Science.gov

Sample records for aqueous fluid-injection methods

  1. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOEpatents

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  2. Fluid injection apparatus and method used between a blowout preventer and a choke manifold

    SciTech Connect

    Hailey, C.D.

    1986-10-21

    An apparatus is described for pumping fluid into a blowout preventer through a first opening thereof and into a choke manifold through a second opening thereof. The apparatus comprises: a base frame; fluid container means, mounted on the base frame, for receiving the fluid to be pumped into the blowout preventer and the choke manifold; pump means, mounted on the base frame, for pumping the fluid of the fluid container means through a flow inlet and an outlet of the pump means; and spacer flange coupling means, connectible between the first and second openings, for coupling the outlet of the pump means with the blowout preventer and the choke manifold. A method is described of injecting a fluid into a blowout preventer. The method consists of: connecting to the choke flow line and the inlet, between the first and second valve means, flow port means for providing a fluid communication path between the choke flow line of the blowout preventer and the inlet of the choke manifold and for providing an injection port into the fluid communication path; and pumping the fluid into the injection port so that the fluid is dispersed through the fluid communication path towards the first and second valve means.

  3. An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Aminzadeh, F.; Ampuero, J.-P.

    2015-10-01

    Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in regions where background rates are low but are difficult to detect in seismically active regions. We present a novel method to identify likely induced seismicity in tectonically active regions based on short-range spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches through the entire parameter space of injection rate thresholds and determines the statistical significance of correlated changes in injection and seismicity rates. Applying our method to Kern County, central California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes to seismicity in four different cases. Three of these are connected to earthquake sequences with events above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least 15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter b values of ˜0.6-0.7 and at times systematic migration patterns characteristic for a diffusive process. Our results show that injection-induced pressure perturbations can influence seismic activity at distances of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically robust assessment of likely injection-induced seismicity within a large, tectonically active region.

  4. Fluid injection and induced seismicity

    NASA Astrophysics Data System (ADS)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  5. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  6. Coping with earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  7. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  8. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  9. Seismicity triggered by fluid injection-induced aseismic slip

    NASA Astrophysics Data System (ADS)

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-01

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ=0.67+0.045ln(vv0) with v0 = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep.

  10. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  11. Creating fluid injectivity in tar sands formations

    SciTech Connect

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  12. Method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  13. Method for inhibiting corrosion in aqueous systems

    DOEpatents

    DeMonbrun, James R.; Schmitt, Charles R.; Schreyer, James M.

    1980-01-01

    This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.

  14. Fluid injection and withdrawal in deep geothermal borehole.

    NASA Astrophysics Data System (ADS)

    Troiano, A.; Di Giuseppe, M. G.; Troise, C.; Tramelli, A.; De Natale, G.

    2012-04-01

    Geothermal systems represents a large resource that can provide, with a reasonable investment, a very high and cost-competitive power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite this unquestionable potential, geothermal exploitation has always been perceived as limited, mainly because of the dependance of a site usefulness on several pre-existing conditions, mainly correlated to the reservoir rock's permeability and porosity, the amount of fluid saturation and, first of all, a convenient temperature-depth relationship. However, this major barrier it is not insurmountable and a notable progress in recent tests is achieved with the Enhanced Geothermal System (EGS), where massive fluid injection and withdrawal were performed to enlarge the natural fracture system of the basement rock. The permeability of the surrounding rocks results highly increased by pressurized fluids circulation and geothermal resources, in such way, become accessible in areas where deep reservoir exploitation, otherwise, could be not advantageous or even possible. Still problematic remains, however, most of the key technical requirements as, firstly, deep fluid injection, that represents a necessary field practice in EGS development. This kind of procedure have often strong and uncontrolled physical effects on the neighboring environment, involving possibly even large areas and, in particular, they represent one of the most important sources of seismicity induced by human activities. In some cases, seismicity reaches level that can not be sustained, as in the paradigmatic case of the 2006 M=3.4 earthquake induced in the Basel city (Swiss), with the consequent EGS project early termination. We test a numerical procedure that models deep fluid injection and withdrawal, during well stimulation, and its effects on induced seismicity. We propose such a procedure as a way to estimate how

  15. Fluid injection triggering of 2011 earthquake sequence in Oklahoma

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Savage, H. M.; Abers, G. A.; Cochran, E. S.

    2012-12-01

    Significant earthquakes are increasingly occurring within the United States midcontinent, with nine having moment-magnitude (Mw) ≥4.0 and five with Mw≥5.0 in 2011 alone. In parallel, wastewater injection into deep sedimentary formations has increased as unconventional oil and gas resources are developed. Injected fluids may lower normal stress on existing fault planes, and the correlation between injection wells and earthquake locations led to speculation that many 2011 earthquakes were triggered by injection. The largest earthquake potentially related to injection (Mw5.7) struck in November 2011 in central Oklahoma. Here we use aftershocks to document the fault patterns responsible for the M5.7 earthquake and a prolific sequence of related events, and use the timing and spatial correlation of the earthquakes with injection wells and subsurface structures to show that the earthquakes were likely triggered by fluid injection. The aftershock sequence details rupture along three distinct fault planes, the first of which reaches within 250 meters of active injection wells and within 1 km of the surface. This earthquake sequence began where fluids are injected at low pressure into a depleted oil reservoir bound by faults that effectively seal fluid flow. Injection into sealed compartments allows reservoir pressure to increase gradually over time, suggesting that reservoir volume, in this case, controls the triggering timescale. This process allows multi-year lags between the commencement of fluid injection and triggered earthquakes.

  16. Aqueous flooding methods for tertiary oil recovery

    SciTech Connect

    Peru, D.A.

    1989-04-04

    A method is described for flooding of a subterranean petroleum bearing formation for tertiary oil recovery, comprising the steps of providing at least one production well having at least one inlet within the subterranean petroleum bearing formation, and at least one injection well having at least one outlet within the subterranean petroleum bearing formation, injecting into the petroleum bearing formation through the injection well, a low alkaline pH aqueous sodium bicarbonate flooding solution having a pH in the range of from about 8.25 to about 9.25 comprising from about 0.25 to about 5 weight percent of sodium bicarbonate, from about 0.05 to about 1.0 weight percent of petroleum recovery surfactant, and from about 1 to about 20 weight percent of sodium chloride, based on the total weight of the aqueous flooding solution, withdrawing through at least one inlet of the production wells, an oil and water mixture comprising petroleum from the subterranean petroleum bearing formation and at least a portion of the low alkaline pH sodium bicarbonate aqueous flooding solution, and separating the oil from the aqueous oil and water mixture.

  17. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault

  18. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  19. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime

  20. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  1. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  2. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  3. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  4. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  5. Method for preparation of viscous aqueous liquids for wellbore injection

    SciTech Connect

    Abdo, M.K.

    1986-03-11

    This patent describes a method of preparing a viscous aqueous liquid for introduction into a well penetrating the earth. The method consists of: (a) incorporating a water-dispersible polysaccharide produced by addition of bacteria of the genus Xanthomonas on a carbohydrate into an aqueous liquid having a salinity within the range of 0-0.03 weight percent, (b) incorporating trivalent metal ions selected from the group consisting of aluminum, chromium, and iron ions into the aqueous liquid in a concentration sufficient to effect complexing of the polysaccharide, (c) subsequent to steps (a) and (b), adding an aqueous saline makeup solution to the aqueous liquid containing the polysaccharide and the trivalent metal ions to increase the salinity to a value of at least 0.5 weight percent, and (d) introducing the aqueous liquid into the well. Also described is the production of oil from a subterranean reservoir by the waterflooding technique in which an aqueous liquid comprising a polysaccharide produced by the action of bacteria of the genus Xanthomonas on a carbohydrate is introduced into a well penetrating the earth. The improvement consists of using an aqueous polysaccharide solution made by prehydrating the polysaccharide in fresh water and then mixing this prehydrated solution with hard water, whereby the prehydration step yields a polysaccharide solution in hard water of higher viscosity than by hydrating directly in hard water.

  6. INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.

    PubMed

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-12

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. PMID:26068845

  7. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  8. Enhanced remote earthquake triggering at fluid injection sites in the Midwestern U.S

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Savage, H. M.; Keranen, K. M.; Abers, G. A.

    2013-12-01

    A dramatic increase in seismicity in the Midwestern United States may be related to increased deep wastewater injection. We systematically examined sites of potential anthropogenic seismicity for evidence of remote earthquake triggering, which could indicate high fluid pressure and critically stressed faults. Using a cross-correlation method to enhance earthquake catalogs for individual TA stations, we found that regions of anthropogenic seismicity are also susceptible to earthquake triggering from natural transient stresses carried by seismic waves of large remote earthquakes. We detected triggered earthquakes following the three largest dynamic strain events since 2010, showing triggering by the 2010 Mw 8.8 Maule, Chile, earthquake at Prague, OK, and Trinidad, CO, and triggering by the 2011 Mw 9.1 Tohoku-Oki earthquake at Snyder, TX. Each of these sites hosted larger earthquakes (Mw 4.5-5.7) within the next 6 to 20 months. Enhanced triggering susceptibility could therefore be an advance indicator that fluid injection has brought the regional fault system to a critical state. Remote triggering is strongest at sites where the onset of seismicity lagged injection by many years, and where high swarm activity had not yet begun. The sites that triggered during the 2010 Chile earthquake did not trigger in the subsequent 2011 Tohoku earthquake, which suggests the importance of local conditions or a long recharge period for the triggering mechanism. By analogy with natural dynamic triggering at hydrothermal sites, we invoke a mechanism involving fracture unclogging or dynamic permeability enhancement, in which the seismic waves alter subsurface fluid flow and accelerate pressure changes on already critically stressed faults.

  9. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  10. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  11. Physics-based Probabilistic Seismic Hazard Analysis for Seismicity Induced by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Foxall, W.; Hutchings, L. J.; Johnson, S.; Savy, J. B.

    2011-12-01

    Risk associated with induced seismicity (IS) is a significant factor in the design, permitting and operation of enhanced geothermal, geological CO2 sequestration and other fluid injection projects. Whereas conventional probabilistic seismic hazard and risk analysis (PSHA, PSRA) methods provide an overall framework, they require adaptation to address specific characteristics of induced earthquake occurrence and ground motion estimation, and the nature of the resulting risk. The first problem is to predict the earthquake frequency-magnitude distribution of induced events for PSHA required at the design and permitting stage before the start of injection, when an appropriate earthquake catalog clearly does not exist. Furthermore, observations and theory show that the occurrence of earthquakes induced by an evolving pore-pressure field is time-dependent, and hence does not conform to the assumption of Poissonian behavior in conventional PSHA. We present an approach to this problem based on generation of an induced seismicity catalog using numerical simulation of pressure-induced shear failure in a model of the geologic structure and stress regime in and surrounding the reservoir. The model is based on available measurements of site-specific in-situ properties as well as generic earthquake source parameters. We also discuss semi-empirical analysis to sequentially update hazard and risk estimates for input to management and mitigation strategies using earthquake data recorded during and after injection. The second important difference from conventional PSRA is that in addition to potentially damaging ground motions a significant risk associated with induce seismicity in general is the perceived nuisance caused in nearby communities by small, local felt earthquakes, which in general occur relatively frequently. Including these small, usually shallow earthquakes in the hazard analysis requires extending the ground motion frequency band considered to include the high

  12. Automated Aqueous Sample Concentration Methods for in situ Astrobiological Instrumentation

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Grunthaner, F. J.

    2009-12-01

    The era of wet chemical experiments for in situ planetary science investigations is upon us, as evidenced by recent results from the surface of Mars by Phoenix’s microscopy, electrochemistry, and conductivity analyzer, MECA [1]. Studies suggest that traditional thermal volatilization methods for planetary science in situ investigations induce organic degradation during sample processing [2], an effect that is enhanced in the presence of oxidants [3]. Recent developments have trended towards adaptation of non-destructive aqueous extraction and analytical methods for future astrobiological instrumentation. Wet chemical extraction techniques under investigation include subcritical water extraction, SCWE [4], aqueous microwave assisted extraction, MAE, and organic solvent extraction [5]. Similarly, development of miniaturized analytical space flight instruments that require aqueous extracts include microfluidic capillary electrophoresis chips, μCE [6], liquid-chromatography mass-spectrometrometers, LC-MS [7], and life marker chips, LMC [8]. If organics are present on the surface of Mars, they are expected to be present at extremely low concentrations (parts-per-billion), orders of magnitude below the sensitivities of most flight instrument technologies. Therefore, it becomes necessary to develop and integrate concentration mechanisms for in situ sample processing before delivery to analytical flight instrumentation. We present preliminary results of automated solid-phase-extraction (SPE) sample purification and concentration methods for the treatment of highly saline aqueous soil extracts. These methods take advantage of the affinity of low molecular weight organic compounds with natural and synthetic scavenger materials. These interactions allow for the separation of target organic analytes from unfavorable background species (i.e. salts) during inline treatment, and a clever method for selective desorption is utilized to obtain concentrated solutions on the order

  13. Mechanical instability induced by water weakening in laboratory fluid injection tests

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J.; Sarout, J.; Delle Piane, C.; Menéndez, B.; Macault, R.; Bertauld, D.

    2015-06-01

    To assess water-weakening effects in reservoir rocks, previous experimental studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks fully saturated either with water or with inert fluids. So far, little attention has been paid to the mechanical behavior during fluid injection under conditions similar to enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behavior of the weakly consolidated Sherwood sandstone in laboratory experiments. Our specimens were instrumented with 16 ultrasonic P wave transducers for both passive and active acoustic monitoring during loading and fluid injection to record the acoustic signature of fluid migration in the pore space and the development of damage. Calibration triaxial tests were conducted on three samples saturated with air, water, or oil. In a second series of experiments, water and inert oil were injected into samples critically loaded up to 80% or 70% of the dry or oil-saturated compressive strength, respectively, to assess the impact of fluid migration on mechanical strength and elastic properties. The fluids were injected with a low back pressure to minimize effective stress variations during injection. Our observations show that creep takes place with a much higher strain rate for water injection compared to oil injection. The most remarkable difference is that water injection in both dry and oil-saturated samples triggers mechanical instability (macroscopic failure) within half an hour whereas oil injection does not after several hours. The analysis of X-ray computed tomography images of postmortem samples revealed that the mechanical instability was probably linked to loss of cohesion in the water-invaded region.

  14. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    SciTech Connect

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  15. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  16. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  17. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  18. Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Stabile, T. A.; Giocoli, A.; Perrone, A.; Piscitelli, S.; Lapenna, V.

    2014-08-01

    On 2 June 2006 the wastewater produced during the oil and gas field exploitation in High Agri Valley (southern Italy) started to be managed by disposal through pumping the fluids back into the subsurface at the Costa Molina 2 (CM2) injection well, located in the southeastern sector of the valley. The onset of microearthquakes (Ml ≤ 2) after 4 days at about 1.3 km SW of CM2 well suggests fluid injection induced seismicity by the diffusion of pore pressure. Moreover, the space-time evolution of 196 high-resolution relocated events reveals a previously unmapped NE dipping fault. We investigate the physical processes related to the fluid injection induced seismicity and delineate the previously unmapped fault by jointly analyzing seismicity data, geological observations, fluid injection data, the stratigraphic log of the CM2 well, and the electrical resistivity tomography survey carried out in the study area.

  19. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    SciTech Connect

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  20. Monitoring of Fluid Injection and Soil Consolidation Using Surface Tilt Measurements

    SciTech Connect

    Vasco, D.W.; Karasaki, Kenzi; Myer, Larry

    1996-08-01

    Temporal variations of surface tilt may be used for the noninvasive monitoring of subsurface volume change. Such volume changes may accompany settlement near structures, the response due to fluid injection or withdrawal, and excavation-related activity. We outline a methodology for using tilt data to estimate volume changes within poroelastic media. The expressions relating subsurface volume change and surface tilt are simple and compact, offering the possibility of real-time monitoring. The inversion of actual tilt data from a site near Raymond, Calif., generates images of fluid withdrawal from a complex fracture zone about 30 m below the surface. Volume changes are confined to an elongated north-south zone in agreement with independent well test data. We have also applied the methodology for the inversion of surface tilt to data from a grout injection experiment in Los Banos. The technique enables us to monitor grout migration through a porous gravel.

  1. Monitoring of fluid injection and soil consolidation using surface tilt measurements

    SciTech Connect

    Vasco, D.W.; Karasaki, K.; Myer, L.

    1998-01-01

    Temporal variations of surface tilt may be used for the noninvasive monitoring of subsurface volume change. Such volume changes may accompany settlement near structures, the response due to fluid injection or withdrawal, and excavation-related activity. The authors outline a methodology for using tilt data to estimate volume changes within poroelastic media. The expressions relating subsurface volume change and surface tilt are simple and compact, offering the possibility of real-time monitoring. The inversion of actual tilt data from a site near Raymond, California, generates images of fluid withdrawal from a complex fracture zone about 30 m below the surface. Volume changes are confined to an elongated north-south zone in agreement with independent well test data. The authors have also applied the methodology for the inversion of surface tilt to data from a grout injection experiment in Los Banos. The technique enables one to monitor grout migration through a porous gravel.

  2. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States.

    PubMed

    van der Elst, Nicholas J; Savage, Heather M; Keranen, Katie M; Abers, Geoffrey A

    2013-07-12

    A recent dramatic increase in seismicity in the midwestern United States may be related to increases in deep wastewater injection. Here, we demonstrate that areas with suspected anthropogenic earthquakes are also more susceptible to earthquake-triggering from natural transient stresses generated by the seismic waves of large remote earthquakes. Enhanced triggering susceptibility suggests the presence of critically loaded faults and potentially high fluid pressures. Sensitivity to remote triggering is most clearly seen in sites with a long delay between the start of injection and the onset of seismicity and in regions that went on to host moderate magnitude earthquakes within 6 to 20 months. Triggering in induced seismic zones could therefore be an indicator that fluid injection has brought the fault system to a critical state. PMID:23846900

  3. The processes controlling damage zone propagation induced by wellbore fluid injection

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir

    2013-04-01

    Induced seismicity by wellbore fluid injection is an important tool for enhancing permeability in hydrocarbon and geothermal reservoirs. We model nucleation and propagation of damage zones and seismicity patterns for two-dimensional plane strain configuration at a depth of 5 km using novel numerical software developed in the course of this study. Simulations include the coupling of poro-elastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters. Results show that the process occurring during fluid injection can be divided into four stages. The duration of each stage depends on the hydrological and mechanical parameters. Initially, fluid flows into the rock with no seismic events (5 to 20 hr). At this stage, damage increases from 0 to 1 creating two sets of conjugate zones (four narrow damage zones). Thereafter, the occurrence of seismic events and faulting begins and accelerates for the next 20 to 70 hr. At the initial part of this stage, two of the damage zones create stress shadows on the other two damage zones that stop progressing. The velocity of the advancing damage is limited only by the rock parameters controlling damage evolution. At the third stage, which lasts for the following 20-30 hr, damage acceleration decreases because fluid transport becomes a limiting factor as the damage zones are too long to efficiently transfer the pressure from the well to the tip of the damage zones. Finally, the damage decelerates and even stops in some cases. The propagation of damage is controlled and limited by fluid transport from the injection well to the tip of the damage zones because fluid transport does not keep up with the dilatancy of the damage zones. The time and distance of propagation depend on the damage-permeability coupling and the remote shear stress. Higher remote shear stress causes shorter initial periods of no seismicity; strong damage-permeability coupling causes

  4. Method of precipitating uranium from an aqueous solution and/or sediment

    SciTech Connect

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  5. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  6. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  7. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  8. Significance for secure CO2 storage of earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    Verdon, James P.

    2014-05-01

    The link between subsurface fluid injection and induced seismicity has gained recent significance with an increase in earthquakes associated with the disposal of oilfield waste fluids. There are obvious similarities between wastewater reinjection and proposed CO2 storage (CCS) operations. However, as well as the seismic hazard, induced seismicity during CCS operations poses additional risks, because an induced event located above the target reservoir could compromise the hydraulic integrity of the caprock. In this paper we re-examine case examples where earthquakes have been induced by wastewater injection into deep aquifers in the light of proposed future CCS operations. In particular we consider possible controls on event magnitudes, and look at the spatial distributions of events. We find that the majority of events are located below the target reservoirs. This is an encouraging observation from the perspective of caprock integrity, although it presents a challenge in terms of pre-injection characterization of deep-lying faults several kilometres below the target zone. We observe that 99% of events are found within 20 km of injection wells, suggesting a minimum radius for geomechanical characterization and monitoring. We conclude by making recommendations for modelling and monitoring strategies to be followed prior to and during commercial-scale deployment of CO2 storage projects.

  9. Determination of hydraulic fracture parameters using a non-stationary fluid injection

    NASA Astrophysics Data System (ADS)

    Valov, A. V.; Golovin, S. V.

    2016-06-01

    In this paper, one provides a theoretical justification of the possibility of hydraulic fracture parameters determination by using a non-stationary fluid injection. It is assumed that the fluid is pumped into the fractured well with the time-periodic flow rate. It is shown that there is a phase shift between waves of fluid pressure and velocity. For the modelling purposes, the length and width of the fracture are assumed to be fixed. In the case of infinite fracture, one constructs an exact solution that ensures analytical determination of the phase shift in terms of the physical parameters of the problem. In the numerical calculation, the phase shift between pressure and velocity waves is found for a finite fracture. It is shown that the value of the phase shift depends on the physical parameters and on the fracture geometry. This makes it possible to determine parameters of hydraulic fracture, in particular its length, by the experimental measurement of the time shift and comparison with the numerical solution.

  10. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection-Extraction

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Won; Segall, Paul

    2016-06-01

    Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection-extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses Δ τ _s+fΔ σ _n , where Δ τ _s and Δ σ _n are changes in shear and normal stress. respectively, and (2) the change in pore-pressure fΔ p . Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601-2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection-extraction depends on fault geometry, well operations, and the background stressing rate.

  11. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection-Extraction

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Won; Segall, Paul

    2016-08-01

    Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection-extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses Δ τ _s+fΔ σ _n, where Δ τ _s and Δ σ _n are changes in shear and normal stress. respectively, and (2) the change in pore-pressure fΔ p. Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601-2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection-extraction depends on fault geometry, well operations, and the background stressing rate.

  12. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  13. Stabilized aqueous foam systems and concentrate and method for making them

    DOEpatents

    Rand, Peter B.

    1984-01-01

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams.

  14. Seismogenic response to fluid injection operations in Oklahoma and California: Implications for crustal stresses

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Aminzadeh, F.

    2015-12-01

    The seismogenic response to induced pressure changes provides insight into the proximity to failure of faults close to injection sites. Here, we examine possible seismicity rate changes in response to wastewater disposal and enhanced oil recovery operations in hydrocarbon basins in California and Oklahoma. We test whether a statistically significant rate increase exists within these areas and determine the corresponding timing and location based on nonparametric modeling of background seismicity rates. Annual injection volumes increased monotonically since ~2001 in California and ~1998 in Oklahoma. While OK experienced a recent surge in seismic activity which exceeded the 95% confidence limit of a stationary Poisson process in ~2010, seismicity in CA showed no increase in background rates between 1980 and 2014. A systematic analysis of frequency-magnitude-distributions (FMDs) of likely induced earthquakes in OK indicates that FMDs are depleted in large-magnitude events. Seismicity in CA hydrocarbon basins, on the other hand, shows Gutenberg-Richter type FMDs and b~1. Moreover, the earthquakes and injection operations occur preferably in distinct areas in CA whereas in OK earthquakes occur closer to injection wells than expected from a random uniform process. To test whether injection operations may be responsible for the strongly different seismicity characteristics in CA and OK, we compare overall well density, wellhead pressures, peak and cumulative rates as well as injection depths. We find that average injection rates, pressures and volumes are comparable between CA and OK and that injection occurs on average 0.5 km deeper in CA than in OK. Thus, the here tested operational parameters can not easily explain the vastly different seismogenic response to injection operations in CA and OK, and may only be of secondary importance for the resulting earthquake activity. The potential to induce earthquakes by fluid injection operations is likely controlled by the

  15. A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Troise, Claudia; Tramelli, Anna; De Natale, Giuseppe

    2013-10-01

    Fluid injection in and withdrawal from wells are basic procedures in mining activities and deep resources exploitation, such as oil and gas extraction, permeability enhancement for geothermal exploitation and waste fluid disposal. All of these activities have the potential to induce seismicity, as exemplified by the 2006 Basel earthquake (ML 3.4). Despite several decades of experience, the mechanisms of induced seismicity are not known in detail, which prevents effective risk assessment and/or mitigation. In this study, we provide an interpretation of induced seismicity based on computation of Coulomb stress changes that result from fluid injection/withdrawal at depth, mainly focused on the interpretation of induced seismicity due to stimulation of a geothermal reservoir. Seismicity is, theoretically, more likely where Coulomb stress changes are larger. For modeling purposes, we simulate the thermodynamic evolution of a system after fluid injection/withdrawal. The associated changes in pressure and temperature are subsequently considered as sources of incremental stress changes, which are then converted to Coulomb stress changes on favourably oriented faults, taking into account the background regional stress. Numerical results are applied to the water injection that was performed to create the fractured reservoir at the enhanced-geothermal-system site, Soultz-sous-Forets (France). Our approach describes well the observed seismicity, and provides an explanation for the different behaviors of a system when fluids are injected or withdrawn.

  16. Method of making particles from an aqueous sol

    DOEpatents

    Rankin, G.W.; Hooker, J.R.

    1973-07-24

    A process for preparing gel particles from an aqueous sol by forming the sol into droplets in a liquid system wherein the liquid phase contains a liquid organic solvent and a barrier agent. The barrier agent prevents dehydration from occurring too rapidly and permits surface tension effects to form sol droplets into the desired spheroidal shape. A preferred barrier agent is mineral oil. (Official Gazette)

  17. Hydraulic fracture characterization resulting from low-viscosity fluid injection: Implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Zhou, X.

    2013-12-01

    The initiation of hydraulic fractures during CO2 sequestration can be either engineered or induced unintentionally. Some fractures may be desirable such as horizontal fractures that can facilitate fluid injection and migration; whereas some fractures may be unfavorable if the fractures tend to extend vertically above a certain limit, thus creating a potential leaking condition. Historically, carbon dioxide as a liquefied gas has been used in oil and gas field stimulation since the early1960s because it eliminates formation damage and residual fluids. Carbon dioxide injection is considered to be one of the most effective technologies for improving oil recovery from hard-to-extract oil reserves because CO2 is effective in penetrating the formation due to its high diffusivity, while the rock associated with petroleum-containing formations is generally porous. However, low viscosity and high compressibility fluids such as CO2 exhibit different effects on the hydraulic fracture initiation/propagation behavior in comparison with high viscosity and low compressibility fluids. Laboratory tests show that viscous fluids tend to generate thick and planar cracks with few branches, while low viscosity fluids tend to generate narrow and wavelike cracks with many secondary branches. A numerical comparison between water and supercritical CO2-like fluid has been made to investigate the influence of fluids to fracture propagation behavior. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Thin fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison to fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation. One is the time at which a crack ceases opening, and he other is the time at which a crack

  18. Analysis of Scaling Parameters of Event Magnitudes by Fluid Injections in Reservoirs

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Krüger, Oliver; Shapiro, Serge

    2014-05-01

    unaffected by the size of perturbed rock volume. Using both seismogenic index model and specific magnitude model we predict magnitude frequencies for different scenarios and compare them to observed data. We conclude that the seismogenic index model provides proper results which confirms its applicability as a predictive tool and, thus, it is valuable for assessment as well as mitigation of seismic hazard by fluid injections.

  19. Was the Timpson, Texas, M4.8 event induced by fluid injection?

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Eichhubl, P.; Gale, J.; Olson, J. E.; Frohlich, C.; Gono, V.

