PMID:26279638

  10. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  11. Chemical water/rock interaction under reservoir condition

    SciTech Connect

    Watanabe, K.; Tanifuji, K.; Takahashi, H.; Wang, Y.; Yamasaki, N.; Nakatsuka, K.

    1995-01-26

    A simple model is proposed for water/rock interaction in rock fractures through which geothermal water flows. Water/rock interaction experiments were carried out at high temperature and pressure (200-350 C, 18 MPa) in order to obtain basic solubility and reaction rate data. Based on the experimental data, changes of idealized fracture apertures with time are calculated numerically. The results of the calculations show that the precipitation from water can lead to plugging of the fractures under certain conditions. Finally, the results are compared with the experimental data.

  12. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  13. Physico-chemical aspects of solubility of myosin in aqueous media.

    PubMed

    Das, M; Chattoraj, D K

    1989-10-01

    Solubility of fish (Labio rohita) myosin has been studied at varying temperatures in presence of various inorganic salts like NaCl, KCl, NaBr, Na2SO4, KI, and organic solutes like sucrose and urea. The effect of pH on the solubility has also been studied both in absence and presence of NaCl. Thermal denaturation temperatures of myosin in presence of NaCl, KCl, NaBr and Na2SO4 were found to be 40 degrees, 40 degrees, 45 degrees and 50 degrees C respectively. Thermodynamic parameters like changes in standard free energy (delta G degrees), enthalpy (delta H degrees) and entropy (delta S degrees) for precipitation of myosin from solution phase to gel phase have been evaluated and the physico-chemical aspects have been critically discussed. The average delta G degrees for gel formation varied only between -30 and -40 kJ/mole of myosin, although the nature of solutes, temperature and folding state of protein have been grossly altered. A compensation effect has also been exhibited from the linear plot of average values of delta H degrees against T delta S degrees for various solutes. PMID:2628269

  14. Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl

    NASA Astrophysics Data System (ADS)

    Puranen, Anders; Jonsson, Mats; Dähn, Rainer; Cui, Daqing

    2009-08-01

    In proposed high level radioactive waste repositories a large part of the spent nuclear fuel (SNF) canisters are commonly composed of iron. Selenium is present in spent nuclear fuel as a long lived fission product. This study investigates the influence of iron on the uptake of dissolved selenium in the form of selenate and the effect of the presence of dissolved uranyl on the above interaction of selenate. The iron oxide, and selenium speciation on the surfaces was investigated by Raman spectroscopy. X-ray Absorption Spectroscopy was used to determine the oxidation state of the selenium and uranium on the surfaces. Under the simulated groundwater conditions (10 mM NaCl, 2 mM NaHCO 3, <0.1 ppm O 2) the immobilized selenate was found to be reduced to oxidation states close to zero or lower and uranyl was found to be largely reduced to U(IV). The near simultaneous reduction of uranyl was found to greatly enhance the rate of selenate reduction. These findings suggest that the presence of uranyl being reduced by an iron surface could substantially enhance the rate of reduction of selenate under anoxic conditions relevant for a repository.

  15. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

    PubMed

    Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R

    2016-07-01

    Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. PMID:27196637

  16. Transparent ZnO Films Deposited by Aqueous Solution Process Under Various pH Conditions

    NASA Astrophysics Data System (ADS)

    Hong, Jeong Soo; Wagata, Hajime; Ohashi, Naoki; Katsumata, Ken-ichi; Okada, Kiyoshi; Matsushita, Nobuhiro

    2015-08-01

    ZnO films were deposited using a spin-spray method with the source solution containing zinc nitrate and an oxidizing solution containing trisodium citrate onto glass substrates under various pH conditions. A ZnO film with a columnar structure was obtained at pH higher than 7.0, while no ZnO film was formed at a mixed solution pH of 6.7. The transparent and conductive ZnO film obtained from a mixed solution with pH 10.7 exhibited the lowest resistivity of 9.9 × 10-3 Ω cm with a high transmittance above 90%.

  17. Diffusion and polymerization of styrene in an aqueous solution of potassium persulfate under static conditions

    SciTech Connect

    Oganesyan, A.A.; Boyadzhyan, V.G.; Gritskova, I.A.; Gukasyan, A.V.; Matsoyan, S.G.; Pravednikov, A.N.

    1985-10-01

    The potassium persulfate-initiated polymerization of styrene in a mechanically agitated mixture of water and monomer leads to the formation of a stable, monodisperse latex. In order to explain the mechanism of the stabilization of the latex particles in this system, the authors present a detailed investigation of the polymerization of styrene in a specially constructed electrochemical cell under static conditions. A schematic of the cell is shown. Results show that the capacity of the electrical double layer on the platinum electrode remains constant with time in a system containing only a solution of electrolyte, either K/sub 2/SO/sub 4/ or K/sub 2/S/sub 2/O/sub 8/.

  18. Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies.

    PubMed

    Chiba, Shuntaro; Furuta, Tadaomi; Shimizu, Seishi

    2016-08-11

    Cosolvents, such as urea, affect protein folding and binding, and the solubility of solutes. The modeling of cosolvents has been facilitated significantly by the rigorous Kirkwood-Buff (KB) theory of solutions, which can describe structural thermodynamics over the entire composition range of aqueous cosolvent mixtures based only on the solution density and the KB integrals (KBIs), i.e., the net excess radial distribution functions from the bulk. Using KBIs to describe solution thermodynamics has given rise to a clear guideline that an accurate prediction of KBIs is equivalent to accurate modeling of cosolvents. Taking urea as an example, here we demonstrate that an improvement in the prediction of KBIs comes from an improved reproduction of high-level quantum chemical (QC) electrostatic potential and molecular pairwise interaction energies. This rational approach to the improvement of the KBI prediction stems from a comparison of existing force fields, AMOEBA, and the generalized AMBER force field, as well as the further optimization of the former to enable better agreement with QC interaction energies. Such improvements would pave the way toward a rational and systematic determination of the transferable force field parameters for a number of important small molecule cosolvents. PMID:27434200

  19. A phantom study on bladder and rectum dose measurements in brachytherapy of cervix cancer using FBX aqueous chemical dosimeter.

    PubMed

    Bansal, Anil K; Semwal, Manoj K; Arora, Deepak; Sharma, D N; Julka, P K; Rath, G K

    2013-06-01

    The ferrous sulphate-benzoic acid-xylenol orange (FBX) chemical dosimeter, due to its aqueous form can measure average volume doses and hence may overcome the limitations of point dosimetry. The present study was undertaken to validate the use of FBX dosimeter for rectum and bladder dose measurement during intracavitary brachytherapy (ICBT) and transperineal interstitial brachytherapy (TIB). We filled cylindrical polypropylene tubes (PT) and Foley balloons (FB) with FBX solution and used them as substitutes for rectum and bladder dose measurements respectively. A water phantom was fabricated with provision to place the Fletcher-type ICBT and MUPIT template applicators, and FBX filled PT and FB within the phantom. The phantom was then CT scanned for treatment planning and subsequent irradiation. Our results show that the average difference between DVH derived dose value and FBX measured dose is 3.5% (PT) and 13.7% (FB) for ICBT, and 9% (PT) and 9.9% (FB) for TIB. We believe that the FBX system should be able to provide accuracy and precision sufficient for routine quality assurance purposes. The advantage of the FBX system is its water equivalent composition, average volume dose measuring capability, and energy and temperature independent response as compared to TLD or semiconductor dosimeters. However, detailed studies will be needed with regards to its safety before actual in-vivo dose measurements are possible with the FBX dosimeter. PMID:22687710

  20. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride. Annual performance report

    SciTech Connect

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH{sub 4}Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  1. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride

    SciTech Connect

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH[sub 4]Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  2. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    SciTech Connect

    Boukis, N.; Kritzer, P.

    1997-08-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs.

  3. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-09-01

    Ionic liquids (ILs) have been efficiently used as a "designer sorbent" in sample preparation. A novel 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer was synthesized and copolymerized with 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL as cross-linking agent to prepare a cross-linked polymeric ionic liquids (PILs) monolith. Coupled to high-performance liquid chromatography (HPLC), the PILs monolith was used as a solid-phase microextraction (SPME) sorbent to extract some polar endocrine disrupting chemical (EDCs) such as estrogens, bisphenol A, and phthalate esters in aqueous samples. Preparation and extraction conditions were investigated and optimized to obtain satisfactory extraction efficiency. Limits of detection (LODs) of the proposed method for three steroid estrogens and bisphenol A were 0.25 and 0.2 μg L(-1), respectively, which were lower than or comparable to some other sample preparation methods. Intra- and inter-day repeatability for all the analytes was 2.2-12%. The monolith-to-monolith repeatability was 7.4-15%. The extraction performance of the method for analysis of target estrogens in treated domestic wastewater was investigated and compared with a dispersive liquid-liquid microextraction (DLLME) method. The proposed SPME method provided better sensitivity and higher resistance to matrix interferences. PMID:26220716

  4. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1531A Mata, T.M., Smith*, R.L., Young*, D., and Costa, C.A.V. "Simulation of Ecologically Conscious Chemical Processes: Fugitive Emissions versus Operating Conditions." Paper published in: CHEMPOR' 2001, 8th International Chemical Engineering Conference, Aveiro, Portu...

  5. Evaluation of chemical seed treatments for control of stripe rust in wheat under controlled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted under controlled conditions in a greenhouse in Pullman, WA. Seed of winter wheat ‘PS 279’ and spring wheat ‘Lemhi’ were treated by chemical companies with various chemicals. Seed of the two susceptible cultivars without treatment were used as non-treated controls. Five seeds ...

  6. CHEMICAL TRANSFORMATIONS IN ACID RAIN. VOLUME 2. INVESTIGATION OF KINETICS AND MECHANISM OF AQUEOUS-PHASE PEROXIDE FORMATION

    EPA Science Inventory

    The aqueous-phase reactions of O3 with a number of species have been studied in an effort to identify pathways leading to the production of hydrogen peroxide in solution. The aqueous-phase systems studied included the decomposition of O3 in pure water and the interaction of O3 wi...

  7. Polymerization of amino acids under high-pressure conditions: Implication to chemical evolution on the early Earth

    NASA Astrophysics Data System (ADS)

    Kakegawa, T.; Ohara, S.; Ishiguro, T.; Abiko, H.; Nakazawa, H.

    2008-12-01

    Prebiotic polymerization of amino acids is the most fundamental reaction to promote the chemical evolution for origin of life. Polymerization of amino acids is the dehydration reaction. This questions as to if submarine hydrothermal conditions, thus hydrated enironments, were appropreate for peptide formations. Our previous experiments implied that non-aqueous and high-pressure environments (more than 20 MPa) would be suitable for polymerization of amino acids (Ohara et al., 2006). This leads to the hypothesis that the first peptides may have formed in the Hadean oceanic crustal environments, where dehydration proceeded with availability of appropriate temperatures and pressures. In the present study, experiments simulating the crustal conditions were performed with various pressures (1-175 MPa) and temperatures (100- 200 C degree) using autoclaves. Purified powders (100 mg) of alanine, glycine, valine and aspartic acid were used in the experiments without mixing water in order to examine the solid-solid reactions. The products were analyzed using HPLC and LC-MS. Results indicate that: (1) longer time is required to form peptide compared to those of previous aqueous experiments; (2) pressure has a role to limit the production of melanoidine and cyclic amino acids, which are inhibitors for elongation of peptides; (3) glycine was polymerized up to 11-mer, which was not formed in any previous experiments without catalyses; (4) valine was polymerized up to 3-mer; and (5) aspartic acid was polymerized to 4-mer, accompanied with production of other amino acids. It is noteworthy that high-pressure environments favor all examined polymerization reactions. Such situations would have happened inside of deep oceanic crusts of the early Earth.

  8. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  9. Detection of native protein ions in aqueous solution under ambient conditions by electrospray laser desorption/ionization mass spectrometry.

    PubMed

    Shiea, Jentaie; Yuan, Cheng-Hui; Huang, Min-Zong; Cheng, Sy-Chyi; Ma, Ya-Lin; Tseng, Wei-Lung; Chang, Hui-Chiu; Hung, Wen-Chun

    2008-07-01

    Liquid electrospray laser desorption/ionization (ELDI) mass spectrometry allows desorption and ionization of proteins directly from aqueous solutions and biological fluids under ambient conditions. Native protein ions such as those of myoglobin, cytochrome c, and hemoglobin were obtained. A droplet (ca. 5 microL) containing the protein molecules and micrometer-sized particles (e.g., carbon graphite powder) is irradiated with a pulsed UV laser. The laser energy adsorbed by the inert particles is transferred to the surrounding solvent and protein molecules, leading to their desorption; the desorbed gaseous molecules are then postionized within an electrospray (ESI) plume to generate the ESI-like protein ions. With the use of this technique, we detected only the protonated protein ions in various biological fluids (including human tears, cow milk, serum, and bacterial extracts) without interference from their corresponding sodiated or potassiated adduct ions. In addition, we rapidly quantified the levels of glycosylated hemoglobin present in drops of whole blood obtained from diabetic patients without the need of sample pretreatment. PMID:18510347

  10. Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2004-01-01

    The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction of half-lifes at 50 degrees C. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable; whereas organic substances containing two oxygenated groups in which one group was an alpha- or beta-positioned carbonyl group were the most reactive. Compounds with an alpha- or beta-positioned carbonyl group (aldehyde or ketone) had rates of reaction that were up to 10(24)-times faster than rates of similar molecules lacking the carbonyl group. This survey of organic reactivity, together with estimates of the molecular containment properties of lipid vesicles and liquid spherules, indicates that an origins process in a small domain that used C,H,O-intermediates had to be catalytic and use the most reactive organic molecules to prevent escape of its reaction intermediates.

  11. Chemical Compositional Indications of Aqueous Alteration for Whitewater Lake Boxworks, Veneers and Veins at Cape York, Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton; Gellert, R.; Squyres, S.; Arvidson, R.; Yen, A.; Rice, J.; Athena Science Team

    2013-10-01

    An area of partially-veneered, flat-lying rocks which also includes boxwork and linear veins contains a variety of compositions which are each indicative of minor to major aqueous alteration processes in the Cape York rim of Endeavour Crater. As analyzed by APXS x-ray fluorescence spectroscopy, the sets of unique elemental compositions correspond variously to Al-Si rich clays in boxwork veins, with Fe- and Cl-enriched salt veneers (Esperance samples); swarms of Ca sulfate veins (Ortiz samples); and, as indicated by remote sensing, mafic smectite alteration products in veneers (Chelmsford covering Azilda samples). Multiple offset analyses by APXS reveal clear trends and associations of certain elements, allowing inferences of mineralogies. In contrast to the acidic environment deduced for the genesis of the multiple-sulfate Burns formation sediments and shallow ferric-rich sulfate deposits beneath soils, these alteration products formed at more near-neutral pH, often with major chemical segregations and requiring high water-rock ratios comparable to a wide range of eminently habitable terrestrial environments. Several of these compositions are also rated high with respect to their potential for preservation of organic materials and biomarkers. Within distances of just tens of meters inside this so-called Whitewater Lake unit, this broad diversity exemplifies the tantalizing opportunities as well as challenges for future sample return missions to the red planet, which in this case could also be expanded to include nearby samples of Burns Fm sandstones, hematite concretions, light-toned spherules (Kirkwood), large gypsum veins (Homestake), martian global soils and surface dust.

  12. Preliminary investigation of the supply of chemical species to an aqueous solution using a hydrogen-oxygen flame.

    PubMed

    Uchida, Miho; Sogabe, Takahiro; Ikoma, Tadaaki; Okuwakit, Akitsugu

    2005-08-01

    A new method of supplying radical species to aqueous solutions using a hydrogen-oxygen flame is investigated. When a hydrogen-oxygen flame is directed on the surface of an aqueous solution, hydroxyl radicals (*OH) produced in the flame are extracted into the aqueous phase. The presence of *OH in the aqueous solution was confirmed by electron paramagnetic resonance with spin trapping using 5,5-dimethyl-1-pyrroline-N-oxide. The extraction of *OH into the aqueous solution was monitored using a quantitative analysis of hydrogen peroxide (H2O2). The effects of the hydrogen and oxygen gas flow rates, hydrogen/oxygen ratio, and atmosphere on H2O2 formation were studied. When the hydrogen-oxygen flame blew on a phosphate buffer solution (pH 6.7) under an Ar atmosphere, the concentration of H2O2 increased with the blowing time of the flame and the flow rate of hydrogen gas. Under air, nitrate and nitrite ions were formed in the aqueous phase in addition to H2O2, and the H2O2 concentration was lower than that under argon. The application of this new method to an aqueous solution of Cu(II)-ethylenediaminetetraacetic acid (EDTA) caused a remarkable decrease in the concentration of Cu(II)-EDTA and total organic carbon. PMID:16124325

  13. Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions.

    PubMed

    Takamatsu, Takejiro; Murata, Tomoyoshi; Koshikawa, Masami K; Watanabe, Mirai

    2010-07-01

    The present study was performed to investigate the weathering and dissolution rates of Pb shot pellets differing in elemental composition (Pb, Sb, and As) exposed under various aqueous and soil conditions using five commercial shot pellet preparations. Upon immersion in distilled water, the dissolution rates of shot pellets, calculated from the difference in weight before versus after immersion, decreased with increasing Sb + As contents and the dominant precipitate was hydrocerussite. These subsidiary ingredients may be related to the difficulty of metallic Pb oxidation (transformation to PbO). Weight losses standardized by the amount of rainfall upon exposure to rainfall on open grassland and under canopies of Japanese cedar (Cryptomeria japonica) and bamboo-leafed oak (Quercus myrsinaefolia) were 1.11, 1.07, and 7.35 mg g pellets(-1) year(-1) L(-1), respectively, and was also related to Sb + As contents in shot pellets. However, annual dissolution rates of Pb standardized by the amount of rainfall as the soluble fraction at the same sites were 0.72, 0.33, and 0.40 mg Pb g pellets(-1) year(-1) L(-1) in the same order. These trends seemed to be related to the rainfall pH, which induces precipitation of Pb dissolved as PbCO(3) under conditions of higher pH at the Q. myrsinaefolia site or organic matter released from leaves, etc., which can form metal complexes. Dissolution rates of shot pellets buried in soils (Cambisol, Fluvisol, Regosol, Andosol) also seemed to be related to the soil pH and dissolved organic matter contents but were about sixfold faster than those with exposure to rainfall. PMID:20039167

  14. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target

    PubMed Central

    Jin, Zhen; Wu, Jinzi; Yan, Liang-Jun

    2016-01-01

    It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world. PMID:27005615

  15. Influence of Variable Environmental Conditions on Presence and Concentration of Energetic Chemicals Near Soil Surface in the Vadoze Zone

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2008-12-01

    Many explosive-related compounds (ERCs) are found near the soil-atmospheric surface in sites containing buried explosive devices, such as landmines and unexploded ordnance, detonation-residual, and munitions residues from explosive manufacturing facilities. Accurate assessment of the fate and transport processes is essential for predicting their movement to the surface, groundwater, or any other important environmental compartment. The transport processes controlling the direction and magnitude of the movement, and chemical and physical processes controlling the fate of the chemicals vary with environmental conditions. This research addresses the effect of variable rainfall, evaporation, temperature, and solar radiation on fate and transport of 2,4,6-Trinitrotoluene (TNT), 2,4-Dinitrotoluene (DNT), and other related chemicals in partially saturated soil. Experiments have been conducted in a laboratory-scale 3D SoilBed placed inside an environmental chamber equipped with rainfall and solar radiation simulators, and temperature control settings. The SoilBed was packed with a sandy soil. Experiments have been conducted by burying a TNT/DNT source, simulating a landmine, and applying different rainfall and light radiation cycles while monitoring DNT, TNT, and other related ERCs solute concentrations temporally and spatially within the SoilBed. Experiments include different source characteristics, rainfall intensities, temperatures, and radiation cycles to evaluate their effect on the detection and movement of ERC in soils in both aqueous and vapor phases. Temporal and spatial data has been analyzed comparatively and quantitatively. Comparative analysis was developed using surfer®- and voxler®-generated images and 3D visualization models applying spatial interpolation and masking methods. Single and multi-variable statistical analysis has been employed to determine the most important factors affecting the fate, transport and detection of ERC near soil

  16. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process. PMID:27035389

  17. Photoinduced chemical reactions on natural single crystals and synthesized crystallites of mercury(II) sulfide in aqueous solution containing naturally occurring amino acids.

    PubMed

    Pal, Bonamali; Ikeda, Shigeru; Ohtani, Bunsho

    2003-03-10

    Photoirradiation at >300 nm of aqueous suspensions of several natural crystal specimens and synthesized crystallites of mercury(II) sulfide (HgS) induced deaminocyclization of optically active or racemic lysine into pipecolinic acid (PCA) under deaerated conditions. This is the first example, to the best of our knowledge, of photoinduced chemical reactions of natural biological compounds over natural minerals. It was found that the natural HgS crystals had activity higher than those of synthesized ones but lower than those of other sulfides of transition metals, e.g., CdS and ZnS, belonging to the same II-IV chalcogenides. In almost all of the photoreactions, decompostion of HgS occurred to liberate hydrogen sulfide (H(2)S) and Hg(2+), and the latter seemed to have undergone in-situ reductive deposition on HgS as Hg(0) after a certain induction period (24-70 h) during the photoirradiation, as indicated by the darkened color of the suspensions. The formation of PCA, presumably through combination of oxidation of lysine and reduction of an intermediate, cyclic Schiff base, could also be seen after a certain induction time of the Hg(0) formation. This was supported by the fact that the addition of small amount of Hg(2+) (0.5 wt % of HgS) increased the PCA yield by almost 2-fold. We also tried to elucidate certain aspects of the plausible stereochemical reactions in relation to the chiral crystal structure of HgS. Although, in some experiments, slight enantiomeric excess of the product PCA was observed, the excess was below or equal to the experimental error and no other supporting analytical data could not be obtained; we cannot conclude the enantiomeric photoproduction of PCA by the natural chiral HgS specimen. PMID:12611518

  18. Evaluating Dense Non-Aqueous Phase Liquid Dissolution and Chemical Oxidation in a three-dimensional, bench-scale fracture network

    NASA Astrophysics Data System (ADS)

    Christensen, K.; McCray, J. E.; Schaefer, C.

    2011-12-01

    Dense non-aqueous phase liquid (DNAPL) present in fractured bedrock settings at residual saturation introduces remediation challenges that are dramatically different from porous media settings. Evaluating DNAPL distribution in a field-scale setting is generally impractical, yet DNAPL distribution plays a critical role in the DNAPL dissolution kinetics. This research uses a three-dimensional (3-D), bench-scale network comprised of low-porosity, fractured sandstone to evaluate the dissolution kinetics of tetrachloroethylene (PCE) DNAPL at residual saturation. DNAPL dissolution kinetics were evaluated during ambient groundwater conditions as well as during in situ chemical oxidation (ISCO) in the 3-D fractured sandstone experiment. DNAPL dissolution in the fracture network was evaluated and described using an effective parameter, the bulk mass transfer coefficient (KL). Results from dissolution experiments revealed a positive, statistically significant correlation between KL with DNAPL-water interfacial area and KL with DNAPL saturation. Results of ISCO experiments with potassium permanganate (KMnO4) determined that the formation of reaction products (manganese dioxides and carbon dioxide) likely altered the primary flow paths and decreased effectiveness of the ISCO application in the fracture network. The formation of reaction products was believed to cause flow bypassing and reduce the DNAPL-oxidant contact, which reduced mass transfer rates. The effectiveness of ISCO was improved (over dissolution alone) if the ISCO application was discontinued after an initial period of effective mass removal. The findings of this research indicate that DNAPL dissolution and oxidation effectiveness in a fracture network setting are not directly correlated to aperture size, which was unexpected, but appear to be primarily impacted by flow path variability and heterogeneous DNAPL distribution.

  19. Effects of physical conditioning on heat tolerance in chemical-defense gear. Master's thesis

    SciTech Connect

    Nauss, M.M.

    1986-06-01

    Today the threat of chemical warfare is real. The only effective defense is the use of chemical defense gear and gas masks. Since they render chemical-warfare gases and liquids impermeable to penetration, they also prohibit sweat evaporation in conditions of thermal stress and thus, contribute to heat illness development. Historically, it has been the hot, humid tropics where United Nation's peacekeeping forces have been called, thus the use of chemical-defense gear in these regions is a realistic possibility and heat illness could affect the outcome of any mission carried out there. The human body only operates within a narrow range of core temparatures, and heat illness is the result of a breakdown in homeostasis. Many factors influence heat tolerance, thus maintaining core temperature within a safe range. Adequate hydration, acclimitization to heat, low body weight, young age, low alcohol intake, and physical fitness all contribute to heat tolerance. This proposal attempts to look specifically at the effect of physical conditioning on heat tolerance in chemical-defense gear as a possible solution to the heat-stress problem noted in this gear. Trainee graduates attending technical training schools at Lackland AFB, Texas, will be tested for maximum oxygen uptake (VO/2max) and heat tolerance time (HTT) in chemical defense gear on bicycle ergometers at Brooks AFB, Texas. Half of these subjects will be physically conditioned for 12 weeks.

  20. Serpentinization, iron oxidation, and aqueous conditions in an ophiolite: Implications for hydrogen production and habitability on Mars

    NASA Astrophysics Data System (ADS)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Pratt, Lisa M.; Sauer, Peter E.; Mann, Paul; Turner, Kathryn; Dyar, M. Darby; Bish, David L.

    2015-04-01

    weathering, and isotopic trends are consistent with kinetic fractionation. The extensive presence of tetrahedral Fe3+ in serpentine shows the system liberally produced H2 while the isotope systematics have implications for preservation of indicators of the aqueous conditions that formed serpentinites on Mars and their habitability.

  1. Chemical stability of ecomustine, a new antitumor agent in aqueous and biological media as assessed by high-performance liquid chromatography.

    PubMed

    el Abed, I; Roger, P; Gosse, C; Atassi, G; Gouyette, A

    1991-01-01

    Ecomustine, or CY233 (NSC-609224), is a new water-soluble nitrosoureido sugar derived from acosamine. A high-performance liquid chromatographic assay (HPLC) developed to quantify the unchanged drug in aqueous solutions and biological specimens enabled us to study the chemical stability as a function of pH, light, and temperature. In buffered aqueous solutions, the kinetics of degradation of CY233 is a first-order process. The log k-pH profile demonstrated hydroxide ion-catalyzed solvolysis. The drug is most stable at pH 4, more stable than some other nitrosoureas in 5% glucose (t1/2, 62-67 h) and in 0.9% isotonic saline (t1/2, 25-37 h) solutions. Based on these findings, blood samples should be collected in cold tubes (4 degrees C) containing citrate buffer (pH 4) and all manipulations should be protected from heat and light. PMID:1998985

  2. The chemical stability of L-isoleucine, L-threonine, and L-serine in aqueous solutions of KCl at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Dolui, Bijoy Krishna

    2016-06-01

    The experimental saturated solubilities of L-isoleucine, L-threonine, and L-serine in aqueous mixtures of a KCl solution at 298.15 K are presented in this article. The solubilities are measured by gravimetric method. In the present study the theoretical calculation of the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy, dipole-dipole interaction effect have been computed. The chemical effects of the transfer Gibbs energies for the present amino acids have been obtained by subtracting the cavity effects and dipole-dipole interaction effects from the Δ G t 0 ( i). The stability of the experimental amino acids in aqueous KCl in terms of thermodynamic parameters is explained.

  3. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities. PMID:24932136

  4. Method of using an aqueous chemical system to recover hydrocarbon and minimize wastes from sludge deposits in oil storage tanks

    SciTech Connect

    Goss, M.L.

    1992-02-04

    This patent describes a process for separating and removing a hydrocarbon, water and solid components of sludge deposited in an oil storage tank. It comprises: introducing a sufficient amount of a nonionic surfactant in an aqueous solution to form a layer of the solution above the sludge layer; the nonionic surfactant comprising: C{sub 8}-C{sub 12} alkylphenol-ethylene oxide adducts of about 55%-75% by weight ethylene oxide, and at least one castor oil-ethylene oxide adduct of about 55%-75% by weight ethylene oxide; the nonionic surfactant being present in a quantity sufficient to separate hydrocarbon component from the sludge without forming an emulsion, adding a diluent, immiscible with the aqueous layer, for extracting the hydrocarbons, and separately draining the diluent layer and aqueous layer from the tank.

  5. Physico-chemical properties of alginate/shellac aqueous-core capsules: Influence of membrane architecture on riboflavin release.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Jeandel, Carole; Arab-Tehrany, Elmira; Desobry, Stéphane

    2016-06-25

    To enhance physico-chemical properties of alginate liquid-core capsules, shellac was incorporated into the membrane (composite capsules) or as an additional external layer (coated capsules). The influence of pH, coating time, shellac concentration and preparation mechanism (acid or calcium precipitation) were investigated. Results showed that shellac significantly influenced the capsules properties. The feasibility of shellac incorporation was closely related to the preparation conditions as confirmed by Infrared spectroscopy. Optical, fluorescence and scanning electron microscopy, highlighted different capsules and membranes architectures. In contrast to simple and composite capsules, coated capsules showed a pH-dependent release of the entrapped vitamin especially after shellac crosslinking with calcium. Heating of coated capsules above the glass transition temperature investigated by Differential Scanning Calorimetry, led to irreversible structural change due to thermoplastic behavior of shellac and enhanced riboflavin retention under acidic conditions. This global approach is useful to control release mechanism of low molecular weight molecules from macro and micro-capsules. PMID:27083835

  6. Chemical Kinetic Study of Toluene Oxidation Under Premixed and Nonpremixed Conditions

    SciTech Connect

    Costa, I D; Bozzelli, J W; Seiser, R; Pitz, W J; Westbrook, C K; Chen, C -; Fournet, R; Seshadri, K; Battin-Leclerc, F; Billaud, F

    2003-12-10

    A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. A detailed chemical-kinetic mechanism for toluene was improved by adding a more accurate description of the phenyl + O{sub 2} reaction channels, toluene decomposition reactions and the benzyl + O reaction. Results of the chemical kinetic mechanism are compared with experimental data obtained from premixed and non-premixed systems. Under premixed conditions, predicted ignition delay times are compared with new experimental data obtained in shock tube. Also, calculated species concentration histories are compared to experimental flow reactor data from the literature. Under non-premixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations are performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in non-premixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. For both premixed and non-premixed systems, sensitivity analysis was used to identify the reaction rate constants that control the overall rate of oxidation in each of the systems considered. Under shock tube conditions, the reactions that influence ignition delay time are H + O{sub 2} chain branching, the toluene decomposition reaction to give an H atom, and the toluene + H abstraction reaction. The reactions that influence autoignition in non-premixed systems involve the benzyl + HO{sub 2} reaction and the phenyl + O{sub 2} reaction.

  7. Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy.

    PubMed

    Yang, X Y; Hao, Z Q; Li, C M; Li, J M; Yi, R X; Shen, M; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2016-06-13

    In this study, chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy (CR-SENLIBS) was for the first time applied to improve the detection sensitivities of trace heavy metal elements in aqueous solutions. Utilizing chemical replacement effect, heavy metal ions in aqueous solution were enriched on the magnesium alloy surface as a solid replacement layer through reacting with the high chemical activity metallic magnesium (Mg) within 1 minute. Unitary and mixed solutions with Cu, Pb, Cd, and Cr elements were prepared to construct calibration curves, respectively. The CR-SENLIBS showed a much better detection sensitivity and accuracy for both unitary and mixed solutions. The coefficients of determination R2 of the calibration curves were above 0.96, and the LoDs were of the same order of magnitude, i.e., in the range of 0.016-0.386 μg/mL for the unitary solution, and in the range of 0.025-0.420 μg/mL for the mixed solution. These results show that CR-SENLIBS is a feasible method for improving the detection sensitivity of trace element in liquid sample, which definitely provides a way for wider application of LIBS in water quality monitoring. PMID:27410358

  8. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].

    PubMed

    Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M

    2006-02-01

    The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported. PMID:16413205

  9. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    EPA Science Inventory

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  10. Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C60 in their matrices.

    PubMed

    Li, Haiqing; Hill, Matthew R; Huang, Runhong; Doblin, Christian; Lim, Seng; Hill, Anita J; Babarao, Ravichandar; Falcaro, Paolo

    2016-05-21

    A facile method to improve the stability of γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) in an aqueous environment has been developed through the incorporation of hydrophobic C60 in their matrices, and the resulting hybrid materials were exploited for drug delivery applications. PMID:27055670

  11. ACCURACY OF PESTICIDE REFERENCE STANDARD SOLUTIONS. PART II. CHEMICAL STABILITY UNDER FOUR STORAGE CONDITIONS

    EPA Science Inventory

    A study was undertaken to assess the long-term chemical stability of dilute standard pesticide solutions of 4 compound classes. The solutions were studied under 4 storage conditions: freezer at -15C; refrigerator at 3C; ambient temperature in the dark; and ambient temperature on ...

  12. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of biomass types (sugar beet pulp vs. bark mulch) and hydrothermal carbonization (HTC) processing conditions (temperature, residence time, and the phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, advanced solid-state nuclear magneti...

  13. Chemistry of the system: Al2O3(c)minus HCL aqueous. [chemical reactions resulting from propellant combustion of rocket propellants

    NASA Technical Reports Server (NTRS)

    Tyree, S. Y., Jr.

    1975-01-01

    In order to study exhaust gas chemistry for the space shuttle, the vapor pressure of 2 to 1 weight mixtures of 3-M hydrochloric acid and Al2O3 was studied over a l80 minute reaction period at 31 C. The Al2O3 sample was one of high surface area furnished by NASA Langley Research Center. A brief review is given for aqueous aluminum chemistry, and the chemical reactions of combustion products (exhaust gases) of aluminum propellant binders for the space shuttle are listed.

  14. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    NASA Astrophysics Data System (ADS)

    da Silva, Alessandra Furtado; Welz, Bernhard; Curtius, Adilson J.

    2002-12-01

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l -1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg -1 were satisfactory for a routine procedure.

  15. DETERMINATION OF STABLE VALENCE STATES OF CHROMIUM IN AQUEOUS AND SOLID WASTE MATRICES - EXPERIMENTAL VERIFICATION OF CHEMICAL BEHAVIOR

    EPA Science Inventory

    The objective of the research effort was to experimentally assess the chemical behavior of the stable species of chromium during the preparation, chemical manipulation, and spectrophotometric analyses of simulated and authentic environmental samples for hexavalent chromium. The d...

  16. QUANTITATIVE ANALYSIS OF AQUEOUS SPECIES USING RAMAN SPECTROMETRY AND EQUILIBRIUM MODEL CALCULATIONS

    EPA Science Inventory

    An analytical approach of quantifying various chemical species, using Raman spectrometry in conjunction with equilibrium modeling, has been tested on aqueous solutions containing Nd, Cu, and dipicolinic acid. Equilibrium modeling was used to select optimum conditions in simple so...

  17. Biodegradation of chemicals in a standardized test and in environmental conditions.

    PubMed

    Ahtiainen, Jukka; Aalto, Miia; Pessala, Piia

    2003-05-01

    The estimation of biodegradation rates is an important source of uncertainty in chemical risk assessment. The existing OECD tests for ready biodegradability have been developed to devise screening methods to determine whether a chemical is potentially easily biodegradable, rather than to predict the actual rate, of biodegradation in the environment. However, risk assessment needs degradation rates. In practice these rates are often estimated (default values) from ready biodegradability tests. These tests have many compromising arbitrary features compared to the situation in the real environment. One important difference is the concentration of the chemical. In wastewater treatment or in the environment many chemicals are present at ng l(-1) to microg l(-1) levels whereas in the tests the concentrations exceed 10-400 mg carbon per litre. These different concentrations of the chemical will lead to different growth kinetics and hence different biodegradation rates. At high concentrations the chemical, if it is degradable, can serve as a primary substrate and competent microorganisms will grow exponentially, resulting in a sigmoid biodegradation curve. At low environmental concentrations the chemical does not serve as a primary substrate, and therefore does not support significant growth of the degraders, and the substrate has a linear biodegradation rate. In this study the biodegradation rates of two reference chemicals, aniline and 4-chloroaniline, were compared in a standard method and in more realistic conditions at low concentrations, using 14C-labelled substances and different sources of inocula. Biomass evolution during the tests was monitored by adenosine triphosphate measurement and also on the basis of the residual 14C-activity in the particulate matter. The results partly support the thesis that low concentrations lead to different biodegradation kinetics compared to the concentrations used in the standard tests. Furthermore the biodegradation rates of the

  18. Effect of Rare Earth Oxide Content on Nanograined Base Metal Electrode Multilayer Ceramic Capacitor Powder Prepared by Aqueous Chemical Coating Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Xiaohui; Kim, Jinyong; Li, Longtu

    2013-02-01

    The aqueous chemical coating route is highly effective in preparing BaTiO3 nanoparticles uniformly coated with additives. Such nanoparticles can be used to produce nano-grained temperature stable BaTiO3 ceramics with core-shell structure, fulfilling the need of next-generation ultrathin layer base metal electrode (BME) multilayer ceramic capacitors (MLCCs). Rare earth oxides are an important class of additives owing to their ability to fulfill both donor and acceptor roles. In this paper, the effects of Y2O3 and Ho2O3 co-dopant content on dielectric and microstructural properties were investigated. By applying chemical coating, BaTiO3-based high performance temperature stabilized ceramics with the average grain size of about 130 nm, which met the requirement of next generation BME MLCCs, were obtained.

  19. Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids from manufactured gas plants by reversed phase comprehensive two-dimensional gas chromatography.

    PubMed

    McGregor, Laura A; Gauchotte-Lindsay, Caroline; Daéid, Niamh Nic; Thomas, Russell; Daly, Paddy; Kalin, Robert M

    2011-07-22

    Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique. PMID:21652041

  20. Quantum chemical analysis of the energy of proton transfer from phenol and chlorophenols to H2O in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schüürmann, Gerrit

    1998-12-01

    Proton transfer energies of phenol and 14 chlorophenols with H2O as a base are analyzed in the gas phase and in solution using quantum chemical methods at the semiempirical and ab initio level of computation. The effect of aqueous solution was accounted for by applying the density functional theory (DFT) implementation of the conductor-like screening model (COSMO) as well as semiempirical continuum-solvation models. The results reveal substantial and systematic overestimations of the free energies of proton transfer as derived from experimental solution-phase pKa data. This can be traced back to both deficiencies in the current model parameterization as well as to limitations of the underlying gas-phase quantum chemical models, which is further illustrated by additional complete-basis-set (CBS) calculations for the proton transfer reaction with phenol. In contrast, the relative pKa trend is reflected well by COSMO-DFT calculations with correlation coefficients (adjusted for degrees of freedom) of 0.96. Decomposition of the dissociation energy in aqueous solution into a gas-phase term and a term summarizing the solvation contributions provides new insights into the effect of solvation on proton transfer energies, and yields mechanistic explanations for the observed differences in the gas-phase and solution-phase acidity orders of various subgroups of the compounds.

  1. The complexation of Cm(III) with oxalate in aqueous solution at T = 20-90 °C: a combined TRLFS and quantum chemical study.

    PubMed

    Skerencak-Frech, Andrej; Maiwald, Martin; Trumm, Michael; Froehlich, Daniel R; Panak, Petra J

    2015-02-16

    The complexation of Cm(III) with oxalate is studied in aqueous solution as a function of the ligand concentration, the ionic strength (NaCl), and the temperature (T = 20–90 °C) by time-resolved laser fluorescence spectroscopy (TRLFS) and quantum chemical calculations. Four complex species ([Cm(Ox)n](3–2n), n = 1, 2, 3, 4) are identified, and their molar fractions are determined by peak deconvolution of the emission spectra. The conditional log K′n(T) values of the first three complexes are calculated and extrapolated to zero ionic strength with the specific ion interaction theory approach. The [Cm(Ox)4](5–) complex forms only at high temperatures. Thus, the log K4(0)(T) value was determined at T > 60 °C. The log K1(0)(25 °C) = 6.86 ± 0.02 decreases by 0.1 logarithmic units in the studied temperature range. The log K2(0)(25 °C) = 4.68 ± 0.09 increases by 0.35, and log K3(0)(25 °C) = 2.11 ± 0.05 increases by 0.37 orders of magnitude. The log Kn(0)(T) (n = 1, 2, 3) values are linearly correlated with the reciprocal temperature. Thus, their temperature dependencies are fitted with the linear Van’t Hoff equation yielding the standard reaction enthalpy (ΔrHm(0)) and standard reaction entropy (ΔrSm(0)) of the stepwise formation of the [Cm(Ox)n](3–2n) species (n = 1, 2, 3). Furthermore, the binary ion–ion interaction coefficients of the four Cm(III) oxalate species with Cl(–)/Na(+) are determined. The binding energies, bond lengths, and bond angles of the different Cm(III) oxalate complexes are calculated in the gas phase as well as in a box containing 1000 H2O molecules by ab inito calculations and molecular dynamics simulations, respectively. PMID:25646935

  2. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions.

    PubMed

    Wehrer, Markus; Jaesche, Philipp; Totsche, Kai Uwe

    2012-09-01

    A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by joint analysis of lab experiments with numerical simulation models. In the present study, published experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns were simulated inversely to receive the parameters of degradation. We evaluated different scenarios of an advection-dispersion model including different terms for degradation, such as zero order, first order and inclusion of a growing and decaying biomass for their ability to explain the data. The general break-through behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. PMID:22609860

  3. Synthesis of graphene by chemical vapor deposition: effect of growth conditions.

    PubMed

    Su, Dan; Ren, Mingwei; Li, Xing'ao; Huang, Wei

    2013-10-01

    Graphene has attracted a great deal of attention due to its extraordinary physical and chemical properties. But the control of growth of high-quality, large-area and inexpensive graphene is still the bottleneck for practical applications. Chemical vapor deposition (CVD) has become the most common method for graphene growth due to its high production and large area of product. However, it generally suffers from an uncontrollable carbon precipitation effect that leads to inhomogeneous growth and strongly dependent on to the growth conditions. Until now, scientists have struggled to synthesize higher quality, larger area graphene through changing the experimental conditions. In this review, the progress made in the last few years concerning the exploration of preparation graphene by CVD is summarized in three aspects (catalysts, precursors and experimental parameters) that influence graphene growth. PMID:24245104

  4. Chemically transferable coarse-grained potentials from conditional reversible work calculations.

    PubMed

    Brini, E; van der Vegt, N F A

    2012-10-21

    The representability and transferability of effective pair potentials used in multiscale simulations of soft matter systems is ill understood. In this paper, we study liquid state systems composed of n-alkanes, the coarse-grained (CG) potential of which may be assumed pairwise additive and has been obtained using the conditional reversible work (CRW) method. The CRW method is a free-energy-based coarse-graining procedure, which, by means of performing the coarse graining at pair level, rigorously provides a pair potential that describes the interaction free energy between two mapped atom groups (beads) embedded in their respective chemical environments. The pairwise nature of the interactions combined with their dependence on the chemically bonded environment makes CRW potentials ideally suited in studies of chemical transferability. We report CRW potentials for hexane using a mapping scheme that merges two heavy atoms in one CG bead. It is shown that the model is chemically and thermodynamically transferable to alkanes of different chain lengths in the liquid phase at temperatures between the melting and the boiling point under atmospheric (1 atm) pressure conditions. It is further shown that CRW-CG potentials may be readily obtained from a single simulation of the liquid state using the free energy perturbation method, thereby providing a fast and versatile molecular coarse graining method for aliphatic molecules. PMID:23083154

  5. Relative toxicity of pyrolysis gases from materials - Effects of chemical composition and test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1978-01-01

    Relative toxicity test data on 270 materials are presented, based on test procedures developed at the University of San Francisco. The effects of chemical composition, using data on 13 types of synthetic polymers and eight types of fabrics, are discussed. Selected materials were evaluated using nine test conditions with the USF method, and using methods developed at the FAA Civil Aeromedical Institute, Douglas Aircraft Company and San Jose State University.

  6. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.

    PubMed

    Choi, Dong Soo; Kim, Keun Soo; Kim, Hyeongkeun; Kim, Yena; Kim, TaeYoung; Rhy, Se-hyun; Yang, Cheol-Min; Yoon, Dae Ho; Yang, Woo Seok

    2014-11-26

    Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene. PMID:25386721

  7. Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.

    PubMed

    Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

    2015-03-28

    Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution. PMID:25469487

  8. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

    PubMed

    Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng

    2012-08-16

    This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions. PMID:22799495

  9. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  10. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  11. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  12. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    PubMed

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small. PMID:20166712

  13. Kinetics of OH-initiated oxidation of some oxygenated organic compounds in the aqueous phase under tropospheric conditions

    NASA Astrophysics Data System (ADS)

    Poulain, L.; Grubert, S.; François, S.; Monod, A.; Wortham, H.

    2003-04-01

    The interest for multiphase interactions of Volatile Organic Compounds (VOCs) in the troposphere has increased for a few years. Inside the clouds water droplets, soluble VOCs can be oxidized by free radicals thus modifying the droplet composition. This reactivity has an impact on the tropospheric oxidizing capacity as well as the aerosols' properties. In the present work, we measured aqueous phase OH-initiated oxidation rate constants of several oxygenated organic compounds relevant to the atmosphere or chosen as test compounds (ethanol, t-butanol, 1-butanol, iso-propanol, 1-propanol, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, phenol, ethyl ter-butyl ether (ETBE), n-propyl acetate, acetone, methyl ethyl ketone (MEK), methyl iso-butyl ketone (MIBK), ethyl formate). Experiments took place in an aqueous phase photoreactor. The rate constants were determinated using the relative kinetic method. Different OH-radical sources were tested, as well as different reference compounds in order to detect any artifact. The results have shown validation of the experimental protocol on test compounds. The overall results allowed to propose a structure reactivity method in order to predict OH-oxidation rate constant of new compounds. Finally, tropospheric life times of the studied compounds were compared inside and outside a cloud.