    2014-12-01

    A M4.8 earthquake with dominant strike-slip near Timpson, east Texas, the largest documented earthquake to date in that region, has received extensive attention due to the possible linkage to waste water injection. The reliably located aftershocks align along a previously mapped fault striking about N42°W. Two active injection wells are located within 3 km of the aftershocks. One injection well became operational in August 2006 with an average injection rate of 42,750 m3/mo at an average pumping pressure of 12.4 MPa at depths between 1853 and 1868 m. Six months later, the second well started injection at 15,600 m3/mo. To investigate the causative relationship between fluid injection and possibly induced seismic fault slip, we integrated geologic and geophysical data into a poroelastic finite element model to simulate the spatial and temporal evolution of pore pressure and stress fields and analyze the stability of fault by applying the Coulomb failure criterion. Parametric studies were performed to analyze the sensitivity of Coulomb failure stress to the variability of input parameters including permeability of injection layer, fault orientation and permeability, and orientation and magnitude of stress state prior to injection. Assuming a Byerlee friction coefficient of 0.6, and using best available estimates of layer permeability, fault orientation, and stress tensor orientation and magnitude, we calculated fault slip occurs 55 months after the start of injection in the model, close to the observed delay of 69 months between injection and the M4.8 event. However, even with principal stress directions and fault orientation being reasonably well constrained, Coulomb failure stress is highly sensitive to input parameters resulting in large uncertainties in correlating injection rate and volume with the onset of induced seismic events. In addition, injection layer and fault zone permeability has a profound effect on the pore pressure evolution. These results

  20. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect

    Serrato, M. G.

    2013-09-27

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  1. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    SciTech Connect

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  2. Method of viscosifying aqueous fluids and process for recovery of hydrocarbons from subterranean formations

    SciTech Connect

    Borchardt, J.K.

    1985-04-02

    The present invention relates to a method of viscosifying aqueous fluids and a viscosifying composition which when admixed with an aqueous fluid produces a viscosity increase in the fluid in excess of the additive viscosity of the individual composition components. The viscosifying composition comprises xanthan gum and at least one memeber selected from the group consisting of the ammonium, hydrogen or alkali metal salts of polystyrene sulfonate, polyvinyl sulfonate and hydrolyzed copolymers of styrene sulfonate and maleic anhydride.

  3. Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2015-12-01

    Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure

  4. Aqueous based reflux method for green synthesis of nanostructures: Application in CZTS synthesis.

    PubMed

    Aditha, Sai Kiran; Kurdekar, Aditya Dileep; Chunduri, L A Avinash; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-01-01

    The aqueous based reflux method useful for the green synthesis of nanostructures is described in detail. In this method, the parameters: the order of addition of precursors, the time of the reflux and the cooling rate should be optimized in order to obtain the desired phase and morphology of the nanostructures. The application of this method is discussed with reference to the synthesis of CZTS nanoparticles which have great potential as an absorber material in the photovoltaic devices. The highlights of this method are:•Simple.•Low cost.•Aqueous based. PMID:27408826

  5. [Aqueous oxidation of SO2 with microbial method].

    PubMed

    Jiang, Wen-ju; Tong, Xiao-shuang; Zhu, Xiao-fan; Zhu, Lian-xi; Jin, Yan

    2006-05-01

    The desulfurizations in dilute sulfuric acid solution, acidic ferric solution, acidic ferrous solution, microbial solution (Thiobacillus ferrooridans) and microbial culture medium solution were conducted to discuss biodesulfurization mechanism. The effect of Fe3+ concentration, Fe2+ concentration, SO2 concentration and temperature on biodesulfurization was examined on SO4(2-) concentration in the solution. Biodesulfurization has two ways: direct oxidation and indirect oxidation. In direct oxidation, Thiobacillus ferrooxridans oxidize S(IV) to S(VI). In indirect oxidation, Thiobacillus ferrooxidans can fast transform Fe2+ to Fe3+ in acidic conditions and then increase aqueous catalytic oxidation capacity of Fe3+ on SO2. It shows that indirect oxidation is the dominant way in biodesulfurization process. The desulfurization efficiency increase with concentration of Fe3+ or Fe2+ in the range of 0-1.2 g/L. Thiobacillus ferrooxidans enforce oxidation of SO2 in Fe3+ /Fe2+ system. The removal of SO2 decrease as concentration of SO2 increase, however, concentrations of SO4(2-) in the solution do not vary much in different inlet concentrations of SO2. Temperature has important effect on biodesulfurization. The optimal operative temperature range is 30-40 degrees C. PMID:16850819

  6. Evaluation of Direct Aqueous Injection Method for Analysis of Chloroform in Drinking Water

    ERIC Educational Resources Information Center

    Pfaender, Frederic K.; And Others

    1978-01-01

    A direct aqueous injection (DAI) technique was compared with the purge method for chloroform measurement in drinking water. The DAI method gave consistently higher values for chloroform than the purge method. The results indicated the need for caution in the interpretation of chloroform and other trihalomethane values generated by DAI. (Author/MA)

  7. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  8. Preliminary studies of non-aqueous volatiles in lint cotton moisture tests by thermal methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The standard test methods for moisture in lint cotton are based on oven drying at 105 - 110oC. All of the loss in weight is attributable to moisture. The U.S. cotton industry questions the reliability of the oven-drying method due to the non-aqueous volatiles released during drying may be of an am...

  9. Measurement of Temperature Dependence of Surface Tension of Alcohol Aqueous Solutions by Maximum Bubble Pressure Method

    NASA Astrophysics Data System (ADS)

    Ono, Naoki; Kaneko, Takahiro; Nishiguchi, Shotaro; Shoji, Masahiro

    The surface tension of some high-carbon alcohol aqueous solutions increases as the temperature rises above a certain temperature. There have been attempts to use such special solutions in thermal devices to promote heat transfer. In this study, the authors analyzed the temperature dependence of surface tension of these solutions to investigate this peculiar characteristic in detail. The test fluids were butanol and pentanol aqueous solutions as peculiar solutions, while pure water and ethanol aqueous solution were normal fluids. First, the authors adopted Wilhelmy's method to measure the surface tension during heating, but found that the influence of evaporation of the solution could not be completely eliminated. In this study, the maximum bubble pressure method was employed, which made it possible to isolate the measured solution from ambient air and eliminate the influence of evaporation of the solution. The authors succeeded in measuring the temperature dependence of surface tension, and obtained more reasonable data.

  10. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  11. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, G.L.

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises: adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 0.1 ppM, and separating the homogeneously precipitated product from the liquid.

  12. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  13. Seismic Versus Aseismic Slip and Maximum Induced Earthquake Magnitude in Models of Faults Stimulated by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Cappa, F.; Galis, M.; Mai, P. M.

    2015-12-01

    The assessment of earthquake hazard induced by fluid injection or withdrawal could be advanced by understanding what controls the maximum magnitude of induced seismicity (Mmax) and the conditions leading to aseismic instead of seismic slip. This is particularly critical for the viability of renewable energy extraction through engineered geothermal systems, which aim at enhancing permeability through controlled fault slip. Existing empirical relations and models for Mmax lack a link between rupture size and the characteristics of the triggering stress perturbation based on earthquake physics. We aim at filling this gap by extending results on the nucleation and arrest of dynamic rupture. We previously derived theoretical relations based on fracture mechanics between properties of overstressed nucleation regions (size, shape and overstress level), the ability of dynamic ruptures to either stop spontaneously or run away, and the final size of stopping ruptures. We verified these relations by comparison to 3D dynamic rupture simulations under slip-weakening friction and to laboratory experiments of frictional sliding nucleated by localized stresses. Here, we extend these results to the induced seismicity context by considering the effect of pressure perturbations resulting from fluid injection, evaluated by hydromechanical modeling. We address the following question: given the amplitude and spatial extent of a fluid pressure perturbation, background stress and fracture energy on a fault, does a nucleated rupture stop spontaneously at some distance from the pressure perturbation region or does it grow away until it reaches the limits of the fault? We present fracture mechanics predictions of the rupture arrest length in this context, and compare them to results of 3D dynamic rupture simulations. We also conduct a systematic study of the effect of localized fluid pressure perturbations on faults governed by rate-and-state friction. We investigate whether injection

  14. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  15. Method for removing trace pollutants from aqueous solutions

    DOEpatents

    Silver, Gary L.

    1986-01-01

    A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.

  16. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  17. Method of viscosifying aqueous fluids and process for recovery of hydrocarbons from subterranean formations

    SciTech Connect

    Borchardt, J. K.

    1985-06-18

    The present invention relates to a method of viscosifying aqueous fluids and a viscosifying composition which when admixed with an aqueous fluid produces a viscosity increase in the fluid in excess of the additive viscosity of the individual composition components. The viscosifying composition comprises at least one member selected from the group consisting of sulfonated guar and a compound comprising at least one member selected from the group consisting of xanthan gum, guar, hydroxypropyl guar, hydroxypropyl guar derivatives, hydroxyethyl cellulose and hydroxyethyl cellulose derivatives and cationic guar and a compound comprising at least one member selected from the group consisting of hydroxypropyl guar, hydroxypropyl guar derivatives, hydroxyethyl cellulose and hydroxyethyl cellulose derivatives.

  18. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  19. Synthetic modeling of a fluid injection-induced fault rupture with slip-rate dependent friction coefficient

    NASA Astrophysics Data System (ADS)

    Urpi, Luca; Rinaldi, Antonio Pio; Rutqvist, Jonny; Cappa, Frédéric; Spiers, Christopher J.

    2016-04-01

    Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults of the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been aken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, considering injection-induced reservoir inflation and the tectonic scenario. For the stress state here considered, the first triggered rupture always produces the largest rupture length and slip magnitude, correlated with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, while upper sections being velocity-neutral. Nucleation of rupture in a velocity strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity

  20. Investigating the Fate of Hydraulic Fracturing Fluid in Shale Gas Formations Through Two-Phase Numerical Modelling of Fluid Injection

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Doster, F.; Celia, M. A.; Bandilla, K.

    2015-12-01

    The process of hydraulic fracturing in shale gas formations typically involves the injection of large quantities of water-based fluid (2×107L typical) into the shale formations in order to fracture the rock. A large proportion of the fracturing fluids injected into shale gas wells during hydraulic fracturing does not return out of the well once production begins. The percentage of water returning varies within and between different shale plays, but is generally around 30%. The large proportion of the fluid that does not return raises the possibility that it could migrate out of the target shale formation and potentially toward aquifers and the surface through pathways such as the created hydraulic fractures, faults and adjacent wells. A leading hypothesis for the fate of the remaining fracturing fluid is that it is spontaneously imbibed from the hydraulic fractures into the shale rock matrix due to the low water saturation and very high capillary pressure in the shale. The imbibition hypothesis is assessed using numerical modeling of the two-phase flow of fracturing fluid and gas in the shale during injection. The model incorporates relevant two-phase physical phenomena such as capillarity and relative permeability, including hysteretic behavior in both. Modeling scenarios for fracturing fluid injection were assessed under varying conditions for shale reservoir parameters and spatial heterogeneities in permeability and wettability. The results showed that the unaccounted fracturing fluid may plausibly be imbibed into the shale matrix under certain conditions, and that significant small-scale spatial heterogeneity in the shale permeability likely plays an important role in imbibing the fracturing fluid.

  1. Effects of Long-Term Fluid Injection on Maximum Magnitude and Induced Seismicity Parameters at Northwestern The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Bohnhoff, M.; Kwiatek, G.; Martínez-Garzón, P.; Dresen, G. H.; Sone, H.; Hartline, C. S.

    2015-12-01

    The long-term temporal and spatial changes in statistical, source and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (US) are analyzed in relation to the field operations, fluid migration and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1,776 events recorded throughout a seven-year period were analyzed. The seismicity catalog was relocated and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting and mesh spectral ratio techniques. The source characteristics together with statistical parameters (b-value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial and source characteristics were clearly attributed to fluid injection and fluid migration towards greater depths, involving increasing pore pressure in the reservoir. Increasing poroelastic stresses at greater depths affect the kinematic properties of the seismicity in that at reservoir depths normal faulting mechanism events dominate, whereas at larger depths the contribution of strike-slip events are is significantly increasing. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude. The observed maximum magnitude was found to be clearly correlated to the dimensions of seismic cloud which is related to the volume of formation weakened by fluid injection and injection rate, and the average pore pressure change in

  2. A simple aqueous electrochemical method to synthesize TiO₂ nanoparticles.

    PubMed

    Bezares, Ivan; del Campo, Adolfo; Herrasti, Pilar; Muñoz-Bonilla, Alexandra

    2015-11-21

    Here, a simple and rapid electrochemical approach to synthesize TiO2 nanoparticles in aqueous solution is reported. This method consists in the electro-oxidation of titanium foil in a tetrabutylammonium bromide aqueous solution, which acts as both an electrolyte and a surfactant. Amorphous TiO2 particles in the nanoscale (∼5 nm), well dispersed in aqueous solution, were directly formed by applying low current densities in a short reaction time. It was demonstrated that several experimental parameters influence the reaction yield; an increase in the current, temperature and reaction time augments the quantity of the obtained material. Then, the amorphous nanoparticles were completely crystallized into a pure anatase phase by thermal treatment under an air atmosphere as analyzed by X-ray diffraction and Raman spectroscopy. Besides, the size of the nanoparticles increased to approximately 12 nm in the calcination process. The band gap energies of the resulting TiO2 anatase nanoparticles were determined by diffuse reflectance measurements according to the Kubelka Munk theory, revealing low values between 2.95 and 3.10 eV. Therefore, the results indicate the success of this method to create TiO2 nanoparticles in aqueous medium with good optical properties. PMID:26469391

  3. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  4. Method and apparatus for measuring volatile compounds in an aqueous solution

    DOEpatents

    Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA

    2002-07-16

    The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.

  5. Critical Comparison between Modified Monier-Williams and Electrochemical Methods to Determine Sulfite in Aqueous Solutions

    PubMed Central

    Montes, C.; Vélez, J. H.; Ramírez, G.; Isaacs, M.; Arce, R.; Aguirre, M. J.

    2012-01-01

    In the present work, known concentration of sulfite aqueous solutions in the presence and absence of gallic acid was measured to corroborate the validity of modified Monier-Williams method. Free and bound-sulfite was estimated by differential pulse voltammetry. To our surprise, the modified Monier-Williams method (also known as aspiration method) showed to be very inaccurate for free-sulfite, although suitable for bound-sulfite determination. The differential pulse approach, using the standard addition method and a correction coefficient, proved to be swift, cheap, and very precise and accurate. PMID:22619610

  6. Validation of a GC-MS screening method for anabolizing agents in aqueous nutritional supplements.

    PubMed

    Thuyne, W Van; Delbeke, F T

    2005-01-01

    A sensitive and selective method for the screening of anabolizing agents in aqueous nutritional supplements is described and validated. A total of 28 different anabolizing agents are screened for, including testosterone and prohormones, nandrolone and prohormones, stanozolol, and metandienone. The different analytes are extracted from the aqueous nutritional supplements by liquid-liquid extraction with a mixture of pentane and freshly distilled diethylether (1:1) after the supplements have been made alkaline with a NaHCO3-K2CO3 (2:1) buffer. The anabolizing agents are derivatized with a mixture of MSTFA-NH4I-ethanethiol (320:1:2) as routinely used for the screening of anabolic steroids extracted from urine. The derivatives are analyzed by gas chromatography (GC)-mass spectrometry (MS) in the selective ion monitoring mode. The limits of detection range from 1 to 10 ng/mL. One aqueous nutritional supplement (creatine serum) was analyzed with this screening method and was found to contain dehydroepiandrosterone (DHEA) at very low concentrations. The presence of DHEA could be confirmed with GC-MS-MS. Results of the application of this method and a similar method for solid nutritional supplements previously described are given. PMID:15808000

  7. Synthesis of Ag nanoclusters by a pH-dependent etching method in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxiao; Sun, Xiaoyi; Li, Juan; Liu, You-Nian

    2013-06-01

    We developed a pH-dependent etching method for the synthesis of stable fluorescent silver nanoclusters (AgNCs) in aqueous solution. The AgNCs emit at 530 nm when excited at 380 nm and can be used for Hg2+ detection with a low detection limit and high selectivity.We developed a pH-dependent etching method for the synthesis of stable fluorescent silver nanoclusters (AgNCs) in aqueous solution. The AgNCs emit at 530 nm when excited at 380 nm and can be used for Hg2+ detection with a low detection limit and high selectivity. Electronic supplementary information (ESI) available: Materials and experimental details, Fig. S1-5, and Table S1. See DOI: 10.1039/c3nr00725a

  8. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    NASA Astrophysics Data System (ADS)

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration

  9. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  10. Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method.

    PubMed

    Anand, Uttam; Jash, Chandrima; Mukherjee, Saptarshi

    2011-12-15

    In this present study, we report on new methodology for determining the Critical Micelle Concentration (CMC) of a neutral surfactant Triton X-100 (TX-100) both in aqueous and non-aqueous media based on a non-invasive approach. The presence of the phenyl moiety of TX-100 was made use of as an intrinsic fluorophore and steady-state and time-resolved spectroscopy has been used to characterize the micellar systems. There are reports that external fluorophores may bring about some structural changes in the systems and the perturbations caused by these fluorophores in micellar systems may affect the shape and size of the micelles. We have also used three probes namely ANS, Rh6G and C-480 to determine the CMC of TX-100 both in aqueous and non-aqueous media and the values obtained agree very well with those estimated by the non-invasive techniques. Interestingly, for our system, we have conclusively proved that the external probes have almost no effect on the process of micellization. Although, both the invasive and non-invasive technologies report almost the same values of CMC, yet the latter methodology is free from any external perturbations and this makes the micellar/reverse micellar system, which may interact with other biological systems less prone to any physical distortions. PMID:21924731

  11. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    PubMed

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  12. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  13. A parallel computing tool for large-scale simulation of massive fluid injection in thermo-poro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Karrech, Ali; Schrank, Christoph; Regenauer-Lieb, Klaus

    2015-10-01

    Massive fluid injections into the earth's upper crust are commonly used to stimulate permeability in geothermal reservoirs, enhance recovery in oil reservoirs, store carbon dioxide and so forth. Currently used models for reservoir simulation are limited to small perturbations and/or hydraulic aspects that are insufficient to describe the complex thermal-hydraulic-mechanical behaviour of natural geomaterials. Comprehensive approaches, which take into account the non-linear mechanical deformations of rock masses, fluid flow in percolating pore spaces, and changes of temperature due to heat transfer, are necessary to predict the behaviour of deep geo-materials subjected to high pressure and temperature changes. In this paper, we introduce a thermodynamically consistent poromechanics formulation which includes coupled thermal, hydraulic and mechanical processes. Moreover, we propose a numerical integration strategy based on massively parallel computing. The proposed formulations and numerical integration are validated using analytical solutions of simple multi-physics problems. As a representative application, we investigate the massive injection of fluids within deep formation to mimic the conditions of reservoir stimulation. The model showed, for instance, the effects of initial pre-existing stress fields on the orientations of stimulation-induced failures.

  14. EM Earthquake Precursor Detection Associated with Fluid Injection for Hydraulic Fracturing and Tectonic Sources

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth B., II

    2015-04-01

    Many attempts have been made to determine an earthquake forecasting method and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic wave model, various hypotheses were formed, but only two seemed to take shape with the most interesting one requiring a magnetometer of a unique design. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, results have had wide variability and problems still reside with what exactly is forecastable and the investigative direction of a true precursor. After a number of custom rock experiments, the two hypotheses were thoroughly tested to correlate the EM wave model. The first hypothesis involved sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio wave generation. The second hypothesis resulted best with highly reproducible data, radio wave generation and detection, and worked numerous times with each laboratory test administered. In addition, internally introduced force on a small scale stressed a number of select rock types to emit radio waves well before catastrophic failure, and failure always went to completion. Comparatively, at a larger scale, highly detailed studies were procured to establish legitimate wave guides from potential hypocenters to epicenters and map the results, accordingly. Field testing in Southern California from 2006 to 2011 and outside the NE Texas town of Timpson in February, 2013 was conducted for detecting similar, laboratory generated, radio wave sources. At the Southern California field sites, signals were detected in numerous directions with varying amplitudes; therefore, a reactive approach was investigated in hopes of detecting possible aftershocks from large, tectonically related M5.0+ earthquakes. At the Timpson

  15. Method of preparing reproducibly stable aqueous suspensions of sodium dithionite for woodpulp bleaching

    SciTech Connect

    Little, E.D.; Minzghor, K.R.

    1988-03-08

    A method for reproducibly preparing a storable and pumpable aqueous dithionite suspension which contains sodium dithionite and is useful for woodpulp bleaching is described comprising the following steps, based on weight percentages of the suspension: A. preparing a dilute hydrosol containing about 0.144-0.180% of xanthan gum; B. Sequentially adding 5.48-6.32% of 50% sodium hydroxide and 0.24-0.28% of a chelate to the dilute hydrosol; C. cooling the hydrosol to below 45/sup 0/F. to form a cold dilute hydrosol; D. adding 31.20-36.00% sodium dithionite, containing 88-90% Na/sub 2/S/sub 2/O/sub 4/, to the cold dilute hydrosol at such a rate as to maintain its temperature below 45/sup 0/F. to form a suspension, and E. adding 1.85-2.00% of sodium tripolyphosphate to the suspension to form the storable and pumpable aqueous dithionite suspension.

  16. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOEpatents

    Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  17. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Peacock, J. R.; Thiel, S.; Reid, P.; Heinson, G.

    2012-09-01

    Enhanced geothermal systems (EGS) are on the verge of becoming commercially viable for power production, where advancements in subsurface characterization are imperative to develop EGS into a competitive industry. Theory of an EGS is simple, pump fluids into thermally enhanced lithology and extract the hot fluids to produce energy. One significant complication in EGS development is estimating where injected fluids flow in the subsurface. Micro-seismic surveys can provide information about where fractures opened, but not fracture connectivity nor fluid inclusion. Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. In July, 2011, an injection test for a 3.6 km deep EGS at Paralana, South Australia was continuously monitored by both micro-seismic and magnetotellurics (MT). Presented are the first results from continuous MT measurements suggesting transient variations in subsurface conductivity structure generated from the introduction of fluids at depth can be measured. Furthermore, phase tensor representation of the time dependent MT response suggests fluids migrated in a NE direction from the injection well. Results from this experiment supports the extension of MT to a monitoring tool for not only EGS but other hydraulic stimulations.

  18. Method for the removal of ultrafine particulates from an aqueous suspension

    DOEpatents

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.

    2000-01-01

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  19. Fluid injection microvalve

    DOEpatents

    Renzi, Ronald F.

    2005-11-22

    A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.

  20. The 17 May 2012 M4.8 earthquake near Timpson, East Texas: An event possibly triggered by fluid injection

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff; Ellsworth, William; Brown, Wesley A.; Brunt, Michael; Luetgert, Jim; MacDonald, Tim; Walter, Steve

    2014-01-01

    This study summarizes our investigation of the 17 May 2012 MW-RMT4.8 earthquake near Timpson, Texas, the largest earthquake recorded historically in eastern Texas. To identify preshocks and aftershocks of the 17 May event we examined the arrivals recorded at Nacogdoches (NATX) 30 km from the 17 May epicenter, at nearby USArray Transportable Array stations, and at eight temporary stations deployed between 26 May 2012 and mid-2013. At NATX we identified seven preshocks, the earliest occurring in April 2008. Reliably located aftershocks recorded by the temporary stations lie along a 6 km long NW-SE linear trend corresponding to a previously mapped basement fault that extends across the highest-intensity (MMI VII) region of the 17 May main shock. Earthquakes in this sequence are relatively shallow—with focal depths ranging from 1.6 to 4.6 km. Evidence supporting these depths include: hypocentral locations of exceptionally well-recorded aftershocks, S-P intervals at the nearest stations, and comparisons of synthetics and observed seismograms. Within 3 km of the linear trend of aftershock activity there are two Class II injection disposal wells injecting at 1.9 km depth beginning in August 2006 and February 2007, with injection rates averaging 42,750 m3/mo and 15,600 m3/mo, respectively. Several observations support the hypothesis that fluid injection triggered the Timpson sequence: well-located epicenters are situated near a mapped basement fault and near high-volume injection wells, focal depths are at or below the depths of injection, and the earliest preshock (April 2008) occurred after the onset of injection in 2006.

  1. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  2. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOEpatents

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  3. Characteristics and composition of peanut oil prepared by an aqueous extraction method.

    PubMed

    Shi, L; Lu, J Y; Jones, G; Loretan, P A; Hill, W A

    1998-01-01

    Peanut is one of the crops being tested for NASA's Advanced Life Support (ALS) program for future long-duration human space missions. The ALS program is developing an integrated system for biomass (food, oxygen) production and resource recycling. Oil will be used mainly for cooking and its availability is important for food preparation. Peanut seeds contain 40-50% oil and hence are considered an excellent source of oil. In the ALS environment, a simple, compact, and energy-efficient system is needed. The feasibility of such a method, peanut oil preparation by water extraction, was investigated. The results indicated the important processing conditions to be: a peanut particle size of 0.02 cm or less, a pH of 4, simmering for 20 min plus churning at 65 degrees C for a few hours, and a centrifugation at 6000 x gn to separate the oil. The oil recovery yield was about 80%. The saponification value, specific gravity, refractive index, and viscosity were similar to that of commercial peanut oil except the color was lighter for the water-extracted oil. Gas and thin-layer chromatographic analyses showed that fatty acid and lipid profiles were similar to the commercial peanut oil. The only difference observed was that the oil prepared by the aqueous method had lower linoleic and higher oleic acids than the commercial peanut oil. The oil prepared by this aqueous method appeared to be of high quality. PMID:11541680

  4. A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Svenningsson, B.; Bilde, M.; Gaman, A.; Lehtinen, K. E. J.; Kulmala, M.

    2006-12-01

    A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets. Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln( p) = 118.41 - 16204.8/ T - 12.452ln( T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented. According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.

  5. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    SciTech Connect

    G. B. Cotten; J. D. Navratil; H. B. Eldredge

    1999-03-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  6. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods

    SciTech Connect

    Johnson, B.Y.; Edington, J.; Williams, A.; O'Keefe, M.J. . E-mail: mjokeefe@umr.edu

    2005-01-15

    Microstructural characteristics of cerium oxide conversion coatings obtained by electrolytic, dip-immersion and spray deposition methods from aqueous solutions were studied by transmission electron microscopy and electron diffraction analysis. The coatings were applied to aluminum alloy 7075-T6 panels and the pretreatment conditions were the same for all coating methods. The results indicated that the as-deposited coatings were all composed of nanocrystalline particles with narrow size distributions. Electron diffraction analysis revealed that the electrolytic and the spray coatings developed the same crystal structure, possibly Ce{sub 7}O{sub 12}, while the dip-immersion coating had a different structure that has not been reported in the literature. After post-treatment in phosphate solution, all three as-deposited coatings were converted to hydrated cerium phosphate.

  7. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method.

    PubMed

    Chen, Zhengsuo; Deng, Hongbo; Chen, Can; Yang, Ying; Xu, Heng

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues.The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  8. A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media.