  14. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-10-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  15. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-05-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  16. In situ X-ray absorption spectroscopy study of Si(1-x)Ge(x)O2 dissolution and germanium aqueous speciation under hydrothermal conditions.

    PubMed

    Ranieri, V; Haines, J; Cambon, O; Levelut, C; Le Parc, R; Cambon, M; Hazemann, J-L

    2012-01-01

    The dissolution of Si(1-x)Ge(x)O(2) solid solutions under hydrothermal conditions was studied by in situ X-ray absorption spectroscopy. Experiments were performed at the Ge K-edge using a high-pressure cell mounted on the FAME beamline of the European Synchrotron Radiation Facility. Spectra in both transmission and fluorescence mode were collected in isobaric conditions (100 and 150 MPa) up to 475 °C. The local atomic structure around the Ge atom was investigated as a function of the temperature and in pure water and sodium hydroxide solutions. In pure water, the solubility of the cristobalite-type Si(0.8)Ge(0.2)O(2) increases with the temperature and the Ge atom is in 4-fold coordination. In a sodium hydroxide aqueous solution, a complex between Ge and Na atoms forms and gives rise to precipitation of sodium germanates. Under these conditions, the Ge content in the solution decreases with increasing temperature. These results show that a sodium hydroxide aqueous solution, usually used for quartz crystal growth, is not suitable for Ge-containing crystals. The dissolution kinetics and phase transformation of the solid solution were studied as a function of the atomic fraction of Ge. Ge-rich solid solutions dissolve and transform to stable phases faster than Ge-poorer composition, giving rise to important variations of the Ge content in solution. PMID:22175278

  17. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    PubMed

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. PMID:25668417

  18. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    DOEpatents

    Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.

    2004-05-18

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  19. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  20. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  1. MIPs in Aqueous Environments.

    PubMed

    Wan, Ying-chun; Ma, Hui-ting; Lu, Bin

    2015-01-01

    When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology. PMID:25796623

  2. Corrosion phenomena of alloy 625 in aqueous solutions containing sulfuric acid and oxygen under subcritical and supercritical conditions

    SciTech Connect

    Kritzer, P.; Boukis, N.; Dinjus, E.

    1998-12-31

    Corrosion phenomena of alloy 625 pressure tubes were investigated in aqueous solutions containing up to 0.2 mol/kg sulfuric acid and up to 1.44 mol/kg oxygen. Applied maximum temperatures and pressures were 500 C, and 38 MPa, respectively. Corrosion started at temperatures around 150 C with intergranular attack. Above 250 C, the whole surface of the alloy was attacked, shallow pits and deep intergranular attack appeared. This behavior can be explained by transpassive dissolution of the protecting Cr(III) oxide layer and leads to severe material loss. The upper temperature limit of severe corrosion at an experimental pressure of 24 MPa was about 390 C. As temperature was increased further and the density of the solution dropped to low values, only slight corrosion was detected.

  3. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions

    NASA Astrophysics Data System (ADS)

    Andreiadis, Eugen S.; Jacques, Pierre-André; Tran, Phong D.; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H2 generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.

  4. Sensitive determination of bromine and iodine in aqueous and biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry using tetramethylammonium hydroxide as a chemical modifier.

    PubMed

    Kataoka, Hiroko; Tanaka, Sachiko; Konishi, Chie; Okamoto, Yasuaki; Fujiwara, Terufumi; Ito, Kazuaki

    2008-06-01

    A procedure for the simultaneous determination of bromine and iodine by inductively coupled plasma (ICP) mass spectrometry was investigated. In order to prevent the decrease in the ionization efficiencies of bromine and iodine atoms caused by the introduction of water mist, electrothermal vaporization was used for sample introduction into the ICP mass spectrometer. To prevent loss of analytes during the drying process, a small amount of tetramethylammonium hydroxide solution was placed as a chemical modifier into the tungsten boat furnace. After evaporation of the solvent, the analytes instantly vaporized and were then introduced into the ICP ion source to detect the (79)Br(+), (81)Br(+), and (127)I(+) ions. By using this system, detection limits of 0.77 pg and 0.086 pg were achieved for bromine and iodine, respectively. These values correspond to 8.1 pg mL(-1) and 0.91 pg mL(-1) of the aqueous bromide and iodide ion concentrations, respectively, for a sampling volume of 95 microL. The relative standard deviations for eight replicate measurements were 2.2% and 2.8% for 20 pg of bromine and 2 pg of iodine, respectively. Approximately 25 batches were vaporizable per hour. The method was successfully applied to the analysis of various certified reference materials and practical situations as biological and aqueous samples. There is further potential for the simultaneous determination of fluorine and chlorine. PMID:18496883

  5. Chemical immobilization of crested porcupines with tiletamine HCl and zolazepam HCl (Zoletil) under field conditions.

    PubMed

    Massolo, Alessandro; Sforzi, Andrea; Lovari, Sandro

    2003-07-01

    The combination of tiletamine HCl and zolazepam HCl has been used on many species of wild mammals. Short induction time, low dosage, satisfactory safety margins, relatively constant immobilization time, and smooth recovery are benefits reported. This combination (Zoletil 100) was used during a study on behavioural ecology of the crested porcupine (Hystrix cristata) in a Mediterranean coastal area (Maremma Regional Park, Tuscany, Italy). We used this mixture 42 times on 31 individuals. Mean adult dose was (+/- SE) 7.24 +/- 0.37 mg/kg (74.0 +/- 3.0 mg/individual). Average adult induction time was 5.3 min (+/- 1.1) and average adult immobilization time was 22.6 min (+/- 6.0). One adult male porcupine died after chemical restraints. The use of tiletamine-zolazepam seems adequate for chemical immobilization of crested porcupines under field conditions, mainly because of its short induction time, small volume to be injected and wide safety margin. PMID:14567239

  6. Chemical kinetic modeling of chlorinated hydrocarbons under stirred-reactor conditions

    SciTech Connect

    Pitz, W.J.; Westbrook, C.K.

    1990-10-04

    The combustin of chloroethane is modeled as a stirred reactor so that we can study critical emission characteristics of the reactor as a function of residence time. We examine important operating conditions such as pressure, temperature, and equivalence ratio and their influence on destructive efficiency of chloroethane and production of other chlorinated products. The model uses a detailed chemical kinetic mechanism that we have developed previously for C{sub 3} hydrocarbons. We have added to this mechanism the chemical kinetic mechanism for C{sub 2} chlorinated hydrocarbons developed by Senkan and coworkers. Some reactions have been added to Senkan's mechanism and some of the reaction-rate expressions have been updated to reflect recent developments in the literature. In the modeling calculations, sensitivity coefficients are determined to find which reaction-rate constants have the largest effect on destructive efficiency. 25 refs., 6 figs., 1 tab.

  7. High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2004-06-01

    An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

  8. The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution.

    PubMed

    Abia, A A; Horsfall, M; Didi, O

    2003-12-01

    The use of different chemically modified cassava waste biomass for the enhancement of the adsorption of three metal ions Cd, Cu and Zn from aqueous solution is reported in this paper. Treating with different concentrations of thioglycollic acid modified the cassava waste biomass. The sorption rates of the three metals were 0.2303 min(-1) (Cd(2+)), 0.0051 min(-1) (Cu(2+)), 0.0040 min(-1) (Zn(2+)) and 0.109 min(-1) (Cd(2+)), 0.0069 min(-1) (Cu(2+)), 0.0367 min(-1) (Zn(2+)) for 0.5 and 1.00 M chemically modified levels, respectively. The adsorption rates were quite rapid and within 20-30 min of mixing, about 60-80% of these ions were removed from the solutions by the biomass and that chemically modifying the binding groups in the biomass enhanced its adsorption capacity towards the three metals. The results further showed that increased concentration of modifying reagent led to increased incorporation, or availability of more binding groups, in the biomass matrix, resulting in improved adsorptivity of the cassava waste biomass. The binding capacity study showed that the cassava waste, which is a serious environmental nuisance, due to foul odour released during decomposition, has the ability to adsorb trace metals from solutions. PMID:14575960

  9. Chemical and structural properties of Jordanian zeolitic tuffs and their admixtures with urea and thiourea: Potential scavengers for phenolics in aqueous medium

    SciTech Connect

    Yousef, R.I.; Tutunji, M.F.; Derwish, G.A.W.; Musleh, S.M.

    1999-08-15

    Native Jordanian zeolitic tuffs, rich in phillipsite, were treated with urea and thiourea. The chemical and structural properties of the tuffs and their urea and thiourea admixtures were studied using SEM, XRF, XRD, and FTIR techniques, and their adsorption capacities were estimated by the methylene blue method. The urea and thiourea treatment has not affected the mineral constitution of the tuffs. The results revealed that urea and thiourea were linked by hydrogen bonding through the NH{sub 2} moiety to the zeolite substrate, with urea showing the strongest effect. Experiments were carried out to investigate the possible use of the prepared materials for the removal of phenol and chlorinated phenols from aqueous solutions. Although thiourea caused a reduction in the relative surface area, both urea and thiourea admixtures were more effective than the free zeolitic tuff in the removal of phenol and chlorinated phenols from water, with urea admixture displaying the largest removal capacity.

  10. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product.

    PubMed

    Valili, Styliani; Siavalas, George; Karapanagioti, Hrissi K; Manariotis, Ioannis D; Christanis, Kimon

    2013-10-15

    Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR. PMID:23764506

  11. Nitrosation of Nigerian medicinal plant preparations under 'chemical' and 'simulated' gastric conditions.

    PubMed

    Atawodi, S E; Lamorde, A G; Spiegelhalder, B; Preussmann, R

    1995-01-01

    Preparations of some tropical plants of medicinal importance, collected from the savannah vegetational belt of Nigeria, were nitrosated and analysed for volatile N-nitrosamines formed under chemical and simulated gastric conditions. N-Nitrosamines were determined on a Thermal Energy Analyser following gas chromatographic separation. Mean concentrations of N-nitrosodimethylamine (NDMA) in the range of 7 to 58 ppb and N-nitrosodiethylamine (NDEA) in the range of 23 to 26 ppb were formed in 31 and 7%, respectively, of the preparations using artificial gastric juice (simulated gastric condition). Under chemically optimal conditions, relatively high levels of NDMA (72-2008 ppb), NDEA (23-1528 ppb) and N-nitrosopyrrolidine (20-405 ppb) were formed in 100, 75 and 32% of the preparations, respectively; N-nitrosomethylethylamine, N-nitrosodibutylamine and N-nitrosomorpholine were formed in fewer preparations. These findings suggest that the endogenous formation of N-nitroso compounds from precursors present in medicinal plants might be another source of human exposure to environmental carcinogens in Nigeria and other developing countries. PMID:7821876

  12. Purification characteristics of pothos for airborne chemicals in growing conditions and its evaluation

    NASA Astrophysics Data System (ADS)

    Sawada, Ayako; Oyabu, Takashi

    Plants have a purification capability to various kinds of airborne chemicals. The capability largely depends on the growing conditions of the plant. In this study, the capabilities of the plants growing in the following three conditions were examined: (a) put the subjective plant in a bowl of tap water, (b) put the one in a pot of growing water for over 1 year and (c) in the pot-soil. The room temperature and light intensity were changed in the experiments. As a result, it became obvious that the capability to formaldehyde varied in some degree according to room temperature. The capability decreased linearly in 12-25 °C in the case of (a), it did not change largely in the case of (b) and it indicated maximum value at 21 °C in the case of (c). The temperature belonged to optimal growth range of the plant. The capability-order is as follows: (a)<(b)<(c). The capability increased as the light intensity increased in each growth-condition. The capabilities to acetone, toluene and xylene were also examined. It became obvious that the capability became lower as the molecular weight of the chemical became larger.

  13. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning.

    PubMed

    Lo IMC; Lai, K C; Chen, G H

    2001-12-01

    The salinity levels of wastewater and sludge are relatively high in some coastal cities as they may use saline water for toilet flushing, and as such,the sludge dewaterability can be affected by it. The salinity effect on sludge dewaterability was therefore investigated through experimental testing of specific resistance in filtration (SRF), time to filter (TTF), and final solid content of sludge. SRF and TTF were determined using Buchner funnel tests. The final solid content was estimated by centrifuging the sludge at four levels of rotational speed. Sludge with three salinity levels (5,000, 10,000 and 20,000 ppm) were considered in this study. Coagulants such as alum, iron(II) sulfate, and organic polyelectrolytes were added to the sludgetostudythe dewaterability of such sludge with chemical conditioning. Experimental results show that doubling the salinity level of the sludge from 10,000 to 20,000 ppm shows not much change in SRF and TTF. Compared with the sludge without chemical conditioning, the addition of the coagulants to the sludge at a salinity level of 5,000 ppm drastically reduces its SRF and TTF. However, sludge with and without chemical conditioning at a salinity of 20,000 ppm has similar SRF and TTF. The final solid content of sludge increases almost linearly with salinity. Among the coagulants used in this study, the cationic polyelectrolyte is found to be better in improving sludge dewaterability, while iron(II) sulfate performs slightly better in enhancing the final solid content of the sludge. PMID:11770773

  14. Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange.

    PubMed

    Clark, David L; Conradson, Steven D; Donohoe, Robert J; Gordon, Pamela L; Keogh, D Webster; Palmer, Phillip D; Scott, Brian L; Tait, C Drew

    2013-04-01

    Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, β = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729. PMID:23485079

  15. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    (III) chloro complexes increases steadily with temperature from 0.4 ?? 0.2 to 1.7 ?? 0.3 in the 0.006m chloride solution and from 0.9 ?? 0.7 to 1.8 ?? 0.7 in the 0.1m GdCl3 aqueous solution in the 300-500????C range. Conversely, the number of H2O ligands of Gd(H2O)??-nCln+3-n complexes decreases steadily from 8.9 ?? 0.4 to 5.8 ?? 0.7 in the 0.006m GdCl3 aqueous solution and from 9.0 ?? 0.5 to 5.3 ?? 1.0 in the 0.1m GdCl3 aqueous solution at temperatures from 25 to 500????C. Analysis of our results shows that the chloride ions partially displace the inner-shell water molecules during Gd(III) complex formation under hydrothermal conditions. The Gd-OH2 bond of the partially-hydrated Gd(III) chloro complexes exhibits slightly smaller rates of length contraction (??? 0.005??A??/100????C) for both solutions. The structural aspects of chloride speciation of Gd(III) as measured from this study and of Yb(III) as measured from our previous experiments are consistent with the solubility of these and other REE in deep-sea hydrothermal fluids. ?? 2006 Elsevier B.V. All rights reserved.

  16. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. PMID:25438118

  17. Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.

    PubMed

    Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

    2013-07-01

    Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints. PMID:23692353

  18. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  19. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.

    PubMed

    Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo

    2014-03-15

    A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. PMID:24462989

  20. Iodine-xenon, chemical, and petrographic studies of Semarkona chondrules - Evidence for the timing of aqueous alteration

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Grossman, J. N.; Olinger, C. T.; Garrison, D. H.

    1991-01-01

    The relationship of the I-Xe system of the Semarkona meteorite to other measured properties is investigated via INAA, petrographic, and noble-gas analyses on 17 chondrules from the meteorite. A range of not less than 10 Ma in apparent I-Xe ages is observed. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. It is argued that the initial I-129/I-127 ratio (R0) is related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0s than porphyritic and olivine-rich chondrules. Chondrules with sulfides on or near the surface have lower R0s than other chondrules. The He-129/Xe-132 ratio in the trapped Xe component anticorrelates with R0, consistent with the evolution of a chronometer in a closed system or in multiple systems. It is concluded that the variations in R0 represent variations in ages, and that later events, possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules.

  1. Iodine-xenon, chemical, and petrographie studies of Semarkona chondrules: Evidence for the timing of aqueous alteration

    USGS Publications Warehouse

    Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.

    1991-01-01

    We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.

  2. Chemical relevance of the copper(II)— L-carnosine system in aqueous solution: A thermodynamic and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Daniele, Pier G.; Prenesti, Enrico; Zelano, Vincenzo; Ostacoli, Giorgio

    1993-08-01

    The copper(II)— L-carnosine (L -) system has been re-investigated in aqueous solution, at I = 0.1 mol dm -1, different temperatures (5⩽ t⩽45°C) and with metal to ligand ratios ranging from 3:1 to 1:3. Both potentiometry and visible spectrophotometry were employed. From an overall consideration of all experiments, [CuLH] 2+, [CuL] +, [CuLH -1]°, [Cu 2L 2H -2]° and [Cu 2LH -1] 2+ were recognized as the species which provide the best interpretation of experimental data. The complex formation constants, determined at different temperatures, allowed us to obtain reliable values of Δ H° and good estimates of Δ C° p. From visible spectrophotometric measurements, carried out at different pH and metal to ligand ratios, it was possible to calculate the electronic spectrum of each complex formed in solution. A structure is also proposed for each species, on the basis of thermodynamic and spectral results.

  3. Chemical enrichment and separation of uranyl ions in aqueous media using novel polyurethane foam chemically grafted with different basic dyestuff sorbents.

    PubMed

    El-Shahat, M F; Moawed, E A; Farag, A B

    2007-01-15

    The new type of the grafted polyurethane foam sorbents were prepared by coupling polyether polyol, toluene diisocyanate and basic dyestuff (Methylene blue, Rhodamine B and Brilliant green). The Me.B-PUF, Rh.B-PUF and Br.G-PUF were characterized using UV/vis, IR and TGA. The adsorption properties and chromatographic behaviour of these new adsorbents for preconcentration and separation of uranium(VI) ions at low concentrations from aqueous thiocyanate media were investigated by a batch process. The maximum sorption of U(VI) was in the pH ranges 1-4. The kinetics of sorption of the U(VI) by the Grafted-PUF were found to be fast with half life of sorption (t(1/2)) in 2.43min. The average sorption capacity of different sorbents 0.124meqg(-1) for uranyl ions, enrichment factors approximately 40 and the recovery 98-100% were achieved (R.S.D. approximately 0.73%). The basic dyestuff Grafted-PUF could be used many times without decreasing their capacities significantly. The value of the Gibbs free energy (DeltaG) for the sorbents is -7.3kJmol(-1), which reflects the spontaneous nature of sorption process. The sorption mechanism of the metal ion onto Grafted-PUF was also discussed. PMID:19071294

  4. Combined Micro-chemical and Micro-structural Analysis of New Minerals Representing Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2015-12-01

    Recent improvements in micro-chemical analysis in combination with novel tools for micrometer-scale structural analysis of minerals from synchrotron X-ray diffraction open a pathway towards studies of mineral paragenesis that were previously not or barely accessible. Often mineral assemblies that represent extreme conditions also pose extreme challenges to analysis: very small size scale, complex matrix, minor amounts of material. Examples of such extreme, but also quite relevant environments are: a) High pressure shock-metamorphic minerals in meteorites and terrestrial impact sites, b) inclusions in diamonds from the deep mantle, c) ultrarefractory phases in Ca-Al-inlcusions from the solar nebula, d) presolar condensates. We show how a combination of synchrotron-based structural and semi-quantitative chemical techniques, with electron-microscopy based high-resolution imaging and fully quantitative chemical analysis and qualitative structural identification establish a powerful tool for discovery and characterization of important and interesting new minerals on micron- to submicron size scale.

  5. Combined physical and chemical methods to control lesser mealworm beetles under laboratory conditions.

    PubMed

    Wolf, Jônatas; Potrich, Michele; Lozano, Everton R; Gouvea, Alfredo; Pegorini, Carla S

    2015-06-01

    The lesser mealworm beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), is an important insect pest. The insect acts as a disease vector and reservoir, negatively affecting the health of birds and humans, and harming poultry husbandry. Controlling the lesser mealworm is generally based on using synthetic chemical insecticides, which are sometimes ineffective, and is limited due to market concerns regarding the toxicity of chemical residues in food products. In this context, the present study aimed to evaluate the potential for the combination of physical and chemical methods to control A. diaperinus. Bioassays were conducted using poultry bedding and known populations of beetle adults and larvae. The treatments consisted of the isolated application of 400 g/m2 hydrated lime; 20% added moisture (distilled water); temperature increase to 45°C; an insecticide composed of cypermethrin, chlorpyrifos, and citronellal; and a combination of these factors. Beetle mortality was measured at 7 and 10 d of treatment. The hydrated lime and moisture treatments alone did not control A. diaperinus. Raising the temperature of the poultry bedding to 45°C effectively controlled both larvae (90±6%) and adults (90±4%). The use of insecticide provided adequate control of A. diaperinus in the conditions of the bioassay (93±2% and 68±5% for adults and larvae, respectively). The combination of the studied factors led to the total control of larvae and adults after 7 d of treatment. PMID:25834245

  6. Application of pervaporation and vapor permeation processes to separate aqueous ethanol solution through chemically modified Nylon 4 membranes

    SciTech Connect

    Wang, Y.H.; Teng, M.Y.; Lee, K.R.; Wang, D.M.; Lai, J.Y.

    1998-08-01

    The pervaporation performance of a Nylon 4 membrane, chemically grafted by N,N-dimethylaminoethyl methacrylate (DMAEM), DMAEM-g-N4, was studied by measurement of the permeation ratio and the pervaporation separation index. It was found that the water permselectivity and permeation rate for the chemically modified Nylon 4 membrane were higher than those of the unmodified Nylon 4 membrane. Optimum pervaporation results, a separation factor of 28.3, and a permeation rate of 439 g/m{sup 2}{center_dot}h, were obtained when the degree of grafting was 12.7%. It was also found that all the permeation ratios at low temperature were less than unity. In addition, compared with pervaporation, vapor permeation effectively increases the permselectivity of water.

  7. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars.

    PubMed

    Cao, Xiaoyan; Ro, Kyoung S; Libra, Judy A; Kammann, Claudia I; Lima, Isabel; Berge, Nicole; Li, Liang; Li, Yuan; Chen, Na; Yang, John; Deng, Baolin; Mao, Jingdong

    2013-10-01

    Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars. PMID:24004410

  8. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.

    PubMed

    Navarro, Carla; Díaz, Mario; Villa-García, María A

    2010-07-15

    The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage. PMID:20568743

  9. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans.

    PubMed

    Moon, Joon-Kwan; Shibamoto, Takayuki

    2009-07-01

    The volatile chemicals in dichloromethane extracts from green coffee beans, roasted at 230 degrees C for 12 min (light), at 240 degrees C for 14 min (medium), at 250 degrees C for 17 min (city), or at 250 degrees C for 21 min (French), were analyzed by gas chromatography and gas chromatography-mass spectrometry. Among the 52 volatile compounds identified, the major compounds were 5-hydroxymethylfurfural, furfuryl alcohol, and 6-methyl-3,5-dihydroxy-4H-pyran-4-one in light-roasted beans; furfuryl alcohol, 5-hydroxymethylfurfural, and gamma-butyrolactone in medium-roasted beans; furfuryl alcohol, gamma-butyrolactone, and 2-acetylpyrrole in city-raosted beans; and gamma-butyrolactone, furfuryl alcohol, and catechol in French-roasted beans. Furfural derivatives and furanones were yielded in relatively high concentrations under mild roasting conditions and then reduced at higher roasting intensities. More pyridines and pyrroles were formed by high roasting intensities than by mild roasting intensities. Chlorogenic acid degradation products, phenols, and a lactone were produced more by high roasting intensities than by low roasting intensities. The results of the present study suggest that controlling the roasting conditions according to the formation of particular chemicals can prepare a roasted coffee with preferable flavor. PMID:19579294

  10. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    SciTech Connect

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

  11. A continuum analysis of chemical nonequilibrium under hypersonic low-density flight conditions

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.

    1986-01-01

    Results of employing the continuum model of Navier-Stokes equations under the low-density flight conditions are presented. These results are obtained with chemical nonequilibrium and multicomponent surface slip boundary conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and direct simulation Monte Carlo (DSMC) predictions. With the inclusion of new surface-slip boundary conditions in NS calculations, the surface heat transfer and other flowfield quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. This suggests a much wider practical range for the applicability of Navier-Stokes solutions than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods.

  12. Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast

    NASA Astrophysics Data System (ADS)

    Pfister, G. G.; Parrish, D.; Worden, H.; Emmons, L. K.; Edwards, D. P.; Wiedinmyer, C.; Diskin, G. S.; Huey, G.; Oltmans, S. J.; Thouret, V.; Weinheimer, A.; Wisthaler, A.

    2010-11-01

    The objective of this study is to analyze the pollution inflow into California during summertime and how it impacts surface air quality through combined analysis of a suite of observations and global and regional models. The focus is on the transpacific pollution transport investigated by the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in June 2008. Additional observations include satellite retrievals of carbon monoxide and ozone by the EOS Aura Tropospheric Emissions Spectrometer (TES), aircraft measurements from the MOZAIC program and ozonesondes. We compare chemical boundary conditions (BC) from the MOZART-4 global model, which are commonly used in regional simulations, with measured concentrations to quantify both the accuracy of the model results and the variability in pollution inflow. Both observations and model reflect a large variability in pollution inflow on temporal and spatial scales, but the global model captures only about half of the observed free tropospheric variability. Model tracer contributions show a large contribution from Asian emissions in the inflow. Recirculation of local US pollution can impact chemical BC, emphasizing the importance of consistency between the global model simulations used for BC and the regional model in terms of emissions, chemistry and transport. Aircraft measurements in the free troposphere over California show similar concentration range, variability and source contributions as free tropospheric air masses over ocean, but caution has to be taken that local pollution aloft is not misinterpreted as inflow. A flight route specifically designed to sample boundary conditions during ARCTAS-CARB showed a prevalence of plumes transported from Asia and thus may not be fully representative for average inflow conditions. Sensitivity simulations with a regional model with altered BCs show that the temporal variability in the pollution inflow does impact modeled

  13. Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast

    NASA Astrophysics Data System (ADS)

    Pfister, G. G.; Parrish, D. D.; Worden, H.; Emmons, L. K.; Edwards, D. P.; Wiedinmyer, C.; Diskin, G. S.; Huey, G.; Oltmans, S. J.; Thouret, V.; Weinheimer, A.; Wisthaler, A.

    2011-02-01

    The objective of this study is to analyze the pollution inflow into California during summertime and how it impacts surface air quality through combined analysis of a suite of observations and global and regional models. The focus is on the transpacific pollution transport investigated by the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in June 2008. Additional observations include satellite retrievals of carbon monoxide and ozone by the EOS Aura Tropospheric Emissions Spectrometer (TES), aircraft measurements from the MOZAIC program and ozonesondes. We compare chemical boundary conditions (BC) from the MOZART-4 global model, which are commonly used in regional simulations, with measured concentrations to quantify both the accuracy of the model results and the variability in pollution inflow. Both observations and model reflect a large variability in pollution inflow on temporal and spatial scales, but the global model captures only about half of the observed free tropospheric variability. Model tracer contributions show a large contribution from Asian emissions in the inflow. Recirculation of local US pollution can impact chemical BC, emphasizing the importance of consistency between the global model simulations used for BC and the regional model in terms of emissions, chemistry and transport. Aircraft measurements in the free troposphere over California show similar concentration ranges, variability and source contributions as free tropospheric air masses over ocean, but caution has to be taken that local pollution aloft is not misinterpreted as inflow. A flight route specifically designed to sample boundary conditions during ARCTAS-CARB showed a prevalence of plumes transported from Asia and thus may not be fully representative for average inflow conditions. Sensitivity simulations with a regional model with altered BCs show that the temporal variability in the pollution inflow does impact modeled

  14. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions

    NASA Astrophysics Data System (ADS)

    Wang, Xinfeng; Wang, Wenxing; Yang, Lingxiao; Gao, Xiaomei; Nie, Wei; Yu, Yangchun; Xu, Pengju; Zhou, Yang; Wang, Zhe

    2012-12-01

    Secondary inorganic aerosols play important roles in visibility reduction and in regional haze pollution. To investigate the characteristics of size distributions of secondary sulfates and nitrates as well as their formation mechanisms under hazes, size-resolved aerosols were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) at an urban site in Jinan, China, in all four seasons (December 2007-October 2008). In haze episodes, the secondary sulfates and nitrates primarily formed in fine particles, with elevated concentration peaks in the droplet mode (0.56-1.8 μm). The fine sulfates and nitrates were completely neutralized by ammonia and existed in the forms of (NH4)2SO4 and NH4NO3, respectively. The secondary formation of sulfates, nitrates and ammonium (SNA) was found to be related to heterogeneous aqueous reactions and was largely dependent on the ambient humidity. With rising relative humidity, the droplet-mode SNA concentration, the ratio of droplet-mode SNA to the total SNA, the fraction of SNA in droplet-mode particles and the mass median aerodynamic diameter of SNA presented an exponential, logarithmic or linear increase. Two heavily polluted multi-day haze episodes in winter and summer were analyzed in detail. The secondary sulfates were linked to heterogeneous uptake of SO2 followed by the subsequent catalytic oxidation by oxygen together with iron and manganese in winter. The fine nitrate formation was strongly associated with the thermodynamic equilibrium among NH4NO3, gaseous HNO3 and NH3, and showed different temperature-dependences in winter and summer.

  15. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2016-04-01

    One dimensional column experiments were conducted using saturated porous media containing residual trichloroethylene (TCE) to understand the effects of non-aqueous phase liquids (NAPLs) and chemical oxidation on perfluoroalkyl acid (PFAA) fate and transport. Observed retardation factors and data from supporting batch studies suggested that TCE provides additional sorption capacity that can increase PFAA retardation (i.e., decreased mobility), though the mechanisms remain unclear. Treatment with persulfate activated with FeCl2 and citric acid, catalyzed hydrogen peroxide (CHP), or permanganate did not result in oxidative transformations of PFAAs. However, impacts on PFAA sorption were apparent, and enhanced sorption was substantial in the persulfate-treated columns. In contrast, PFAA transport was accelerated in permanganate- and CHP-treated columns. Ultimately, PFAA transport in NAPL contaminated groundwater is likely influenced by porous media properties, NAPL characteristics, and water quality properties, each of which can change due to chemical oxidant treatment. For contaminated sites for which ISCO is a viable treatment option, changes to PFAA transport and the implications thereof should be included as a component of the remediation evaluation and selection process. PMID:26854608

  16. Natural Colloid Mobilization in Unsaturated Hanford Coarse Sand Under Transient Flow and Transient Chemical Conditions

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Saiers, J. E.

    2007-12-01

    Colloid-sized clay, carbonate, and metal oxide particles are ubiquitous in the vadose zone and strongly adsorb dissolved contaminants such as metals and radionuclides. Under certain conditions, colloid particles are readily mobilized (released) into pore water and travel in a nearly conservative fashion and thus can facilitate the transport of contaminants. Although much progress has been made toward identifying and modeling colloid mobilization and transport processes in ideal, homogeneous systems, our understanding of the phenomenon in non-ideal, heterogeneous systems is still limited. We investigated natural colloid mobilization and transport in laboratory columns packed with Hanford Coarse Sand, a heterogeneous natural sediment. Our major focus was the role of transient flow and transient chemical conditions on colloid release and transport in unsaturated media. We found that a moving air-water interface had the greatest effects on the mobilization of colloid, and up to ~1000 mg/L of colloid was mobilized during column drainage at an ionic strength of 2 mM. An increase in flow rate or decrease in ionic strength also mobilized colloids. A model that accounts for transient pore water flow, colloid transport, and mass transfer in unsaturated media was developed to describe colloid mobilization in our column experiments. Both our experimental and modeling results showed the important role of moving air-water interfaces, changes in moisture content, and changes in ionic strength in mobilizing natural colloids in heterogeneous natural sediments. This work has contributed to our knowledge of colloid and colloid-associated contaminant mobilization in real vadose-zone environments under transient flow and transient chemical conditions.

  17. Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite.

    PubMed

    Lalhmunsiama; Tiwari, Diwakar; Lee, Seung-Mok

    2015-09-01

    Sericite, a mica based natural clay, was annealed at 800 °C for 4 h followed by acid activation using 3.0 mol/L of HCl at 100 °C in order to obtain activated sericite (AS). The activation of sericite causes a significant increase in specific surface area. Further, SEM images of the AS showed a disordered and heterogeneous surface structure with mesopores on its surface whereas the pristine sericite possessed a compact layered structure. The materials were further employed in the removal of Sr(II) from aqueous solutions in a batch reactor system. Removal of Sr(II) was studied as a function of pH, concentration of adsorbate, contact time, background electrolyte concentrations and dose of adsorbents using pristine sericite and AS. The removal of Sr(II) was favoured increasing the pH of the solution and the extent of Sr(II) removal was increased with increasing the sorbate concentration. Equilibrium sorption data obtained with pristine sericite were fitted well to Langmuir adsorption isotherm whereas the sorption data collected using AS better fitted to the Freundlich adsorption isotherm. The time dependence sorption data showed that the uptake of Sr(II) was very rapid and an apparent sorption equilibrium was achieved within 30 min and 60 min of contact for sericite and AS, respectively. The kinetic data were modelled to the pseudo-first order and pseudo-second order rate kinetics and sorption capacities as well as rate constants were evaluated. Increase in background electrolyte concentrations NaNO3 (0.001-0.1 mol/L) indicated that the presence of NaNO3 caused to decrease the percent removal of Sr(II) by sericite and AS. Furthermore, fixed-bed column reactor operations were performed to obtain the breakthrough data. The breakthrough data were fitted well to the non-linear Thomas equation. Therefore, the present study suggested that AS can be adequately applied for the removal of Sr(II) from the aquatic environment. PMID:26048059

  18. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions

    PubMed Central

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693

  19. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution.

    PubMed

    Crans, Debbie C; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D; Willsky, Gail R; Roberts, Chris R

    2010-05-01

    Although dogma states that vanadate is readily reduced by glutathione, cysteine, and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercaptoethanol have been investigated using multinuclear NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopy. Vanadate forms a stable complex of 2:2 stoichiometry with 2-mercaptoethanol at neutral and alkaline pH. In contrast, vanadate can oxidize 2-mercaptoethanol; this process is favored at low pH and high solute concentrations. The complex that forms between aqueous vanadium(IV) and 2-mercaptoethanol has a 1:2 stoichiometry and can be observed at high pH and high 2-mercaptoethanol concentration. The solution structures have been deduced based on coordination induced chemical shifts and speciation diagrams prepared. This work demonstrates that both vanadium(IV) and (V)-thiol complexes form and that redox chemistry also takes place. Whether reduction of vanadate takes place is governed by a combination of parameters: pH, solute- and vanadate-concentrations and the presence of other complexing ligands. On the basis of these results it is now possible to understand the distribution of vanadium in oxidation states (IV) and (V) in the presence of glutathione, cysteine, and other thiols and begin to evaluate the forms of the vanadium compounds that exert a particular biological effect including the insulin-enhancing agents, antiamoebic agents, and interactions with vanadium binding proteins. PMID:20359175

  20. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  1. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃. PMID:25812088

  2. Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions

    EPA Science Inventory

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

  3. Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications

    NASA Astrophysics Data System (ADS)

    Dudal, Yves; Gérard, Frédéric

    2004-08-01

    Soil organic matter consists of a highly complex and diversified blend of organic molecules, ranging from low molecular weight organic acids (LMWOAs), sugars, amines, alcohols, etc., to high apparent molecular weight fulvic and humic acids. The presence of a wide range of functional groups on these molecules makes them very reactive and influential in soil chemistry, in regards to acid-base chemistry, metal complexation, precipitation and dissolution of minerals and microbial reactions. Out of these functional groups, the carboxylic and phenolic ones are the most abundant and most influential in regards to metal complexation. Therefore, chemical equilibrium models have progressively dealt with organic matter in their calculations. This paper presents a review of six chemical equilibrium models, namely N ICA-Donnan, E Q3/6, G EOCHEM, M INTEQA2, P HREEQC and W HAM, in light of the account they make of natural organic matter (NOM) with the objective of helping potential users in choosing a modelling approach. The account has taken various faces, mainly by adding specific molecules within the existing model databases (E Q3/6, G EOCHEM, and P HREEQC) or by using either a discrete (W HAM) or a continuous (N ICA-Donnan and M INTEQA2) distribution of the deprotonated carboxylic and phenolic groups. The different ways in which soil organic matter has been integrated into these models are discussed in regards to the model-experiment comparisons that were found in the literature, concerning applications to either laboratory or natural systems. Much of the attention has been focused on the two most advanced models, W HAM and N ICA-Donnan, which are able to reasonably describe most of the experimental results. Nevertheless, a better knowledge of the humic substances metal-binding properties is needed to better constrain model inputs with site-specific parameter values. This represents the main axis of research that needs to be carried out to improve the models. In addition to

  4. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  5. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions

    PubMed Central

    Wu, Zhen-Yu; Li, Chao; Liang, Hai-Wei; Zhang, Yu-Ning; Wang, Xin; Chen, Jia-Fu; Yu, Shu-Hong

    2014-01-01

    To address oil spillage and chemical leakage accidents, the development of efficient sorbent materials is of global importance for environment and water source protection. Here we report on a new type of carbon nanofiber (CNF) aerogels as efficient sorbents for oil uptake with high sorption capacity and excellent recyclability. Importantly, the oil uptake ability of the CNF aerogels can be maintained over a wide temperature range, from liquid nitrogen temperature up to ca. 400°C, making them suitable for oil cleanup under harsh conditions. The outstanding sorption performance of CNF aerogels is associated with their unique physical properties, such as low density, high porosity, excellent mechanical stability, high hydrophobicity and superoleophilicity. PMID:24518262

  6. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    DOE PAGESBeta

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore,more » the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less

  7. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    PubMed Central

    Burguete, M Isabel; García-Verdugo, Eduardo

    2011-01-01

    Summary This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones. PMID:22043246

  8. A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions

    SciTech Connect

    Wu, C J; Manaa, M R; Fried, L E

    2006-05-30

    We have carried out density functional based tight binding (DFTB) molecular dynamics (MD) simulation to study energetic reactions of solid Pentaerythritol Tetranitrate (PETN) at conditions approximating the Chapman-Jouguet (CJ) detonation state. We found that the initial decomposition of PETN molecular solid is characterized by uni-molecular dissociation of the NO{sub 2}groups. Interestingly, energy release from this powerful high explosive was found to proceed in several stages. The large portion of early stage energy release was found to be associated with the formation of H{sub 2}O molecules within a few picoseconds of reaction. It took nearly four times as long for majority of CO{sub 2} products to form, accompanied by a slow oscillatory conversion between CO and CO{sub 2}. The production of N{sub 2} starts after NO{sub 2} loses its oxygen atoms to hydrogen or carbon atoms to form H{sub 2}O or CO. We identified many intermediate species that emerge and contribute to reaction kinetics, and compared our simulation with a thermo-chemical equilibrium calculation. In addition, a detailed chemical kinetics of formation of H{sub 2}O, CO, and CO{sub 2} were developed. Rate constants of formations of H{sub 2}O, CO{sub 2} and N{sub 2} were reported.

  9. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    SciTech Connect

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.

  10. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  11. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    PubMed

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  12. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 °C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 °C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G 5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions.

  13. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Physical and chemical stability of expired fixed dose combination artemether-lumefantrine in uncontrolled tropical conditions

    PubMed Central

    Bate, Roger; Tren, Richard; Hess, Kimberly; Attaran, Amir

    2009-01-01

    Background New artemisinin combination therapies pose difficulties of implementation in developing and tropical settings because they have a short shelf-life (two years) relative to the medicines they replace. This limits the reliability and cost of treatment, and the acceptability of this treatment to health care workers. A multi-pronged investigation was made into the chemical and physical stability of fixed dose combination artemether-lumefantrine (FDC-ALU) stored under heterogeneous, uncontrolled African conditions, to probe if a shelf-life extension might be possible. Methods Seventy samples of expired FDC-ALU were collected from private pharmacies and malaria researchers in seven African countries. The samples were subjected to thin-layer chromatography (TLC), disintegration testing, and near infrared Raman spectrometry for ascertainment of active ingredients, tablet integrity, and chemical degradation of the tablet formulation including both active ingredients and excipients. Results Seventy samples of FDC-ALU were tested in July 2008, between one and 58 months post-expiry. 68 of 70 (97%) samples passed TLC, disintegration and Raman spectrometry testing, including eight samples that were post-expiry by 20 months or longer. A weak linear association (R2 = 0.33) was observed between the age of samples and their state of degradation relative to brand-identical samples on Raman spectrometry. Sixty-eight samples were retested in February 2009 using Raman spectrometry, between eight and 65 months post-expiry. 66 of 68 (97%) samples passed Raman spectrometry retesting. An unexpected observation about African drug logistics was made in three batches of FDC-ALU, which had been sold into the public sector at concessional pricing in accordance with a World Health Organization (WHO) agreement, and which were illegally diverted to the private sector where they were sold for profit. Conclusion The data indicate that FDC-ALU is chemically and physically stable well beyond

  15. The Standard Chemical-Thermodynamic Properties of Phosphorus and Some of its Key Compounds and Aqueous Species: An Evaluation of Differences between the Previous Recommendations of NBS/NIST and CODATA

    SciTech Connect

    Rard, J A; Wolery, T J

    2007-01-30

    The aqueous chemistry of phosphorus is dominated by P(V), which under typical environmental conditions (and depending on pH and concentration) can be present as the orthophosphate ions H{sub 3}PO{sub 4}{sup 0}(aq), H{sub 2}PO{sub 4}{sup -}(aq), HPO{sub 4}{sup 2-}(aq), or PO{sub 4}{sup 3-}(aq). Many divalent, trivalent, and tetravalent metal ions form sparingly soluble orthophosphate phases that, depending on the solution pH and concentrations of phosphate and metal ions, can be solubility limiting phases. Geochemical and chemical engineering modeling of solubilities and speciation requires comprehensive thermodynamic databases that include the standard thermodynamic properties for the aqueous species and solid compounds. The most widely used sources for standard thermodynamic properties are the NBS (now NIST) Tables (from 1982 and earlier; with a 1989 erratum) and the final CODATA evaluation (1989). However, a comparison of the reported enthalpies of formation and Gibbs energies of formation for key phosphate compounds and aqueous species, especially H{sub 2}PO{sub 4}{sup -}(aq) and HPO{sub 4}{sup 2-}(aq), shows a systematic and nearly constant difference of 6.3 to 6.9 kJ {center_dot} mol{sup -1} per phosphorus atom between these two evaluations. The existing literature contains numerous studies (including major data summaries) that are based on one or the other of these evaluations. In this report we examine and identify the origin of this difference and conclude that the CODATA evaluation is more reliable. Values of the standard entropies of the H{sub 2}PO{sub 4}{sup -}(aq), HPO{sub 4}{sup 2-}(aq), and PO{sub 4}{sup 3-}(aq) ions at 298.15 K and p{sup o} = 1 bar were re-examined in the light of more recent information and data not considered in the CODATA review, and a slightly different value of S{sub m}{sup o}(H{sub 2}PO{sub 4}{sup -}, aq, 298.15 K) = 90.6 {+-} 1.5 J {center_dot} K{sup -1} mol{sup -1} was obtained.

  16. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  17. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  18. Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Brantley, S. L.

    2010-12-01

    To test which variables may be important for weathering on Mars, the effects of temperature (22°C, 6°C, and -19°C), high ionic strength, and oxygen concentrations were investigated in batch dissolution experiments containing forsterite, fayalite, and basalt glass. CaCl2-NaCl-H2O brine can remain liquid to temperatures of -55°C and thus may be liquid in the cold, dry climate that currently characterizes Mars. To understand weathering under such conditions, dissolution rates were measured in experiments in distilled water with and without CaCl2 and NaCl. As observed by others, dissolution rates increased with temperature, and only fayalite dissolution was significantly affected by the presence or absence of oxygen. Enhanced fayalite dissolution under anoxic conditions suggests that Fe-rich olivine would dissolve more rapidly than Mg-rich olivine on Mars. Dissolution in the two most dilute experimental solutions (deionized water and CaCl2-NaCl-H2O solution of ionic strength = 0.7 m) were the same within uncertainty, but apparent dissolution rate constants in CaCl2-NaCl-H2O brines were significantly slower. Steady silica concentrations are decreased in the brines, consistent with other work, and precipitation rates of silica decrease with decreasing temperatures. These results suggest that enhanced silica precipitation could be an indicator of high ionic strength solutions on Mars. Consistent with these observations, weathering of basalt has been observed to sometimes be accompanied by precipitated layers of silica in cold, dry environments on Earth. If dissolution on Mars occurs or occurred under conditions similar to our experiments, cation leaching would be expected to be accompanied by silica precipitates on weathering surfaces.

  19. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  20. Chemical composition and quantitative relationship between meteorological condition and fine particles in Beijing.