    PubMed

    Junka, Karoliina; Filpponen, Ilari; Johansson, Leena-Sisko; Kontturi, Eero; Rojas, Orlando J; Laine, Janne

    2014-01-16

    Cellulosic substrates were modified by using sequential adsorption of functionalized carboxymethyl cellulose (CMC) and "click" chemistry in aqueous media. First, the effect of degree of substitution (DS), and level of functionalization as well as ionic strength of the medium were systematically investigated in situ by using quartz crystal microbalance with dissipation (QCM-D) in terms of the extent of adsorption of propargyl and azido functionalized CMC. It was found that the functionalization of CMC did not prevent its adsorption on cellulose. However, it was only effective in the presence of electrolytes. Moreover, the adsorption was found to be more efficient for the functionalized CMCs with low initial DS. Next, "click" chemistry, copper (I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC), was carried out for covalent attachment of different molecules on the pre-functionalized ultrathin cellulose films. The modified cellulosic surfaces were further characterized using AFM imaging and XPS. Finally, the method was successfully used in modification of nanofibrillar cellulose (NFC) in aqueous media. PMID:24188844

  9. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method

    PubMed Central

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues. The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  10. Ultrasonic Nebulizer Assisted LIBS: a Promising Metal Elements Detection Method for Aqueous Sample Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Shilei; Zheng, Ronger; Lu, Yuan; Cheng, Kai; Xiu, Junshan

    2015-11-01

    A newly developed approach for trace metal elements detection for aqueous samples analysis is presented in this paper. The idea of this approach is to improve ablation efficiency by transforming the liquid sample into a dense cloud of droplets using an ultrasonic nebulizer. The resulting droplets are then subjected to analysis by laser induced breakdown spectroscopy (LIBS). A purpose-built ultrasonic nebulizer assisted LIBS (UN-LIBS) system has been applied to the analysis of aqueous samples at trace levels of concentration. Experimental investigations of solution samples were carried out with various dissolved trace metal elements (Mn, Zn, Cu, Pb, Fe, Mg and Na) using this approach. The characteristics of UN-LIBS signal of the elements were investigated regarding the lifetime and S/B ratio and the calibration curves for trace metal elements analyses. The obtained LODs are comparable or much better than the LODS of the reported signal enhancement approaches when the laser pulse energy was as low as 30 mJ. The good linearity of calibration curves and the low LODs shows the potential ability of this method for metal elements analysis application. The density of the electrons was calculated by measuring the Stark width of the line of Hα. The possible mechanism of the LIBS signal enhancement of this approach was briefly discussed. supported by National Natural Science Foundation of China (No. 11104153)

  11. A facile method for gold decoration of Te@CdTe nanorods in aqueous solution.

    PubMed

    Shao, Haibao; Wang, Chunlei; Wang, Zhuyuan; Li, Rongqing; Xu, Qinying; Xu, Shuhong; Jiang, Yuan; Sun, Qingfeng; Bo, Fan; Cui, Yiping

    2012-10-01

    Colloidal synthesis of metal-semiconductor hybrid nanostructures is mainly achieved in organic solution. In some applications of hybrid nanoparticles relevant in aqueous media, phase transfer of hydrophobic metal-semiconductor hybrid nanostructures is essential. In this work, we present a simple method for direct synthesis of water-soluble gold (Au) decorated Te@CdTe hybrid nanorods (NRs) at room temperature by using aqueous Te@CdTe NRs as templates, which were preformed by using CdTe nanocrystals (NCs) as precursor in the presence of hydrazine hydrate (N(2)H(4)). Our results showed that NRs were decorated with Au islands both on tips and along the surface of the NRs. The size and density of Au islands can be controlled by varying the amount of Au precursor (mixture of HAuCl(4) and thioglycolic acid (TGA)) and TGA/HAuCl(4) ratio. A possible growth mechanism for the Au decoration of Te@CdTe NRs is concluded as three steps: (1) the formation of AuTe(1.7) via the substitution reaction of Cd(2+) by Au(3+), (2) adsorption of Au-TGA complex onto the preformed AuTe(1.7) anchors and following reduction by CdTe and N(2)H(4), leading to the formation of small Au NCs, (3) Au NCs grow to bigger ones, followed by reduction of more Au precursor by N(2)H(4). PMID:22795043

  12. Practical method to make a discrete memristor based on the aqueous solution of copper sulfate

    NASA Astrophysics Data System (ADS)

    Merrikh-Bayat, Farshad; Parvizi, Meysam

    2016-06-01

    A new method to realize a discrete memristor is proposed. The device under study consists of a tube filled of aqueous saturated solution of copper sulfate which can be electrolyzed by using two asymmetric copper electrodes, one of which has a considerably smaller cross-sectional area than to the other one. It is shown both theoretically and experimentally that this device has exactly the properties of a memristor if it is designed such that the electrical field and the current density on the thinner electrode when it acts as anode are sufficiently large. Different aspects of the proposed discrete memristor, including pinched hysteresis loop, on-off resistance ratio and memory volatilization, are studied and experimental results are presented.

  13. A simultaneous extraction method for organophosphate, pyrethroid, and neonicotinoid insecticides in aqueous samples.

    PubMed

    de Perre, Chloé; Whiting, Sara A; Lydy, Michael J

    2015-05-01

    A method was developed for the extraction and analysis of 2 organophosphate, 8 pyrethroid, and 5 neonicotinoid insecticides from the same water sample. A salted liquid-liquid extraction (LLE) was optimized with a solid-phase extraction (SPE) step that separated the organophosphates (OPs) and pyrethroids from the neonicotinoids. Factors that were optimized included volume of solvent and amount of salt used in the LLE, homogenization time for the LLE, and type and volume of eluting solvent used for the SPE. The OPs and pyrethroids were quantified using gas chromatography-mass spectrometry, and the neonicotinoids were quantified using liquid chromatography-diode array detector. Results showed that the optimized method was accurate, precise, reproducible, and robust; recoveries in river water spiked with 100 ng L(-1) of each of the insecticides were all between 86 and 114 % with RSDs between 2 and 8 %. The method was also sensitive with method detection limits ranging from 0.1 to 27.2 ng L(-1) depending on compounds and matrices. The optimized method was thus appropriate for the simultaneous extraction of 15 widely applied insecticides from three different classes and was shown to provide valuable information on their environmental fate from field-collected aqueous samples. PMID:25608617

  14. Removal of Heavy Metals and Organic Contaminants from Aqueous Streams by Novel Filtration Methods

    SciTech Connect

    Rodriguez, N.M.

    2000-08-01

    The removal of hazardous waste, generated by the dismantling of nuclear weapons is a problem that requires urgent attention by the US Department of Energy. Low levels of radioactive contaminants combined with organic solvent residues have leaked from aging containers into the soil and underground water in the surrounding area. Due to the complexity of the problem, it is evident that traditional adsorption methods are ineffective, since the adsorbent tends to saturate with the aqueous component. It has become apparent that a much more aggressive approach is required which involves the use of specially designed materials. We have investigated the potential of solids that combine high surface area/high pore volume and high electrical conductivity, a rare combination of properties found in a single material. In this program we examined the potential of newly developed materials for the trapping of organic solvents within specially engineered cavities without allowing the material to become saturated with water. Catalytically grown carbon nanofibers are a set of novel structures that are produced by the decomposition of selected carbon-containing gases over metal particles. These materials consist of extremely small graphite platelets stacked in various orientations with respect to the fiber axis. Such an arrangement results in a unique structure that is composed of an infinite number of extremely short and narrow pores, suitable for sequestering small molecules. In addition, when the graphene layers are aligned parallel to the fiber axis, an unusual combination of high surface area and low electrical resistivity solids are attained. We have attempted to capitalize on this blend of properties by using such structures for the selective removal of organic contaminants from aqueous streams. Experimental results indicate that nanofibers possessing a structure in which the graphite platelets are aligned perpendicular to the fiber axis and possessing a high degree of

  15. A Method for Converting Aqueous Demetallization Products into Dispersed Metal Oxide Nanocatalysts in Heavy Oil

    NASA Astrophysics Data System (ADS)

    Abdrabo, Amr Abdelrazek Elgeuoshy Meghawry

    Metallic heteroatoms deactivate expensive catalyst and, thus, should be removed at early stages during crude oil processing. Electro and biological demetallization are examples of two emerging techniques which remove the metallic heteroatoms; mainly nickel and vanadium, into ions or ionic complexes ultimately residing in the aqueous phase of a two phase water/oil system. This work investigates the conversion of the aqueous metallic species into metal oxide nanoparticles, which are effective upgrading catalysts, dispersed in the oil phase. The conversion step commenced in-situ within a water-in-oil emulsion structure, and the resultant nanoparticles remain very well dispersed in the heavy oil phase. The product nanoparticles were characterized, after successful collection from the oil phase, using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-Ray spectroscopy (EDX). Despite the complexity of the heavy oil system, results confirmed the in-situ formation of NiO and V2O5 nanoparticles with mean sizes of 20 and 15 nm, respectively. Some aggregates have, nevertheless, formed, due to the relatively high temperature requirement of the method. Investigating the catalytic role of the as-prepared nanoparticles was limited to the NiO nanoparticles, since only low concentrations of V 2O5 could be prepared. An attempt to increase the concentration of dispersed V2O5 by using precursors with higher solubility in water was not successful. A semi-batch reactor setup was employed to investigate the catalytic hydrocracking of heavy oil in the presence of dispersed NiO nanoparticles. On the other hand, batch reactor arrangement was employed to study the thermalcracking of heavy oil in the presence of dispersed NiO nanoparticles.

  16. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    PubMed

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  17. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method

    PubMed Central

    Lv, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-01

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote essential fluctuations to enhance sampling, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations, for instance on certain interactions of focus. Due to lack of active sampling of configuration response to perturbation transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; and in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which the solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly-solvated deca-alanine (Ala10) peptide. Based on a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential rare events are mainly driven by the compensating

  18. Method for distributing an aqueous solution containing a peroxygen in clay

    SciTech Connect

    Norris, R.D.; Brown, R.A.; Richards, J.C.

    1988-05-31

    A process for distributing a peroxygen through particulate matter containing clay without swelling the clay is described comprising incorporating a compound selected from the group consisting of a salt of a perborate or a persulfate anion into water to form an aqueous solution absent a colloidal agent to impart a high viscosity, and introducing the aqueous solution into the particulate matter containing clay.

  19. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  20. Extraction and demulsification of oil from wheat germ, barley germ, and rice bran using an aqueous enzymatic method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aqueous enzymatic method was developed to extract oil from wheat germ. The parameters that influence oil yield were investigated, including wheat germ pretreatment, comparison of various industrial enzymes, pH, ratio of wheat germ to water, reaction time and demulsification. Pretreatment at 180ºC...

  1. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    EPA Science Inventory

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  2. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.

    PubMed

    Choi, Tae Hoon; Liang, Ruibin; Maupin, C Mark; Voth, Gregory A

    2013-05-01

    The self-consistent charge density functional tight binding (SCC-DFTB) method has been applied to hydroxide water clusters and a hydroxide ion in bulk water. To determine the impact of various implementations of SCC-DFTB on the energetics and dynamics of a hydroxide ion in gas phase and condensed phase, the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus, and DFTB3-3OB implementations have been tested. Energetic stabilities for small hydroxide clusters, OH(-)(H2O)n, where n = 4-7, are inconsistent with the results calculated with the B3LYP and second order Møller-Plesset (MP2) levels of ab initio theory. The condensed phase simulations, OH(-)(H2O)127, using the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus and DFTB3-3OB methods are compared to Car-Parrinello molecular dynamics (CPMD) simulations using the BLYP functional. The SCC-DFTB method including a modified O-H repulsive potential and the third order correction (DFTB3-diag/Full+gaus) is shown to poorly reproduce the CPMD computational results, while the DFTB2 and DFTB2-γ(h) method somewhat more closely describe the structural and dynamical nature of the hydroxide ion in condensed phase. The DFTB3-3OB outperforms the MIO parameter set but is no more accurate than DFTB2. It is also shown that the overcoordinated water molecules lead to an incorrect bulk water density and result in unphysical water void formation. The results presented in this paper point to serious drawbacks for various DFTB extensions and corrections for a hydroxide ion in aqueous environments. PMID:23566052

  3. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  4. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  5. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method.

    PubMed

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-03-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios

  6. Application of carbonated apatite coating on a Ti substrate by aqueous spray method.

    PubMed

    Mochizuki, Chihiro; Hara, Hiroki; Takano, Ichiro; Hayakawa, Tohru; Sato, Mitsunobu

    2013-03-01

    The fabrication and characterization of a carbonate-containing apatite film deposited on a Ti plate via an aqueous spray method is described. The mist of the spray solution emitted from a perpendicularly oriented airbrush was made to strike a warmed Ti substrate. The thicknesses of the sprayed film and those heat-treated at 400 °C-700 °C under Ar gas flow were in the range 1.21-1.40 μm. The results of elemental analyses and Fourier transform infrared spectroscopy of the powders that were mechanically collected from the surface of the sprayed film suggest that the film was Ca(10)(PO4)6(CO3) · 2CO2 · 3H2O. The presence of the carbonate ion and the lattice CO2 molecule was confirmed via the aforementioned analyses; the finding was also consistent with the X-ray diffraction patterns of the films and the chemical identity of the sprayed and heat-treated films that were measured using X-ray photoelectron spectroscopy. The sprayed film comprises a characteristic network structure, which contains round particles within the networks, as was observed by field-emission scanning electron microscopy. A scratch test indicated that the shear stress of the sprayed film (21 MPa) significantly improved to 40 and >133 MPa after heat-treatment at 600 °C and 700 °C, respectively, under Ar gas flow for 10 min. PMID:25427510

  7. Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, Guangrui; He, Guoxu; Wang, Li; Liu, Qiaoru; Zhang, Qiuxia; Qin, Dezhi

    2012-08-01

    In the present work, it is reported for Lysozyme-conjugated HgS nanocrystals with tunable sizes prepared at Lysozyme (Lyso) aqueous solutions by using biomimetic method. The obtained HgS nanoparticles with good dispersibility have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). The Lysozyme molecules can control nucleation and growth of HgS crystals by binding on the surface of nanocrystals to stabilize protein-capped nanoparticles. Quantum confinement effect of Lyso-conjugated HgS nanocrystals has been confirmed by UV-vis spectra. The nanoparticles exhibit a well-defined emission feature at about 470 nm. Fourier transform infrared (FT-IR) data are used to envisage the binding of nanoparticles with functional groups of Lysozyme. The results of circular dichroism (CD) spectra indicated that the formation of HgS nanocrystals can lead to conformational change of Lysozyme.

  8. An In Situ Method for Sizing Insoluble Residues in Precipitation and Other Aqueous Samples

    PubMed Central

    Axson, Jessica L.; Creamean, Jessie M.; Bondy, Amy L.; Capracotta, Sonja S.; Warner, Katy Y.; Ault, Andrew P.

    2015-01-01

    Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 μL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0–3.0(±0.3)×108 particles cm−3, while surface area ranged from 1.8(±0.7)–3.2(±1.0)×107 μm2 cm−3. Number size distributions peaked between 133–150 nm, with both single and multi-modal character, while surface area distributions peaked between 173–270 nm. Comparison with electron microscopy of particles up to 10 μm show that, by number, > 97% residues are <1 μm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes. PMID:25705069

  9. [Value of gentamycin concentration in aqueous humor of a rabbit's eye depending on the method of application. Summary of a doctoral thesis].

    PubMed

    Philips, R H

    1992-10-01

    Pharmacokinetics of gentamycin in the primary and secondary rabbit's aqueous was examined by using a new experimental method of subconjunctival application (without breaking the continuity of the conjunctiva). It was established that after subconjunctival application one cannot obtain any therapeutical concentrations in the primary or secondary aqueous. Presented are conditions which have to be fulfilled to obtain a therapeutical concentration of gentamycin in the secondary aqueous. PMID:1306533

  10. A microfluidic-based method for the transfer of biopolymer particles from an oil phase to an aqueous phase.

    PubMed

    Wong, Edeline Huei-mei; Rondeau, Elisabeth; Schuetz, Peter; Cooper-White, Justin

    2009-09-01

    Biopolymer microgels produced in microfluidic devices via the formation of a water-in-oil emulsion are usually collected at the outlet of the device and thoroughly washed from the oil phase in an additional, lengthy processing step. This paper reports a microfluidic-based method which allows for continuous on-chip manufacture of aqueous-based biopolymer microparticles in an oily continuous phase and thereafter the transfer of these particles from the oily carrier phase to a second aqueous continuous phase. This was achieved by surface patterning the PDMS channel walls using UV polymerization of poly(acrylic acid) (PAA) in order to obtain a hybrid device with distinct hydrophilic and hydrophobic sections. The surface patterning was stable for at least 4 months. This selective surface patterning of the channel was shown to initiate and assist the transfer of the biopolymer particles from the oil phase into the aqueous phase. The flow conditions required for a stable biphasic flow in the transfer section of the device were evaluated based on the theoretical shear stress at the interface of the two fluids. Experimental outcomes were found to be in good agreement with the prediction. After the particles cross the liquid-liquid interface and are transferred into the aqueous phase, they are collected and characterized. The resulting suspension was found to be stable for several weeks and no aggregation was observed. PMID:19680582

  11. Method Of Dispensing Microdoses Of A Aqueous Solutions Of S Ubstances Onto A Carrier And A Device For Carrying Out Said Method

    DOEpatents

    Ershov, Gennady Moiseevich; Kirillov, Eugenii Vladislavovich; Mirzabekov, Andrei Darievich

    1999-10-05

    A method and a device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance

  12. USEPA METHOD STUDY 38 - SW-846 METHOD 3010, ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TRACE METALS BY FLAME ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    An interlaboratory collaborative study was conducted on SW-846 Method 3010, "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy", to determine the mean recovery and precision for analyses of 21 trace metals in surf...

  13. O2 solubility in aqueous media determined by a kinetic method.

    PubMed

    Reynafarje, B; Costa, L E; Lehninger, A L

    1985-03-01

    A kinetic method for the determination of O2 solubility in air-saturated aqueous solutions of widely varying composition and temperature is described. It is based on the precise molar stoichiometry between the rates of uptake of H+ and O2, measured with response-matched electrodes, in the reaction NADH + H+ + 1/2O2----NAD+ + H2O, catalyzed by an NADH oxidase preparation. To the initially anaerobic test system, which contains an excess of NADH and NADH oxidase in a buffered medium, an aliquot of the O2-containing solution to be tested is added and the rates of both O2 uptake and H+ uptake are recorded; the H+ electrode is calibrated against standard HCl. From these data the amount of O2 in the aliquot is calculated. Some representative values for O2 solubility at 25 degrees C and 760 mm in air-saturated systems are (i) distilled H2O, 516 nmol O/ml, (ii) 0.15 M KCl, 480 nmol O/ml, and (iii) 0.25 M sucrose, 458 nmol O/ml. Data and equations are also given for the solubility of O2 at 760 mm in air-saturated and lightly buffered 0.15 M KCl and 0.25 M sucrose over the range 5 to 40 degrees C. In the method described the rates of O2 and H+ uptake are precisely linear and stoichiometric when NADH is present in large excess over O2. However, when O2 is in excess and small additions of 340-nm-standardized NADH are made, as in earlier methods based on NADH oxidation, the endpoint is approached very gradually and tends to overestimate O2 solubility, owing to (i) the higher Km for NADH than for O2, (ii) the relatively slow response of the Clark O2 electrode, and (iii) the incomplete oxidation of NADH in the presence of 340-nm-absorbing inhibitory substances. PMID:4014672

  14. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  15. Insights into the removal of terbuthylazine from aqueous solution by several treatment methods.

    PubMed

    Álvarez, Pedro M; Quiñones, Diego H; Terrones, Isidro; Rey, Ana; Beltrán, Fernando J

    2016-07-01

    This paper reports the removal of the s-triazine herbicide terbuthylazine (TBA) from aqueous solution by various treatment methods including adsorption onto activated carbon (AC) and multiwalled carbon nanotubes (MWCNT), UV254 photolysis, UV254/H2O2, single ozonation, O3/H2O2, catalytic ozonation (AC, MWCNT and TiO2 as catalysts) and some solar driven processes such as TiO2 photocatalytic oxidation and photo-ozonation. TBA was adsorbed onto AC and MWCNT following a pseudo-second order kinetics and Freundlich isotherm. Rapid small scale column tests showed that TBA could be removed from solution by adsorption onto AC better than atrazine. The UV254/H2O2 treatment resulted in excellent removal of TBA primarily due to the oxidation capability of hydroxyl radicals (kHO = 3.310(9) M(-1) s(-1)) generated from H2O2 photolysis. As the H2O2 initial concentration was increased from 5 to 50 mg L(-1) the HO exposure per UV fluence (RHO,UV) increased, making the process more efficient. Single ozonation also allowed complete removal of the herbicide though the process was slow (kO3=15.4 M(-1) s(-1) at pH > 4). The ozonation process could be greatly accelerated by the enhanced generation of HO through O3/H2O2 and O3/AC processes, which also led to more efficient processes in terms of ozone utilization. Commercial TiO2 (TiO2-P25) and lab prepared anatase TiO2 (TiO2-cat) nanoparticles catalyzed the removal of TBA by solar photocatalysis. In contrast, a lab prepared MWCNT-TiO2 composite was not useful as catalyst in solar photo-oxidation processes because of the HO scavenging nature of the MWCNT used as support. A mechanism for TBA degradation by O3 and HO has been suggested after TBA degradation intermediates identification. PMID:27115726

  16. Theoretical study of the hydrolysis of ethyl benzoate in acidic aqueous solution using the QM/MC/FEP method

    NASA Astrophysics Data System (ADS)

    Kaweetirawatt, Thanayuth; Kokita, Yohei; Iwai, Shiho; Sumimoto, Michinori; Hori, Kenji

    2012-09-01

    The hydrolysis of ethyl benzoate in acidic condition was theoretically studied for models with two (2W) or three water (3WA) molecules at the B3LYP/6-311++G(d,p) levels of theory. Activation free energy of solvation in aqueous solution (ΔG‡cal) was calculated using the QM/MC/FEP method. The value of the 2W model in aqueous solution was calculated to be smaller by more than 5.0 kcal mol-1 than the observed value (26.0 kcal mol-1 at 298 K). The position of the third water molecule in the 3WA model plays an essential role in producing the ΔG‡cal value (26.4 kcal mol-1) consistent with the experimental value.

  17. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.

    PubMed

    Barrera-Díaz, Carlos E; Lugo-Lugo, Violeta; Bilyeu, Bryan

    2012-07-15

    Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium. PMID:22608208

  18. Method of inhibiting crosslinking of aqueous xanthan gums in the presence of ferric acid ions

    SciTech Connect

    Crowe, C.W.

    1982-03-02

    The cross linking of aqueous xanthan gums in the presence of ferric ions is inhibited or prevented by adding a soluble alkanoic and/or alkenoic acid having at least 4 carbon atoms and bearing at least 2 hydroxyl groups per molecule, and/or a soluble salt of ..gamma..-lactone. This combination of ingredients forms gelled acid compositions which are useful in acidizing treatments of wells. The gelled acid compositions are viscous fluids which have increased stability against shear and thermal degradation and other properties which result in retarded reaction rates and reduced fluid leak-off during acidizing treatments of subterranean formations surrounding well bores. The aqueous gelled acids have the further advantage of inhibiting or preventing the formation of insoluble compounds, such as ferric hydroxide, during such acidizing treatments. 13 claims.

  19. Tuning the size and configuration of nanocarbon microcapsules: aqueous method using optical tweezers

    PubMed Central

    Frusawa, Hiroshi; Matsumoto, Youei

    2014-01-01

    To date, optical manipulation techniques for aqueous dispersions have been developed that deposit and/or transport nanoparticles not only for fundamental studies of colloidal dynamics, but also for either creating photonic devices or allowing accurate control of liquids on micron scales. Here, we report that optical tweezers (OT) system is able to direct three-dimensional assembly of graphene, graphite, and carbon nanotubes (CNT) into microcapsules of hollow spheres. The OT technique facilitates both to visualize the elasticity of a CNT microcapsule and to arrange a triplet of identical graphene microcapsules in aqueous media. Furthermore, the similarity of swelling courses has been found over a range of experimental parameters such as nanocarbon species, the power of the incident light, and the suspension density. Thanks to the universality in evolutions of rescaled capsule size, we can precisely control the size of various nanocarbon microcapsules by adjusting the duration time of laser emission. PMID:24509866

  20. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-07-03

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  1. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-01-01

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  2. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  3. A Method for the Highly Selective, Colorimetric and Ratiometric Detection of Hg(2+) in a 100% Aqueous Solution.

    PubMed

    Liu, Jingkai; Xu, Zhenghe; Xu, Lirong; Bian, Zhen; Sang, Guoqing; Zhu, Baocun

    2016-01-01

    Mercury (Hg) and its derivatives pose a serious threat to the environment and human health. Thus, the development of methods for the selective and sensitive determination of Hg(2+) is very important to understand its distribution, and to implement more detailed toxicological studies. Herein, we developed a new method for the detection of Hg(2+) based on the tricyanoethylene derivative and mercaptoethanol. This method could selectively detect Hg(2+) in a 100% aqueous solution by the naked-eye within the range of 1 - 60 μM. Importantly, this method also could detect Hg(2+) quantitatively by ratiometic absorption spectroscopy in the range of 0.1 - 6 μM with a detection limit of 55 nM. We anticipate that this proposed method will be used widely to monitor Hg(2+) in the environment. PMID:26960619

  4. Comparison of colorimetric methods for the quantification of model proteins in aqueous two-phase systems.

    PubMed

    Glyk, Anna; Heinisch, Sandra L; Scheper, Thomas; Beutel, Sascha

    2015-05-15

    In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore, a convenient dilution of both components (up to 1 and 5 wt%) before protein quantification is recommended in both assays, respectively, where the BCA assay is favored in comparison with the Bradford assay. PMID:25684109

  5. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  6. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  7. Method for removal of explosives from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1994-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.

  8. Methods and additives for delaying the release of chemicals in aqueous fluids

    SciTech Connect

    Burnham, J.W.; Briscoe, J.E.; Elphingstone, E.A.

    1980-05-13

    Additives are provided for bringing about the delayed release of a chemical such as a gel breaker or demulsifier in an aqueous fluid such as a gelled oil well hydraulic fracturing or fracture-acidizing fluid. The additives are pelletized solids consisting of the chemical to be released such as sodium laryl sulfate. A gelling agent capable of being hydrated such as a polysaccharide, and a breaker for the gel produced by the gelling agent when hydrated such as a persulfate or an enzyme. 33 claims.

  9. Graphical methods for representing form and stability of aqueous metal ions

    USGS Publications Warehouse

    Hem, J.D.

    1972-01-01

    The equilibrium distributions of solute species of aluminum at 25??C and one atmosphere pressure are shown graphically in systems containing fluoride, as functions of the total dissolved aluminum and fluoride. The predominant form of complex and degree of complexing are also shown graphically as functions of pH and fluoride activity. The graphs are based on the simultaneous solution of the equations representing nine complexing equilibria and three stoichiometric summarizations, using a fixed value of ionic strength equal to 0.1. Solubility relationships for aluminum hydroxide and cryolite also are shown graphically, using the same coordinates and additional equilibria. By overlaying an appropriate species distribution graph with a solubility graph a relatively complete summary of chemical relationships in an aqueous aluminum system can be obtained. Although this type of model has important limitations, it can accommodate enough variables simultaneously to have practical value and similar procedures could be used for other elements and systems of interest in low-temperature aqueous geochemistry. ?? 1972.

  10. Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods.

    PubMed

    Seifert, Stephan; Merk, Virginia; Kneipp, Janina

    2016-01-01

    Aqueous pollen extracts of varying taxonomic relations were analyzed with surface enhanced Raman scattering (SERS) by using gold nanoparticles in aqueous suspensions as SERS substrate. This enables a selective vibrational characterization of the pollen water soluble fraction (mostly cellular components) devoid of the spectral contributions from the insoluble sporopollenin outer layer. The spectra of the pollen extracts are species-specific, and the chemical fingerprints can be exploited to achieve a classification that can distinguish between different species of the same genus. In the simple experimental procedure, several thousands of spectra per species are generated. Using an artificial neural network (ANN), it is demonstrated that analysis of the intrinsic biochemical information of the pollen cells in the SERS data enables the identification of pollen from different plant species at high accuracy. The ANN extracts the taxonomically-relevant information from the data in spite of high intra-species spectral variation caused by signal fluctuations and preparation specifics. The results show that SERS can be used for the reliable characterization and identification of pollen samples. They have implications for improved investigation of pollen physiology and for allergy warning. PMID:26249322

  11. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig

    2015-10-01

    The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.