    PubMed

    Wang, Jing-Li; Zhang, Yuan-Hang; Shao, Min; Liu, Xu-Lin; Zeng, Li-Min; Cheng, Cong-Lan; Xu, Xiao-Feng

    2004-01-01

    The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM2.5 showed an increasing trend. To understand pollution characteristics of PM2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM2.5 levels in Beijing were very high, the annual average PM2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM2.5 and wind speed was not good at stronger wind. PMID:15559829

  1. Dimethylglycine and chemically related amines tested for mutagenicity under potential nitrosation conditions.

    PubMed

    Hoorn, A J

    1989-04-01

    Dimethylglycine (DMG) and the chemically related amino acids glycine, sarcosine (monomethylglycine) and betaine (trimethylglycine) were tested in Salmonella typhimurium strain TA100 after treatment with sodium nitrite under acidic conditions using a modified Ames Salmonella/microsome assay as reported by Colman et al. (1980). The increase in the number of revertants observed both with and without metabolic activation was also induced in the control mixtures without adding the amines. From the subsequent testing of the individual components of the mixtures, we concluded that non-consumed nitrite was responsible for the mutagenic responses observed in the different reaction mixtures, and not the amines themselves. There were no consistent indications of mutagenic activity of the DMG test mixture as compared to the control mixture which exhibited both consistent mutagenic activity and a toxic effect which was not increased by the addition of DMG. In fact, DMG seemed to decrease the toxicity of the control reaction solution to the Salmonella which was clearly observed at the higher doses. DMG cannot be considered mutagenic under the test conditions employed. The same can be said of the other amino acids as well. PMID:2468082

  2. Surface studies of niobium chemically polished under conditions for superconducting radiofrequency cavity production

    SciTech Connect

    Hui Tian; Michael Kelley; Charles Reece

    2005-11-14

    The performance of niobium superconducting radiofrequency accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant data sets. We found that the predominant general surface orientation is (100), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3 - 1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ?? 30% and that of the surface composition is ?? 5%.

  3. Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys.

    PubMed

    Cooper, K R; Kelly, R G

    1999-07-30

    The environment-assisted cracking (EAC) susceptibility of some aluminum alloys used for airplane structural components currently limits their use in the peak strength condition. Understanding the mechanism of EAC will facilitate the development of crack-resistant alloys with optimum mechanical properties. One component towards understanding the fundamental processes responsible for EAC is a comprehensive knowledge of the chemical conditions within cracks. The present work uses capillary electrophoresis (CE) to quantify the crack chemistry in order to provide insight into the nature of the mechanism controlling cracking. The highly restricted geometry of cracks in metals means that a crack typically contains less than 10 microliters of solution. The high mass sensitivity combined with the inherently robust nature of CE makes it an ideal analytical technique for this application. Complicating factors in the accurate determination of the crack environment include high levels of sodium present from the test solution. Low sample volume and analyte matrix complexity necessitated the development of specific sampling, extraction and analysis methods. Analysis of the crack solutions in EAC-susceptible material revealed high levels of Al3+, Mg2+, Zn2+, and Cl- near the crack tip. Cations arise from the anodic dissolution of the alloy, whereas chloride ingress from the external environment occurs to maintain solution electroneutrality within the crack. In contrast, EAC-resistant material exhibited significantly lower concentrations of dissolution products. PMID:10457501

  4. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  5. Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions

    PubMed Central

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

  6. [Adsorption of calcium ion from aqueous solution using Na(+)-conditioned clinoptilolite for hot-water softening].

    PubMed

    Zhang, Shuo; Wang, Dong; Chen, Yuan-Chao; Zhang, Xing-Wen; Chen, Gui-Jun

    2015-02-01

    This work investigated adsorptive removal of calcium ion (Ca2+) by virtue of Na(+) -conditioned clinoptilolite simulating the process of softening for industrial hot-water system. Influential factors such as the activation/regeneration of sorbent and solution pH were tested. The kinetics/thermodynamics for adsorption of Ca2+ were analyzed and discussed. Results showed that: (1) The adsorption rate was in good agreement with the pseudo-second order kinetic models, and the process of adsorption better followed the Langmuir model; (2) Higher solution temperature allowed an enhanced efficiency on Ca2+ removal, albeit the maximum adsorption capacity of Na(+)-conditioned clinoptilolite was hardly affected; (3) The process of adsorption was dominated by chemisorption, and also characterized by entropy increase with spontaneous/endothermic nature; (4) Solution temperature was suggested to be controlled within the range of 6 to 10, and more than 9 times of sorbent regeneration could be ensured for an effective adsorption towards Ca2+ with initial concentration less than 20 mg x L(-1). It was demonstrated that the activated clinoptilolite should be a promising alternative adsorbent for industrial hot-water softening. PMID:26031107

  7. Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions

    SciTech Connect

    Gray, W.J.; Einziger, R.E.

    1998-04-01

    Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates.

  8. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  9. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    PubMed Central

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  10. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    PubMed

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺. PMID:24416439

  11. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The eff...

  12. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  13. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    SciTech Connect

    Alnoor, Hatim Chey, Chan Oeurn; Pozina, Galia; Willander, Magnus; Nur, Omer; Liu, Xianjie; Khranovskyy, Volodymyr

    2015-08-15

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  14. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  15. Adsorption of halide ions from aqueous solutions at a Cd(0 0 0 1) electrode surface: quantum chemical modelling and experimental study

    NASA Astrophysics Data System (ADS)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Probst, Michael; Lust, Karmen; Lust, Enn

    2005-03-01

    Adsorption of the halide ions X (X = Cl -, Br -, I -) at a cadmium monocrystalline face (0 0 0 1) from aqueous solutions has been studied by the impedance spectroscopy. Analysis of the impedance data does not predict specific adsorption for Cl - and shows that the Gibbs adsorption energy increases from Br - to I - in accordance with the decrease of the hydration energy of anions. The adsorption of halide ions and their atomic forms on a Cd(0 0 0 1) electrode at the potential of zero charge (pzc) has been studied with the use of the cluster model. The quantum chemical calculations were performed at the DFT and the SCF levels involving the hydrated species X -(H 2O) 3 and X -(H 2O) 6 besides the bare anions. The effective distance-dependent solvation energy of halide ions constructed on the basis of molecular dynamics simulations was used to build the adsorption terms. For all three halides contact adsorption was found to be the most favourable state. The partial charge transfer (PCT) from the adsorbed species to the metal was analysed in terms of the Anderson-Newns model. A combined consideration of the solvation and PCT effects enables prediction of the experimentally observed metal-ion interaction order (Cl - < Br - < I -).

  16. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  17. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  18. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  19. Aqueous Mesocosm Techniques Enabling the Real-Time Measurement of the Chemical and Isotopic Kinetics of Dissolved Methane and Carbon Dioxide.

    PubMed

    Chan, Eric W; Kessler, John D; Shiller, Alan M; Joung, DongJoo; Colombo, Frank

    2016-03-15

    Previous studies of microbially mediated methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on what factor(s) are limiting in these types of environments. These factors include the availability of methane, O2, trace metals, nutrients, the density of cell population, and the influence that CO2 production may have on pH. To look at this process in its entirety, we developed an automated mesocosm incubation system with a Dissolved Gas Analysis System (DGAS) coupled to a myriad of analytical tools to monitor chemical changes during methane oxidation. Here, we present new high temporal resolution techniques for investigating dissolved methane and carbon dioxide concentrations and stable isotopic dynamics during aqueous mesocosm and pure culture incubations. These techniques enable us to analyze the gases dissolved in solution and are nondestructive to both the liquid media and the analyzed gases enabling the investigation of a mesocosm or pure culture experiment in a completely closed system, if so desired. PMID:26916091

  20. Absorption of chlorine into aqueous bicarbonate solutions and aqueous hydroxide solutions

    SciTech Connect

    Ashour, S.S.; Rinker, E.B.; Sandall, O.C.

    1996-03-01

    Removal of chlorine from certain gas streams may be of industrial importance for certain chemical processes. The absorption of Cl{sub 2} into aqueous bicarbonate and aqueous hydroxide solutions was studied both experimentally and theoretically. The rate coefficient of the reaction between Cl{sub 2} and OH{sup {minus}} was estimated over the temperature range of 293--312 K and fitted by the Arrhenius equation: k{sub 24} = 3.56 {times} 10{sup 11} exp({minus}1,617/T). If Cl{sub 2} were assumed to react only with water and OH{sup {minus}} in an aqueous bicarbonate solution, the predicted absorption rate would be much lower than that experimentally measured. This suggests that Cl{sub 2} reacts with HCO{sub 3}{sup {minus}} in an aqueous bicarbonate solution. The rate coefficient of the reaction between Cl{sub 2} and HCO{sub 3}{sup {minus}} was estimated over the temperature range of 293--313 K and fitted by the Arrhenius equation: k{sub 21} = 5.63 {times} 10{sup 10} exp({minus}4,925/T). More importantly, under absorption conditions, the amount of hydroxide consumed for absorbing a specific amount of Cl{sub 2} into an aqueous hydroxide solution is almost twice the amount of bicarbonate consumed for absorbing the same amount of Cl{sub 2} into an aqueous bicarbonate solution.

  1. Phytoplankton communities of polar regions--Diversity depending on environmental conditions and chemical anthropopressure.

    PubMed

    Kosek, Klaudia; Polkowska, Żaneta; Żyszka, Beata; Lipok, Jacek

    2016-04-15

    The polar regions (Arctic and Antarctic) constitute up to 14% of the biosphere and offer some of the coldest and most arid Earth's environments. Nevertheless several oxygenic phototrophs including some higher plants, mosses, lichens, various algal groups and cyanobacteria, survive that harsh climate and create the base of the trophic relationships in fragile ecosystems of polar environments. Ecosystems in polar regions are characterized by low primary productivity and slow growth rates, therefore they are more vulnerable to disturbance, than those in temperate regions. From this reason, chemical contaminants influencing the growth of photoautotrophic producers might induce serious disorders in the integrity of polar ecosystems. However, for a long time these areas were believed to be free of chemical contamination, and relatively protected from widespread anthropogenic pressure, due their remoteness and extreme climate conditions. Nowadays, there is a growing amount of data that prove that xenobiotics are transported thousands of kilometers by the air and ocean currents and then they are deposed in colder regions and accumulate in many environments, including the habitats of marine and freshwater cyanobacteria. Cyanobacteria (blue green algae), as a natural part of phytoplankton assemblages, are globally distributed, but in high polar ecosystems they represent the dominant primary producers. These microorganisms are continuously exposed to various concentration levels of the compounds that are present in their habitats and act as nourishment or the factors influencing the growth and development of cyanobacteria in other way. The most common group of contaminants in Arctic and Antarctic are persistent organic pollutants (POPs), characterized by durability and resistance to degradation. It is important to determine their concentrations in all phytoplankton species cells and in their environment to get to know the possibility of contaminants to transfer to higher

  2. SONOCHEMICAL DECHLORINATION OF HAZARDOUS WASTES IN AQUEOUS SYSTEMS. (R825513C004)

    EPA Science Inventory

    Physical processes resulting from ultrasonication of aqueous solutions and suspensions produce extreme conditions that can affect the chemistry of dissolved and suspended chemicals. The purpose of this work was to explore the use of sonochemistry in treating chlorinated chemic...

  3. Exceedingly Low Freezing Rates of Aqueous Hno3 and Hno3/h2so4 Droplets Under Polar Stratospheric Conditions

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Koop, T.; Luo, B.; Weers, U. G.; Peter, T.

    In the Arctic winter 1999/2000 large particles containing nitric acid were observed during in situ field measurements. These large particles are important for the deni- trification of the Arctic stratosphere. It has been proposed that such particles form by homogeneous nucleation of nitric acid hydrates from liquid stratospheric aerosol droplets. Homogeneous nucleation rates of NAT (Nitric Acid Trihydrate) and NAD (Nitric Acid Dihydrate) have been determined in laboratory experiments for binary HNO3/H2O solutions only at supersaturations much larger than observed in the stratosphere. Therefore, an extrapolation of such laboratory data is required for the modelling of stratospheric particle formation and subsequent denitrification. We will present new laboratory data of homogeneous nucleation rates of NAT and NAD from droplets consisting of both binary HNO3/H2O as well as ternary HNO3/H2O/H2SO4 solutions. Optical microscopy has been used to deduce the droplet freezing tempera- tures. The nature of the crystallized solids was identified by Raman spectroscopy. The freezing data have been analyzed within the framework of classical nucleation theory. Our results are consistent with previously published laboratory aerosol data. However, for stratospheric conditions, we infer homogeneous nucleation rates to be lower by orders of magnitude than the extrapolation currently in use. We conclude that homo- geneous nucleation of NAT and NAD is not sufficient to explain the observed number concentrations of large nitric acid containing particles in the stratosphere.

  4. Chemical Inactivation of Lipase in Organic Solvent: A Lipase from Pseudomonas aeruginosa TE3285 is More Like a Typical Serine Enzyme in an Organic Solvent than in Aqueous Media.

    PubMed

    Nakatani, T; Hiratake, J; Yoshikawa, K; Nishioka, T; Oda, J

    1992-01-01

    A microbial lipase from Pseudomonas aeruginosa TE3285 was treated in anhydrous diisopropyl ether with three kinds of serine-reactive reagents, ethyl p-nitrophenyl methylphosphonate (ENMP), diisopropyl fluorophosphate (DFP), and phenylmethylsulfonyl fluoride (PMSF) to lose its catalytic activity for both transesterification in an organic solvent and ester hydrolysis in aqueous system. In contrast with the facile inactivation in an organic solvent, no or very slow inactivation was observed in an aqueous solution. The lipase was shown to behave more like a typical serine enzyme in an organic solvent than in aqueous solution with regard to the chemical inactivation by serine-reactive reagents. The unique behavior of the lipase in an organic solvent may be associated with inferfacial activation of the lipase, which is one of the most distinct characteristics of the lipase family, and the activiation of lipase could be induced by a hydrophobic interaction with an organic solvent. PMID:27286388

  5. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    NASA Astrophysics Data System (ADS)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  6. Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions

    NASA Astrophysics Data System (ADS)

    Driesner, T.; Seward, T. M.; Tironi, I. G.

    1998-09-01

    The increasing demand for accurate equations of state of fluids under extreme conditions and the need for a detailed microscopic picture of aqueous fluids in some areas of geochemistry (e.g., mineral dissolution/precipitation kinetics) potentially make molecular dynamics (MD) simulations a powerful tool for theoretical geochemistry. We present MD simulations of infinitely dilute and 1 molal aqueous NaCl solutions that have been carried out in order to study the systematics of hydration and ion association over a wide range of conditions from ambient to supercritical and compare them to the available experimental data. In the dilute case, the hydration number of the Na + ion remains essentially constant around 5.5 from ambient to supercritical temperatures when the density is kept constant at 1 g cm -3 but decreases to below 5 along the liquid-vapor curve. In both cases, the average ion-first shell water distance decreases by about 0.03 Å from ambient to near critical temperatures. The Cl - ion shows a slight expansion of the first hydration shell by about 0.02 Å from ambient to near critical temperatures. The geometric definition of the first hydration shell becomes ambiguous due to a shift of the position of the first minimum of the Cl-O radial distribution function. In the case of the 1 molal solution, the contraction of the Na + first hydration shell is similar to that in the dilute case whereas the hydration number decreases drastically from 4.9 to 2.8 due to strong ion association. The released waters are replaced on a near 1:1 basis by chloride ions. Polynuclear clusters as predicted by Oelkers and Helgeson (1993b) are observed in the high temperature systems. The hydration shell of the Cl --ion shows significant deviation from the behavior in dilute systems, that is, at near vapor saturated conditions, the expansion of the hydration shell is significantly larger (0.12 Å from ambient to near critical temperatures). Due to a very large shift of the first

  7. Effects of dehulling and storage conditions on cooking requirements and chemical composition of soybeans.

    PubMed

    Cabral, L C; Serna-Saldivar, S O; Tinsley, A M

    1995-03-01

    Changes in cooking requirements and chemical composition of whole and dehulled soybeans, stored in 2 different environments [25 degrees C /75% R.H. (Environment 1) and 38 degrees C /90% R.H. (Environment 2)], were studied. Rate of water absorption and solid losses during cooking were higher for the dehulled soybeans at both storage conditions. However, cooking requirements to achieve the same degree of texture in the cotyledons were similar for whole and dehulled seeds. Cooking time increased with prolonged storage; the effect was more noticeable in samples stored under Environment 2. Samples kept for 6 months required almost twice as much cooking than control samples. Dehulled soybeans had a lower fiber content, relatively higher amounts of protein and fat, but similar amino acid compositions than whole soybeans. Cooking caused losses of carbohydrates and ash and, therefore, significantly increased levels of protein and fat reflected by losses of solids during soaking and cooking. Among the amino acids, only cysteine suffered substantial decrease as a result of cooking. Cooking and storage inactivated 99% and from 20-35% of the trypsin inhibitors, respectively; the latter effect was more accentuated in samples stored under Environment 2. PMID:8729250

  8. Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

    NASA Astrophysics Data System (ADS)

    Xiao-Xu, Jiang; Guan-Yu, Chen; Yu-Tong, Li; Xin-Lu, Cheng; Cui-Ming, Tang

    2016-02-01

    Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ = 1.80 g/cm3 to 3.40 g/cm3 and temperatures from T = 500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS). Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).

  9. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches.

    PubMed

    Rosenow, Phil; Tonner, Ralf

    2016-05-28

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001). PMID:27250324

  10. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  11. [Influence of ancient glass samples surface conditions on chemical composition analysis using portable XRF].

    PubMed

    Liu, Song; Li, Qing-hui; Gan, Fu-xi

    2011-07-01

    Portable X-ray fluorescence analysis (PXRF) is one kind of surface analysis techniques, and the sample surface condition is an important factor that influences the quantitative analysis results. The ancient glass samples studied in the present paper were excavated from Xinjiang, Guangxi, Jiangsu provinces, and they belong to Na2O-CaO-SiO2, K2O-SiO2, and PbO-BaO-SiO2 system, respectively. Quantitative analysis results of weathered surface and inside of the ancient glass samples were compared. The concentration change of main fluxes in different parts of the samples was pointed out. Meanwhile, the authors studied the effect of distance between the sample and the reference plane, and curve shape of the sample on the quantitative results. The results obtained were calibrated by three methods, and the validity of these three methods was proved. Finally, the normalizing method was proved to be a better method for quantitative analysis of antiques. This paper also has guiding significance for chemical composition analysis of ancient jade samples using PXRF. PMID:21942060

  12. Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution.

    PubMed

    Negreira, Noelia; Mastroianni, Nicola; López de Alda, Miren; Barceló, Damià

    2013-11-15

    A multianalyte liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method for determination of 19 cytostatics and 5 metabolites, from 6 different therapeutic families, has been developed, and the structures of the main characteristic fragment ions have been proposed. Instrumental limits of detection and quantification are in the range 0.1-10.3 and 1.0-34.3 ng mL(-1), respectively. Moreover, the stability of the compounds in aqueous solution was investigated in order to establish the best conditions for preparation and storage of both calibration standards and water samples. Dimethylsulphoxide (DMSO) was selected as solvent for preparation of the stock solutions. At room temperature (25 °C), 11 of the 24 target compounds were shown to be unstable in water (percentage of organic solvent 4%), with concentration losses greater than 20% in less than 24 h. At 4 °C (typical storage temperature for water samples) all compounds, except MTIC and chlorambucil, were stable for 24h, but the number of stable compounds decreased to 10 after 9 days. Freezing of the aqueous solutions improved considerably the stability of various compounds: after 3 months of storage at -20 °C, 10 compounds, namely, 5-fluorouracil, carboplatin, gemcitabine, temozolomide, vincristine, vinorelbine, ifosfamide, cyclophosphamide, etoposide, and capecitabine, remained stable (in contrast to only carboplatin and capecitabine at 4 °C). The addition of acid improved the stability of methotrexate and its metabolite hydroxy-methotrexate but not that of the rest of compounds. The addition of organic solvent (50% methanol or DMSO) prevented the degradation at 4 °C of the otherwise unstable compounds oxaliplatin, methotrexate, erlotinib, doxorubicin, tamoxifen, and paclitaxel. To the authors' knowledge, five of the analytes investigated have never been searched for in the aquatic environment (imatinib, 6α-hydroxypaclitaxel, endoxifen, (Z)4-hydroxytamoxifen, and temozolomide), and for

  13. Aqueous Conditions and Habitability Associated with Formation of a Serpentinite: Using Analyses of Ferric Iron and Stable Carbon Isotopes to Reconstruct Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Mustard, J. F.; Cloutis, E.; Pratt, L. M.; Sauer, P. E.; Mann, P.; Turner, K.; Dyar, M. D.

    2014-12-01

    Serpentine deposits on Mars have generated significant interest because byproducts of serpentinization, H2 and CH4, can be important energy sources for subsurface microbial communities. H2 is produced through Fe2+ oxidation to form magnetite and Fe3+-bearing serpentine. In serpentine, Fe3+ goes into octahedral sites first, then tetrahedral sites [Marcaillou et al., 2011, EPSL]. We use Fe oxidation state and coordination in an Early Ordovician serpentinite in Norbestos, Quebec, as proxies for H2 production and stable isotopes of carbonates to understand past aqueous conditions at the Canadian Space Agency's 2012 Mars Methane Analogue Mission site. Rock outcrops were imaged with a visible hyperspectral imager (420-720 nm), and samples were imaged in the laboratory with the same imager and a near infrared imager (650-1100 nm). Other analyses determined major element chemistry (ICP-AES and C analyses), mineralogy (XRD), Fe phases (Mössbauer spectroscopy), and stable isotopes of carbonates. Fe oxidation state and coordination (tetrahedral vs octahedral) were mapped in samples and outcrops using imaging data. We focused on locations with tetrahedral Fe3+ in serpentine as these are the most serpentinized sites with maximum H2 production. Carbonate samples from ~100-200 m south of a shear zone are enriched in 13C (δ13C up to +16.12‰ vs VPDB) resulting from production of CH4 depleted in 13C in a system closed to C addition but open to CH4 escape. This alteration occurred at elevated temperatures and low water/rock ratios. In the shear zone, lower δ13C values (most < +2‰) positively correlated with δ18O likely result from kinetic fractionation under recent low temperature conditions. Spectroscopy suggests that much of this deposit underwent advanced serpentinization to produce significant H2. Isotopic signatures of carbonates precipitated during serpentinization outside the shear zone illuminate the temperatures (elevated) and chemistries of fluids (high Ca2+, low CO

  14. The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage.

    PubMed

    Zhong, Di-Chang; Aranishi, Kengo; Singh, Ashish Kumar; Demirci, Umit B; Xu, Qiang

    2012-12-21

    An Rh(4)Ni alloy nanocatalyst exhibits highly-efficient performance in dehydrogenation of aqueous hydrazine borane. The hydrogen selectivity reaches almost 100%. More interestingly, catalyzed by the Rh(4)Ni nanocatalyst, the dehydrogenation of aqueous hydrazine borane is not simply divided into two steps. PMID:23064157

  15. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤90 °C in aqueous solution

    NASA Astrophysics Data System (ADS)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    2016-02-01

    In this study, we present the mechanism of CuFeO2 formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR-SO4, a Fe(II-III) layered double hydroxysulphate Fe2+4 Fe3+2 (Fe2+4Fe3+2(OH)12·SO4) and Cu2O precipitate first. During further OH- supply GR-SO4 oxidizes and forms Fe10O14(OH)2, Cu2O and CuFeO2 crystals. Due to the high pH furtherCuFeO2 crystals grow at the cost of the unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO2 (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH- supply during the pH-stat time and rather low temperatures.