  12. Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 1. Saturation and temperature

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2014-11-01

    This work introduces the derivation and solution of the conservation laws for nonisothermal immiscible two-phase flow in one dimension (1D) with heat loss to surrounding strata. Purely advective flow is assumed so that the method of characteristics can be applied to the fluid flow and thermal equations with an arbitrary relative permeability model. The formulation allows for a wide class of time-dependent models for heat loss into surrounding strata. One-dimensional linear and radial displacements are considered. Thermal losses to the under- and over-burden are modelled using a heat-loss coefficient derived from the classic Lauwerier model. In order to demonstrate the two kinds of solution that may occur, examples are shown for cold methane injection into an aquifer and cold water injection into a natural gas reservoir. Finally the new analytical solutions are compared with two literature models which assume piston-like displacement, and numerical reservoir simulations. The solutions from the proposed model match the thermal profile from the reservoir simulation much better than either of the literature models in the examples considered.

  13. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other

  14. Monitoring in situ deformation induced by a fluid injection in a fault zone in shale using seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Rivet, D.; De Barros, L.; Guglielmi, Y.; Castilla, R.

    2015-12-01

    We monitor seismic velocity changes during an experiment at decametric scale aimed at artificially reactivate a fault zone by a high-pressure hydraulic injection in a shale formation of the underground site of Tournemire, South of France. A dense and a multidisciplinary instrumentation, with measures of pressure, fluid flow, strain, seismicity, seismic properties and resistivity allow for the monitoring of this experiment. We couple hydromechanical and seismic observations of the fault and its adjacent areas to better understand the deformation process preceding ruptures, and the role played by fluids. 9 accelerometers recorded repeated hammers shots on the tunnel walls. For each hammer shot we measured small travel time delays on direct P and S waves. We then located the seismic velocity perturbations using a tomography method. At low injection pressure, i.e. P< 15 Bars, we observe an increase of P-waves velocity around the injection, while we measure no change in S waves velocity. When the pressure overcomes 15 Bars, velocity perturbations dramatically increase with both P and S waves affected. A decrease of velocity is observed close to the injection point and is surrounded by regions of increasing velocity. Our observations are consistent with hydromechanical measures. Below 15 Bars, we interpret the P-wave velocity increase to be related to the compression of the fault zone around the injection chamber. Above 15 Bars, we measure a shear and dilatant fault movement, and a rapid increase in the injected fluid flow. At this step, our measures are coherent with a poroelastic opening of the fault with velocities decrease at the injection source and velocities increase related to stress transfer in the far field. Velocity changes prove to be efficient to monitor stress/strain variation in an activated fault, even if these observations might produce complex signals due to the highly contrasted hydromechanical responses in a heterogeneous media such as a fault zone.

  15. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  16. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method

    NASA Astrophysics Data System (ADS)

    Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.; Benning, L. G.

    2013-11-01

    Recent research suggests that under certain temperature and relative humidity conditions atmospheric aerosol may be present in the form of a glassy solid. In order to understand the impacts that this may have on aerosol-cloud interactions and atmospheric chemistry, knowledge of water diffusion within such aerosol particles is required. Here, a method is described in which Raman spectroscopy is used to observe D2O diffusion in high-viscosity aqueous solutions, enabling a quantitative assessment of water diffusion coefficients, Dwater, as a function of relative humidity. Results for sucrose solutions compare well with literature data at 23.5 ± 0.3 °C, and demonstrate that water diffusion is slow (Dwater~5 ×10-17m2s-1), but not arrested, just below the glass transition. Room temperature water diffusion coefficients are also presented for aqueous levoglucosan and an aqueous mixture of raffinose, dicarboxylic acids and ammonium sulphate: at low humidity, diffusion is retarded but still occurs on millisecond to second timescales in atmospherically relevant-sized particles. The effect of gel formation on diffusion in magnesium sulfate solutions is shown to be markedly different from the gradual decrease in diffusion coefficients of highly viscous liquids. We show that using the Stokes-Einstein equation to determine diffusion timescales from viscosity leads to values which are more than five orders of magnitude too big, which emphasises the need to make measurements of diffusion coefficients. In addition, comparison of bounce fraction data for levoglucosan with measured diffusion data reveals that even when particles bounce the equilibration timescales for water are a fraction of a second for a 100 nm particle. This suggests a high bounce fraction does not necessarily indicate retarded water diffusion.

  17. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method

    NASA Astrophysics Data System (ADS)

    Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.; Benning, L. G.

    2014-04-01

    Recent research suggests that under certain temperature and relative humidity conditions atmospheric aerosol may be present in the form of a glassy solid. In order to understand the impacts that this may have on aerosol-cloud interactions and atmospheric chemistry, knowledge of water diffusion within such aerosol particles is required. Here, a method is described in which Raman spectroscopy is used to observe D2O diffusion in high-viscosity aqueous solutions, enabling a quantitative assessment of water diffusion coefficients, Dwater, as a function of relative humidity. Results for sucrose solutions compare well with literature data at 23.5 ± 0.3 °C, and demonstrate that water diffusion is slow (Dwater ~5 × 10-17 m2 s-1), but not arrested, just below the glass transition at a water activity of 0.2. Room temperature water diffusion coefficients are also presented for aqueous levoglucosan and an aqueous mixture of raffinose, dicarboxylic acids and ammonium sulphate: at low humidity, diffusion is retarded but still occurs on millisecond to second timescales in atmospherically relevant-sized particles. The effect of gel formation on diffusion in magnesium sulfate solutions is shown to be markedly different from the gradual decrease in diffusion coefficients of highly viscous liquids. We show that using the Stokes-Einstein equation to determine diffusion timescales from viscosity leads to values which are more than 5 orders of magnitude too big, which emphasises the need to make measurements of diffusion coefficients. In addition, comparison of bounce fraction data for levoglucosan with measured diffusion data reveals that even when particles bounce the diffusion timescales for water are a fraction of a second for a 100 nm particle. This suggests a high bounce fraction does not necessarily indicate retarded water diffusion.

  18. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  19. Dual affinity method for plasmid DNA purification in aqueous two-phase systems.

    PubMed

    Barbosa, H S C; Hine, A V; Brocchini, S; Slater, N K H; Marcos, J C

    2010-02-26

    The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate. PMID:20083249

  20. Kinetics of degradation of diclofenac sodium in aqueous solution determined by a calorimetric method.

    PubMed

    Chadha, R; Kashid, N; Jain, D V S

    2003-09-01

    An isothermal heat conduction microcalorimeter has been used to study the stability of diclofenac sodium both alone and its inclusion complex with beta-cyclodextrin in aqueous solution. The rates of heat evolved during degradation of diclofenac sodium have been measured by a highly sensitive microcalorimetric technique as function of concentration, pH and temperature. The calorimetric accessible data have been incorporated in the equations for determination of rate constants, change in enthalpy and order of reaction. The decomposition of diclofenac sodium both alone and its inclusion complex with beta-cyclodextrin in solution corresponds to a pseudo-first order reaction. The values of rate constants, k's at 338.15 K, (calculated from the variation of heat evolution with the time) for the degradation of diclofenac sodium at pH 5, 6, 7, 8 and its inclusion complex with beta-cyclodextrin at pH 7 are found to be 4.71 x 10(-4), 5.69 x 10(-4), 6.12 x 10(-)4, 6.57 x 10(-4) and 4.26 x 10(-4) h(-1) respectively. There is good agreement between calorimetric determined t(0.5) and literature values. It has been found that beta-cyclodextrin retards the degradation of diclofenac sodium. The kinetic parameters have been calculated for the reaction. The negative entropy of activation suggests the formation of an ordered transition state. PMID:14531458

  1. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis. PMID:26067442

  2. Off-fault shear failure potential enhanced by high-stiff/low-permeable damage zone during fluid injection in porous reservoirs

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Nguyen, T. K.; Torabi, A.

    2015-09-01

    Several studies have focused on the role of damage zone (DZ) on the hydromechanical behaviour of faults by assuming a fractured DZ (i.e. low stiffness/high permeability). Yet, this vision may not be valid in all geological settings, in particular, in high-porosity reservoirs as targeted by several underground exploitations. We investigate the impact of a high-stiff/low-permeable DZ on the shear reactivation of a blind, undetectable normal fault (1 km long, ≤10 m offset), with a 0.5 m thick low-porosity/permeability fault core during fluid injection into a high-porosity reservoir. The spatial distribution of effective properties (elastic moduli, Biot's coefficients and permeability) of DZ including deformation bands (DB; elliptic inclusions) and intact rock were derived using upscaling analytical expressions. The influence of DZ on the hydromechanical behaviour of the fault zone was numerically explored using 2-D plane-strain finite-element simulations within the framework of fully saturated isothermal porous media by accounting for an orthotropic elastic rheology. The numerical results showed that the presence of DB plays a protective role by reducing the potential for shear reactivation inside the fault core. On the other hand, they favour shear failure in the vicinity of the fault core (off-fault damage) by accelerating the decrease of the minimum principal effective stress while limiting the decrease of the maximum one. This behaviour is strongly enhanced by the fault-parallel DZ effective stiffness, but limited by the combined effect of fault-normal DZ effective permeability and of the Biot's coefficients. This can have implications for the location and size of aftershocks during fault reactivation.

  3. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling with application to the Fox Creek, Alberta, 2013-2015 earthquake sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yajing; Deng, Kai; Clerc, Fiona; Castro, Andres; Harrington, Rebecca

    2016-04-01

    Stress change and pore pressure evolution caused by fluid injection has been postulated as a key factor for inducing both moderate-size earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with stress perturbations provided by a poroelastic model for multistage hydraulic fracturing scenarios. The coupling of external stress changes and their spatiotemporal variation to fault frictional strength in a single computational procedure provides a quantitative understanding of the source processes (i.e., slip rate, triggering threshold) of the spectrum of induced slip modes. We apply the physics-based fault slip model to the induced earthquake sequences near Fox Creek, Alberta, in the western Canada sedimentary basin, where two earthquakes of ML4.4 (2015/01/23) and Mw4.6 (2015/06/13) were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated by the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model as external perturbations, we find that the fault, previously undergoing aseismic slip, can be perturbed into seismic rupturing even after hydraulic fracturing has stopped but stress perturbations continues to evolve in the medium (Scenario 1). In an end-member case (Scenario 2) where stress perturbations are instantaneously returned to zero at shut-in, we observe aseismic slip; all other conditions unchanged from Scenario 1. Seismic slip is also more readily induced by larger stress perturbations. Our preliminary results thus suggest the design of flow-back strategy, either passively evolving in the medium or actively dropping to pre-perturbation level, is essential to

  4. Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods.

    PubMed

    Ma, Jian; Sengupta, Mrinal K; Yuan, Dongxing; Dasgupta, Purnendu K

    2014-06-11

    Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005-2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been made beyond what is in the officially prescribed compendia (which are included) and recent reviews are available. PMID:24861967

  5. More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials.

    PubMed

    Jones, Justin A; Harris, Thomas I; Tucker, Chauncey L; Berg, Kyle R; Christy, Stacia Y; Day, Breton A; Gaztambide, Danielle A; Needham, Nate J C; Ruben, Ashley L; Oliveira, Paula F; Decker, Richard E; Lewis, Randolph V

    2015-04-13

    Spider silk is a striking and robust natural material that has an unrivaled combination of strength and elasticity. There are two major problems in creating materials from recombinant spider silk proteins (rSSps): expressing sufficient quantities of the large, highly repetitive proteins and solvating the naturally self-assembling proteins once produced. To address the second problem, we have developed a method to rapidly dissolve rSSps in water in lieu of traditional organic solvents and accomplish nearly 100% solvation and recovery of the protein. Our method involves generating pressure and temperature in a sealed vial by using short, repetitive bursts from a conventional microwave. The method is scalable and has been successful with all rSSps used to date. From these easily generated aqueous solutions of rSSps, a wide variety of materials have been produced. Production of fibers, films, hydrogels, lyogels, sponges, and adhesives and studies of their mechanical and structural properties are reported. To our knowledge, ours is the only method that is cost-effective and scalable for mass production. This solvation method allows a choice of the physical form of product to take advantage of spider silks' mechanical properties without using costly and problematic organic solvents. PMID:25789668

  6. Dermal uptake of 18 dilute aqueous chemicals: in vivo disappearance-method measures greatly exceed in vitro-based predictions.

    PubMed

    Bogen, Kenneth T

    2013-07-01

    Average rates of total dermal uptake (Kup ) from short-term (e.g., bathing) contact with dilute aqueous organic chemicals (DAOCs) are typically estimated from steady-state in vitro diffusion-cell measures of chemical permeability (Kp ) through skin into receptor solution. Widely used ("PCR-vitro") methods estimate Kup by applying diffusion theory to increase Kp predictions made by a physico-chemical regression (PCR) model that was fit to a large set of Kp measures. Here, Kup predictions for 18 DAOCs made by three PCR-vitro models (EPA, NIOSH, and MH) were compared to previous in vivo measures obtained by methods unlikely to underestimate Kup . A new PCR model fit to all 18 measures is accurate to within approximately threefold (r = 0.91, p < 10(-5) ), but the PCR-vitro predictions (r > 0.63) all tend to underestimate the Kup measures by mean factors (UF, and p value for testing UF = 1) of 10 (EPA, p < 10(-6) ), 11 (NIOSH, p < 10(-8) ), and 6.2 (MH, p = 0.018). For all three PCR-vitro models, log(UF) correlates negatively with molecular weight (r(2) = 0.31 to 0.84, p = 0.017 to < 10(-6) ) but not with log(vapor pressure) as an additional predictor (p > 0.05), so vapor pressure appears not to explain the significant in vivo/PCR-vitro discrepancy. Until this discrepancy is explained, careful in vivo measures of Kup should be obtained for more chemicals, the expanded in vivo database should be compared to in vitro-based predictions, and in vivo data should be considered in assessing aqueous dermal exposure and its uncertainty. PMID:23051616

  7. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Minim, Luis Antonio; Coimbra, Jane Sélia dos Reis

    2010-01-15

    A greener and more sensitive spectrophotometric procedure has been developed for the determination of phenol and o-cresol that exploits an aqueous two-phase system (ATPS) using a liquid-liquid extraction technique. An ATPS is formed mostly by water and does not require organic solvent. Other ATPS components used in this study were the polymer, polyethylene oxide, and some salts (i.e., Li(2)SO(4), Na(2)SO(4) or K(2)HPO(4)+KOH). The method is based on the reaction between phenol, sodium nitroprusside (NPS) and hydroxylamine hydrochloride (HL) in an alkaline medium (pH 12.0), producing the complex anion [Fe(2)(CN)(10)](10-) that spontaneously concentrates in the top phase of the system. The linear range was 1.50-500microgkg(-1) (R>or=0.9997; n=8) with coefficients of variation equal to 0.38% for phenol and 0.30% for o-cresol (n=5). The method yielded limits of detection (LODs) of 1.27 and 1.88microgkg(-1) and limits of quantification (LOQs) of 4.22 and 6.28microgkg(-1) for phenol and o-cresol, respectively. Recoveries between 95.7% and 107% were obtained for the determination of phenol in natural water and wastewater samples. In addition, excellent agreement was observed between this new ATPS method and the standard 4-aminoantipyrine (4-AAP) method. PMID:20006065

  8. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method.

    PubMed

    Mishra, Sanjiv K; Suh, William I; Farooq, Wasif; Moon, Myounghoon; Shrivastav, Anupama; Park, Min S; Yang, Ji-Won

    2014-03-01

    Identification of novel microalgal strains with high lipid productivity is one of the most important research topics in renewable biofuel research. However, the major bottleneck in the strain screening process is that currently known methods for the estimation of microalgal lipid are laborious and time-consuming. The present study successfully employed sulpho-phospho-vanillin (SPV) colorimetric method for direct quantitative measurement of lipids within liquid microalgal culture. The SPV reacts with lipids to produce a distinct pink color, and its intensity can be quantified using spectrophotometric methods by measuring absorbance at 530nm. This method was employed for a rapid quantification of intracellular lipid contents within Chlorella sp., Monoraphidium sp., Ettlia sp. and Nannochloropsis sp., all of which were found to have lipid contents ranging in between 10% and 30%. Subsequent analysis of the biomass using gas chromatography confirmed that our protocol is highly accurate (R(2)=0.99). PMID:24463407

  9. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive Index of Organic-Aqueous Aerosols.

    PubMed

    Cai, Chen; Miles, Rachael E H; Cotterell, Michael I; Marsh, Aleksandra; Rovelli, Grazia; Rickards, Andrew M J; Zhang, Yun-Hong; Reid, Jonathan P

    2016-08-25

    Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules

  10. Novel studies of non-aqueous volatiles in lint Cotton moisture tests by complementary thermal methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture affects economical and rheological properties of cotton, making its accurate determination important. A significant difference in moisture contents between the current and most cited standard oven drying ASTM method (ASTM D 2495, SOD) and volumetric Karl Fischer Titration (KFT) has been est...

  11. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 1

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  12. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 3

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  13. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING LIGHT TRANSMISSION VISUALIZATION METHOD

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  14. THE QUANTIFICATION OF AQUEOUS TRACERS IN LABORATORY AQUIFER MODELS USING A LIGHT TRANSMISSION VISUALIZATION METHOD - 2

    EPA Science Inventory

    The quantification of solute concentrations in laboratory aquifer models has been largely limited to the use of sampling ports, from which samples are collected for external analysis. One of the drawbacks to this method is that the act of sampling may disturb plume dynamics and ...

  15. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOEpatents

    Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  16. A Direct Aqueous Derivatization GSMS Method for Determining Benzoylecgonine Concentrations in Human Urine.

    PubMed

    Chericoni, Silvio; Stefanelli, Fabio; Da Valle, Ylenia; Giusiani, Mario

    2015-09-01

    A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl-chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid-liquid extraction procedure. Gas chromatography-mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV)<6%. Limits of detection (LOD) were 2.7 ng/mL for BZE and 1.4 ng/mL for COC. The calibration curve showed a linear relationship for BZE and COC (r2>0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples. PMID:26300490

  17. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  18. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  19. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  20. Development of a method for detecting trace metals in aqueous solutions based on the coordination chemistry of hexahydrotriazines.

    PubMed

    Wojtecki, Rudy J; Yuen, Alexander Y; Zimmerman, Thomas G; Jones, Gavin O; Horn, Hans W; Boday, Dylan J; Hedrick, James L; García, Jeannette M

    2015-08-01

    The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using 1,3,5-hexahydro-1,3,5-triazines (HTs) as chemical indicators and a low cost fluorimeter-based detection system. This method takes advantage of the inherent properties of HTs to coordinate strongly with metal ions in solution, a fundamental property that was studied using a combination of analytical tools (UV-Vis titrations, (1)H-NMR titrations and computational modeling). Based on these fundamental studies that show significant changes in the HT UV signature when a metal ion is present, HT compounds were used to prepare indicator strips that resulted in significant fluorescence changes when a metal was present. A portable and economical approach was adopted to test the concept of utilizing HTs to detect heavy metals using a fluorimeter system that consisted of a low-pressure mercury lamp, a photo-detector, a monolithic photodiode and an amplifier, which produces a voltage proportional to the magnitude of the visible fluorescence emission. Readings of the prepared HT test strips were evaluated by exposure to two different heavy metals at the safe threshold concentration described by the U.S. Environmental Protection Agency (EPA) for Cr(3+) and Ag(2+) (100 μg L(-1) and 6.25, respectively). This method of detection could be used to the presence of either metal at these threshold concentrations. PMID:26035633

  1. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  2. OZONATION BY-PRODUCTS 2. IMPROVEMENT OF AN AQUEOUS- PHASE DERIVITIZATION METHOD FOR THE DETECTION OF FORMALDEHYDE AND OTHER CARBONYL COMPOUNDS FORMED BY THE OZONATION OF DRINKING WATER

    EPA Science Inventory

    A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...

  3. MIPs in Aqueous Environments.

    PubMed

    Wan, Ying-chun; Ma, Hui-ting; Lu, Bin

    2015-01-01

    When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology. PMID:25796623

  4. Trends in Aqueous Hydration Across the 4f Period Assessed by Reliable Computational Methods

    SciTech Connect

    Kuta, Jadwiga; Clark, Aurora E.

    2010-09-06

    The geometric and electronic structures, as well as the thermodynamic properties of trivalent lanthanide hydrates {Ln(H₂O)₈,₉ ³໋ and Ln(H₂O)₈,₉(H₂O)₁₂,₁₄ ³໋, Ln = La – Lu} have been examined using unrestricted density functional theory (UDFT), unrestricted M€oller-Plesset perturbation theory (UMP2), and multiconfigurational self-consistent field methods (MCSCF). While Ln-hydrates with 2-5 unpaired f-electrons have some multiconfigurational character, the correlation energy lies within 5-7 kcal/mol across the period and for varying coordination numbers. As such DFT yields structural parameters and thermodynamic data quite close to experimental values. Both UDFT and UMP2 predict free energies of water addition to the Ln(H₂O)₈ ³໋ species to become less favorable across the period; however, it is a non-linear function of the surface charge density of the ion. UDFT further predicts that the symmetry of the metal-water bond lengths is sensitive to the specific f-electron configuration, presumably because of repulsive interactions between filled f-orbitals and water lone-pairs. Within the Ln(H₂O)₈,₉(H₂O)₁₂,₁₄ ³໋clusters, interactions between solvation shells overrides this orbital effect, increasing the accuracy of the geometric parameters and calculated vibrational frequencies. Calculated atomic charges indicate that the water ligands each donate 0.1 to 0.2 electrons to the Ln(III) metals, with increasing electron donation across the period. Significant polarization and charge transfer between solvation shells is also observed. The relationship between empirical effective charges and calculated atomic charges is discussed with suggestions for reconciling the trends across the period.

  5. Method for recovering anhydrous ZnCl{sub 2} from aqueous solutions

    SciTech Connect

    Eichbaum, B.R.; Schultze, L.E.

    1993-01-01

    To develop technology to assure an ample supply of zinc and to reduce environmental pollution, the US Bureau of Mines investigated alternatives to the roast-leach process for treating complex sulfide concentrates. Previous studies proved that low-grade zinc sulfide (ZnS) concentrates could be leached using chlorine-oxygen to produce zinc chloride (ZnCl{sub 2}). The process involves high energy requirements for evaporating the pregnant solution to produce anhydrous ZnCl{sub 2} needed for electrolytic cell feed. An efficient hydrometallurgical process would facilitate treatment of lower grade ores that can be used in conventional processing and would render roasting unnecessary. It is difficult to keep ZnCl{sub 2} anhydrous as it is hygroscopic and deliquescent. Therefore, an alternate method of producing a feed material from solution, which could be stored without absorbing H{sub 2}O, was sought. Zinc diamine chloride [Zn(NH{sub 3}){sub 2}Cl{sub 2}], was precipitated from solution by adding ammonium chloride (NH{sub 4}Cl) and sparging with ammonia (NH{sub 3}) to a pH of 6 to 7.5. The spent solution was treated with calcium hydroxide [Ca(OH){sub 2}] at 60{degrees} to 80{degrees}C for 1 to 4 h to remove remaining zinc and NH{sub 3}. The Zn(NH{sub 3}){sub 2}Cl{sub 2} was heated to 300{degrees} to 400{degrees}C to remove NH{sub 3} and produce anhydrous ZnCl{sub 2}. A possible flowsheet was devised and is presented.

  6. Anti-Bacterial effect of Aqueous Garlic Extract (AGE) determined by Disc Diffusion Method against Escherichia coli.

    PubMed

    Saha, S; Saha, S K; Hossain, M A; Paul, S K; Gomes, R R; Imtiaz, M; Islam, M M; Nahar, H; Begum, S A; Mirza, T T

    2016-01-01

    The study was performed to determine the antibacterial effect of aqueous extract of garlic (Allium sativum) against standard strain of Escherichia coli ATCC 25922. An interventional study was conducted in Department of Pharmacology and Therapeutics in collaboration with Department of Microbiology, Mymensingh Medical College, Mymensingh. Antibacterial effect of AGE was determined by disc diffusion method. Sensitivity of AGE determined in disc diffusion and the zone of inhibition (ZOI) was 4 mm, 10 mm and 20 mm at 25 μg/10 μl, 50 μg/10 μl and 100 μg/10 μl concentrations respectively. From the findings it is clearly determined the extract has definite antibacterial effect upon Escherichia coli. Further studies are required to detect and isolate the active ingredients present in the Garlic extract as well as detail steps of mechanism responsible for antibacterial effect. Then their effects against the studied organism should be studied in vivo separately and its toxicity profile should also be taken into account. PMID:26931244

  7. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-01

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  8. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  9. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  10. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach.

    PubMed

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH7.78, contact time 5min, initial MB concentration 22mgL(-1), initial MG concentration 12mgL(-1) and adsorbent dosage 0.0055g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85mgg(-1) was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes. PMID:26890205

  11. Transition from micelle to vesicle in aqueous mixtures of anionic/zwitterionic surfactants studied by fluorescence, conductivity, and turbidity methods.

    PubMed

    Zhai, Limin; Zhang, Jiyu; Shi, Qingxiu; Chen, Wenjun; Zhao, Mei

    2005-04-15

    Vesicles form spontaneously in a aqueous mixture of sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT) and lauryl sulfonate betaine (LSB). Different from catanionic vesicles, the formation or disaggregation of such zwitterionic/anionic vesicles may be easily controlled by adjusting the relative amount of LSB and salinity. The participation of LSB reduces the polydispersity of the vesicles and even results in the formation of monodispersed vesicles at a certain salinity. But as LSB exceeds a certain proportion, vesicles cannot form at any concentration and salinity, making convenient the study of the structural transitions. We applied pyrene as a fluorescence probe and monitored the transition among the monomer, micelle, and vesicle through the variation of I(1)/I(3), accompanied by conductivity and turbidity measurements. In LSB solution and LSB-rich mixture, an abrupt change of the ratio of I(1)/I(3) was found in the transition from monomer to micelle with increasing concentration, as well as in the transition from micelle to vesicle with increasing salinity, which shows that a difference of the polarity of the microenvironment between the micelle and the vesicle bilayer resulted from the composition change. But in AOT solution and AOT-rich mixture, only a gradual change in the transition is observed due to the existence of intermediate structures, which have different microenvironments from micelles and vesicles. So the formation of vesicle experiences a process of monomer to premicelle to micelle to bilayer segment with increasing concentration by combining the conductivity method. The ratio of I(1)/I(3) is independent of the vesicle size once formed. PMID:15780313

  12. Method of using an aqueous chemical system to recover hydrocarbon and minimize wastes from sludge deposits in oil storage tanks

    SciTech Connect

    Goss, M.L.

    1992-02-04

    This patent describes a process for separating and removing a hydrocarbon, water and solid components of sludge deposited in an oil storage tank. It comprises: introducing a sufficient amount of a nonionic surfactant in an aqueous solution to form a layer of the solution above the sludge layer; the nonionic surfactant comprising: C{sub 8}-C{sub 12} alkylphenol-ethylene oxide adducts of about 55%-75% by weight ethylene oxide, and at least one castor oil-ethylene oxide adduct of about 55%-75% by weight ethylene oxide; the nonionic surfactant being present in a quantity sufficient to separate hydrocarbon component from the sludge without forming an emulsion, adding a diluent, immiscible with the aqueous layer, for extracting the hydrocarbons, and separately draining the diluent layer and aqueous layer from the tank.

  13. Device of dispensing micro doses of aqueous solutions of substances onto a carrier and device for carrying out said method

    DOEpatents

    Ershow, Gennady Moiseevich; Kirillov, Evgenii Vladislavovich; Mirzabekov, Andrei Darievich

    1998-01-01

    A device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance.

  14. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    PubMed

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters. PMID:18261510

  15. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    ERIC Educational Resources Information Center

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  16. Aqueous production.

    PubMed

    Krupin, T; Wax, M; Moolchandani, J

    1986-01-01

    The formation of aqueous humour by the ciliary body is a complex process. Active transport of solutes by the ciliary process epithelium is an energy-dependent mechanism that selectively transports substances against an electrochemical gradient across the cell membranes. Water passively follows the active solute transport. In addition to these active transport processes, ultrafiltration contributes to the formation of aqueous humour. The ciliary epithelium contains enzyme systems that function in the production of aqueous humour. The enzymes sodium-potassium-activated adenosine triphosphatase [(Na+:K+)ATPase] and carbonic anhydrase participate in the active transport across this epithelium. Inhibition of these enzymes lowers intraocular pressure (IOP) by decreasing aqueous humour production. the ciliary epithelium contains both alpha- and beta-adrenergic receptors. Electrophysiologic studies on the isolated iris-ciliary body (I-CB) preparation provide a means to study direct effects of the adrenergic agents on transepithelial properties of the ciliary epithelium. This paper will discuss the enzymatic and adrenergic properties of the ciliary epithelium as they relate to active transport and thereby aqueous humour production. PMID:3026067

  17. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  18. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  19. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  20. Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine.

    PubMed

    Mageste, Aparecida Barbosa; de Lemos, Leandro Rodrigues; Ferreira, Guilherme Max Dias; da Silva, Maria do Carmo Hespanhol; da Silva, Luis Henrique Mendes; Bonomo, Renata Cristina Ferreira; Minim, Luis Antonio

    2009-11-01

    Partition of the natural dye carmine has been studied in aqueous two-phase systems prepared by mixing aqueous solutions of polymer or copolymer with aqueous salt solutions (Na(2)SO(4) and Li(2)SO(4)). The carmine dye partition coefficient was investigated as a function of system pH, polymer molar mass, hydrophobicity, system tie-line length and nature of the electrolyte. It has been observed that the carmine partition coefficient is highly dependent on the electrolyte nature and pH of the system, reaching values as high as 300, indicating the high potential of the two-phase extraction with ATPS in the purification of carmine dye. The partition relative order was Li(2)SO(4)"Na(2)SO(4). Carmine molecules were concentrated in the polymer-rich phase, indicating an enthalpic specific interaction between carmine and the pseudopolycation, which is formed by cation adsorption along the macromolecule chain. When the enthalpic carmine-pseudopolycation interaction decreases, entropic forces dominate the natural dye-transfer process, and the carmine partitioning coefficient decreases. The optimization of the extraction process was obtained by a central composite face-centered (CCF) design. The CCF design was used to evaluate the influence of Li(2)SO(4) and PEO 1500 concentration and of the pH on the partition coefficient of carmine. The conditions that maximize the partition of carmine into the top phase were determined to be high concentrations of PEO and Li(2)SO(4) and low pH values within the ranges studied. PMID:19800067

  1. High-performance thin-layer chromatography method for quantitative determination of oenothein B and quercetin glucuronide in aqueous extract of Epilobii angustifolii herba.

    PubMed

    Bazylko, Agnieszka; Kiss, Anna K; Kowalski, Józef

    2007-11-30

    A method was developed for separation and quantitative determination of oenothein B (OeB) and quercetin glucuronide (QG) in aqueous extract of Epilobii angustifolii herba by HPTLC-densitometry. The analyses were performed on HPTLC RP-18 WF(254) plates with 25% MeCN in water (+50mM H(3)PO(4)) as the mobile phase (distance of 8 cm) for OeB quantification and then with acetonitrile (distance of 4 cm) for QG quantification. OeB and QG were determined by densitometry at 270 and 350 nm, respectively. Their amounts were calculated using the regression equations of the calibration curves which were linear in a range of 1.14-2.28 microg spot(-1) for OeB and of 0.0768-0.6912 microg spot(-1) for QG. The amounts of OeB and QG in aqueous extract of Epilobii angustifolii herba measured by the method developed were 152.46+/-4.92 and 22.07+/-1.38 mg g(-1), respectively. The method was found to be relatively simple, specific, precise and accurate for the quality control of Epilobium angustifolium extracts. PMID:17980376

  2. Vibrational frequency fluctuation of ions in aqueous solutions studied by three-pulse infrared photon echo method.

    PubMed

    Ohta, Kaoru; Tayama, Jumpei; Saito, Shinji; Tominaga, Keisuke

    2012-11-20

    In liquid water, hydrogen bonds form three-dimensional network structures, which have been modeled in various molecular dynamics simulations. Locally, the hydrogen bonds continuously form and break, and the network structure continuously fluctuates. In aqueous solutions, the water molecules perturb the solute molecules, resulting in fluctuations of the electronic and vibrational states. These thermal fluctuations are fundamental to understanding the activation processes in chemical reactions and the function of biopolymers. In this Account, we review studies of the vibrational frequency fluctuations of solute molecules in aqueous solutions using three-pulse infrared photon echo experiments. For comparison, we also briefly describe dynamic fluorescence Stokes shift experiments for investigating solvation dynamics in water. The Stokes shift technique gives a response function, which describes the energy relaxation in the nonequilibrium state and corresponds to the transition energy fluctuation of the electronic state at thermal equilibrium in linear response theorem. The dielectric response of water in the megahertz to terahertz frequency region is a key physical quantity for understanding both of these frequency fluctuations because of the influence of electrostatic interactions between the solute and solvent. We focus on the temperature dependence of the three experiments to discuss the molecular mechanisms of both the frequency fluctuations in aqueous solutions. We used a biexponential function with sub-picosecond and picosecond time constants to characterize the time-correlation functions of both the vibrational and electronic frequency fluctuations. We focus on the slower component, with time constants of 1-2 ps for both the frequency fluctuations at room temperature. However, the temperature dependence and isotope effect for the time constants differ for these two types of fluctuations. The dielectric interactions generally describe the solvation dynamics of

  3. Removal of heavy metals and organic contaminants from aqueous streams by novel filtration methods. 1998 annual progress report

    SciTech Connect

    Rodriguez, N.M.

    1998-06-01

    'Graphite nanofibers are a new type of material consisting of nanosized graphite platelets where only edges are exposed. Taking advantage of this unique configuration the authors objective is: (1) To produce graphite nanofibers with structural properties suitable for the removal of contaminants from water. (2) To test the suitability of the material in the removal of organic from aqueous solutions. (3) To determine the ability of the nanofibers to function as an electrochemical separation medium the selective removal of metal contaminants from solutions. This report summarizes work after 1.5 of a 3-year project. During this period, efforts have been concentrated on the production, characterization and optimization of graphite nanofibers (GNF). This novel material has been developed in the laboratory from the metal catalyzed decomposition of certain hydrocarbons (1). The structures possess a cross-sectional area that varies between 5 to 100 nm and have lengths ranging from 5 to 100 mm (2). High-resolution transmission electron microscopy studies have revealed that the nanofibers consist of extremely well-ordered graphite platelets, which are oriented in various directions with respect to the fiber axis (3). The arrangement of the graphene layers can be tailored to a desired geometry by choice of the correct catalyst system and reaction conditions, and it is therefore possible to generate structures where the layers are stacked in a ribbon, herring-bone, or stacked orientation. The research has been directed on two fronts: (a) the use of the material for the removal of organic contaminants, and (b) taking advantage of the high electrical conductivity as well as high surface area of the material to use it as electrode for the electrochemical removal of metal pollutants from aqueous streams.'

  4. Determination of Aroma Compound Partition Coefficients in Aqueous, Polysaccharide, and Dairy Matrices Using the Phase Ratio Variation Method: A Review and Modeling Approach.

    PubMed

    Heilig, Andrej; Sonne, Alina; Schieberle, Peter; Hinrichs, Jörg

    2016-06-01

    The partition of aroma compounds between a matrix and a gas phase describes an individual compound's specific affinity toward the matrix constituents affecting orthonasal sensory perception. The static headspace phase ratio variation (PRV) method has been increasingly applied by various authors to determine the equilibrium partition coefficient K in aqueous, polysaccharide, and dairy matrices. However, reported partition coefficients are difficult to relate and compare due to different experimental conditions, e.g., aroma compound selection, matrix composition, equilibration temperature. Due to its specific advantages, the PRV method is supposed to find more frequent application in the future, this Review aims to summarize, evaluate, compare, and relate the currently available data on PRV-determined partition coefficients. This process was designed to specify the potentials and the limitations as well as the consistency of the PRV method, and to identify open fields of research in aroma compound partitioning in food-related, especially dairy matrices. PMID:27182770

  5. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.

    PubMed

    Fang, Yongjin; Liu, Qi; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-08-19

    Olivine NaFePO4/C microsphere cathode is prepared by a facile aqueous electrochemical displacement method from LiFePO4/C precursor. The NaFePO4/C cathode shows a high discharge capacity of 111 mAh g(-1), excellent cycling stability with 90% capacity retention over 240 cycles at 0.1 C, and high rate capacity (46 mAh g(-1) at 2 C). The excellent electrochemical performance demonstrates that the aqueous electrochemical displacement method is an effective and promising way to prepare NaFePO4/C material for Na-based energy storage applications. Moreover, the Na2/3FePO4 intermediate is observed for the first time during the Na intercalation process through conventional electrochemical techniques, corroborating an identical two-step phase transition reaction both upon Na intercalation and deintercalation processes. The clarification of the electrochemical reaction mechanism of olivine NaFePO4 could inspire more attention on the investigation of this material for Na ion batteries. PMID:26207862

  6. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.

    PubMed

    Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C

    2015-12-01

    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption. PMID:26040973

  7. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal. PMID:25827268

  8. Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity

    PubMed Central

    El-Faham, Ayman; Elzatahry, Ahmed A; Al-Othman, Zeid A; Elsayed, Elsayed Ahmed

    2014-01-01

    Introduction A new method for preparation of silver nanoparticles (AgNPs) based on using hydrazino-isatin derivatives in an aqueous methanol reaction medium is reported here. AgNPs were prepared using silver nitrate solubilized in a water core as the source of silver ions and 3-hydrazino-isatin derivatives (3-hydrazino-isatin [IsH] and 1-benzyl-3-hydrazino-isatin [BIsH]) solubilized in methanol core as a reducing agent. The proposed method is effective, rapid, and convenient. X-ray diffraction (XRD), energy dispersive X-ray analysis, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for characterization of the AgNPs. The TEM micrographs confirmed that the nanopowders consist of well-dispersed agglomerates of grains with a narrow size distribution of 18–21 nm and 17–20 nm. The AgNPs, as well as BIsH, showed high antimicrobial and bactericidal activity against the Gram-positive Bacillus subtilis and Gram-negative Micrococcus luteus and Proteus vulgaris, as well as antifungal activities against Saccharomyces cerevisiae. On the other hand, they were not effective against the Gram-negative Escherichia coli. Purpose A simple, effective, rapid, and convenient chemical reduction method for the synthesis of AgNPs in an aqueous methanol reaction medium using hydrazino-isatin derivatives and studying their antibacterial effect. Results IsH and BIsH are remarkably powerful reductants for Ag+ ions in an aqueous methanol medium, which could be considered as a simple chemical reduction method for formation of AgNPs. The AgNP formation depends on the solubility of the hydrazino-isatin derivatives. BIsH gave more AgNPs than IsH, as observed from XRD. The formation of AgNPs is attributed to the adsorption of hydrazine derivatives and/or interparticle interaction on the surface of AgNP through electrostatic interactions between the lone pair electrons of the hydrazino group (C=N-NH2) and the positive surface of AgNPs. AgNPs and BIsH showed

  9. CAPSULE REPORT: AQUEOUS MERCURY TREATMENT

    EPA Science Inventory

    This report describes established technologies and identifies evolving methods for treating aqueous mercury. The information provided encompasses full-, pilot- and bench-scale treatment results as presented in the technical literature. The report describes alternative technologi...

  10. GC/MS method for determining carbon isotope enrichment and concentration of underivatized short-chain fatty acids by direct aqueous solution injection of biogas digester samples.

    PubMed

    Mulat, Daniel Girma; Feilberg, Anders

    2015-10-01

    In anaerobic digestion of organic matter, several metabolic pathways are involved during the simultaneous production and consumption of short-chain fatty acids (SCFA) in general and acetate in particular. Understanding the role of each pathway requires both the determination of the concentration and isotope enrichment of intermediates in conjunction with isotope labeled substrates. The objective of this study was to establish a rapid and simple GC/MS method for determining the isotope enrichment of acetate and concentration of underivatized short-chain fatty acids (SCFA) in biogas digester samples by direct liquid injection of acidified aqueous samples. Sample preparation involves only acidification, centrifugation and filtration of the aqueous solution followed by direct injection of the aqueous supernatant solution onto a polar column. With the sample preparation and GC/MS conditions employed, well-resolved and sharp peaks of underivatized SCFA were obtained in a reasonably short time. Good recovery (96.6-102.3%) as well as low detection (4-7 µmol/L) and quantification limits (14-22 µmol/L) were obtained for all the 6 SCFA studied. Good linearity was achieved for both concentration and isotope enrichment measurement with regression coefficients higher than 0.9978 and 0.9996, respectively. The method has a good intra- and inter-day precision with a relative standard deviation (RSD) below 6% for determining the tracer-to-tracee ratio (TTR) of both [2-(13)C]acetate and [U-(13)C]acetate. It has also a good intra- and inter-day precision with a RSD below 6% and 5% for determining the concentration of standard solution and biogas digester samples, respectively. Acidification of biogas digester samples with oxalic acid provided the low pH required for the protonation of SCFA and thus, allows the extraction of SCFA from the complex sample matrix. Moreover, oxalic acid was the source of formic acid which was produced in the injector set at high temperature. The produced

  11. Anomalous Oxide Charge Variation Identified by Alternating Current Surface Photovoltage Method in Cr-Aqueous-Solution-Rinsed p-Type Si(001) Wafers Exposed to Air

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Sanada, Yuji

    2011-11-01

    Chromium (Cr)-aqueous-solution-rinsed and/or hydrofluoric acid (HF)-solution-dipped p-type silicon (Si) (001) wafer surfaces are investigated by the frequency-dependent alternating current (AC) surface photovoltage (SPV) method. At the Cr(OH)3/p-type Si interface, in principle, a Schottky barrier could not possibly be generated. The Cr ion (Cr3+) is considered to forcibly deprive a p-type Si substrate of electrons during metallization (Cr3++3e-→Cr). Thus, at an early stage of air exposure, a positive fixed oxide charge may be compensated for by electrons, indicating the disappearance of AC SPV. With air exposure time, AC SPV emerges again and increases gradually in a Cr-deposited p-type Si(001) surface. This is because the native oxide between the Cr atom layer and the p-type Si substrate grows with time. As a result, a positive fixed oxide charge exceeds the overall charge state of the Cr-deposited p-type Si surface. Thus, AC SPV appears again and gradually increases with the fixed oxide charge in p-type Si. The saturated value is in a good agreement with that of the HF aqueous-solution-dipped p-type Si surface.

  12. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    SciTech Connect

    Iribarren, A.; Hernández-Rodríguez, E.; Maqueira, L.

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  13. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A. R.; Prasad, M. V. R.; Ponraju, D.; Krishnan, H.

    2004-10-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO4.7H2O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO4 and Na2SO4 as well as Mg(OH)2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting.

  14. Preparation of Superconducting Bi-Sr-Ca-Cu-O Coating Films by the Sol-Gel Method Using an Aqueous Solution of Metal Acetates

    NASA Astrophysics Data System (ADS)

    Zhuang, Haoren; Kozuka, Hiromitsu; Yoko, Toshinobu; Sakka, Sumio

    1990-07-01

    Superconducting Bi-Sr-Ca-Cu-O coating films have been prepared on YSZ (yttria-stabilized zirconia) and Al2O3 substrates by the sol-gel method using an aqueous solution of metal acetates containing tartaric acid. A film of 20 μm thickness on the YSZ substrate showed Tc(onset) at 115 K and Tc(end) at 79 K, consisting of Bi2Sr2CaCu2Ox crystals with the c-axis perpendicular to the substrate. The reaction between the film and the YSZ and Al2O3 substrates produced CaZrO3 and CuAl2O4, respectively, during heat treatment, which suppresses the formation of superconducting phases and causes the degradation of the superconducting properties of the films.

  15. Interfacial degradation effects of aqueous solution-processed molybdenum trioxides on the stability of organic solar cells evaluated by a differential method

    SciTech Connect

    Lou, Yan-Hui; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Yuan, Da-Xing; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn; Okada, Hiroyuki

    2014-09-15

    The authors investigate the influence of two hole interfacial materials poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) and aqueous solution-processed MoO{sub 3} (sMoO{sub 3}) on cell stability. sMoO{sub 3}-based device demonstrated obviously improved stability compared to PEDOT:PSS-based one. Current-voltage characteristics analysis is carried out to investigate the effect of the hole interfacial layers on the cell stability. The formation of additional trap states at the interfaces between the hole interfacial layer and the active layer in degraded devices is verified by a differential method. Improved cell stability is attributed to a relatively stable sMoO{sub 3} interfacial layer compared to PEDOT:PSS by comparing their different trap states distributions.

  16. Flower-shaped ZnO nanocrystallite aggregates synthesized through a template-free aqueous solution method for dye-sensitized solar cells

    SciTech Connect

    Chang, Wei-Chen; Chen, Hung-Shuo; Yu, Wan-Chin

    2015-01-05

    Hierarchically structured flower-shaped aggregates composed of ZnO nanocrystals were synthesized through a template-free aqueous solution method. The synthesized nanocrystallite aggregates were demonstrated to be promising photoanode materials for dye-sensitized solar cells (DSSCs). Compared with commercially available ZnO nanoparticles (ZnONPs), the flower-like aggregates (ZnONFs), each having an overall dimension of 400–600 nm, exhibited similar dye loading but higher light-scattering ability, which led to a substantial increase in the light-harvesting efficiency of resulting cells. The unique morphology of ZnONFs also boosted the absorbed photon-to-electric current generation efficiency. Consequently, DSSCs constructed from ZnONFs showed significantly improved photocurrent and achieved an overall conversion efficiency of 4.42%, which was 47% higher than that attained by ZnONP-based cells.

  17. MODIFYING EPA METHOD 314.0 FOR ANALYSIS OF PERCHLORATE IN AQUEOUS SAMPLES CONTAINING HIGH TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Through the Regional Applied Research Effort (RARE) program, the Chemical Exposure Research Branch and Region 9 personnel in San Francisco, California are collaborating on a project to explore sample pretreatment and preconcentration techniques to lower the method detection limit...

  18. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  19. Fluid-Injection Tool for Inaccessible Areas

    NASA Technical Reports Server (NTRS)

    Myers, J. E.

    1982-01-01

    New tool injects liquids or gases into narrow crevices. Can be used to apply caulking and waterproofing compounds, adhesives, detergent, undercoats and oil and to aerate hard-to-reach places. Nozzle can reach into opening 1/32 inch wide to depth of more than 4 inches. Although thin, device is rigid and strong.

  20. Development and validation of a laser-induced breakdown spectroscopic method for ultra-trace determination of Cu, Mn, Cd and Pb metals in aqueous droplets after drying.

    PubMed

    Aras, Nadir; Yalçın, Şerife

    2016-03-01

    The present study reports a fast and accurate methodology for laser-induced breakdown spectroscopic, LIBS, analysis of aqueous samples for environmental monitoring purposes. This methodology has two important attributes: one is the use of a 300nm oxide coated silicon wafer substrate (Si+SiO2) for the first time for manual injection of 0.5 microliter aqueous metal solutions, and two is the use of high energy laser pulses focused outside the minimum focus position of a plano convex lens at which relatively large laser beam spot covers the entire droplet area for plasma formation. Optimization of instrumental LIBS parameters like detector delay time, gate width and laser energy has been performed to maximize atomic emission signal of target analytes; Cu, Mn, Cd and Pb. Under the optimal conditions, calibration curves were constructed and enhancements in the LIBS emission signal were obtained compared to the results of similar studies given in the literature. The analytical capability of the LIBS technique in liquid analysis has been improved. Absolute detection limits of 1.3pg Cu, 3.3pg Mn, 79pg Cd and 48pg Pb in 0.5 microliter volume of droplets were obtained from single shot analysis of five sequential droplets. The applicability of the proposed methodology to real water samples was tested on the Certified Reference Material, Trace Metals in Drinking Water, CRM-TMDW and on ICP multi-element standard samples. The accuracy of the method was found at a level of minimum 92% with relative standard deviations of at most 20%. Results suggest that 300nm oxide coated silicon wafer has an excellent potential to be used as a substrate for direct analysis of contaminants in water supplies by LIBS and further research, development and engineering will increase the performance and applicability of the methodology. PMID:26717813

  1. Titrimetric determination of Cremophor EL in aqueous solutions and biofluids: part 2: ruggedness of the method with respect to biofluids.

    PubMed

    Kunkel, M; Meyer, T; Böhler, J; Keller, E; Frahm, A W

    1999-12-01

    A titration method for Cremophor EL, as a multicomponent mixture commonly used as non-ionic emulgent for manufacturing certain parenteralia, was developed for quantitative routine analysis in biofluids. A coated wire electrode is used as the end-point indicator in potentiometric titrations of Cremophor EL with sodium tetraphenylborate. The method tolerates a broad pH range, addition of alkanols and components of drug formulations and is sufficiently rugged. Reliable results are obtained at 20 degrees C. Disturbing ions from biofluid matrices can be masked or complexed by addition of formaldehyde, ethylenediaminetetraacetic acid and sodium fluoride. Sodium hydroxide is used for the required adjustment of the samples to pH 10. Cremophor EL spiked urine samples can be determined directly, whereas the true value of the emulgent content in the case of Cremophor EL spiked plasma samples is achieved by means of a conventional method. PMID:10703959

  2. Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol

    NASA Astrophysics Data System (ADS)

    Roy, B.; Leclerc, C. A.

    2015-12-01

    The effect of preparation method and oxidation state of the active metal on the catalytic activity of Ni-Ce-O catalysts was studied for aqueous phase reforming of ethanol. A sol-gel (SG) route and a solution combustion synthesis (SCS) method were used for the preparation of 10 wt% Ni loaded catalysts. The catalytic activity of three groups of catalysts; reduced at 425 °C (HR, metallic Ni), reduced at 1000 °C (FR, metallic Ni), and not reduced (NR, as NiO) were tested at different operating conditions. The difference in the metal particle sizes, governed by the preparation method, affects the catalytic efficiency most, not the reduced or oxidized state of Ni. The SG samples were superior for ethanol conversion and selectivity for H2 and CO2 compared to the SCS samples. The X-ray photoelectron spectroscopy (XPS) analysis of the samples demonstrated that the relative ratio of Ce2O3 to CeO2 increased inside the reactor. While Ni doping increases oxygen mobility in the Ce-O lattice, Ce3+ converts Ni2+ to metallic Ni inside the reactor. This can explain why the reduction stage for Ni-Ce-O system in APR is irrelevant. Higher oxygen mobility through the support helps oxidation of CO to CO2 leading to improved catalytic performance.

  3. STABILIZATION OF A RACTOPAMINE ENZYME CONJUGATE IN AQUEOUS SOLUTION, A RAPID AND CONVENIENT IMMUNOASSAY METHOD FOR THE DETECTION OF RACTOPAMINE.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increasing demand for a sensitive screening method for ractopamine because of the zero tolerance policy in many countries. Most of the commercially available ractopamine ELISA kits require concentrated conjugate to be diluted prior to use. We have observed that the highly diluted racto...

  4. Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-ipn microgel using the coacervate.

    PubMed

    Maeda, Tomohiro; Akasaki, Yusuke; Yamamoto, Kazuya; Aoyagi, Takao

    2009-08-18

    We describe a novel method for preparing a stimuli-responsive semi-interpenetrating polymer network (semi-IPN) hydrogel microsphere using a thermoresponsive-type coacervation. The coacervate droplets were formed in the two-component nonionic poly(N-isopropylacrylamide-co-2-hydroxyisopropylacrylamide) (poly(NIPAAm-co-HIPAAm)) and ionic poly(NIPAAm-co-2-carboxyisopropylacrylamide) (poly(NIPAAm-co-CIPAAm)) aqueous system by heating the solution above the lower critical solution temperature. The resulting coacervate droplets included both kinds of polymer chains. Divinyl sulfone, which cross-links the hydroxyl groups of the poly(NIPAAm-co-HIPAAm), was added to the coacervate droplets. In this way, the stimuli-responsive semi-IPN hydrogel microsphere consisting of the poly(NIPAAm-co-HIPAAm) gel matrix and the linear poly(NIPAAm-co-CIPAAm) chains could be prepared, and their sizes were relatively homogeneous. That is, by utilizing the thermoresponsive coacervate droplets induced in the binary system, we could successfully prepare the fine stimuli-responsive semi-IPN hydrogel microsphere and it was prepared in a simple and easy method without any additives. PMID:19492785

  5. A method for the determination of estrogen receptor concentration in calf uterus and other tissues using an aqueous two-phase system.

    PubMed

    Södergård, R

    1986-02-01

    An assay for the cytoplasmic estrogen receptor in calf, human and rat uterus has been developed. The method is based on partial separation of free and bound estradiol (E2) by means of an aqueous two-phase system containing dextran and poly(ethylene glycol), respectively, in the two phases. Low-speed supernatant from uterus homogenate is equilibrated with E2 and [3H]E2. A two-phase mixture is then added and bound E2 will partition into the lower phase while free E2 is distributed in both phases according to its partition coefficient. The amounts of bound and free E2 are calculated and the receptor concentration and association constant are obtained from a Scatchard plot. No dissociation of bound E2 in the phase system could be demonstrated at 4 degrees C. The interassay coefficient of variation for receptor concentration at 4 degrees C was 20 and 14% for calf and human uterus, respectively. The intraassay variation for receptor concentration in calf uterus determined at 4 degrees C and 23 degrees C was 7.1 and 4.1%, respectively. The influence of freezing the tissue and supernatant preparation was examined and results from supernatant preparations obtained with different centrifugations were compared. The method is simple and rapid, permitting large numbers of samples to be handled efficiently by a single technician. PMID:2422452

  6. Use of the Relaxometry Technique for Quantification of Paramagnetic Ions in Aqueous Solutions and a Comparison with Other Analytical Methods.

    PubMed

    Gomes, Bruna Ferreira; Burato, Juliana Soares da Silva; Silva Lobo, Carlos Manuel; Colnago, Luiz Alberto

    2016-01-01

    We have demonstrated that the relaxometry technique is very efficient to quantify paramagnetic ions during in situ electrolysis measurements. Therefore, the goal of this work was to validate the relaxometry technique in the determination of the concentration of the ions contained in electrolytic solutions, Cu(2+), Ni(2+), Cr(3+), and Mn(2+), and compare it with other analytical methods. Two different NMR spectrometers were used: a commercial spectrometer with a homogeneous magnetic field and a home-built unilateral sensor with an inhomogeneous magnetic field. Without pretreatment, manganese ions do not have absorption bands in the UV-Visible region, but it is possible to quantify them using relaxometry (the limit of quantification is close to 10(-5) mol L(-1)). Therefore, since the technique does not require chemical indicators and is a cheap and robust method, it can be used as a replacement for some conventional quantification techniques. The relaxometry technique could be applied to evaluate the corrosion of metallic surfaces. PMID:27293437

  7. Direct injection method for HPLC/MS/MS analysis of acrylamide in aqueous solutions: application to adsorption experiments.