  16. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  17. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions.

    PubMed

    Ren, Yanlin; Fan, Guangyin; Wang, Chenyu

    2014-06-15

    Reduced graphene oxide (RGO) supported rhodium nanoparticles (Rh-NPs/RGO) was synthesized through one-pot polyol co-reduction of graphene oxide (GO) and rhodium chloride. The catalytic property of Rh-NPs/RGO was investigated for the aqueous phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP). A complete conversion of 4-CP into high valued products of cyclohexanone (selectivity: 23.2%) and cyclohexanol (selectivity: 76.8%) was successfully achieved at 303K and balloon hydrogen pressure in a short reaction time of 50 min when 1.5 g/L of 4-CP was introduced. By comparing with Rh-NPs deposited on the other supports, Rh-NPs/RGO delivered the highest initial rate (111.4 mmol/gRh min) for 4-CP HDC reaction under the identical conditions. The substantial catalytic activity of Rh-NPs/RGO can be ascribed to the small and uniform particle size of Rh (average particle size was 1.7 ± 0.14 nm) on the surface of the RGO sheets and an electron-deficient state of Rh in the catalyst as a result of the strong interaction between the active sites and the surface function groups of RGO. PMID:24762698

  18. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  19. Conditional Toxicity Value (CTV) Predictor for Generating Toxicity Values for Data Sparse Chemicals (Poster)

    EPA Science Inventory

    Various stakeholders and expert groups, including the National Research Council in Science and Decisions, call for “default approaches to support risk estimation for chemicals lacking chemical-specific information.” This project aims to address this challenge through ...

  20. Massive star evolution in close binaries. Conditions for homogeneous chemical evolution

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.

    2016-01-01

    Aims: We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow (RLOF) during the main-sequence phase. By homogeneous evolution, we mean stars evolving with a nearly uniform chemical composition from the centre to the surface. Methods: We consider the case of rotating stars computed with a strong core-envelope coupling mediated by an interior magnetic field. Models with initial masses between 15 and 60 M⊙, for metallicities between 0.002 and 0.014 and with initial rotation equal to 30% and 66% the critical rotation on the zero age main sequence, are computed for single stars and for stars in close binary systems. We consider close binary systems with initial orbital periods equal to 1.4, 1.6, and 1.8 days and a mass ratio equal to 3/2. Results: In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realised: the initial rotation must be high enough, and the loss of angular momentum by stellar winds should be modest. This last point favours metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronisation is high enough (typically a time-averaged surface velocities during the main-sequence phase above 250 km s-1), whatever the mass losses. We present plots that indicate for which masses of the primary and for which initial periods the conditions for the homogenous evolution and avoidance of the RLOF are met, for various initial metallicities and rotations. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favoured at higher metallicities. RLOF avoidance is favoured at lower metallicities because stars with less metals remain more

  1. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  2. Transport and Fate of Bacteria in Porous Media: Coupled Effects of Chemical Conditions and Pore Space Geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental and theoretical studies were undertaken to explore the coupling effects of chemical conditions and pore space geometry on bacteria transport in porous media. The retention of Escherichia coli D21g was investigated in a series of batch and column experiments with solutions of different i...

  3. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  4. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  5. Li ceramic pebbles chemical compatibility with Eurofer samples in fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Alves, L. C.; Alves, E.; da Silva, M. R.; Paúl, A.; La Barbera, A.

    2004-08-01

    Information on the chemical compatibility between Li ceramic breeders and reactor structural materials is an important issue for fusion reactor technology. In this work, Eurofer samples were placed inside a Li ceramic pebble bed and kept at 600 °C under a reducing atmosphere obtained by the flow of a purging gas (He + 0.1vol.%H 2). Titanate and orthosilicate Li pebble beds were used in the experiments and exposure time ranged from 50 to 2000 h. Surface chemical reactions were investigated with nuclear microprobe techniques. The orthosilicate pebbles present chemical reactions even with the gas mixture, whereas for the samples in close contact with Eurofer there is evidence of Eurofer elemental diffusion into the pebbles and the formation of different types of compounds. Although the titanate pebbles used in the chemical compatibility experiments present surface alterations with increasing surface irregularities along the annealing time, there is no clear indication of Eurofer constituents diffusion.

  6. Sustainable 'Greener' Methods for Chemical Transformations and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 Synthesis of heterocyclic compounds, coupling reactions, and name reac...

  7. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts. (Florence, Italy)

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  8. Greener Syntheses and Chemical Transformations: Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  9. Greener Synthesis and Chemical transformations Using Sustainable Alternative Methods and Applications of Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  10. Greener Syntheses and Chemical Transformations Using SustainableAlternative Methods and Nano-Catalysts

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, namely greener reaction medium in aqueous or solventfree conditions and using alternative activation via microwave or photocatalytic activation. Eco-friendly synthesis of nanoma...

  11. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated. PMID:20734789

  12. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment.

    PubMed

    Huang, Yao-Ming; Hu, WeiWei; Rustandi, Eddie; Chang, Kevin; Yusuf-Makagiansar, Helena; Ryll, Thomas

    2010-01-01

    A highly productive chemically defined fed-batch process was developed to maximize titer and volumetric productivity for Chinese hamster ovary cell-based recombinant protein manufacturing. Two cell lines producing a recombinant antibody (cell line A) and an Fc-fusion protein (cell line B) were used for development. Both processes achieved product titers of 10 g/L on day 18 under chemically defined conditions. For cell line B, the use of plant derived hydrolysates combined with the optimized chemically defined medium increased the titer to 13 g/L. Volumetric productivities were increased from a base line of about 200 mg/L/d to about 500 mg/L/d under chemically defined conditions and as high as 700 mg/L/d with cell line B using plant derived hydrolysates. Peak cell densities reached greater than 20E6 vc/mL, and cell viabilities were maintained above 80% on day 18 without the use of antiapoptotic genes or temperature shift. A rapid compound screening method was developed to effectively test positive factors within 72 h. Peak volumetric oxygen uptake rates (OUR) more than tripled from the baseline condition. Oxygen demand continued to increase after maximum cell density was reached with a maximal OUR of 3.7 mmol/L/h. The new process format was scaled up and verified at 100 L pilot scale using reactor equipment of similar configuration as used at manufacturing scale. PMID:20945494

  13. Study of Chemical Surface Structure of Natural Sorbents Used for Removing of Pb2+ Ions from Model Aqueous Solutions (part Ii)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Bożęcki, Piotr; Sanak-Rydlewska, Stanisława

    2014-03-01

    This article presents the results of the chemical structure research of organic sorbent surface such as walnut shells, plums stones and sunflower hulls with using such methods as infrared spectrometry (FTIR) and elemental analysis. Based on the IR spectra identification of functional groups present on the surface of studied materials has been done as well as determination of their effect on the sorption mechanism of Pb2+ ions from aqueous model solutions W artykule przedstawiono wyniki badań chemicznej struktury powierzchni sorbentów organicznych takich jak: łupiny orzecha włoskiego, pestki śliwek oraz łuski słonecznika z wykorzystaniem metody spektrometrii w podczerwieni (FTIR) oraz analizy elementarnej. W oparciu o uzyskane widma IR dokonano identyfikacji grup funkcyjnych obecnych na powierzchni tych materiałów i określono ich wpływ na mechanizm sorpcji jonów Pb2+ z modelowych roztworów wodnych. Analiza elementarna wykazała, że spośród badanych sorbentów, największą zawartość węgla (49,91%) i wodoru (5,93%) mają pestki śliwek. Najwięcej azotu (1,59%) zawierają łuszczyny słonecznika (tabela 1). Zawartość siarki we wszystkich badanych materiałach jest znikoma, dlatego nie udało się jej oznaczyć tą metodą. Obecność pozostałych pierwiastków może świadczyć o istnieniu zarówno alifatycznych jak i aromatycznych połączeń organicznych. Potwierdzeniem tego są również zarejestrowane widma IR (rysunki 1-3). W oparciu o uzyskane wyniki można przypuszczać także, iż udział procesu wymiany jonowej w sorpcji ołowiu z roztworów wodnych jest znaczący. Świadczą o tym m.in. intensywności pasm na widmach IR dla próbek badanych materiałów po ich kontakcie z roztworami jonów Pb2+ (rysunki 4-6).

  14. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Kose, Songul

    2002-08-01

    Toxic chemicals have been used as weapons of war and also as means of terrorist attacks on civilian populations. Research focusing on chemical warfare agents (CWAs) may be associated with an increased risk of exposure to and contamination by these agents. This article summarizes some of the regulations concerning designation and safety in a CWA analysis and research laboratory and medical countermeasures in case of an accidental exposure. The design of such a laboratory, coupled with a set of safety guidelines, provides for the safe conduct of research and studies involving CWAs. Thus, a discussion of decontamination and protection means against CWAs is also presented. PMID:12188231

  15. Clinical vocabulary as a boundary object in multidisciplinary care management of multiple chemical sensitivity, a complex and chronic condition

    PubMed Central

    Sampalli, Tara; Shepherd, Michael; Duffy, Jack

    2011-01-01

    Background: Research has shown that accurate and timely communication between multidisciplinary clinicians involved in the care of complex and chronic health conditions is often challenging. The domain knowledge for these conditions is heterogeneous, with poorly categorized, unstructured, and inconsistent clinical vocabulary. The potential of boundary object as a technique to bridge communication gaps is explored in this study. Methods: A standardized and controlled clinical vocabulary was developed as a boundary object in the domain of a complex and chronic health condition, namely, multiple chemical sensitivity, to improve communication among multidisciplinary clinicians. A convenience sample of 100 patients with a diagnosis of multiple chemical sensitivity, nine multidisciplinary clinicians involved in the care of patients with multiple chemical sensitivity, and 36 clinicians in the community participated in the study. Results: Eighty-two percent of the multidisciplinary and inconsistent vocabulary was standardized using the Systematized Nomenclature of Medicine – Clinical Terms (SNOMED® CT as a reference terminology. Over 80% of the multidisciplinary clinicians agreed on the overall usefulness of having a controlled vocabulary as a boundary object. Over 65% of clinicians in the community agreed on the overall usefulness of the vocabulary. Conclusion: The results from this study are promising and will be further evaluated in the domain of another complex chronic condition, ie, chronic pain. The study was conducted as a preliminary analysis for developing a boundary object in a heterogeneous domain of knowledge. PMID:21594060

  16. Aqueous production.

    PubMed

    Krupin, T; Wax, M; Moolchandani, J

    1986-01-01

    The formation of aqueous humour by the ciliary body is a complex process. Active transport of solutes by the ciliary process epithelium is an energy-dependent mechanism that selectively transports substances against an electrochemical gradient across the cell membranes. Water passively follows the active solute transport. In addition to these active transport processes, ultrafiltration contributes to the formation of aqueous humour. The ciliary epithelium contains enzyme systems that function in the production of aqueous humour. The enzymes sodium-potassium-activated adenosine triphosphatase [(Na+:K+)ATPase] and carbonic anhydrase participate in the active transport across this epithelium. Inhibition of these enzymes lowers intraocular pressure (IOP) by decreasing aqueous humour production. the ciliary epithelium contains both alpha- and beta-adrenergic receptors. Electrophysiologic studies on the isolated iris-ciliary body (I-CB) preparation provide a means to study direct effects of the adrenergic agents on transepithelial properties of the ciliary epithelium. This paper will discuss the enzymatic and adrenergic properties of the ciliary epithelium as they relate to active transport and thereby aqueous humour production. PMID:3026067

  17. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    SciTech Connect

    Vijayan, S.; Wong, Chi Fun; Buckley, L.P.

    1992-12-31

    It is an object of the claimed invention to combine chemical treatment with microfiltration process to treat groundwater, leachate from contaminated soil washing, surface and run-off waters contaminated with toxic metals, radionuclides and trace amounts of organics from variety of sources. The process can also be used to treat effluents from industrial processes such as discharges associated with smelting, mining and refining operations. Influent contaminants amenable to treatment are from a few mg/L to hundreds of mg/L. By selecting appropriate precipitation, ion exchange and adsorption agents and conditions, efficiencies greater than 99.9 percent can be achieved for removal of contaminants. The filtered water for discharge can be targeted with either an order of magnitude greater or lower than contaminant levels for drinking water.

  18. Chemometric investigation of complex equilibria in solution phase II: Sensitivity of chemical models for the interaction of AADH and FAH with Ni(II) in aqueous medium.

    PubMed

    Babu, A R; Krishna, D M; Rao, R S

    1993-12-01

    A detailed study of the species formed in the complex equilibria involving adipic acid dihydrazide (AADH)/2-furoic acid hydrazide (FAH) with Ni(II) using pH titration with glass electrode is performed. The results of modeling studies and effect of errors on the equilibrium constants of AADH/FAH with Ni(II) refined by the non-linear least squares program MINIQUAD75 are reported. Based on the expert system approach developed in our laboratory for the species formed from secondary formation data (n and n (H)), several preliminary chemical models were tested. For the four species identified (MLH, ML, ML(2)H, ML(2)), an exhaustive search of a different combination of models (15) was performed. Then other suspected minor species (ML(2)H(2), ML(3) and ML(3)H) were tested. The final best fit chemical model was found to contain ML(3)H to an extent of 3% along with the other four major species. In order to ascertain the accuracy of the stability constants and consequently distribution of the species, a detailed error analysis is attempted. As the existing least squares procedures cannot suppress the systematic errors, three-dimensional plots of the simultaneous effects of pH and TLO:TMO (1.5:1 to 5:1) on the percentage of species are drawn which are of immense use in arriving at optimum conditions for the preparation of a complex of definite stoichiometry. PMID:18965865

  19. Comparative study of raw and chemically treated mangrove leaf for remediation of 304 Methyl Violet 2B dye from aqueous solution: thermo-kinetics aspect.

    PubMed

    Bano, Bakht; Zahir, Erum

    2016-01-01

    The adsorption process is the most attractive alternative way for the treatment of industrial effluents. The main objective of the study is to compare the efficacy of adsorption by raw and chemically treated forms of mangrove plant leaf powder. It acts as adsorbent, and would not only be economical but also help to reduce pollution. The adsorbent was characterized by Fourier transform infra-red spectroscopy and scanning electron microscopy. Results showed that percent removal of dye was higher by chemically treated mangrove leaf (98%) than by raw mangrove leaf (75%) under all determined conditions. The equilibrium and kinetics adsorption data were analyzed by the Langmuir isotherm and the pseudo second order model. They were found to be the best fit to interpret the present data. The thermodynamic parameters were calculated by using the Langmuir equilibrium constant. Results suggested that dye adsorption on mangrove leaf was a spontaneous and exothermic process with enthalpy change = -15.26 kJ/mol, and there was decrease in disorder with entropy change = -5.089 kJ/mol K. PMID:27003070

  20. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  1. Numerical simulation of the middle atmosphere chemical composition and temperature under changing solar conditions

    NASA Technical Reports Server (NTRS)

    Zadorozhny, A. M.; Dyominov, I. G.; Tuchkov, G. A.

    1989-01-01

    There are given results of the numerical experiments on modelling the influence of solar activity on chemical composition and temperature of the middle atmosphere. The consideration is made for peculiarities of solar activity impact under different values of antropogenic pollution of the atmosphere with chlorofluorocarbons and other stuff.

  2. Influence of coal briquetting conditions on the chemical composition of the products of thermal degradation

    SciTech Connect

    Turenko, F.P.

    1984-01-01

    A spectro-statistical method was used to examine the chemical composition of liquid non-volatile constituents from a mixture of Donbass coals (gas, fat, lean, caking). The thermal destruction products obtained by thermal filtration in a centrifugal field from both briquetted and non-briquetted charges differ in terms of their structural group content.

  3. THE INSTABILITY OF ESTROGENIC CHEMICALS DURING LABORATORY STATIC EXPOSURE CONDITIONS WITH MALE FATHEAD MINNOWS

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) such as Para-nonylphenol (NP), estradiol (E2), estrone (E1), estriol (E3) and ethynylestradiol (EE2) are shown to be ubiquitous in surface waters, sediments and sludge. These EDCs are known to induce vitellogenin gene (Vg) expression in male...

  4. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  5. Chemical sludge conditioning in combination with different conventional and alternative dewatering devices: chamber filter press, decanter and Bucher press.

    PubMed

    Schaum, Christian; Cornel, Peter; Faria, Pedro; Recktenwald, Michael; Norrlöw, Olof

    2008-11-01

    The Kemicond process for sludge conditioning consists of chemical treatment with sulphuric acid and hydrogen peroxide at a pH-value of approximately 4 followed by a dewatering unit. It is shown that chemical treatment can improve the dewaterability of ferruginous digested sludge. It is concluded that the Fenton process as well as the oxidation of organics and the formation of iron hydroxo complexes are important reaction mechanisms. Furthermore, the organic matter changes through the acidic oxidative process. With the improvement in dewaterability, it is possible to achieve an increase in TS concentration, which affects a reduction of the sludge volume. Cost savings for sludge disposal can amortize the additional investment and operational costs for chemical treatment. PMID:18821238

  6. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  7. Conditions of early chemical processing of matter - Explosive exhalations of supernovae

    NASA Technical Reports Server (NTRS)

    Heymann, D.

    1983-01-01

    The chemical and isotopic stratifications of supernova exhalations are discussed, with reference to a number of theoretical estimates. Particular attention is given to the theoretical models of the major chemical zones of explosive exhalation of isotopes of Mg, Si, and Ti in intermediate size supernovae. The contribution of supernova exhalations to oxygen anomalies in the solar system is also discussed within the framework of the theoretical models of Clayton et al. (1977, 1978, 1979, 1981). The initial stratigraphy of the major elements in the explosive exhalation of a progenitor star of 25 solar mass is illustrated in a graph, on the basis of the theoretical estimates of Waver et al. (1978), and Weaver and Woolsey (1980).

  8. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    PubMed

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-01

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH. PMID:21361384

  9. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions.

    PubMed

    Rosa, Inês C; Garrido, Rita; Ré, Ana; Gomes, João; Pereira, Joana L; Gonçalves, Fernando; Costa, Raquel

    2015-12-01

    The freshwater Corbicula fluminea is a major aquatic nuisance worldwide. Current pest control methods raise cost-effectiveness and environmental concerns, which motivate research into improved mitigation approaches. In this context, the susceptibility of the clams to chemicals under reduced oxygen conditions was examined. Biocides with different mechanisms of toxicity (niclosamide, polyDADMAC, ammonium nitrate, potassium chloride and dimethoate) were tested under normoxic (>7 mg L(-1) dissolved O2) and hypoxic (<2 mg L(-1) dissolved O2) conditions. Hypoxia was observed to potentiate chemical treatment, particularly when combined with non-overwhelming doses that would produce only intermediate responses by themselves. For niclosamide, ammonium nitrate and dimethoate, clam mortality enhancements up to 400% were observed under hypoxia as compared to dosing upon normal dissolved oxygen conditions. For polyDADMAC and potassium chloride, substantially lower mortality enhancements were found. The differences in the clams' sensitivity to the chemicals under hypoxia could be linked to the expected mechanisms of action. This suggests that judicious selection of the biocide is essential if optimized combined control treatments are to be designed and provides an insight into the interference of frequent hypoxia events in the response of natural clam populations to contaminant loads. PMID:26254082

  10. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    SciTech Connect

    Tanley, Simon W. M.; Helliwell, John R.

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  11. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels

    SciTech Connect

    Mousavi Anijdan, S.H.; Rezaeian, Ahmad; Yue, Steve

    2012-01-15

    In this investigation, by using continuous cooling torsion (CCT) testing, the transformation behavior of four microalloyed steels under two circumstances of austenite conditioning and non-conditioning was studied. A full scale hot-rolling schedule containing a 13-pass deformation was employed for the conditioning of the austenite. The CCT tests were then employed till temperature of {approx} 540 Degree-Sign C and the flow curves obtained from this process were analyzed. The initial and final microstructures of the steels were studied by optical and electron microscopes. Results show that alloying elements would decrease the transformation temperature. This effect intensifies with the gradual increase of Mo, Nb and Cu as alloying elements added to the microalloyed steels. As well, austenite conditioning increased the transformation start temperature due mainly to the promotion of polygonal ferrite formation that resulted from a pancaked austenite. The final microstructures also show that CCT alone would decrease the amount of bainite by inducing ferrite transformation in the two phase region. In addition, after the transformation begins, the deformation might result in the occurrence of dynamic recrystallization in the ferrite region. This could lead to two different ferrite grain sizes at the end of the CCT. Moreover, the Nb bearing steels show no sign of decreasing the strength level after the transformation begins in the non-conditioned situation and their microstructure is a mix of polygonal ferrite and bainite indicating an absence of probable dynamic recrystallization in this condition. In the conditioned cases, however, these steels show a rapid decrease of the strength level and their final microstructures insinuate that ferrite could have undergone a dynamic recrystallization due to deformation. Consequently, no bainite was seen in the austenite conditioned Nb bearing steels. The pancaking of austenite in the latest cases produced fully polygonal ferrite

  12. Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical

    EPA Science Inventory

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  13. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    PubMed

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  14. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    PubMed Central

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J

    2015-01-01

    Summary Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  15. Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems. General technical report (Final)

    SciTech Connect

    Fox, D.G.; Bernabo, J.C.; Hood, B.

    1987-11-01

    Guidelines include a large number of specific measures to characterize the existing condition of wilderness resources. Measures involve the atmospheric environment, water chemistry and biology, geology and soils, and flora. Where possible, measures are coordinated with existing long-term monitoring programs. Application of the measures will allow more effective evaluation of proposed new air-pollution sources.

  16. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    NASA Astrophysics Data System (ADS)

    Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu

    2011-12-01

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.

  17. Chemically defined conditions for human iPS cell derivation and culture

    PubMed Central

    Chen, Guokai; Gulbranson, Daniel R.; Hou, Zhonggang; Bolin, Jennifer M.; Ruotti, Victor; Probasco, Mitchell D.; Smuga-Otto, Kimberly; Howden, Sara E.; Diol, Nicole R.; Propson, Nicholas E.; Wagner, Ryan; Lee, Garrett O.; Antosiewicz-Bourget, Jessica; Teng, Joyce M. C.; Thomson, James A.

    2011-01-01

    We reexamine the individual components for human ES and iPS cell culture, and formulate a cell culture system in which all protein reagents for liquid media, attachment surfaces, and splitting are chemically defined. A major improvement is the lack of a serum albumin component, as variations in either animal or human sourced albumin batches have previously plagued human ES and iPS cell culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces, we demonstrate improved derivation efficiencies of vector-free human iPS cells with an episomal approach. This simplified E8 medium should facilitate both the research use and clinical applications of human ES and iPS cells and their derivatives, and should be applicable to other reprogramming methods. PMID:21478862

  18. Solving Heat Conduction Problems in Movable Boundary Domains under Intensive Physical-Chemical Transformation Conditions

    NASA Astrophysics Data System (ADS)

    Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.