    PubMed

    Mnif, Ines; Hurel, Charlotte; Marmier, Nicolas

    2015-05-01

    Polyacrylamides are polymers used in many fields and represent the main source of release of the highly toxic acrylamide in the environment. In this work, a simple, rapid, and sensitive analytical method was developed with HPLC/MS/MS and direct injection for acrylamide analysis in water and adsorption samples. AFNOR standards NF T90-210 and NF T90-220 were used for the analytical method validation and uncertainty estimation. Limit of quantification (LOQ) for acrylamide was 1 μg/L, and accuracy was checked at three acrylamide levels (1, 6, and 10 μg/L). Uncertainties were estimated at 34.2, 22, and 12.4 % for acrylamide concentrations at LOQ, 6 μg/L, and 10 μg/L, respectively. Acrylamide adsorption on clays (kaolinite, illite) and sludge was then studied as a function of pH, time, and acrylamide concentrations. Acrylamide adsorption on kaolinite, illite, and sludge was found to be very weak since adsorption percentages were inferior to 10 %, whatever the pH value and the initial acrylamide concentration. The low affinity of acrylamide for clays and sludge is likely due to its hydrophilic property, small size, and charge neutrality. PMID:25388555

  8. Use of the Relaxometry Technique for Quantification of Paramagnetic Ions in Aqueous Solutions and a Comparison with Other Analytical Methods

    PubMed Central

    Burato, Juliana Soares da Silva; Silva Lobo, Carlos Manuel; Colnago, Luiz Alberto

    2016-01-01

    We have demonstrated that the relaxometry technique is very efficient to quantify paramagnetic ions during in situ electrolysis measurements. Therefore, the goal of this work was to validate the relaxometry technique in the determination of the concentration of the ions contained in electrolytic solutions, Cu2+, Ni2+, Cr3+, and Mn2+, and compare it with other analytical methods. Two different NMR spectrometers were used: a commercial spectrometer with a homogeneous magnetic field and a home-built unilateral sensor with an inhomogeneous magnetic field. Without pretreatment, manganese ions do not have absorption bands in the UV-Visible region, but it is possible to quantify them using relaxometry (the limit of quantification is close to 10−5 mol L−1). Therefore, since the technique does not require chemical indicators and is a cheap and robust method, it can be used as a replacement for some conventional quantification techniques. The relaxometry technique could be applied to evaluate the corrosion of metallic surfaces. PMID:27293437

  9. Development of an HPLC Method for the Determination of Ceftolozane/Tazobactam in Biological and Aqueous Matrixes.

    PubMed

    Sutherland, Christina A; Nicolau, David P

    2016-07-01

    Herein, we report the development and validation of an HPLC method to analyze ceftolozane and tazobactam simultaneously in human plasma, human serum, swine serum and saline matrixes. A reversed-phase column was used with a UV detector set at 260 nm and switched to 218 nm. The mobile phase consisted of methanol and sodium phosphate buffer at a flow rate of 1.1 mL/min. Cefepime was used as the internal standard. The standard curves were linear over a range of 0.4-50 μg/mL. This methodology represents a simple, reproducible approach to the determination of drug concentrations with sufficient accuracy and precision for pharmacokinetic studies undertaken with this recently FDA-approved antimicrobial therapy. PMID:27048639

  10. SINGLE-LABORATORY EVALUATION AND MODIFICATION OF U.S. EPA (ENVIRONMENTAL PROTECTION AGENCY) METHODS 7470 AND 7471 FOR THE DETERMINATION OF MERCURY IN AQUEOUS AND SOLID HAZARDOUS WASTES (JOURNAL VERSION)

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (U.S. EPA) protocols for mercury determinations in aqueous and solid waste samples (SW-846 Methods 7470 and 7471) using recirculating cold-vapor atomic absorption spectrometry (CV-AAS) have been evaluated. The U.S. EPA protocols ha...

  11. Comparison of static and dynamic methods of treatment of anharmonicity for the vibrational study of isolated and aqueous forms of guanine

    NASA Astrophysics Data System (ADS)

    Thicoipe, Sandrine; Carbonniere, Philippe; Pouchan, Claude

    2014-01-01

    This theoretical study provides the anharmonic vibrational wavenumbers of isolated and aqueous guanine. They were performed at the DFT B3LYP/6-31+G(d,p) level of theory using two different ways for the treatment of anharmonicity: time-independent (VPT2) and time-dependent (molecular dynamics) approaches. The wavenumbers obtained are compared to experimental data for isolated and aqueous forms: the VPT2 approach is slightly better than MD, especially for the determination of stretching and wagging (NH) motions. Finally, the structural model of solvatation used for aqueous guanine which combines an explicit solvent model with a polarizable continuum model (PCM) was validated.

  12. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  13. Removal of strontium (Sr2+) from aqueous solutions with titanosilicates obtained by the sol-gel method.

    PubMed

    Oleksiienko, Olga; Levchuk, Irina; Sitarz, Maciej; Meleshevych, Svitlana; Strelko, Volodymyr; Sillanpää, Mika

    2015-01-15

    Titanosilicates (TiSis) were synthesized from pure and technical precursors by the sol-gel method. X-ray diffraction (XRD) studies of TiSi identified amorphous phases. The Brunauer, Emmett and Teller (BET) surface area of TiSis obtained from pure and technical precursors measured using the low-temperature nitrogen adsorption/desorption technique were 270.3 and 158.7 m(2) g(-1), respectively. Micro-mesopore and micro- meso- macropore structures were attributed to TiSi prepared from pure and technical precursors, correspondingly. TiSis mass, solution pH, contact time, initial Sr(2+) concentration, temperature and background solution were investigated for their effect on sorption properties. TiSis were observed to have a high affinity for strontium in the pH range of 4-12. Strontium adsorption isotherms were established and fitted to the Langmuir, Freundlich, Redlich-Peterson, Sips and Toth models. Pseudo-first and pseudo-second models were used to describe experimental kinetic data. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) data for TiSis were collected before and after adsorption. Heterophase was observed on the surfaces of both types of TiSi material after Sr(2+) uptake. The mechanism of Sr(2+) sorption on titanosilicates was suggested. PMID:25454438

  14. Synthesis of sub-10 nm VO2 nanoparticles films with plasma-treated glass slides by aqueous sol-gel method

    NASA Astrophysics Data System (ADS)

    Lan, Shi-Di; Cheng, Chih-Chia; Huang, Chi-Hsien; Chen, Jem-Kun

    2015-12-01

    This paper describes an aqueous sol-gel synthesis of thermochromic thin films consisted of vanadium dioxide nanoparticles (VNPs) on glass slides. The glass slides were treated by argon/oxygen plasma to generate dispersedly negative charge sites on the surface to attract VO2+ from a sol-gel solution. After heat treatment in a low-pressure carbon monoxide/carbon dioxide (CO/CO2) atmosphere, the VNPs could be generated in sub-10 nm of particle size on the surface. Various levels of doping were achieved by adding small quantities of a water-soluble tungsten compound to the sol; however, the particle size increased slightly with the tungsten doping levels. The change in electrical conductivity with temperature for VNP films were measured and compared to VO2 crystalline films. VNP films exhibited the lower transition temperature of the semiconductor to metal phase change; at a doping level of 4 wt% the transition temperature was measured at 32.2 ± 1.2 and 24.1 ± 1.2 °C for the VO2 and VNP films, respectively. The VNP films showed excellent visible transparency and a large change in transmittance at near-infrared (NIR) wavelengths before and after the metal-insulator phase transition (MIT). The current method is a landmark in the development of nanostructured material toward applications in energy-saving smart windows.

  15. Extractant compositions for co-extracting cesium and strontium, a method of separating cesium and strontium from an aqueous feed, and calixarene compounds

    DOEpatents

    Peterman,Dean R.; Meikrantz,David H.; Law,Jack D.; Riddle,Catherine L.; Todd,Terry A.; Greenhalgh,Mitchell R.; Tillotson,Richard D.; Bartsch,Richard A.; Moyer,Bruce A.; Delmau,Laetitia H.; Bonnesen,Peter V.

    2012-04-17

    A mixed extractant solvent that includes at least one dialkyloxycalix[4]arenebenzocrown-6 compound, 4',4',(5')-di-(t-butyldicyclohexano)-18-crown-6, at least one modifier, and, optionally, a diluent. The dialkyloxycalix[4]arenebenzocrown-6 compound is 1,3-alternate-25,27-di(octyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(decyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(dodecyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(2-ethylhexyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(3,7-dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(4-butyloctyl-1-oxy)calix[4]arenebenzocrown-6, or combinations thereof. The modifier is a primary alcohol. A method of separating cesium and strontium from an aqueous feed is also disclosed, as are dialkyloxycalix[4]arenebenzocrown-6 compounds and an alcohol modifier.

  16. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature

    PubMed Central

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications. PMID:25520589

  17. Thermochromic properties of W-doped VO2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application

    NASA Astrophysics Data System (ADS)

    Liu, Dongqing; Cheng, Haifeng; Xing, Xin; Zhang, Chaoyang; Zheng, Wenwei

    2016-07-01

    The W doped VO2 thin films with various W contents were successfully deposited by aqueous sol-gel method followed by a post annealing process. The derived thin films were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy and atomic force microscopy. Besides, the resistance-temperature relationship and infrared emissivity in the waveband 7.5-14 μm were analyzed, and the effects of W doping on the thermochromic properties of VO2 thin films were studied. The results show that W atoms enter the crystal lattice of VO2 and the transition temperature decreases gradually with increasing doping amount of W. The emissivity of VO2-W-4% thin films has dropped to 0.4 when its real temperature is above 30 °C. The thermal infrared images were also examined under different temperature by thermal imager. The results indicate that the temperature under which W doped VO2 thin films begin to have lower emissivity decreases gradually with increasing doping amount of W. W doped VO2 thin films can control its infrared radiation intensity actively at a lower temperature level of 30 °C, which has great application prospects in the adaptive infrared stealth technology.

  18. Three-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA equation of state for aqueous phase

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas

    2012-12-01

    Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.

  19. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit. PMID:12834836

  20. Aqueous cleaning design presentation

    NASA Technical Reports Server (NTRS)

    Maltby, Peter F.

    1995-01-01

    The phase-out of CFC's and other ozone depleting chemicals has prompted industries to re-evaluate their present methods of cleaning. It has become necessary to find effective substitutes for their processes as well as to meet the new cleaning challenges of improved levels of cleanliness and to satisfy concerns about environmental impact of any alternative selected. One of the most popular alternatives being selected is aqueous cleaning. This method offers an alternative for removal of flux, grease/oil, buffing compound, particulates and other soils while minimizing environmental impact. What I will show are methods that can be employed in an aqueous cleaning system that will make it environmentally friendly, relatively simple to maintain and capable of yielding an even higher quality of cleanliness than previously obtained. I will also explore several drying techniques available for these systems and other alternatives along with recent improvements made in this technology. When considering any type of cleaning system, a number of variables should be determined before selecting the basic configuration. Some of these variables are: (1) Soil or contaminants being removed from your parts; (2) The level of cleanliness required; (3) The environmental considerations of your area; (4) Maintenance requirements; and (5) Operating costs.

  1. Multiresidue analytical method for the simultaneous determination of 72 micropollutants in aqueous samples with ultra high performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Wode, Florian; Reilich, Christa; van Baar, Patricia; Dünnbier, Uwe; Jekel, Martin; Reemtsma, Thorsten

    2012-12-28

    A multiresidue method for the simultaneous quantification of 72 micropollutants in aqueous samples by ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) is described. A variety of substance classes like industrial chemicals, analgesics, anticonvulsants, antihypertensives, psychoactive substances, flame retardants, neutral and acidic pesticides are comprised. A sample volume of 1 mL was enriched by online solid phase extraction (SPE), separated on a 2.6 μm core-shell column and detected with an Exactive™ high resolution mass spectrometer. Simultaneous determination of compounds with different ionization behavior was achieved by polarity switching. One complete run lasted 15 min. The method was validated in the matrices drinking water (DW), diluted surface water (dSW) and diluted waste water treatment plant effluent (dWW) by analyzing 10 replicates spiked at two concentration levels. Limits of quantification (LOQs) ranged between 0.01 and 0.06 μg/L in DW, 0.03 and 0.38 μg/L in dSW, 0.06 and 0.38 μg/L in dWW. The accuracies were between 77 and 117% in DW, 70 and 121% in dSW, 71 and 121% in dWW for both spike levels, respectively. Five compounds in dSW and one compound in dWW were affected by matrix effects, leading to accuracies outside the ranges stated above. The precision for level 2 was excellent with relative standard deviations (RSDs) between 2.2 and 6.5% in DW, 0.5 and 4.9% in dSW and between 1.2 and 6.6% in dWW. PMID:23182284

  2. Development of a liquid chromatography tandem mass spectrometry method for trace analysis of trisiloxane surfactants in the aqueous environment: an alternative strategy for quantification of ethoxylated surfactants.

    PubMed

    Michel, Amandine; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2012-07-01

    Trisiloxane surfactants, often referred to as superspreaders or superwetters, are added to pesticides to enhance the activity and the rainfastness of the active substance by promoting rapid spreading over hydrophobic surfaces. To fill the lack of data on the environmental occurrence of these compounds, we have developed and validated a method for their trace analysis in the aqueous environment. The method is based on liquid-liquid extraction followed by liquid chromatography and tandem mass spectrometry. The oligomeric distribution of trisiloxane surfactant in a reference solution was determined by a theoretical calculation and by experimental measurements. Based on these results, the quantification was performed by comparison with a calibration made with a single homologue instead of a mixture of homologues. This approach avoids a time-consuming synthesis of pure homologues and reduces the risk of wrong estimation of the concentration because of different response factors of the sample and the standard. Such an approach could be applied to the quantification of other ethoxylated surfactants following a similar distribution. The validation was performed from 2 to 250 ng/L (total surfactant concentration) in deionized water, tap water, and river water (Rhine water). Knowing the oligomeric distribution of the polymer in the reference solution, the corresponding calibration ranges were estimated for individual homologues. Limits of quantification were found to be between 0.37 ng/L and 15 ng/L. The total recovery of sample preparation was between 77% and 116%. Matrix effects were lower than 10% with river water and the relative standard deviation evaluated over ten identical samples of spiked river water was below 12%. PMID:22658138

  3. Aqueous effluent tritium monitor development

    SciTech Connect

    Hofstetter, K.J.; Wilson, H.T. )

    1992-03-01

    This paper discusses the development of a low-level tritium monitor for aqueous effluent which has explored several potential techniques. In one method, a water-immiscible liquid scintillation cocktail was ultrasonically mixed with an aqueous sample to form a water-cocktail dispersion for analysis by liquid scintillation spectrometry. The organic cocktail could then be reused after phase separation. Of the cocktails tested, a toluene-based cocktail showed the highest tritium detection efficiency (7%). In another technique, the sensitivity of various solid scintillators (plastic beads, crushed inorganic salts, etc.) to tritium in aqueous solutions was measured. The most efficient solid scintillator had a 2% tritium detection efficiency. In a third method, a large surface area detector was constructed from thin fibers of plastic scintillator. This detector had a 0.1% intrinsic tritium detection efficiency.

  4. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  5. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    NASA Astrophysics Data System (ADS)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  6. Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts.

    PubMed

    Feng, Mingbao; Qu, Ruijuan; Zhang, Xiaoling; Sun, Ping; Sui, Yunxia; Wang, Liansheng; Wang, Zunyao

    2015-11-15

    In recent years, flumequine (FLU) has been ubiquitously detected in surface waters and municipal wastewaters. In light of its potential negative impacts to aquatic species, growing concern has been arisen for the removal of this antibiotic from natural waters. In this study, the kinetics, degradation mechanisms and pathways of aqueous FLU by persulfate (PS) oxidation were systematically determined. Three common activation methods, including heat, Fe(2+) and Cu(2+), and a novel heterogeneous catalyst, namely, polyhydroquinone-coated magnetite/multi-walled carbon nanotubes (Fe3O4/MWCNTs/PHQ), were investigated to activate PS for FLU removal. It was found that these three common activators enhanced FLU degradation obviously, while several influencing factors, such as solution pH, inorganic ions (especially HCO3(-) at 5 mmol/L) and dissolved organic matter extracts, exerted their different effects on FLU removal. The catalysts were characterized, and an efficient catalytic degradation performance, high stability and excellent reusability were observed. The measured total organic carbon levels suggested that FLU can be effectively mineralized by using the catalysts. Radical mechanism was studied by combination of the quenching tests and electron paramagnetic resonance analysis. It was assumed that sulfate radicals predominated in the activation of PS with Fe3O4/MWCNTs/PHQ for FLU removal, while hydroxyl radicals also contributed to the catalytic oxidation process. In addition, a total of fifteen reaction intermediates of FLU were identified, from which two possible pathways were proposed involving hydroxylation, decarbonylation and ring opening. Overall, this study represented a systematical evaluation regarding the transformation process of FLU by PS, and showed that the heterogeneous catalysts can efficiently activate PS for FLU removal from the water environment. PMID:26281959

  7. Source mechanisms of micro-earthquakes induced in a fluid injection experiment at the HDR site Soultz-sous-Forêts (Alsace) in 2003 and their temporal and spatial variations

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Jechumtálová, Zuzana; Dorbath, Louis; Šílený, Jan

    2010-06-01

    We have inverted the peak amplitudes of direct P waves of 45 micro-earthquakes with magnitudes between M = 1.4 and 2.9, which occurred during and after the 2003 massive fluid injection in the GPK3 borehole of the Soultz-sous-Forêts Hot Dry Rock facility. These events were recorded by a surface seismic network of 15 stations operated by the Ecole et Observatoire des Sciences de la Terre, University of Strasbourg. The unconstrained moment tensor (MT) expression of the mechanism was applied, allowing the description of a general system of dipoles, that is, both double-couple (DC) and non-DC sources, as tensile fractures. The mechanisms of all but one event are dominantly DCs with a few per cent additional components at the most. We have checked carefully the reliability of the MT retrieval in bootstrap trials eliminating some data, by simulating the mislocation of the hypocentre and by applying simplified velocity models of the area in constructing Green's functions. In some of the trials non-DC components amounting to several tens of per cent appear, but the F-test classifies them as insignificant. Even the only micro-earthquake with an exceptionally high non-DC mechanism cannot be classified unambiguously-the F-test assigns similar significance to the pure DC solution. The massive dominance of the DC indicates the shear-slip as the mechanism of the micro-earthquakes investigated. The mechanisms display large variability and are of normal dip-slip, oblique normal to strike-slip types. The T-axes are fairly stable, being concentrated subhorizontally roughly in the E-W direction. On the contrary, the P-axes are ill constrained varying in the N-S direction from nearly vertical to nearly horizontal, which points to heterogeneous stress in the Soultz injected volume. This is in agreement with the stress pattern from in situ measurements: the minimum stress axis is well constrained to E-W, whereas the maximum and intermediate stress values are close to one another

  8. Evaluation of Seismic Methods for Inferring Fluid Migration in Volcanic Regions

    NASA Astrophysics Data System (ADS)

    Lucero, Jaron Joshua James

    The classic concepts of fluid transport derived for sedimentary environments are generally not applicable to the study of magmatic transport. High fluid viscosity and negligible rock permeability should preclude magma transport, yet dikes, sills, and other intrusive features are commonly observed. Relationships between intrusive units and regional paleo-stress fields are well described, but the dynamic interactions between igneous fluid and competent rock that ultimately produce magma intrusions are not. Elevated seismicity is often observed in conjunction with volcanic activity, and is generally thought to indicate magmatic intrusion. This study examined the unique information that seismic data can provide about magmatic processes as they occur. Specifically, methods for deriving transport volume from fluid induced seismicity were evaluated. An approach proposed by Herbert Shaw linked total scalar seismic moment release and source region volume distortion. This relationship was tested using data from various fluid injection experiments by comparing observed seismicity with injected fluid volume. A second method examined seismic events from an earthquake swarm near the Yellowstone caldera for evidence of tensile-crack source mechanisms, which couldindicate igneous intrusion. Similar investigations have been successfully conducted using larger magnitude events. The Yellowstone swarm events were too small for traditional approaches, but were appropriately sized to assess the suitability of a different inversion technique for characterizing smaller events. A technique for improving the quality of the seismic dataset is also discussed. After further development, the techniques described may provide additional constraints on rates of active magma transport in volcanic areas. The results obtained by this study were generally consistent with predictions of the McGarr-Shaw method, and have illuminated the additional considerations that must be addressed when testing the

  9. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein-partner interactions in vitro and in vivo by solvent interaction analysis method.

    PubMed

    Zaslavsky, Boris Y; Uversky, Vladimir N; Chait, Arnon

    2016-05-01

    This review covers the fundamentals of protein partitioning in aqueous two-phase systems (ATPS). Included is a review of advancements in the analytical application of solute partitioning in ATPS over the last two decades, with multiple examples of experimental data providing evidence that phase-forming polymers do not interact with solutes partitioned in ATPS. The partitioning of solutes is governed by the differences in solute interactions with aqueous media in the two phases. Solvent properties of the aqueous media in these two phases may be characterized and manipulated. The solvent interaction analysis (SIA) method, based on the solute partitioning in ATPS, may be used for characterization and analysis of individual proteins and their interactions with different partners. The current state of clinical proteomics regarding the discovery and monitoring of new protein biomarkers is discussed, and it is argued that the protein expression level in a biological fluid may be not the optimal focus of clinical proteomic research. Multiple examples of application of the SIA method for discovery of changes in protein structure and protein-partner interactions in biological fluids are described. The SIA method reveals new opportunities for discovery and monitoring structure-based protein biomarkers. PMID:26923390

  10. The Kinetics and Thermodynamics of CO2 Capture by Aqueous Ammonia Derived Using Meta-GGA Density Functional Theory and Wavefunction-Based Model Chemistry Methods

    SciTech Connect

    Beste, Ariana; Attalla, Moetaz; Jackson, Phil

    2012-01-01

    A meta GGA-DFT study of CO{sub 2} activation in aqueous ammonia solutions, with an emphasis on the reaction barrier and molecularity, has been undertaken using the M06-2X functional with an augmented triple-zeta split-valence basis set (6-311++G(d,p)). Up to five base molecules were treated explicitly in order to establish the effects of solvent catalysis in the chemical capture process. Aqueous free energies of solvation were determined for optimized reactant and transition structures using SM8/M06-2X/6-311++G(d,p). The concept of the solvent pre-complex as presented by Dixon and coworkers (Nguyen, M. T.; Matus, M. H.; Jackson, V. E.; Ngan, V. T.; Rustad, J. R.; Dixon, D. A. J. Phys. Chem. A 2008, 112, 10386-10398) was exploited to account for the energetics of disruption of the hydrogen-bonding solvent nano-network prior to the CO{sub 2} activation step. Selected gas- and aqueous-phase thermodynamic quantities have also been derived.

  11. Aqueous shunts for glaucoma

    PubMed Central

    Minckler, Don; Vedula, Satyanarayana S; Li, Tianjing; Mathew, Milan; Ayyala, Ramesh; Francis, Brian

    2014-01-01

    Background Aqueous shunts are employed for intraocular pressure (IOP) control in primary and secondary glaucomas that fail medical, laser, and other surgical therapies. Objectives This review compares aqueous shunts for IOP control and safety. Search strategy We searched CENTRAL, MEDLINE, PubMed, EMBASE, NRR in January 2006, LILACS to February 2004 and reference lists of included trials. Selection criteria We included all randomized and quasi-randomized trials in which one arm of the study involved shunts. Data collection and analysis Two authors independently extracted data for included studies and a third adjudicated discrepancies. We contacted investigators for missing information. We used fixed-effect models and summarized continuous outcomes using mean differences. Main results We included fifteen trials with a total of 1153 participants with mixed diagnoses. Five studies reported details sufficient to verify the method of randomization but only two had adequate allocation concealment. Data collection and follow-up times were variable. Meta-analysis of two trials comparing Ahmed implant with trabeculectomy found trabeculectomy resulted in lower mean IOPs 11 to 13 months later (mean difference 3.81 mm Hg, 95% CI 1.94 to 5.69 mm Hg). Meta-analysis of two trials comparing double-plate Molteno implant with the Schocket shunt was not done due to substantial heterogeneity. One study comparing ridged with standard double-plate Molteno implants found no clinically significant differences in outcome. Two trials investigating the effectiveness of adjunctive mitomycin (MMC) with the Molteno and Ahmed implants found no evidence of benefit with MMC. Two trials that investigated surgical technique variations with the Ahmed found no benefit with partial tube ligation or excision of Tenon's capsule. One study concluded there were outcome advantages with a double versus a single-plate Molteno implant and one trial comparing the 350 mm2 and 500 mm2 Baerveldt shunts found no

  12. LC-MS/MS method using unbonded silica column and aqueous/methanol mobile phase for the simultaneous quantification of a drug candidate and co-administered metformin in rat plasma.

    PubMed

    Discenza, Lorell; D'Arienzo, Celia; Olah, Timothy; Jemal, Mohammed

    2010-06-01

    BMS-754807 and metformin were co-administered in drug discovery studies which required the quantitation of both compounds in plasma. Since the two compounds are chemically and structurally dissimilar, developing a single bioanalytical method presented a number of chromatographic challenges including the achievement of appropriate retention times and peak shapes on a single analytical column. To address this chromatographic challenge, we investigated different LC columns under different gradient elution schemes using aqueous/organic mobile phases. Using unbonded silica column and aqueous/methanol mobile phase, we were able to obtain robust and well-resolving chromatographic conditions to support the development and implementation of a single LC-MS/MS bioanalytical method. The use of sub-2 micron particle sizes and a high flow rate, which are attainable with UPLC systems, enhanced the method. The method performance evaluation showed that the method easily met the normally used acceptance criteria for bioanalytical methods, namely a deviation of +/-15% from the nominal concentration except at lower limit of quantitation (LLOQ), where +/-20% is accepted. The reported LLOQ of 7.8 ng/ml, for both BMS-754807 and metformin, was adequate to support the pharmacokinetic studies. PMID:20451474

  13. Germanium: An aqueous processing review

    SciTech Connect

    Lier, R.J.M. van; Dreisinger, D.B.

    1995-08-01

    In industrial aqueous solutions, germanium generally occurs in trace amounts amid high concentrations of other metals, such as zinc, copper and iron. Separation of germanium from these metals as well as its isolation from gallium and indium pose a real challenge to the hydrometallurgist. After a brief discussion of the aqueous chemistry of germanium, this paper reviews the flowsheet of the Apex Mine in Utah. The Apex property was the only mine in the world to be operated primarily for production of gallium and germanium, but apparently closed due to great operating difficulties. Several process variants proposed for the treatment of the Apex ore, including bioleaching methods, are addressed. Following a more general description of the behavior of germanium in hydrometallurgical zinc processing streams, available technology for its recovery from aqueous solutions is summarized. Precipitation, solvent extraction, ion exchange, electrowinning, ion flotation and liquid-membrane separation are all outlined in terms of the aqueous chemistry of germanium. Finally, the production of high purity germanium dioxide and metal is briefly discussed. 61 refs.

  14. Simulation of preferential Cu2+ solvation in aqueous ammonia solution by means of Monte Carlo method including three-body correction terms

    NASA Astrophysics Data System (ADS)

    Pranowo, Harno D.; Rode, Bernd M.

    2000-03-01

    A canonical ensemble Monte Carlo simulation was performed for Cu2+ in 18.57% aqueous ammonia solution at a temperature of 293.16 K, using ab initio pair potentials and three-body potentials for Cu-H2O-H2O, Cu-H2O-NH3 and Cu-NH3-NH3 interactions. The first solvation shell consists of three water and three ammonia molecules, and the second shell of 11.6 water and 10.2 ammonia molecules. The structure of the solvated ion is discussed in terms of radial distribution functions, coordination number, and angular distributions.

  15. Immobilized metal ion affinity partitioning, a method combining metal-protein interaction and partitioning of proteins in aqueous two-phase systems.