    2016-02-01

    Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.

  19. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  20. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  1. Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions.

    PubMed

    Onghena, Matthias; Van Hoeck, Els; Negreira, Noelia; Quirynen, Laurent; Van Loco, Joris; Covaci, Adrian

    2016-05-01

    After the prohibition of bisphenol-A-containing polycarbonate baby bottles in the European Union (EU), alternative materials, such as polypropylene, polyethersulphone, Tritan™ copolyester, etc., have appeared on the market. Based on an initial screening and in vitro toxicity assessment, the most toxic migrating compounds were selected to be monitored and quantified using validated GC- and LC-QqQ-MS methods. The effect of several 'real-life-use conditions', such as microwave, sterilisation and dishwasher, on the migration of different contaminants was evaluated by means of duration tests. These results were compared with a reference treatment (filling five times with pre-heated simulant at 40°C) and with the legal EU 'repetitive-use conditions' (three migrations, 2 h at 70°C). Analysis of the third migration step of the EU repetitive-use conditions (which has to comply with the EU legislative migration limits) showed that several non-authorised compounds were observed in some baby bottles exceeding 10 µg kg(-1). However, all authorised compounds were detected well below their respective specific migration limits (SMLs). The reference experiment confirmed the migration of some of the compounds previously detected in the EU repetitive-use experiment, though at lower concentrations. Analysis of extracts from the microwave and dishwasher experiments showed a reduction in the migration during the duration tests. In general, the concentrations found were low and comparable with the reference experiment. Similar observations were made for the two sterilisation types: steam and cooking sterilisation. However, steam sterilisation seems to be more recommended for daily use of baby bottles, since it resulted in a lower release of substances afterwards. Repeated use of baby bottles under 'real-life' conditions showed no increase in the migration of investigated compounds and, after some time, the migration of these compounds even became negligible. PMID:27043734

  2. Field lysimeters for the study of fate and transport of explosive chemicals in soils under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Molina, Gloria M.; Padilla, Ingrid; Pando, Miguel; Pérez, Diego D.

    2006-05-01

    Landmines and other buried explosive devices pose in an immense threat in many places of the world, requiring large efforts on detection and neutralization of these objects. Many of the available detection techniques require the presence of chemicals near the soil-atmospheric surface. The presence of explosive related chemicals (ERCs) near this surface and their relation to the location of landmines, however, depends on the source characteristics and on fate and transport processes that affect their movement in soils. Fate and transport processes of ERC is soils may be interrelated with each other and are influenced by chemical characteristics and interrelated soil and environmental factors. Accurate detection of ERCs near the soil surface must, therefore, take into the variability of ERC concentration distributions near the soil surface as affected by fate and transport processes controlled interrelated environmental factors. To effectively predict the concentration distributions of ERCs in soils and near soil surfaces, it is necessary to have good understanding of parameters values that control these processes. To address this need, field lysimeters have been designed and developed at the University of Puerto Rico, Mayaguez .This paper presents the design of two field lysimeter used to study the fate and transport behavior of ERC in the field subjected to varying uncontrolled subtropical environmental conditions in two different soils. Both lysimeters incorporate pressure and concentration sampling ports, thermocouples, and a drainage system. Hydrus-2D was used to simulate soil moisture and drainage in the lysimeter for average environmental conditions in the study for the two soils used. The field lysimeters allow collection and monitoring of spatial and temporal ERC concentrations under variable, uncontrolled environmental conditions.

  3. Stability of exempt chemical surety materiel (XCSM) in commonly used diluents under routine storage conditions

    SciTech Connect

    Hayes, T.L.; Chaffins, S.A.; Kohne, J.W.; Murphy, T.L.; Cunningham, R.I.

    1993-05-13

    Due to either the extreme toxicity of chemical surety materiel (CSM) or the limitations of the experimental facility, it is often required that CSM be diluted before use. The requisite of selecting both a non-toxic diluent and a diluent that does not bias the proposed experiment often results in use of 'non-standard' analytical solvents. These 'nonstandard' solvents include distilled water, drug vehicles, and culture media. The lack of sufficient agent/solvent stability information in these solutions is of major concern to both experimental designers and data reviewers. The objectives of this task were to determine the shelf life of exempt concentrations of GA, GB, GD, VX, and HD in selected diluents at prescribed concentrations and temperatures, and to assemble this information into a database. Efforts included the development of analytical methods necessary to perform these stability experiments and the compilation of results into a working database. The database, once completed, will be made available to XCSM researchers and will be updated as necessary.

  4. Monitoring and physical-chemical modeling of conditions of natural surface and underground waters forming in the Kola North.

    PubMed

    Mazukhina, Svetlana I; Masloboev, Vladimir A; Chudnenko, Konstantin V; Bychinsky, Valeriy A; Svetlov, Anton V; Muraviev, Sergey V

    2012-01-01

    Processes of surface and underground water forming in the Khibiny massif have been studied using a physical-chemical model of the "water-rock-atmosphere-organic substance" system. The obtained model solutions are indicative of the fact that formation of surface and underground water of the Khibiny massif takes place on the whole in the framework of the considered system without attracting a hypothetical outside source of pollutants. The results are of practical and methodological importance for assessment of prediction of the man-induced impact on water systems in conditions of Subarctic. PMID:22416860

  5. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). PMID:22902143

  6. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  7. Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity.

    PubMed

    Wheat, P E; Tumeo, M A

    1997-01-01

    An investigation to determine the ability of ultrasonic radiation to chemically alter polycyclic aromatic hydrocarbons (PAHs) in aqueous solution has been conducted. The data indicate that chemical alteration of PAHs can be induced under intense ultrasonic treatment. The extent and outcome of reaction is a function of irridation time and aqueous solution parameters. Reaction products were analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Reaction products from ultrasonic treatment of aqueous solutions of biphenyl include ortho, meta, and para-1,1 biphenols. The principal product from ultrasonic treatment of aqueous phenanthrene solutions appears to be a phenanthrene-diol. The number and composition of reaction products for both PAHs tested suggest that a free radical mechanism is likely during aqueous high intensity ultrasonic treatment. The use of ultrasound to treat PAH contaminated aqueous solutions in tandem with other methodologies appears promising. However, the toxicity of reaction products produced by treatment remains to be determined. PMID:11233926

  8. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  9. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. PMID:27372128

  10. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery.

    PubMed

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C-300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

  11. Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery

    PubMed Central

    Watanabe, Taiji; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer. PMID:25191879

  12. Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu–BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu–BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu–BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  13. Exhaust emissions from gasoline-fuelled light duty vehicles operated in different driving conditions: A chemical and biological characterization

    NASA Astrophysics Data System (ADS)

    Westerholm, Roger; Almén, Jacob; Li, Hang; Rannug, Ulf; Rosén, Åke

    Chemical analysis and mutagenicity tests on Salmonella typtimurium strains TA 98 and TA 100 (Ames test) of exhaust emissions from five passengers vehicles, with or without a three-way catalyst, have been carried out to obtain emission factors and to characterize exhaust emissions. Both constant cruising speeds and transient driving conditions were investigated, regulated CO, HC, NO x and particulates, as well as unregulated pollutants, were analysed. The following unregulated pollutants were measured: particle-associated polycyclic aromatic hydrocarbons (PAH), 1-nitropyrene, light aromatics and light oxygenates. In total, 39 individual compounds were assayed. Emissions from catalyst-equipped vehicles showed a dramatic decrease compared with those from the vehicle without a catalyst. An emission dependency of both regulated and unregulated pollutants and biological activity on driving conditions were determined. An increased emission of PAH, 1-nitropyrene, particulates and mutagenic activity was found with a higher cruising speed.

  14. Synthesis of SF5CF2-Containing Enones and Instability of This Group in Specific Chemical Environments and Reaction Conditions.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2016-06-01

    The chemistry of the SF5CF2 moiety has been scarcely investigated. In this report, we present synthetic pathways to a variety of SF5CF2-substituted compounds starting from vinyl ethers and SF5CF2C(O)Cl. In specific chemical environments and under particular reaction conditions, the SF5CF2 moiety is unstable in downstream products resulting in the elimination of the SF5(-) anion and its decomposition to SF4 and F(-). Surprisingly, the formed F(-) can attack the intermediate difluorovinyl moiety to form trifluoromethyl substituted products. This appears to happen when an intermediate neighboring group participation involving a double bond is possible. Under slightly different conditions, the reaction stops at the stage of a difluorovinyl compound. PMID:27159371

  15. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  16. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (\\centerdot OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than \\centerdot OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  17. Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites

    SciTech Connect

    Guimon, R.K.; Lofgren, G.E.; Sears, D.W.G.

    1988-01-01

    Samples of four type 3 chondrites have been annealed at 400-850/sup 0/C and 0.77-1 kbar for 10-500 h in the presence of various amounts of water (0-10 wt.%) and sodium disilicate (0-2 molal) and their thermoluminescence properties measured. After annealing for > 20 h at temperatures > 600/sup 0/C, the TL sensitivity of the samples increased by factors of up to 40. After annealing at < 600/sup 0/C for 10-500 h, or relatively short periods at high temperatures (e.g., less than or equal to 20 h at 850/sup 0/C), the TL sensitivity of the samples decreased by up to 2 orders of magnitude (depending on the original value). The TL peak temperatures observed in the present experiments are consistent with a low form of feldspar (the TL phosphor) being produced at < 800/sup 0/C and a high form being produced at > 800/sup 0/C. When both high and low forms were present originally, the low-form was destroyed preferentially. The authors suggest that these data are consistent with the TL-metamorphism trends observed in type > 3.2 chondrites, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types < 3.2, the TL data are equally consistent with these types experiencing lower levels of metamorphism than the higher types, or with type 3.0 being produced from higher types by aqueous alteration. The presence of water with non-terrestrial D/H ratios, and petrographic evidence for aqueous alteration in Semarkona, lead to favoring the aqueous alteration hypothesis.

  18. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified,more » including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  19. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenatedmore » molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  20. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    SciTech Connect

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  1. Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals

    PubMed Central

    Hauri, Claudine; Fabricius, Katharina E.; Schaffelke, Britta; Humphrey, Craig

    2010-01-01

    Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation. PMID:20856882

  2. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell.

  3. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions.

    PubMed

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-01-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell. PMID:27108711

  4. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    PubMed Central

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-01-01

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell. PMID:27108711

  5. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    DOE PAGESBeta

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto themore » GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  6. Emergence of Photoautotrophic Minimal Protocell-Like Supramolecular Assemblies, "Jeewanu" Synthesied Photo Chemically in an Irradiated Sterilised Aqueous Mixture of Some Inorganic and Organic Substances

    NASA Astrophysics Data System (ADS)

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.

  7. Emergence of photoautotrophic minimal protocell-like supramolecular assemblies, "Jeewanu" synthesied photo chemically in an irradiated sterilised aqueous mixture of some inorganic and organic substances.

    PubMed

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere. PMID:25567741

  8. Control of transport and magnetism in ferromagnetic semiconducting superlattices through growth conditions and chemical surface effects

    NASA Astrophysics Data System (ADS)

    Kreutz, Theodore Carlton

    2003-10-01

    addition of chemical adsorbates. We find that we can reduce the Curie temperature by over 50 K. The reduction is linked to how well ordered the adsorbate is.

  9. Experimental studies of a single-effect absorption refrigerator using aqueous lithium-bromide: Effect of operating condition to system performance

    SciTech Connect

    Aphornratana, Satha; Sriveerakul, Thanarath

    2007-11-15

    This paper describes an experimental investigation of a single-effect absorption using aqueous lithium-bromide as working fluid. A 2 kW cooling capacity experimental refrigerator was tested with various operating temperatures. It was found that the solution circulation ratio (SCR) has a strong effect on the system performance. The measured SCR was 2-5 times greater than the theoretical prediction. This was due to the low performance of the absorber. The use of solution heat exchanger could increase the COP by up to 60%. (author)

  10. Determination of formal kinetic constants of thermal decomposition of aqueous hydrogen peroxide solution in a mixture of magnetic powder, based on experimental thermogram, obtained in adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Zaripov, Jamshed; Borisov, Boris; Bondarchuk, Sergey

    2014-08-01

    Process of thermal decomposition of hydrogen peroxide aqueous solution with the addition of magnetic powder in the form of toner for printers and lanthanum manganite were considered. Obtained resulting from an experiment in the Dewar container conducted thermogram analyzed using mass balance equations and heat. Formal kinetic parameters determined, and conclude that the magnetic powder in the mixture does not have catalytic properties. The described technique is recommended as a rapid analysis of the kinetics of the various reactions to substances having predefined thermal and thermodynamic properties.

  11. Tenascin C Promotes Hematoendothelial Development and T Lymphoid Commitment from Human Pluripotent Stem Cells in Chemically Defined Conditions

    PubMed Central

    Uenishi, Gene; Theisen, Derek; Lee, Jeong-Hee; Kumar, Akhilesh; Raymond, Matt; Vodyanik, Maxim; Swanson, Scott; Stewart, Ron; Thomson, James; Slukvin, Igor

    2014-01-01

    Summary The recent identification of hemogenic endothelium (HE) in human pluripotent stem cell (hPSC) cultures presents opportunities to investigate signaling pathways that are essential for blood development from endothelium and provides an exploratory platform for de novo generation of hematopoietic stem cells (HSCs). However, the use of poorly defined human or animal components limits the utility of the current differentiation systems for studying specific growth factors required for HE induction and manufacturing clinical-grade therapeutic blood cells. Here, we identified chemically defined conditions required to produce HE from hPSCs growing in Essential 8 (E8) medium and showed that Tenascin C (TenC), an extracellular matrix protein associated with HSC niches, strongly promotes HE and definitive hematopoiesis in this system. hPSCs differentiated in chemically defined conditions undergo stages of development similar to those previously described in hPSCs cocultured on OP9 feeders, including the formation of VE-Cadherin+CD73−CD235a/CD43− HE and hematopoietic progenitors with myeloid and T lymphoid potential. PMID:25448067

  12. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

  13. Evaluation of the chemical, physical, and biological conditions of the Alamosa River and associated tributaries

    SciTech Connect

    Willingham, W.T.; Parrish, L.P.; Schroeder, W.C.

    1995-12-31

    This study focused on the Summitville Mine Site, an abandoned cyanide heap-leach facility that discharges into the upper Alamosa River by way of the Wightman Fork, some five miles upstream from its confluence with the Alamosa River. Environmental data have been collected from the Alamosa River from its headwaters in the Rocky Mountains to its confluence with the Rio Grande River, Colorado. To date, environmental data have been collected in 1991, 1993, and July and September 1994. Water column and sediment chemistry, flow estimates and toxicity test data from more comprehensive environmental sampling events in July and September 1994 were used, in conjunction with other environmental data including in-stream biological data and physical habitat, to determine what impact, if any, the Summitville Superfund site was having on the aquatic life resources within the Alamosa River drainage, Comparisons of macroinvertebrate samples collected in July and September revealed difficulties relating impacts that occurred earlier in the summer, when heavy metal concentrations in the water column were high, to impacts that were noted in the fall, when heavy metal concentrations were lower. The macroinvertebrate community was reduced in numbers in the fall. However, water column chemistry and toxicity testing indicated improved conditions, when compared to the July sampling results. Possible reasons for the differences will be examined and suggestions will be made concerning additional sampling that might provide answers to the differences observed.

  14. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks.

    PubMed

    Chan, Siew-Yin; Choo, Wee-Sim

    2013-12-15

    Different extraction conditions were applied to investigate the effect of temperature, extraction time and substrate-extractant ratio on pectin extraction from cocoa husks. Pectin was extracted from cocoa husks using water, citric acid at pH 2.5 or 4.0, or hydrochloric acid at pH 2.5 or 4.0. Temperature, extraction time and substrate-extractant ratio affected the yields, uronic acid contents, degrees of methylation (DM) and degrees of acetylation (DA) of the extracted pectins using the five extractants differently. The yields and uronic acid contents of the extracted pectins ranged from 3.38-7.62% to 31.19-65.20%, respectively. The DM and DA of the extracted pectins ranged from 7.17-57.86% to 1.01-3.48%, respectively. The highest yield of pectin (7.62%) was obtained using citric acid at pH 2.5 [1:25 (w/v)] at 95 °C for 3.0 h. The highest uronic acid content (65.20%) in the pectin was obtained using water [1:25 (w/v)] at 95 °C for 3.0 h. PMID:23993545

  15. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  16. Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions.

    PubMed

    Rodríguez, María Susana; Albertengo, Liliana Elena

    2005-11-01

    Chitosan, the N acetylated derivative of chitin, has an effect on the absorption of dietary lipids, but there is not enough scientific knowledge about the mechanism. To study the interaction between chitosan and oil, the action of this biopolymer has been evaluated through an experimental model of the stomach and duodenum tract, although the enzimatic activity had not been evaluated. We microscopically confirmed that chitosan in a hychloridic acid medium (pH 1.0-2.0) emulsified lipids and the emulsion was a water in oil in water type (w/o/w). When the pH value and speed of agitation were increased to mirror the duodenum medium conditions under which lipids are absorbed, the emulsion capacity was better with an increased number of droplets and the emulsion continued as the w/o/w type. At pH 6.2, chitosan precipitated and lipids were entrapped in the formed flocculus. The binding oil was quantitatively determined, and we also demonstrate that a larger oil quantity induced less retention, while the chitosan characteristics had no influence. These observations allow us to postulate that the interaction between chitosan and oil inhibited duodenal absorption and enhanced lipid excretion. PMID:16306685

  17. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor. PMID:25771045

  18. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  19. Photolysis of oxyfluorfen in aqueous methanol.

    PubMed

    Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim

    2013-01-01

    Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction. PMID:23998303

  20. Collisions of small ice particles under microgravity conditions. II. Does the chemical composition of the ice change the collisional properties?

    NASA Astrophysics Data System (ADS)

    Hill, C. R.; Heißelmann, D.; Blum, J.; Fraser, H. J.

    2015-03-01

    Context. Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied. Aims: Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes. Methods: The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 ms-1, temperatures between 131 and 160 K and a pressure of around 10-5 mbar. Results: A range of coefficients of restitution were found, with no correlation between this and the chemical composition, relative impact velocity, or temperature. Conclusions: We conclude that the chemical composition of the ice (at the level of 95% water ice and 5% methanol or formic acid) does not affect the collisional properties at these temperatures and pressures due to the inability of surface wetting to take place. At a level of 5% methanol or formic acid, the structure is likely to be dominated by crystalline water ice, leading to no change in collisional properties. The surface roughness of the particles is the dominant factor in explaining the range of coefficients of restitution.

  1. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  2. A localized tolerance in the substrate specificity of the fluorinase enzyme enables "last-step" 18F fluorination of a RGD peptide under ambient aqueous conditions.

    PubMed

    Thompson, Stephen; Zhang, Qingzhi; Onega, Mayca; McMahon, Stephen; Fleming, Ian; Ashworth, Sharon; Naismith, James H; Passchier, Jan; O'Hagan, David

    2014-08-18

    A strategy for last-step (18)F fluorination of bioconjugated peptides is reported that exploits an "Achilles heel" in the substrate specificity of the fluorinase enzyme. An acetylene functionality at the C-2 position of the adenosine substrate projects from the active site into the solvent. The fluorinase catalyzes a transhalogenation of 5'-chlorodeoxy-2-ethynyladenosine (ClDEA) to 5'-fluorodeoxy-2-ethynyladenosine (FDEA). Extending a polyethylene glycol linker from the terminus of the acetylene allows the presentation of bioconjugation cargo to the enzyme for (18)F labelling. The method uses an aqueous solution (H2(18)O) of [(18)F]fluoride generated by the cyclotron and has the capacity to isotopically label peptides of choice for positron emission tomography (PET). PMID:24989327

  3. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study.

    PubMed

    Shah, Bhavna; Mistry, Chirag; Shah, Ajay

    2013-04-01

    Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)-an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer-Emmett-Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions. PMID:22739768

  4. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases. PMID:24952470

  5. Effects of Calcination and Milling Process Conditions for Ceria Slurry on Shallow-Trench-Isolation Chemical-Mechanical Polishing Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seok; Kang, Hyun-Goo; Kanemoto, Manabu; Paik, Ungyu; Park, Jea-Gun

    2007-12-01

    To improve the performance of shallow trench isolation chemical-mechanical polishing (STI-CMP) in terms of the removal selectivity of oxide and nitride films and the formation of surface defects, we investigated the effects of the calcination and milling process conditions during ceria slurry synthesis. We have focused on the effects of particle size distribution, the large-particle size, and the dispersion stability in a ceria slurry. We determined the optimum bead size for milling and appropriate calcination temperatures in order to obtain a reasonable particle distribution, with lower numbers of fine primary particles and large, agglomerated particles, in ceria slurry. This was achieved by reducing the quantity of aggregated particles during milling and two-step calcination process generating higher-density particles. These results can be qualitatively explained by abrasive collisions occurring between the milling beads and the decarbonation of cerium carbonate through diffusion during the manufacturing process used for the ceria slurry.

  6. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    PubMed

    Erguven, G O; Yildirim, N

    2016-01-01

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils. PMID:27262810

  7. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  8. Studies on the phytoplankton populations and physico-chemical conditions of treated sewage discharged into Lake Manzala in Egypt.

    PubMed

    el-Naggar, M E; Shaaban-Dessouki, S A; Abdel-Hamid, M I; Aly, E M

    1998-04-01

    Over a full year, the phytoplankton populations and physico-chemical conditions of treated sewage discharged into Lake Manzala in Egypt were investigated. Sixty-seven species of algae were identified, 18 Cyanophyta (Cyanobacteria), 19 Chlorophyta, 21 Bacillariophyta, 6 Euglenophyta, 2 Cryptophyta and one species Pyrrhophyta. Nitzschia (6 spp.), Scenedesmus (6 spp.), Navicula (4 spp.), Oscillatoria (4 spp.) and Euglena (4 spp.) were the most common genera. A remarkable seasonal variation in species composition and standing crop of the phytoplankton populations was noted during the study. The total phytoplankton standing crop appeared to be mainly dependent on the growth of certain species viz., Oscillatoria chalybea, O. princepes, O. tenuis, Microcystis aeruginosa, Anabaena constricta (Cyanophyta), Nitzschia obtusa, Bacillaria paradoxa, Cocconeis placentula, Cyclotella meneghiniana (Bacillariophyta), Pandorina morum, Volvox sp. (Chlorophyta) and Phacus curvicauda (Euglenophyta). The continuous presence of Anabaena constricta and Nitzschia palea was recorded in the treated sewage. The least represented algal divisions were Pyrrhophyta and Cryptophyta, both in terms of quality and quantity. The data indicate that the secondary effluents were unstable in their chemical features and grossly polluted. Therefore, the treatment systems must treat the discharged sewage to a tertiary level before discharging into Lake Manzala. PMID:9579343

  9. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  10. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes

    PubMed Central

    2014-01-01

    Background Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. Methods Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. Results Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. Conclusions Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation. PMID:24970701

  11. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  12. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  13. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  14. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, O.; Kaci, S.; Stalport, F.; Szopa, C.; Coll, P.