    PubMed

    Birkenmeier, G; Vijayalakshmi, M A; Stigbrand, T; Kopperschläger, G

    1991-02-22

    Immobilized metal ions were used for the affinity extraction of proteins in aqueous two-phase systems composed of polyethylene glycol (PEG) and dextran or PEG and salt. Soluble chelating polymers were prepared by covalent attachment of metal-chelating groups to PEG. The effect on the partitioning of proteins of such chelating PEG derivatives coordinated with different metal ions is demonstrated. The proteins studied were alpha 2-macroglobulin, tissue plasminogen activator, superoxide dismutase and monoclonal antibodies. The results indicate that immobilized metal ion affinity partitioning provides excellent potential for the extraction of proteins. PMID:1710621

  16. Simultaneous microemulsion-aqueous phase flooding process

    SciTech Connect

    Reed, R. L.

    1980-12-23

    A method of enhanced oil recovery is disclosed wherein an upper-phase or a middle-phase microemulsion and an immiscible aqueous phase are simultaneously injected into a subterranean formation. The viscosities of the injected phases are adjusted so that the aqueous phase/microemulsion viscosity ratio approximates the reservoir brine/oil viscosity ratio. The injection rates of the injected phases are such that similar oil, microemulsion and aqueous phase velocities are achieved in the reservoir. Oil is displaced to a production well and recovered.

  17. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  18. Continuous Aqueous Tritium Monitoring

    SciTech Connect

    Hofstetter, K.J.

    1995-03-29

    Continuous monitoring for tritium in the aqueous effluents of selected Savannah River Site (SRS) facilities is performed using a custom designed system that includes an automated water purification system and a flow-through radiation detection system optimized for tritium. Beads of plastic scintillators coupled with coincidence electronics provide adequate sensitivity (=25kBz/L) for tritium break-through detection int he aqueous discharge stream from these facilities. The tritium effluent water monitors (TEWMs) at SRS provide early warning (within 30 minutes) of an unanticipated release of tritium, supplement the routine sampling surveillances, and mitigate the impact of aqueous plant discharges of tritium releases to the environment.

  19. Continuous aqueous tritium monitoring

    SciTech Connect

    Hofstetter, K.J.

    1995-10-01

    Continuous monitoring for tritium in the aqueous effluents of selected Savannah River Site (SRS) facilities is performed using a unique system that includes an automated water purification system and a flow-through radiation detection system optimized for tritium. Beads of plastic scintillator coupled with coincidence electronics provide adequate sensitivity (approx.25kBq/L) for tritium breakthrough detection in the aqueous discharge stream from these facilities. The tritium effluent water monitors (TEWMs) at SRS provide early warning (within 30 minutes) of an unanticipated release of tritium, supplement the routine sampling surveillances, and mitigate the impact of aqueous plant discharges of tritium to the environment. 4 refs., 4 figs., 1 tab.

  20. Aqueous effluent tritium monitor development

    SciTech Connect

    Hofstetter, K.J.; Wilson, H.T.

    1991-12-31

    The development of a low-level tritium monitor for aqueous effluents has explored several potential techniques. In one method, a water-immiscible liquid scintillation cocktail was ultrasonically mixed with an aqueous sample to form a water-cocktail dispersion which was analyzed by liquid scintillation spectrometry. The organic cocktail could then be reused after phase separation. Of the cocktails tested, the highest tritium detection efficiency (7%) was determined for a toluene-based cocktail. In another technique, the response of various solid scintillators (plastic beads, crushed inorganic salts, etc.) to tritium solutions was measured. A 2% tritium detection efficiency was observed for the most efficient solid scintillators tested. In a third method, a large surface area detector was constructed from thin fibers of plastic scintillator. This detector had a 0.1% intrinsic tritium detection efficiency. While sensitivities of {approximately}25 kBg/L of tritium for a short count have been attained using several of these techniques, non can reach the environmental level of <1 kBg/L in aqueous solutions.

  1. Aqueous effluent tritium monitor development

    SciTech Connect

    Hofstetter, K.J.; Wilson, H.T.

    1991-01-01

    The development of a low-level tritium monitor for aqueous effluents has explored several potential techniques. In one method, a water-immiscible liquid scintillation cocktail was ultrasonically mixed with an aqueous sample to form a water-cocktail dispersion which was analyzed by liquid scintillation spectrometry. The organic cocktail could then be reused after phase separation. Of the cocktails tested, the highest tritium detection efficiency (7%) was determined for a toluene-based cocktail. In another technique, the response of various solid scintillators (plastic beads, crushed inorganic salts, etc.) to tritium solutions was measured. A 2% tritium detection efficiency was observed for the most efficient solid scintillators tested. In a third method, a large surface area detector was constructed from thin fibers of plastic scintillator. This detector had a 0.1% intrinsic tritium detection efficiency. While sensitivities of {approximately}25 kBg/L of tritium for a short count have been attained using several of these techniques, non can reach the environmental level of <1 kBg/L in aqueous solutions.

  2. Effect of Rare Earth Oxide Content on Nanograined Base Metal Electrode Multilayer Ceramic Capacitor Powder Prepared by Aqueous Chemical Coating Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Xiaohui; Kim, Jinyong; Li, Longtu

    2013-02-01

    The aqueous chemical coating route is highly effective in preparing BaTiO3 nanoparticles uniformly coated with additives. Such nanoparticles can be used to produce nano-grained temperature stable BaTiO3 ceramics with core-shell structure, fulfilling the need of next-generation ultrathin layer base metal electrode (BME) multilayer ceramic capacitors (MLCCs). Rare earth oxides are an important class of additives owing to their ability to fulfill both donor and acceptor roles. In this paper, the effects of Y2O3 and Ho2O3 co-dopant content on dielectric and microstructural properties were investigated. By applying chemical coating, BaTiO3-based high performance temperature stabilized ceramics with the average grain size of about 130 nm, which met the requirement of next generation BME MLCCs, were obtained.

  3. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  4. Aqueous photolysis of niclosamide

    USGS Publications Warehouse

    Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.

    2004-01-01

    The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.

  5. Reflectance of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Querry, M. R.

    1972-01-01

    The optical properties and optical constants of water and aqueous solutions were studied to develop an accurate tabulation of graphical representations of the optical constants through a broad spectrum. Manuscripts of articles are presented concerning extinction coefficients, relative specular reflectance, and temperature effect on the water spectrum. Graphs of absolute reflectance, phase shifts, index of refraction, and extinction coefficients for water, heavy water and aqueous solutions are included.

  6. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  7. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. PMID:26471552

  8. Rechargeable hybrid aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Wang, Jing; Liu, Hao; Bakenov, Zhumabay; Gosselink, Denise; Chen, P.

    2012-10-01

    A new aqueous rechargeable battery combining an intercalation cathode with a metal (first order electrode) anode has been developed. The concept is demonstrated using LiMn2O4 and zinc metal electrodes in an aqueous electrolyte containing two electrochemically active ions (Li+ and Zn2+). The battery operates at about 2 V and preliminarily tests show excellent cycling performance, with about 90% initial capacity retention over 1000 charge-discharge cycles. Use of cation-doped LiMn2O4 cathode further improves the cyclability of the system, which reaches 95% capacity retention after 4000 cycles. The energy density for a prototype battery, estimated at 50-80 Wh kg-1, is comparable or superior to commercial 2 V rechargeable batteries. The combined performance attributes of this new rechargeable aqueous battery indicate that it constitutes a viable alternative to commercial lead-acid system and for large scale energy storage application.

  9. Responsive aqueous foams.

    PubMed

    Fameau, Anne-Laure; Carl, Adrian; Saint-Jalmes, Arnaud; von Klitzing, Regine

    2015-01-12

    Remarkable properties have emerged recently for aqueous foams, including ultrastability and responsiveness. Responsive aqueous foams refer to foams for which the stability can be switched between stable and unstable states with a change in environment or with external stimuli. Responsive foams have been obtained from various foam stabilizers, such as surfactants, proteins, polymers, and particles, and with various stimuli. Different strategies have been developed to design this type of soft material. We briefly review the two main approaches used to obtain responsive foams. The first approach is based on the responsiveness of the interfacial layer surrounding the gas bubbles, which leads to responsive foams. The second approach is based on modifications that occur in the aqueous phase inside the foam liquid channels to tune the foam stability. We will highlight the most sophisticated approaches, which use light, temperature, and magnetic fields and lead to switchable foam stability. PMID:25384466

  10. Rheology of aqueous foams

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Raufaste, Christophe

    2014-10-01

    Aqueous foams are suspensions of bubbles inside aqueous phases. Their multiphasic composition leads to a complex rheological behavior that is useful in numerous applications, from oil recovery to food/cosmetic processing. Their structure is very similar to the one of emulsions, so that both materials share common mechanical properties. In particular, the presence of surfactants at the gas-liquid interfaces leads to peculiar interfacial and dissipative properties. Foam rheology has been an active research topics and is already reported in several reviews, most of them covering rheometry measurements at the scale of the foam, coupled with interpretations at the local scale of bubbles or interfaces. In this review, we start following this approach, then we try to cover the multiscale features of aqueous foam flows, emphasizing regimes where intermediate length scales need to be taken into account or regimes fast enough regarding internal time scales so that the flow goes beyond the quasi-static limit. xml:lang="fr"

  11. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  12. Continuous aqueous tritium monitor

    DOEpatents

    McManus, Gary J.; Weesner, Forrest J.

    1989-05-30

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture and selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration.

  13. ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION

    EPA Science Inventory

    Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...

  14. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    SciTech Connect

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus; Truex, Michael J.; Shen, Xin; Li, Xiqing

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D column and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.

  15. The cellular basis of aqueous outflow regulation.

    PubMed

    Francis, B A; Alvarado, J

    1997-04-01

    This review begins with an introduction to the concept of the cellular regulation of aqueous outflow, current methods used for its study, and the cell types that are known to participate in this process. Current research in the field is divided into work on cell properties, cell products and extracellular matrix, cytoskeletal and structural changes, and drug interactions. PMID:10168352

  16. An aqueous normal-phase chromatography coupled with tandem mass spectrometry method for determining unbound brain-to-plasma concentration ratio of AZD1775, a Wee1 kinase inhibitor, in patients with glioblastoma.

    PubMed

    Wu, Jianmei; Sanai, Nader; Bao, Xun; LoRusso, Patricia; Li, Jing

    2016-08-15

    A rapid, sensitive, and robust aqueous normal-phase chromatography method coupled with tandem mass spectrometry was developed and validated for the quantitation of AZD1775, a Wee-1 inhibitor, in human plasma and brain tumor tissue. Sample preparation involved simple protein precipitation with acetonitrile. Chromatographic separation was achieved on ethylene bridged hybrid stationary phases (i.e., Waters XBridge Amide column) under an isocratic elution with the mobile phase consisting of acetonitrile/ammonium formate in water (10mM, pH 3.0) (85:15,v/v) at a flow rate of 0.8mL/min for 5min. The lower limit of quantitation (LLOQ) was 0.2ng/mL of AZD1775 in plasma and tissue homogenate. The calibration curve was linear over AZD1775 concentration range of 0.2-1000ng/mL in plasma and tissue homogenate. The intra- and inter-day precision and accuracy were within the generally accepted criteria for bioanalytical method (<15%). The method was successfully applied to assess the penetration of AZD1775 across the blood-brain tumor barrier, as assessed by the unbound brain-to-plasma ratio, in patients with glioblastoma. PMID:27318641

  17. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  18. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... major modification subject to application and approval of alternate test procedures under 40 CFR parts....3All samples must be refrigerated at 0-4 °C from the time of collection until extraction (40 CFR part... CFR part 136, Table II). 9.0Quality Control 9.1Each laboratory that uses this method is required...

  19. A NEW SW-846 METHOD FOR THE ANALYSIS OF TOXAPHENE AND TOXAPHENE CONGENERS IN SOLID AND AQUEOUS SAMPLES USING GAS CHROMATOGRAPHY / NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    US EPA SW-846 methods have typically relied on dual column gas chromatography coupled with electron capture detection (GC-ECD) for analysis of low concentrations of organochlorine pesticides, including toxaphene, in environmental samples. Toxaphene is one of the most widely appl...

  20. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... major modification subject to application and approval of alternate test procedures under 40 CFR Parts....3All samples must be refrigerated at 0-4 °C from the time of collection until extraction (40 CFR Part... CFR Part 136, Table II). 9.0Quality Control 9.1Each laboratory that uses this method is required...

  1. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  2. Continuous aqueous tritium monitor

    DOEpatents

    McManus, G.J.; Weesner, F.J.

    1987-10-19

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture are selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration. 2 figs.

  3. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy.

    PubMed

    Guo, Huiyuan; Xing, Baoshan; He, Lili

    2016-04-01

    The rising application of silver nanoparticles (AgNPs) and subsequent release into aquatic systems have generated public concerns over their potential risk and harm to aquatic organisms and human health. Effective and practical analytical methods for AgNPs are urgently needed for their risk assessment. In this study we established an innovative approach to detect trace levels of AgNPs in environmental water through integrating a filtration technique into surface-enhanced Raman spectroscopy (SERS) and compared it with previously established centrifuge-based method. The purpose of filtration was to trap and enrich salt-aggregated AgNPs from water samples onto the filter membrane, through which indicator was then passed and complexed with AgNPs. The enhanced SERS signals of indicator could reflect the presence and quantity of AgNPs in the samples. The most favorable benefit of filtration is being able to process large volume samples, which is more practical for water samples, and greatly improves the sensitivity of AgNP detection. In this study, we tested 20 mL AgNPs-containing samples and the filter-based method is able to detect AgNPs as low as 5 μg/L, which is 20 folds lower than the centrifuge-based method. In addition, the speed and precision of the detection were greatly improved. This approach was used to detect trace levels of AgNPs in real environmental water successfully. Meanwhile, the heteroaggregation of AgNPs with minerals in water was reliably monitored by the new method. Overall, a combination of the filtration-SERS approach provides a rapid, simple, and sensitive way to detect AgNPs and analyze their environmental behavior. PMID:26774766

  4. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples.

    PubMed

    Martín, Julia; Buchberger, Wolfgang; Santos, Juan Luis; Alonso, Esteban; Aparicio, Irene

    2012-05-01

    Antidiabetic compounds are among the most prescribed pharmaceuticals. Nevertheless, their presence in the environment has been scarcely evaluated as there is no method for their determination in environmental samples. This paper reports the development of an analytical method for the determination of traditionally used antidiabetics (metformin and glibenclamide) and novel antidiabetics (vildagliptin, sitagliptin and pioglitazone). The method is based on solid-phase extraction and determination by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. The method was applied to effluent wastewater, river water and tap water. Mean recoveries of glibenclamide, vildagliptin, sitagliptin and pioglitazone in the matrices evaluated were in the range 78-83%; limits of quantification were in the range 0.4-4.3 ng L(-1); and precision values were in the range 2.2-13%. The high hydrophilicity and polarity of metformin complicated its simultaneous extraction. Chromabond Tetracycline cartridges and sample pH 8.5 were applied to the extraction of glibenclamide, vildagliptin, sitagliptin and pioglitazone. Oasis HLB cartridges, neutral sample pH and SDS as ion-pair reagent were used for the extraction of metformin. Validation results of metformin were not as favorable as those of the other antidiabetic drugs but were comparable with others previously reported. The developed method was applied to the first-time determination of the concentrations of the five antidiabetic drugs in wastewater, river water and tap water. Metformin was the antidiabetic drug at the highest concentration in wastewater and surface water (up to 253 ng L(-1) and 104 ng L(-1), respectively). Two of the antidiabetic drugs of recent prescription, sitagliptin and vildagliptin, were found in effluent wastewater at concentrations of 117 ng L(-1) and 12 ng L(-1), respectively, and in river water at concentrations of 35 ng L(-1) and 6 ng L(-1), respectively, whereas the classic

  5. Preparation and Properties of an Aqueous Ferrofluid

    NASA Astrophysics Data System (ADS)

    Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C.

    1999-07-01

    Ferrofluids are colloidal suspensions of surfactant-coated magnetic particles in a liquid medium. This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. Magnetite (Fe3O4) particles are precipitated by combining FeCl3 and FeCl2 in a 2:1 stoichiometric ratio in aqueous ammonia solution. The resulting particles, ~10-20 nm in diameter based on powder X-ray diffraction, are then treated with aqueous tetramethylammonium hydroxide, which acts as a surfactant. When the resulting ferrofluid is placed near a magnet, it forms conical spikes. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.

  6. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis.

    PubMed

    Anubala, S; Sekar, R; Nagaiah, K

    2014-06-01

    A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution. PMID:24725858

  7. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application and approval of alternate test procedures under 40 CFR parts 136.4 and 136.5. 1.6Each laboratory....3All samples must be refrigerated at 0-4 °C from the time of collection until extraction (40 CFR part... CFR part 136, Table II). 9.0Quality Control 9.1Each laboratory that uses this method is required...

  8. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application and approval of alternate test procedures under 40 CFR parts 136.4 and 136.5. 1.6Each laboratory....3All samples must be refrigerated at 0-4 °C from the time of collection until extraction (40 CFR part... CFR part 136, Table II). 9.0Quality Control 9.1Each laboratory that uses this method is required...

  9. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application and approval of alternate test procedures under 40 CFR parts 136.4 and 136.5. 1.6Each laboratory....3All samples must be refrigerated at 0-4 °C from the time of collection until extraction (40 CFR part... CFR part 136, Table II). 9.0Quality Control 9.1Each laboratory that uses this method is required...

  10. Experimental Structural Studies of Solutes in Aqueous Solution

    SciTech Connect

    Persson, Ingmar

    2007-11-29

    The principles of experimental methods to study the structure and the hydrogen bonding of hydrated solutes in aqueous solution are presented, and whether theoretical simulations can produce comparable information as the experimental ones is discussed. Two structure methods, extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS), and one method to study the hydrogen bonding in hydrated species in aqueous solution, double difference infrared spectroscopy of HDO, are presented.

  11. A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution.

    PubMed

    Wu, Qiuhua; Feng, Cheng; Wang, Chun; Wang, Zhi

    2013-01-01

    A superparamagnetic graphene-Fe(3)O(4) nanocomposite (G/Fe(3)O(4)) was synthesized by a facile one-pot solvothermal method. The nanocomposite G/Fe(3)O(4) prepared by the new method was firstly used as an adsorbent to remove dye for water pollution remediation. In comparison with G/Fe(3)O(4) prepared by the in situ chemical coprecipitation, the newly prepared G/Fe(3)O(4) had a higher adsorption efficiency for the dye. The adsorption characteristics of the nanocomposite adsorbent were examined using the organic dye pararosaniline as the adsorbate. The adsorption kinetics, adsorption capacity of the adsorbent, and the effect of the adsorbent dosage and solution pH on the removal efficiency of pararosaniline were investigated. The adsorption capacity of G/Fe(3)O(4) for pararosaniline was evaluated using the Freundlich and Langmuir adsorption isotherm models. The G/Fe(3)O(4) hybrid composite can be easily manipulated in magnetic field for desired separation, leading to an easy removal of the dye from polluted water. The G/Fe(3)O(4) hybrid composite would have a great potential in removing organic dyes from polluted water. PMID:23010021

  12. A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution.

    PubMed

    Xin, Baoping; Xia, Yunting; Zhang, Yang; Aslam, Hina; Liu, Changhao; Chen, Shi

    2012-02-01

    In the present paper, a feasible method was developed to grow fungal pellets in an air lift column reactor inoculated with mycelium fragments for improving separation effect of biomass from solution and reducing clogging effect of biomass; bioaccumulation of dye by the growing fungal pellets in the case of mycelium fragments inoculation was investigated. The results showed that inoculation with the mycelium fragments without any pre-treatment did not witness the formation of pellets; only pre-treated fragments using maize as both nucleus and carbon source for 72 h incubation guaranteed the formation of pellets in the air lift column reactor. Nearly 100% of dye removal was obtained by bioaccumulation of the growing pellets in successive three batches of dye wastewater treatment. The formation of pellets not only resulted in low clogging effect to promote mass transfer and dye bioaccumulation but also caused quick separation of dye-loaded biomass from treated wastewater. PMID:22196072

  13. High-throughput method of dioxin analysis in aqueous samples using consecutive solid phase extraction steps with the new C18 Ultraflow™ pressurized liquid extraction and automated clean-up.

    PubMed

    Youn, Yeu-Young; Park, Deok Hie; Lee, Yeon Hwa; Lim, Young Hee; Cho, Hye Sung

    2015-01-01

    A high-throughput analytical method has been developed for the determination of seventeen 2,3,7,8-substituted congeners of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in aqueous samples. A recently introduced octadecyl (C18) disk for semi-automated solid-phase extraction of PCDD/Fs in water samples with a high level of particulate material has been tested for the analysis of dioxins. A new type of C18 disk specially designed for the analysis of hexane extractable material (HEM), but never previously reported for use in PCDD/Fs analysis. This kind of disk allows a higher filtration flow, and therefore the time of analysis is reduced. The solid-phase extraction technique is used to change samples from liquid to solid, and therefore pressurized liquid extraction (PLE) can be used in the pre-treatment. In order to achieve efficient purification, extracts from the PLE are purified using an automated Power-prep system with disposable silica, alumina, and carbon columns. Quantitative analyses of PCDD/Fs were performed by GC-HRMS using multi-ion detection (MID) mode. The method was successfully applied to the analysis of water samples from the wastewater treatment system of a vinyl chloride monomer plant. The entire procedure is in agreement with EPA1613 recommendations regarding the blank control, MDLs (method detection limits), accuracy, and precision. The high-throughput method not only meets the requirements of international standards, but also shortens the required analysis time from 2 weeks to 3d. PMID:25112208

  14. Biothanol production from barley hull using SAA (Soaking in aqueous ammonia) pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley hull, a type of lignocellulosic biomass, was pretreated using aqueous ammonia to improve its enzymatic saccharification. Barley hull was soaked in 15-30 wt.% aqueous ammonia (SAA method) at 30-75'C for 1 day-11 weeks using a batch reactor. Under these conditions, SAA (soaking in aqueous ammon...

  15. Fabrication of nanospinel ZnCr2O4 using sol-gel method and its application on removal of azo dye from aqueous solution.

    PubMed

    Yazdanbakhsh, Mohammad; Khosravi, Iman; Goharshadi, Elaheh K; Youssefi, Abbas

    2010-12-15

    For the first time, nanoparticles of zinc chromite, spinel ZnCr(2)O(4) have been fabricated by the thermal decomposition of Zn-Cr gel prepared by sol-gel method in the presence of oxalic acid as a chelating agent. It was shown that the well-crystallized spinel structure is formed after calcination at 450°C. The nanospinel has been characterized by differential thermal analysis (DTA), X-ray powder diffraction (XRD), infrared spectroscopy (IR), and transmission electron microscope (TEM). The average particle size is approximately 13 nm according to the TEM image. The nanoparticles of zinc chromites showed excellent adsorption properties towards reactive dye, reactive blue 5 (RB5). The adsorption studies have been carried out for contact time, different pH values, different temperatures, and adsorbent doses. The investigation of removal kinetics of RB5 indicates that the removal process obeys the rate of second-order kinetic equation. The results indicate that the Langmuir adsorption isotherm fitted the data better than the Freundlich. Also, the photocatalytic degradation of RB5 using spinel ZnCr(2)O(4) under UV irradiation at pH=1 has been also examined. The results showed that the degradation of RB5 dye follows merely an adsorption process. PMID:20863619

  16. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    SciTech Connect

    Nour, E. S. Echresh, A.; Willander, M.; Nur, O.; Liu, Xianjie; Broitman, E.

    2015-07-15

    In this paper, we have synthesized Zn{sub 1−x}Ag{sub x}O (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn{sub 1−x}Ag{sub x}O samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d{sub 33}) as well as the piezo potential generated from the ZnO NRs and Zn{sub 1−x}Ag{sub x}O NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  17. Thermodynamic study of complex formation between Kryptofix-5 and Sn2+ in several individual and binary non-aqueous solvents using a conductometric method

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh

    2014-12-01

    The complex formation between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix-5) and Sn2+ ions was studied in pure acetonitrile (AN), dimethylformamide (DMF), 1,4-dioxane (DOX), and methanol (MeOH) and in acetonitrile-1,4-dioxane (AN-DOX), acetonitrile-dichloromethane (AN-DCM), acetonitrile-methanol (AN-MeOH), and acetonitrile-dimethylformamide (AN-DMF) binary mixed solvent solutions at different temperatures using conductometric method. 1: 1 [ML] complex is formed between the metal cation and ligand in most solvent systems but in the cases of AN-MeOH (MeOH = 90 mol %) binary mixture and in pure MeOH a 2: 1 [M2L] complex was observed, that is the stoichiometry of complexes may be changed by the nature of the medium. The stability order of the (Kryptofix-5·Sn)2+ complex in the studied binary mixed solvent solutions at 25°C was found to be AN-DOX > AN-DCM > AN-MeOH > AN-DMF and in the case of pure solvents at 25°C the sequence was the following: AN > DMF > DOX. A non-linear behavior was observed for changes of log K f of (Kryptofix-5·Sn)2+ complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent intractions and also by the preferential solvation of the f species involved in the complexation reaction. The values of standard enthalpy changes (Δ Hc°) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ Sc°) were calculated from the relationship Δ Gc,298.15° = Δ Hc° - 298.15Δ Sc°. The results show that in most cases, the (Kryptofix-5·Sn)2+ complex is both enthalpy and entropy stabilized.

  18. "Switchable water": aqueous solutions of switchable ionic strength.

    PubMed

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described. PMID:20186910

  19. EXTRACTION OF PHENOL AND ITS METABOLITES FROM AQUEOUS SOLUTION

    EPA Science Inventory

    In the development of an extraction method utilizing the "salting out" technique, the extraction efficiencies of phenol, catechol, resorcinol, and hydroquinone from aqueous solutions were determined for tetrahydrofuran (THF), acetonitrile (ACN), dimethylformamide (DMF), ethyl ace...

  20. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  1. Photocatalytic degradation of an azo textile dye (C.I. Reactive Red 195 (3BF)) in aqueous solution over copper cobaltite nanocomposite coated on glass by Doctor Blade method

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Rezvani, Zoya

    2015-08-01

    The degradation of C.I. Reactive Red 195 (3BF) in aqueous solution using copper cobaltite nanocomposite coated on glass by Doctor Blade method was studied. Structural, optical and morphological properties of nanocomposite coatings were characterized by X-ray powder diffractometry (XRD), diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FESEM). The nanoparticles exhibit a particle size of 31 nm, showing a good nanoscale crystalline morphology. The photocatalytic activity of copper cobaltite nanocomposite coated on glass was studied by performing the photocatalytic degradation of 3BF at different irradiation time. The effect of irradiation time on the degradation of 3BF was studied and the results showed that more than 85% of the 3BF was degraded in 45 min of irradiation. The pseudo-first-order kinetic models were used and the rate constants were evaluated with pseudo first order rate constants of 4.10 × 10-2 min-1. The main advantage of the photocatalyst coated on glass overcomes the difficulties in separation and recycle of photocatalyst suspensions.

  2. Photocatalytic degradation of an azo textile dye (C.I. Reactive Red 195 (3BF)) in aqueous solution over copper cobaltite nanocomposite coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rezvani, Zoya

    2015-08-01

    The degradation of C.I. Reactive Red 195 (3BF) in aqueous solution using copper cobaltite nanocomposite coated on glass by Doctor Blade method was studied. Structural, optical and morphological properties of nanocomposite coatings were characterized by X-ray powder diffractometry (XRD), diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FESEM). The nanoparticles exhibit a particle size of 31 nm, showing a good nanoscale crystalline morphology. The photocatalytic activity of copper cobaltite nanocomposite coated on glass was studied by performing the photocatalytic degradation of 3BF at different irradiation time. The effect of irradiation time on the degradation of 3BF was studied and the results showed that more than 85% of the 3BF was degraded in 45 min of irradiation. The pseudo-first-order kinetic models were used and the rate constants were evaluated with pseudo first order rate constants of 4.10 × 10(-2) min(-1). The main advantage of the photocatalyst coated on glass overcomes the difficulties in separation and recycle of photocatalyst suspensions. PMID:25840025

  3. Well aligned ZnO nanorods growth on the gold coated glass substrate by aqueous chemical growth method using seed layer of Fe3O4 and Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibupoto, Z. H.; Khun, K.; Lu, Jun; Liu, Xianjie; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Willander, M.