    2014-11-01

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars' exploration. Understanding the chemical evolution of organic molecules under current martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? This paper presents the results of laboratory investigations dedicated to monitor the evolution of organic molecules when submitted to simulated Mars surface ultraviolet radiation (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) conditions. Experiments are done with the MOMIE simulation setup (for Mars Organic Molecules Irradiation and Evolution) allowing both a qualitative and quantitative characterization of the evolution the tested molecules undergo (Poch, O. et al. [2013]. Planet. Space Sci. 85, 188-197). The chemical structures of the solid products and the kinetic parameters of the photoreaction (photolysis rate, half-life and quantum efficiency of photodecomposition) are determined for glycine, urea, adenine and chrysene. Mellitic trianhydride is also studied in order to complete a previous study done with mellitic acid (Stalport, F., Coll, P., Szopa, C., Raulin, F. [2009]. Astrobiology 9, 543-549), by studying the evolution of mellitic trianhydride. The results show that solid layers of the studied molecules have half-lives of 10-103 h at the surface of Mars, when exposed directly to martian UV radiation. However, organic layers having aromatic moieties and reactive chemical groups, as adenine and mellitic acid, lead to the formation of photoresistant solid residues, probably of macromolecular nature, which could exhibit a longer photostability. Such solid organic layers are found in micrometeorites or could have been formed endogenously on Mars. Finally, the quantum efficiencies of photodecomposition at wavelengths from 200 to 250 nm

  15. The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

    PubMed Central

    Ball, M. E. E.; Owens, B.; McCracken, K. J.

    2013-01-01

    The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed

  16. Applicability of DLVO Approach to Predict Trends in Iron Oxide Colloid Mobility Under Various Physical And Chemical Soil Conditions

    NASA Astrophysics Data System (ADS)

    Florian Carstens, Jannis; Bachmann, Jörg; Neuweiler, Insa

    2014-05-01

    In soil and groundwater, highly mobile iron oxide colloids can act as "shuttles" for transport of adsorbed contaminants such as heavy metals and radionuclides. Artificial iron oxide colloids are injected into polluted porous media to accelerate bacterial degradation of pollutants in the context of bioremediation purposes. The mobility of iron oxide colloids is strongly affected by the hydraulic, physical and chemical conditions of the pore space, the solid particle surface properties, the fluid phase, and the colloids themselves. Most pioneering studies focused on iron oxide colloid transport and retention in simplified model systems. The aim of this study is to investigate iron oxide colloid mobility under more complex, soil-typical conditions that have as yet only been applied for model microspheres, i.e. functionalized latex colloids. Among these conditions is the pivotal impact of organic matter, either dissolved or adsorbed onto solid particles, modifying wettability properties. Of particular importance was to determine if effective chemical surface parameters derived from contact angle and zeta potential measurements can be used as a tool to predict general tendencies for iron oxide colloid mobility in porous media. In column breakthrough experiments, goethite colloids (particle size: 200-900 nm) were percolated through quartz sand (grain size: 100-300 µm) at pH 5. The impact of a multitude of conditions on colloid mobility was determined: dissolved organic matter (DOM) concentration, ionic strength, flow velocity, flow interruption, partial saturation, and drying with subsequent re-wetting. The solid matrix consisted of either clean sand, organic matter-coated sand, goethite-coated sand, or sand hydrophobized with dichlorodimethylsilane. Additionally, contact angles and zeta potentials of the materials applied in the column experiments were measured. By means of these surface parameters, traditional DLVO interaction energies based on zeta potential as well

  17. Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO

    SciTech Connect

    Phelan, James, M.; Webb, Stephen W.

    1999-06-14

    Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

  18. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    SciTech Connect

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J.; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D.

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  19. Aqueous Solutions and their Interfaces

    SciTech Connect

    Xantheas, Sotiris S.; Voth, Gregory A.

    2009-04-02

    Preface of the special issue of the Journal of Physical Chemistry in conjunction with the international workshop "Aqueous Solutions and their Interfaces". The topics include the structure of liquid water, the analysis of X-ray and neutron scattering experimental data, the vibrational spectroscopy of liquid water, the structure and spectroscopy of aqueous interfaces and the development of theoretical approaches to model the structure and spectra of liquid water and interfaces. This work was supported by the US Department of Energy's Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  20. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  1. Capillary electrophoresis with capacitively coupled contactless conductivity detection applied to the quantitation and to the determination of physical-chemical properties of peroxycarboxylates in aqueous medium.

    PubMed

    Vidal, Denis T R; do Lago, Claudimir L

    2013-07-01

    CE with C⁴D (CE-C⁴D) was successfully applied to the investigation of performate, peracetate, and perpropionate in aqueous medium. Ionic mobilities, diffusion coefficients, and hydrodynamic radii were obtained for the first time for these species. CE-C⁴D was also used to estimate the pKa values of the peroxycarboxylic acids. Because the peroxycarboxylates (POCs) undergoes hydrolysis while migrating, a simple calibration curve cannot be used for quantitation. Thus, an indirect calibration approach was used. The new method was used to monitor the formation of peroxycarboxylic acids from hydrogen peroxide and the carboxylic acid as well as to the quantitation of peracetic acid in a commercial sample. The CE-C⁴D method compares favorably with the conventional titration method because of the possibility of speciation of the POC, the low sample consumption, and the low LOD (14, 8, and 24 μmol/L for performate, peracetate, and perpropionate, respectively). Although POCs are structural isomers of monoalkyl carbonates, they have greater hydrodynamic radii, which suggests that the positions of the oxygen atoms in the molecules have a direct impact in the charge density and consequently on the hydration atmosphere. PMID:23595363

  2. A Simple, Low-cost, and Robust System to Measure the Volume of Hydrogen Evolved by Chemical Reactions with Aqueous Solutions.

    PubMed

    Brack, Paul; Dann, Sandie; Wijayantha, K G Upul; Adcock, Paul; Foster, Simon

    2016-01-01

    There is a growing research interest in the development of portable systems which can deliver hydrogen on-demand to proton exchange membrane (PEM) hydrogen fuel cells. Researchers seeking to develop such systems require a method of measuring the generated hydrogen. Herein, we describe a simple, low-cost, and robust method to measure the hydrogen generated from the reaction of solids with aqueous solutions. The reactions are conducted in a conventional one-necked round-bottomed flask placed in a temperature controlled water bath. The hydrogen generated from the reaction in the flask is channeled through tubing into a water-filled inverted measuring cylinder. The water displaced from the measuring cylinder by the incoming gas is diverted into a beaker on a balance. The balance is connected to a computer, and the change in the mass reading of the balance over time is recorded using data collection and spreadsheet software programs. The data can then be approximately corrected for water vapor using the method described herein, and parameters such as the total hydrogen yield, the hydrogen generation rate, and the induction period can also be deduced. The size of the measuring cylinder and the resolution of the balance can be changed to adapt the setup to different hydrogen volumes and flow rates. PMID:27584581

  3. Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions.

    PubMed

    Lu, Cong; Wu, Yaoguo; Hu, Sihai; Raza, Muhammad Ali; Fu, Yilin

    2016-04-01

    Exposed mine tailing wastes with considerable heavy metals can release hazardous colloidal particles into soil under transient chemical and physical conditions. Two-layered packed columns with tailings above and soils below were established to investigate mobilization and transport of colloidal particles from metal-rich mine tailings into soil under transient infiltration ionic strength (IS: 100, 20, 2 mM) and flow rate (FR: 20.7, 41, and 62.3 mm h(-1)), with Cu and Pb as representatives of the heavy metals. Results show that the tailing particles within the colloidal size (below 2 μm) were released from the columns. A step-decrease in infiltration IS and FR enhanced, whereas a step-increase in the IS and FR restrained the release of tailing particles from the column. The effects of step-changing FR were unexpected due to the small size of the released tailing particles (220-342 nm, being not sensitive to hydrodynamic shear force), the diffusion-controlled particle release process and the relatively compact pore structure. The tailing particles present in the solution with tested IS were found negatively charged and more stable than soil particles, which provides favorable conditions for tailing particles to be transported over a long distance in the soil. The mobilization and transport of Cu and Pb from the tailings into soil were mediated by the tailing particles. Therefore, the inherent toxic tailing particles could be considerably introduced into soil under certain conditions (IS reduction or FR decrease), which may result in serious environmental pollution. PMID:26780043

  4. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    PubMed

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  5. Extraction of uranium and molybdenum from aqueous solutions: A survey of industrial materials for use in chemical barriers for uranium mill tailings remediation

    SciTech Connect

    Morrison, S.J.; Spangler, R.R. )

    1992-10-01

    Laboratory experiments were performed to simulate the interaction of contaminated pore fluids with a variety of industrial materials. The objective was to evaluate the materials for use in a chemical barrier under a repository containing uranium mill tailings. Pore water would pass through the barrier, but contaminants would remain fixed in the solid fraction. More than 99% of the dissolved uranium in a synthetic pore fluid (initial uranium concentration of 30.0 mg/L) was extracted by the addition of hydrated lime, fly ash, barium chloride, calcium phosphate, titanium oxide, peat, and lignite. More than 96% of the molybdenum (initial molybdenum concentration of 8.9 mg/L) was extracted by ferrous sulfate, ferric oxyhydroxide, titanium oxide, peat, hematite, calcium chloride, and barium chloride. Some materials were effective only for a limited range of pH values. Extraction was caused by both precipitation (as calcium uranate, calcium molybdate, ferrous molybdate, or barium molybdate) and sorption (on ferric oxyhydroxide, hematite, calcium phosphate, peat, or titanium oxide). Chemicals that precipitate contaminant-bearing minerals are able to control solution chemistry and, therefore, have an advantage over sorbents which are subject to externally determined solution variables such as pH. On the basis of the predicted flux of pore fluid from the Monticello (Utah) uranium mill tailings, some industrial materials may be suitable for a chemical barrier at that site. 37 refs., 6 figs., 6 tabs.

  6. An investigation on the chemical stability and a novel strategy for long-term stabilization of diphenylalanine nanostructures in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nezammahalleh, H.; Amoabediny, G.; Kashanian, F.; Foroughi Moghaddam, M. H.

    The stability of diphenylalanine (FF) microwires and microtubes in phosphate buffer solution was investigated and a novel strategy was developed for their chemical stabilization. This stability investigation was carried out by optical microscopy and by high performance liquid chromatography (HPLC). These microstructures dissolve in the solution depending upon their degree of FF saturation. The dissolution mechanisms of the structures in kinetically limited processes were found by accurately fitting the experimental dissolution data to a theoretical kinetic equation. The dissolution data were well fitted to the particular Avrami-Erofe'ev kinetic expression (R2 > 0.98). These findings suggest that the structures can be stabilized by a decrease in the hydration of the constituent molecules thorough a chemical conformational induced transition upon heat treatment. The stable microtubes were fabricated in a novel three step procedure consisting of the reduction of silver ions in unstable FF microtubes by a citrate reductant, the stabilization by chemical conformational induced transition upon heat treatment, and the consequent oxidation of the reduced silver by a persulfate oxidant. These materials were characterized by electron microscopy and powder X-ray diffraction techniques. The long-term stability of both structures was also confirmed by optical microscopy and HPLC.

  7. Chemical immobilization of adult female Weddell seals with tiletamine and zolazepam: effects of age, condition and stage of lactation

    PubMed Central

    Wheatley, Kathryn E; Bradshaw, Corey JA; Harcourt, Robert G; Davis, Lloyd S; Hindell, Mark A

    2006-01-01

    Background Chemical immobilization of Weddell seals (Leptonychotes weddellii) has previously been, for the most part, problematic and this has been mainly attributed to the type of immobilizing agent used. In addition to individual sensitivity, physiological status may play an important role. We investigated the use of the intravenous administration of a 1:1 mixture of tiletamine and zolazepam (Telazol®) to immobilize adult females at different points during a physiologically demanding 5–6 week lactation period. We also compared performance between IV and IM injection of the same mixture. Results The tiletamine:zolazepam mixture administered intravenously was an effective method for immobilization with no fatalities or pronounced apnoeas in 106 procedures; however, there was a 25 % (one animal in four) mortality rate with intramuscular administration. Induction time was slightly longer for females at the end of lactation (54.9 ± 2.3 seconds) than at post-parturition (48.2 ± 2.9 seconds). In addition, the number of previous captures had a positive effect on induction time. There was no evidence for effects due to age, condition (total body lipid), stage of lactation or number of captures on recovery time. Conclusion We suggest that intravenous administration of tiletamine and zolazepam is an effective and safe immobilizing agent for female Weddell seals. Although individual traits could not explain variation in recovery time, we suggest careful monitoring of recovery times during longitudinal studies (> 2 captures). We show that physiological pressures do not substantially affect response to chemical immobilization with this mixture; however, consideration must be taken for differences that may exist for immobilization of adult males and juveniles. Nevertheless, we recommend a mass-specific dose of 0.50 – 0.65 mg/kg for future procedures with adult female Weddell seals and a starting dose of 0.50 mg/kg for other age classes and other phocid seals. PMID

  8. Hematite Spherules in Basaltic Tephra Altered Under Aqueous, Acid-Sulfate Conditions on Mauna Kea Volcano, Hawaii: Possible Clues for the Occurrence of Hematite-Rich Spherules in the Burns Formation at Meridiani Planum, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.

    2005-01-01

    Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.

  9. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface.

    PubMed

    Wang, Wenchao; Li, Qingyong; Liu, Yuhui; Chen, Binbin

    2015-05-01

    In this paper, we chose diffident kinds of ionic liquids to optimal selection an optimal one to extract alkaloids from Phellodendron amurense Rupr. Four ionic liquids with diffident carbon chains or anions have been investigated and 1-butyl-3-methylimidazolium bromide with best productivity. Then, selections have been optimized in different conditions, including concentration of ionic liquid, time for ultrasonic treatment, ultrasonic power and solid-liquid ratio. Moreover, three conditions have been comprehensively assessment by response surface methodology, the optimal conditions were determined as follows ultrasonic power 100 W, extraction time 75 min and ratio of solvent to raw material 1:14. Under these conditions, the yield% (MIX) was 106.7% (extracted by heat reflux being defined 100%). Comparing with other methods, the advantages are saving conserving, time saving, high yield% and especially pollution-free. PMID:25443277

  10. Long-term Geochemical Transport Simulation to Evaluate Ambient Chemical Conditions at Horonobe URL Site, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Shimo, M.; Fujiwara, Y.; Kunimaru, T.; Xu, T.; Laaksoharju, M.

    2005-12-01

    JNC (Japan Nuclear Cycle Development Institute) has been planning an underground research laboratory (URL) in Horonobe, northern Hokkaido, Japan. In this study, long-term evolution of groundwater chemistry was simulated to evaluate ambient chemical conditions around the Horonobe URL site. The study area is about 8km by 4km and 2km deep region centered on the URL, in which the geology mainly consists of Pliocene diatomaceous argillaceous formations. Hydro-geochemical investigations using deep boreholes in about 3km by 3km area have suggested that groundwater chemistry around the site has been formed through the mixing of shallow fresh water and deep saline water. The deep groundwater has high salinity and differs from the present seawater in that it is highly reduced and has low pH, high bicarbonate and low magnesium concentration. Prior to the simulation, a computer code M3 (Laaksoharju et al. 1999) was used to model that the groundwater composition is affected by a two end-member mixing system. Next, the simulation of chemical changes during the intrusion of fresh water from land surface into deep saline water in the past 0.1 Ma was performed. A non-isothermal multiphase reactive geochemical transport simulation code TOUGHREACT (Xu and Press, 2001) was employed to solve the complex interplay of mass transport and chemical reaction in groundwater such as mineral dissolution/precipitation and ion exchange. The simulator was applied to a site-scale 3D geological structure model in which surface topography, the structures of geologic formations and a major fault were embedded. The results suggest that: 1) the spatial patterns of salinity and major constituents observed are in the site are generally consistent with a scenario of the intrusion of the surface fresh water into the deep saline water; 2) freshening of the deep saline water increases pH by cation exchange; 3) redox front migrates as oxidized water infiltrates from surface but is strongly buffered by reducing

  11. Degradation of the biocide 4-chloro-3,5-dimethylphenol in aqueous medium with ozone in combination with ultraviolet irradiation: operating conditions influence and mechanism.

    PubMed

    Song, Shuang; Liu, Zhiwu; He, Zhiqiao; Li, Yu; Chen, Jianmeng; Li, Chaolin

    2009-11-01

    Biocides usually persist during municipal sewage treatment and are subsequently distributed into aquatic environments. To explore the capability of advanced oxidation processes for the rapid removal of biocides, we examined the total organic carbon (TOC) reduction of 4-chloro-3,5-dimethylphenol (PCMX) with a combination of UV/O(3). Moreover, the related important parameters, including the mass transfer coefficient and light utilization efficiency, in PCMX degradation were determined. The UV/O(3) experimental results showed a pronounced synergistic effect, leading to the nearly complete elimination of TOC within 75 min. Thus, the effect of operating variables was investigated as a function of pH, ozone dosage, bulk temperature and the initial concentration of PCMX. The efficiency of PCMX mineralization increased with an increase in ozone dose up to 3.1 gh(-1), and a decrease in the initial concentration from 250 to 100mg L(-1). The optimal pH value was 4.0, and the preferred bulk temperature was 20 degrees C on the basis of the influence of temperature on reaction rate and ozone solubility. The major aromatic intermediates identified by gas chromatography/mass spectrometry were 2,6-dimethylbenzene-1,4-diol, 2,6-dimethylbenzo-1,4-quinone, 2,6-bis(hydroxymethyl)benzo-1,4-quinone, and 2,6-dimethylbenzo-1,4-aldehyde. Quantitative determination of related carboxylic acid and inorganic anions was done by ion chromatography. On the basis of the identified reaction products, a possible degradation pathway for the UV/O(3) oxidation of PCMX in aqueous media is proposed. PMID:19818989

  12. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.

    PubMed

    Paul, Laiby; Smolders, Erik

    2015-01-01

    The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. PMID:25460750

  13. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition

    NASA Astrophysics Data System (ADS)

    Salari, E.; Peyghambarzadeh, S. M.; Sarafraz, M. M.; Hormozi, F.; Nikkhah, V.

    2016-04-01

    This paper experimentally focuses on the pool boiling heat transfer characteristics of gamma Fe3O4 aqueous nano-fluids on a flat disc heater. The nano-fluid used in this research was prepared using two-step method and was stabilized using nonylphenol ethoxylate nonionic surfactant, pH setting, and sonication process as well. Influence of different operating parameters such as heat flux (0-1546 kW/m2), mass concentration of nano-fluids (weight concentration 0.1-0.3 %), bubble formation, critical heat flux (1170 kW/m2 for water, 1230 kW/m2 (wt% = 0.1), 1320 kW/m2 (wt% = 0.2), 1450 kW/m2 (wt% = 0.3) and fouling on pool boiling heat transfer coefficient of nano-fluid as a thermal performance index were experimentally investigated and briefly discussed. Results demonstrated that the pool boiling heat transfer coefficient increases with increasing the mass concentration and the applied heat flux. In addition, the rate of bubble formation is significantly intensified at higher heat fluxes and subsequently, larger bubbles detach the surface due to the intensification of bubble coalescence. In terms of fouling formation, it can be stated that fouling of nano-fluids is a strong function of time and rate of deposition is increased over the extended time while the pool boiling heat transfer coefficient was not decreased over the time, as porous deposited layer on the surface are detached from the surface by bubble interactions. In terms of critical heat flux, capillary action of the deposited layer was found to be the main reason responsible for increasing the critical heat flux as liquid is stored inside the porous deposited layer, which enhances the surface toleration against the critical heat flux crisis.

  14. State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media

    SciTech Connect

    Chase, Zizwe; Kasakov, Stanislav; Shi, Hui; Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Balasubramanian, Mahalingam; Zhao, Chen; Wang, Yong; Lercher, Johannes A.

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was determined during aqueous phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy (EXAFS). On sulfonated carbon and HZSM-5 supports, the NiO and Ni(OH)2 were readily reduced to Ni(0) under reaction conditions (~35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). On the silica support, less than 70% of the Ni was converted to Ni(0) under reaction conditions, which is attributed to the formation of Ni phyllosilicates. Over a broad range of reaction conditions there was no leaching of Ni from the supports. In contrast, rapid leaching of the Ni(II) from HZSM-5 was observed, when 15 wt. % aqueous acetic acid was substituted for the aqueous phenol solution. Once the metallic state of Ni was established there was no leaching in 15 wt. % acetic acid at 473 K and 35 bar H2. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. STEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL.

  15. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe2O3/zeolite was prepared by dissolving Fe2O3 fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe2O3/Al2O3, Co/zeolite/Al2O3, Co/zeolite, and Co/Al2O3 were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C2H2/N2 = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al2O3. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al2O3. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  16. Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films

    NASA Astrophysics Data System (ADS)

    Toivola, Yvete; Thurn, Jeremy; Cook, Robert F.; Cibuzar, Greg; Roberts, Kevin

    2003-11-01

    The effect of deposition temperature, deposition pressure, or input gas ratio (SiH2Cl2:NH3) on film stress was determined for low-pressure chemical vapor deposited silicon nitride films. Wafer curvature measurements were performed for films deposited on single crystal silicon and amorphous silica wafer substrates to determine film stress σdep, biaxial modulus Ef+, and coefficient of thermal expansion αf. Apparent plane strain film modulus Ēf' and hardness H were measured using depth-sensing indentation. Ellipsometry was used to measure film thickness tf and refractive index n. Infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), forward recoil energy spectroscopy (FReS), and Rutherford backscattering spectroscopy (RBS) experiments were performed to determine film composition. Although film deposition stress varied from -135 MPa (compressive) to 235 MPa (tensile) Ef+, Ēf', H, and αf remained nearly constant. Infrared spectroscopy resolved only Si-N species for all films, and results from FReS on three films confirmed that the hydrogen content was negligible. RBS and XPS indicated that Si/N increased with increased compressive σdep. Ellipsometry and RBS indicated that all films were silicon-rich, to a greater extent with increased compressive σdep. As RBS indicated that atomic density decreased with increased compressive deposition stress, it was concluded that the deposition conditions changed both thermal and intrinsic deposition stress for all films. In particular, intrinsic stress was tensile, and became increasingly tensile for increased Si/N and decreased atomic density. Assuming thermal stress was similar for all films examined here, the intrinsic stress must have varied from changes dependent on the deposition conditions.