    2013-04-01

    In this study, Fe3O4 and Co3O4 nanoparticles were prepared by co-precipitation method and sol-gel method respectively. The synthesised nanoparticles were characterised by X-ray diffraction [XRD] and Raman spectroscopy techniques. The obtained results have shown the nanocrystalline phase of obtained Fe3O4 and Co3O4 nanoparticles. Furthermore, the Fe3O4 and Co3O4 nanoparticles were used as seed layer for the fabrication of well-aligned ZnO nanorods on the gold coated glass substrate by aqueous chemical growth method. Scanning electron microscopy (SEM), high resolution transmission electron microscopy [HRTEM], as well as XRD and energy dispersive X-ray techniques were used for the structural characterisation of synthesised ZnO nanorods. This study has explored highly dense, uniform, well-aligned growth pattern along 0001 direction and good crystal quality of the prepared ZnO nanorods. ZnO nanorods are only composed of Zn and O atoms. Moreover, X-ray photoelectron spectroscopy was used for the chemical analysis of fabricated ZnO nanorods. In addition, the structural characterisation and the chemical composition study and the optical investigation were carried out for the fabricated ZnO nanorods and the photoluminescence [PL] spectrum have shown strong ultraviolet (UV) peak at 381 nm for Fe3O4 nanoparticles seeded ZnO nanorods and the PL spectrum for ZnO nanorods grown with the seed layer of Co3O4 nanoparticles has shown a UV peak at 382 nm. The green emission and orange/red peaks were also observed for ZnO nanorods grown with both the seed layers. This study has indicated the fabrication of well aligned ZnO nanorods using the one inorganic nanomaterial on other inorganic nanomaterial due to their similar chemistry.

  4. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  5. Sonofluorescence method

    NASA Astrophysics Data System (ADS)

    Li, Huamao

    1998-11-01

    In this paper, a new sonofluorescence method is proposed. Based upon the method, the author has obtained the sonofluorescence emission spectrum of an aqueous luminol- NaOH solution, and displayed the cavitation field distribution in a sonochemical glass reactor.

  6. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  7. Numerical study of subcritical flow with fluid injection

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1990-01-01

    It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.

  8. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  9. Flow regimes for fluid injection into a confined porous medium

    DOE PAGESBeta

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  10. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE PAGESBeta

    Matzel, Eric; White, Joshua; Templeton, Dennise; Pyle, Moira; Morency, Christina; Trainor-Guitton, Whitney

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  11. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  12. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  13. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  14. Method of recovering uranium from aqueous solution

    SciTech Connect

    Albright, R.L.

    1980-01-22

    Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors.

  15. Catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  16. Absorption Optics of Aqueous Foams

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Ranjini; Gittings, Alex; Durian, D. J.

    2002-11-01

    Aqueous foams are composed of gas bubbles packed together in a small volume of soapy water. The large number of gas-liquid interfaces in foams results in very strong scattering of light, which explains the opaque nature of conventional aqueous foams such as shaving foams and mousse. For dry foams, the interfaces can take the following three forms: the soap films where two bubbles meet, the triangular plateau borders where three soap films meet and the vertices where four plateau borders meet. Previous experiments have shown that most of the scattering occurs from the plateau borders 2,3 and the transport mean free path of light (l*), the bubble radius (R) and the liquid fraction of foam (epsilon) is related through the relation l*=R/(epsilon0.5). To understand the reflection and scattering of light at the gas-bubble interfaces, we study the absorption of photons in the liquid network as a function of the foam absorptivity. We do this to confirm if the time spent by the photons in the liquid phase is proportional to the liquid fraction of the foam. Our results indicate that for a specific range of liquid fractions (0.05 is less than e is less than 0.1), the photons seem to get trapped in the liquid network. This result is independent of the absorptivity of the foam and leads us to conclude that under appropriate conditions, an aqueous foam behaves very much like an optical fiber network. Aqueous foam is generated in the lab by the method of turbulent mixing of N2 gas with a jet of alpha-olefin-sulfonate (AOS) solution. The foam has been made absorbing by dissolving small quantities of rhodamine dye (R = 0.005 g/l, R = 0.01 g/l and R = 0.0124 g/l) in the AOS solution. The transmission of photons through the foams of liquid fractions 0.0297 is less than e is less than 0.35 has been studied using Diffuse Transmission Spectroscopy (DTS). For each liquid fraction, the transport mean free path l* (the length over which the photon travels before it gets completely

  17. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  18. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  19. Aqueous chlorination of resorcinol

    USGS Publications Warehouse

    Heasley, V.L.; Burns, M.D.; Kemalyan, N.A.; Mckee, T.C.; Schroeter, H.; Teegarden, B.R.; Whitney, S.E.; Wershaw, R. L.

    1989-01-01

    An investigation of the aqueous chlorination (NaOCl) of resorcinol is reported. The following intermediates were detected in moderate to high yield at different pH values and varying percentages of chlorination: 2-chloro-, 4-chloro-, 2,4-dichloro-, 4,6-dichloro- and 2,4,6-trichlororesorcinol. Only trace amounts of the intermediates were detected when the chlorination was conducted in the presence of phosphate buffer. This result has significant implications since resorcinol in phosphate buffer has been used as a model compound in several recent studies on the formation of chlorinated hydrocarbons during chlorination of drinking water. Relative rates of chlorination were determined for resorcinol and several of the chlorinated resorcinols. Resorcinol was found to chlorinate only three times faster than 2,4,6-trichlororesorcinol. The structure 2,4,6-trichlororesorcinol was established as a monohydrate even after sublimation. A tetrachloro or pentachloro intermediate was not detected, suggesting that the ring-opening step of such an intermediate must be rapid. ?? 1989.

  20. Fluorescence of tryptophan in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Hongyan; Zhang, Hairong; Jin, Bing

    2013-04-01

    In this work, the absorption and emission spectra of Tryptophan (Trp) in aqueous solution were studied. Moreover, a hydrogen-bonded zwitterionic Trpsbnd (H2O)9 model was proposed and its ground-state and excited-state properties were investigated using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT) methods, respectively. All spectroscopic data in our experiments can be well explained by the hydrogen bond strengthening in the excited state of the model complex. The delocalization of electron density between indole moiety and neighboring H2O molecules in fluorescent state was proposed to be facilitated by the strengthened hydrogen-bond chain, and thus resulting in the large red-shift fluorescence of Trp in aqueous solution.

  1. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1990-03-20

    This patent describes a method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and apparatus used in effecting the removal. One or more of the polypeptides, poly ({gamma}-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ({gamma}-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  3. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1988-08-26

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly ({gamma}-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ({gamma}-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  4. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1990-11-13

    A method is disclosed of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 fig.

  5. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  6. Absorption of carbonyl sulfide in aqueous methyldiethanolamine

    SciTech Connect

    Al-Ghawas, H.A.; Ruiz-Ibanez, G.; Sandall, O.C. )

    1988-01-01

    The absorption of carbonyl sulfide in aqueous methyldiethanolamine (MDEA) was studied over a range of temperatures and MDEA concentrations. MDEA is commonly used for selective absorption of hydrogen sulfide in the presence of carbon dioxide. However, sulfur in the form of COS may also be present and it is necessary that estimates of absorption rates of this compound be made. The objective of this study is to determine the physiochemical properties needed to predict COS absorption rates in aqueous MDEA. Free gas solubility and the diffusivity of COS in MDEA solutions were measured over the temperature range 15 to 40{sup 0}C for MDEA concentrations up to 30 weight per cent using the nitrous oxide analogy method. Solubilities were measured volumetrically in an equilibrium cell and diffusivities were measured using a laminar liquid jet absorber. The kinetics of the reaction between COS and MDEA were studied by measuring absorption rates in a single wetted-sphere absorber.

  7. Mechanical Agitation For Aqueous Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Hosking, Timothy J.

    1995-01-01

    Cleaning basket placed in aqueous cleaning solution mechanically agitated by air spring. Compressed air at oscillating pressure supplied to air spring to produce repeated vertical motion of cleaning basket.

  8. Viscosity-stabilized aqueous solutions

    SciTech Connect

    Wier, D. R.

    1981-01-27

    Thiourea functions as a solution viscosity stabilizer in aqueous compositions comprising thiourea, nonionic polymers such as polyalkylene oxides and anionic surfactants such as petroleum sulfonates. The aqueous compositions are useful in connection with fluid-drive oil recovery processes, processes for drilling, completing, or working over wells, or the like processes in which a thickened fluid is injected into or brought into contact with a subterranean earth formation.

  9. Human Aqueous Humor Exosomes

    PubMed Central

    Dismuke, W. Michael; Challa, Pratap; Navarro, Iris; Stamer, W. Daniel; Liu, Yutao

    2015-01-01

    Aqueous humor (AH) is a dynamic intraocular fluid that supports the vitality of tissues that regulate intraocular pressure. We recently discovered that extracellular nanovesicles called exosomes are a major constituent of AH. Exosomes function in extracellular communication and contain proteins and small RNA. Our goal was to characterize the physical properties of AH exosomes and their exosomal RNA (esRNA) content. We isolated exosomes from human AH collected during cataract surgery from five patients using serial ultracentrifugation. We measured the size and concentration of AH exosomes in solution using nanoparticle tracking analysis. We found a single population of vesicles having a mean size of 121±11nm in the unprocessed AH. Data show that centrifugation does not significantly affect the mean particle size (121±11nm versus 124±21nm), but does impact the final number of exosomes in solution (87% loss from the unprocessed AH; n=5). We extracted esRNA from the pooled human AH samples using miRCURY RNA isolation kit from Exiqon. The quality of extracted esRNA was evaluated using Agilent Bioanalyzer 2100 and was used to generate a sequencing library for small RNA sequencing with Illumina MiSeq sequencer. More than 10 different miRNAs were identified; abundant species included miR-486-5p, miR-204, and miR-184. We found that the majority of extracellular vesicles in the AH were in the exosome size range, suggesting that miRNAs housed within exosomes may function in communication between AH inflow and outflow tissues. PMID:25619138

  10. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  11. Non-aqueous cleaning solvent substitution

    SciTech Connect

    Meier, G.J.

    1994-01-01

    A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of Allied Signal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, has been selected as the solvent of choice, and has been found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.

  12. Non-aqueous cleaning solvent substitution

    NASA Technical Reports Server (NTRS)

    Meier, Gerald J.

    1994-01-01

    A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.

  13. Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: a study in aqueous ethanol medium by UV-vis spectroscopic and DFT methods.

    PubMed

    Saha, Avijit; Tiwary, Amit S; Mukherjee, Asok K

    2008-12-01

    4-Acetamidophenol (paracetamol) is shown to form charge transfer complex with 2,3-dichloro1,4-naphthoquinone in aqueous ethanol media exhibiting the unusual 2:1 (paracetamol:quinone) stoichiometry. The complexation enthalpy and entropy have been estimated from the formation constant (K) determined spectrophotometrically at five different temperatures. In aqueous ethanol mixtures of varying composition K increases with increasing dielectric constant of the medium. This has been rationalized by calculating the electronic charge distribution in paracetamol molecule and its conjugate base at the DFT/B3LYP/6-31++G(d,p) level. The theoretically calculated vertical ionization potential of paracetamol also agrees with reported experimental value. PMID:18343717

  14. Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: A study in aqueous ethanol medium by UV-vis spectroscopic and DFT methods

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Tiwary, Amit S.; Mukherjee, Asok K.

    2008-12-01

    4-Acetamidophenol (paracetamol) is shown to form charge transfer complex with 2,3-dichloro1,4-naphthoquinone in aqueous ethanol media exhibiting the unusual 2:1 (paracetamol:quinone) stoichiometry. The complexation enthalpy and entropy have been estimated from the formation constant ( K) determined spectrophotometrically at five different temperatures. In aqueous ethanol mixtures of varying composition K increases with increasing dielectric constant of the medium. This has been rationalized by calculating the electronic charge distribution in paracetamol molecule and its conjugate base at the DFT/B3LYP/6-31++G(d,p) level. The theoretically calculated vertical ionization potential of paracetamol also agrees with reported experimental value.

  15. Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging

    PubMed Central

    Saraswathy, Sindhu; Tan, James C. H.; Yu, Fei; Francis, Brian A.; Hinton, David R.; Weinreb, Robert N.; Huang, Alex S.

    2016-01-01

    Purpose Trabecular meshwork (TM) bypass surgeries attempt to enhance aqueous humor outflow (AHO) to lower intraocular pressure (IOP). While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform) AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging. Methods Pig (n = 46) and human (n = 6) enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5%) was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm) images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas. Results Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test). No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06–0.86; Kruskal-Wallis test). Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Conclusions Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes. PMID:26807586

  16. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  17. Amphoteric Aqueous Hafnium Cluster Chemistry.

    PubMed

    Goberna-Ferrón, Sara; Park, Deok-Hie; Amador, Jenn M; Keszler, Douglas A; Nyman, May

    2016-05-17

    Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (μ-O2 )6 (μ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography. PMID:27094575

  18. Non-Aqueous Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  19. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  20. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  1. Aqueous slurries of carbonaceous materials

    SciTech Connect

    Schick, M.J.; Knitter, K.A.

    1984-03-13

    Aqueous carbonaceous slurries having reduced viscosity, a stabilized network of carbonaceous material in water and improved pumpability are obtained by having present a salt of naphthalenesulfonic acid formaldehyde condensate and at least one water soluble polymer selected from the group consisting of sodium alginate, guar gum, locust bean gum, carboxymethylhydroxypropyl guar gum, hydroxypropyl guar gum and guarpak guar gum. For example, a mixture of 96.8% by weight of ammonium naphthalenesulfonic acid formaldehyde condensate and 3.2% by weight of sodium alginate can be added to an aqueous coal slurry in an amount of 0.31% by weight of the slurry.

  2. Aqueous Solutions and their Interfaces

    SciTech Connect

    Xantheas, Sotiris S.; Voth, Gregory A.

    2009-04-02

    Preface of the special issue of the Journal of Physical Chemistry in conjunction with the international workshop "Aqueous Solutions and their Interfaces". The topics include the structure of liquid water, the analysis of X-ray and neutron scattering experimental data, the vibrational spectroscopy of liquid water, the structure and spectroscopy of aqueous interfaces and the development of theoretical approaches to model the structure and spectra of liquid water and interfaces. This work was supported by the US Department of Energy's Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  3. Structure, morphology and magnetic properties of Mg(x) Zn(1 - x)Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni(x)Zn(1 - x)Fe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Daigle, A.; Modest, J.; Geiler, A. L.; Gillette, S.; Chen, Y.; Geiler, M.; Hu, B.; Kim, S.; Stopher, K.; Vittoria, C.; Harris, V. G.

    2011-07-01

    The synthesis and properties of Mg(x)Zn(1 - x)Fe2O4 spinel ferrites as a low-toxicity alternative to the technologically significant Ni(x)Zn(1 - x)Fe2O4 ferrites are reported. Ferrite nanoparticles have been formed through both the polyol and aqueous co-precipitation methods that can be readily adapted to industrial scale synthesis to satisfy the demand of a variety of commercial applications. The structure, morphology and magnetic properties of Mg(x)Zn(1 - x)Fe2O4 were studied as a function of composition and particle size. Scanning electron microscopy images show particles synthesised by the aqueous co-precipitation method possess a broad size distribution (i.e. ~ 80-120 nm) with an average diameter of the order of 100 nm ± 20 nm and could be produced in high process yields of up to 25 g l - 1. In contrast, particles synthesised by the polyol-based co-precipitation method possess a narrower size distribution with an average diameter in the 30 nm ± 5 nm range but are limited to smaller yields of ~ 6 g l - 1. Furthermore, the polyol synthesis method was shown to control average particle size by varying the length of the glycol surfactant chain. Particles prepared by both methods are compared with respect to their phase purity, crystal structure, morphology, magnetic properties and microwave properties.

  4. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon

  5. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  6. Aqueous Zinc Bromide Waste Solidification

    SciTech Connect

    Langton, C.A.

    2002-07-23

    The goal of this study was to select one or more commercially available aqueous sorbents to solidify the zinc bromide solution stored in C-Area, identify the polymer to zinc bromide solution ratio (waste loading) for the selected sorbents, and identify processing issues that require further testing in pilot-scale testing.

  7. Aqueous-Spray Cleaning System

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Hoult, William S.; Simpson, Gareth L.

    1996-01-01

    Simple aqueous-spray cleaning system with overall dimensions comparable to large kitchen refrigerator constructed for use in cleaning hardware in shop. Made of commercially available parts and materials. Incorporates economical cleaner-and-rinse-recycling subsystem, as well as programmable logic-controller device for either manual or automatic operation.

  8. Immunomodulating polysaccharides from aqueous extracts of Cetraria islandica (Iceland moss).

    PubMed

    Ingólfsdóttir, K; Jurcic, K; Wagner, H

    1998-10-01

    Several polysaccharide fractions, isolated from a hot aqueous extract of Cetraria islandica (L.) Ach. by ethanol fractionation and ion-exchange chromatography, exerted significant in vitro anti-complementary activity and pronounced enhancement of in vitro granulocytic phagocytosis. Prior to aqueous extraction, low molecular weight compounds were removed from the plant material by organic extraction. An aqueous extract, prepared by the traditional method of briefly boiling the lichen directly with water, also exhibited significant anti-complementary and enhanced phagocytic activity. When tested for reticuloendothelial phagocytic activity in the in vivo carbon clearance test, the extract gave rise to a significant increase in the rate of colloidal carbon elimination. Results show, that in addition to an immunostimulating alkali-soluble galactomannan previously isolated from Iceland moss, the plant also contains water soluble polysaccharides, extractable by traditional methods, which exert immunomodulating effects. PMID:23195981

  9. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  10. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  11. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  12. Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions

    EPA Science Inventory

    Previous studies showed that the dispersion extent and physicochemical properties of carbon nanotubes are highly dependent upon the preparation methods (e.g., dispersion methods and dispersants). In the present work, multiwalled carbon nanotubes (MWNTs) are dispersed in aqueous s...

  13. 21 CFR 886.3920 - Aqueous shunt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aqueous shunt. 886.3920 Section 886.3920 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3920 Aqueous shunt. (a) Identification. An aqueous shunt is an... Review Guidance of 2/12/90 (K90-1),” and (3) “Aqueous Shunts—510(k) Submissions.”...

  14. Sporostatic and sporocidal properties of aqueous formaldehyde.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; David, T. J.

    1972-01-01

    Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to the temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.

  15. Non-Aqueous Phase Liquid Calculator

    Energy Science and Technology Software Center (ESTSC)

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  16. Continuous real-time measurement of aqueous cyanide

    DOEpatents

    Rosentreter, Jeffrey J.; Gering, Kevin L.

    2007-03-06

    This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

  17. Using isotope dilution mass spectrometry to determine aqueous trichloroacetic acid

    SciTech Connect

    Norwood, D.L.; Christman, R.F.; Johnson, J.D.; Hass, J.R.

    1986-01-01

    The development, verification, and application of a method based on isotope-dilution gas chromatography-mass spectrometry to determine aqueous trichloroacetic acid (TCAA) at the micrograms per litre level are described. The simultaneous determination of aqueous chloroform is also demonstrated. Trichloroacetic acid is shown to be a significant by-product of the chlorination of raw waters in the laboratory and to constitute a large fraction of the total organic halide (TOX) formed. Analysis of finished-water samples indicated that TCAA, like trihalomethanes is ubiquitous. Positive correlations exist between the levels of TCAA in laboratory-chlorinated raw waters and in finished waters and measured TOX.

  18. Removal of phosphate from aqueous solutions by electro-coagulation.

    PubMed

    Bektaş, Nihal; Akbulut, Hilal; Inan, Hatice; Dimoglo, Anatoly

    2004-01-30

    The aim of this paper was to investigate the feasibility of the removal of phosphate from aqueous solution by electro-coagulation (EC). The current density (CD) between 2.5 and 10 mA cm(-2) and duration in the limits of 5-20 min were tried for different concentrations. In order to determine optimal operating conditions, the EC process used for the phosphate removal was examined in dependence with the CD, initial concentrations and time. The results of the experimental batch processing showed high effectiveness of the EC method in removing phosphate from aqueous solutions. PMID:15177098

  19. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    PubMed

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  20. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  1. Thermoelectric Manipulation of Aqueous Droplets in Microfluidic Devices

    PubMed Central

    Sgro, Allyson E.; Allen, Peter B.

    2008-01-01

    This paper describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an “ice valve” to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics. PMID:17542555

  2. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    PubMed Central

    Vega-Ávila, Elisa; Cano-Velasco, José Luis; Alarcón-Aguilar, Francisco J.; Fajardo Ortíz, María del Carmen; Almanza-Pérez, Julio César; Román-Ramos, Rubén

    2012-01-01

    Introduction. Catharanthus roseus (L.) is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg) diabetic mice, after intraperitoneal administration (250 mg/Kg body weight). Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg) and its alkaloid-free fraction (300 mg/Kg) significantly (P < 0.05) reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, P < 0.05). Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds. PMID:23056144

  3. The ultrasound-assisted aqueous extraction of rice bran oil.

    PubMed

    Khoei, Maryam; Chekin, Fereshteh

    2016-03-01

    In this work, aqueous extraction of rice bran oil was done without and with ultrasound pretreatment. Key factors controlling the extraction and optimal operating conditions were identified. The highest extraction efficiency was found at pH=12, temperature of 45°C, agitation speed of 800rpm and agitation time of 15min, ultrasound treatment time of 70min and ultrasound treatment temperature of 25°C. Moreover, extraction yields were compared to ultrasound-assisted aqueous extraction and Soxhlet extraction. The results showed that the yield of rice bran oil at ultrasound-assisted aqueous extraction was close to the yield of oil extracted by hexane Soxhlet extraction. This result implied that the yield of rice bran oil was significantly influenced by ultrasound. With regard to quality, the oil extracted by ultrasound-assisted aqueous process had a lower content of free fatty acid and lower color imparting components than the hexane-extracted oil. Also, effect of parboiling of paddy on hexane and ultrasound-assisted aqueous extraction was studied. Both extraction methods gives higher percentage of oil from par boiled rice bran compared with raw rice bran. This may be due to the fact that parboiling releases the oil. PMID:26471585

  4. Thermoelectric manipulation of aqueous droplets in microfluidic devices.

    PubMed

    Sgro, Allyson E; Allen, Peter B; Chiu, Daniel T

    2007-07-01

    This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics. PMID:17542555

  5. Water potential of aqueous polyethylene glycol.

    PubMed

    Steuter, A A

    1981-01-01

    Water potential (Psiomega) values were determined for aqueous colloids of four molecular sizes of polyethylene glycol (PEG) using freezing-point depression and vapor-pressure deficit methods. A significant third-order interaction exists between the method used to determine Psiomega, PEG molecular size, and concentration. At low PEG concentrations, freezing-point depression measurements result in higher (less negative) values for Psiomega than do vapor-pressure deficit measurements. The reverse is true at high concentrations. PEG in water does not behave according to van't Hoff's law. Psiomega is related to molality for a given PEG but not linearly. Moreover, Psiomega varies with the molecular size of the PEG. It is suggested that the Psiomega of PEG in water may be controlled primarily by the matric forces of ethylene oxide subunits of the PEG polymer. The term matricum is proposed for PEG in soil-plant-water relation studies. PMID:16661635

  6. Stabilized aqueous hydrogen peroxide solution

    SciTech Connect

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  7. The Melting of Aqueous Foams

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.

    1996-01-01

    Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.

  8. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  9. Non-aqueous electrochemical cell

    SciTech Connect

    Blomgren, G.E.; Kronenberg, M.L.

    1983-08-23

    The invention relates to the use in a non-aqueous electrochemical cell of an electrolyte comprising a solute dissolved in a solvent which is an oxyhalide of an element of Group V or Group VI of the Periodic Table. The oxyhalide solvent serves the dual function of acting as the solvent for the electrolyte salt and as the active cathode depolarizer of the cell.

  10. Non-aqueous electrochemical cell

    SciTech Connect

    Blomgren, G.E.; Kronenberg, M.L.

    1984-04-24

    The invention relates to the use in a non-aqueous electrochemical cell of a conductive electrolyte comprising an ionizing solute dissolved in a mixture of a selected halide of an element of Group IV to Group VI of the Periodic Table and a cosolvent. The selected halide serves the dual function of acting as a solvent for the solute and as the active cathode depolarizer of the cell.

  11. Geochemical Modeling Of Aqueous Systems

    Energy Science and Technology Software Center (ESTSC)

    1995-09-07

    EQ3/6 is a software package for geochemical modeling of aqueous systems. This description pertains to version 7.2b. It addresses aqueous speciation, thermodynamic equilibrium, disequilibrium, and chemical kinetics. The major components of the package are EQ3NR, a speciation-solubility code, and EQ6 a reaction path code. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits, and determining whether certain reactions are in states of equilibrium or disequilibrium. It also initializes EQ6 calculations. EQ6 models themore » consequences of reacting an aqueous solution with a specified set of reactants (e.g., minerals or waste forms). It can also model fluid mixing and the effects of changes in temperature. Each of five supporting data files contain both standard state and activity coefficient-related data. Three support the use of the Davies or B-dot equations for the activity coefficients; the other two support the use of Pitzer''s equations. The temperature range of the thermodynamic data on the data files varies from 25 degrees C only to 0-300 degrees C.« less

  12. Aqueous alternatives for metal and composite cleaning

    NASA Technical Reports Server (NTRS)

    Quitmeyer, Joann

    1994-01-01

    For many years the metalworking industry has cleaned metal and composite substrates with chlorinated solvents. Recently, however, health and disposal related environmental concerns have increased regarding chlorinated solvents, including 1,1,1-trichloroethane, trichloroethylene, methylene chloride, or Freon'. World leaders have instituted a production ban of certain ozone depleting chlorofluorocarbons (CFC's) by 1996. The Occupational Safety and Health Administration (OSHA) has instituted worker vapor exposure limitations for virtually all of the solvents used in solvent-based cleaners. In addition, the United States Environmental Protection Agency (EPA) has defined nearly all solvent-based cleaners as 'hazardous'. Cradle to grave waste responsibility is another reason manufacturers are trying to replace chlorinated solvents in their cleaning processes. Because of these factors, there now is a world wide effort to reduce and/or eliminate the use of chlorinated solvents for industrial cleaning. Waterbased cleaners are among the alternatives being offered to the industry. New technology alkaline cleaners are now available that can be used instead of chlorinated solvents in many cleaning processes. These waterbased cleaners reduce the release of volatile organic compounds (VOC's) by as much as 99 percent. (The definition and method of calculation of VOC's now varies from region to region.) Hazardous waste generation can also be significantly reduced or eliminated with new aqueous technology. This in turn can ease worker exposure restrictions and positively impact the environment. This paper compares the chemical and physical properties of this aqueous cleaners versus chlorinated solvents.

  13. Aqueous enzymatic extraction of Moringa oleifera oil.

    PubMed

    Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan

    2016-11-15

    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. PMID:27283648

  14. Multiplex immunoassay analysis of biomarkers in clinically accessible quantities of human aqueous humor

    PubMed Central

    Rogojina, Anna T.; Chalam, K.V.

    2009-01-01

    Purpose Aqueous humor is intimately related to the cells of the anterior and posterior chambers, which affect its composition. Aqueous analysis provides useful information regarding physiological and pathophysiological processes in the eye. Human aqueous samples are typically less than 100 µl, limiting the usefulness of the analysis with traditional Enzyme-Linked immunoSorbant Assay (ELISA) techniques. The specific aim of this study was to investigate if whether large numbers of analytes can be identified in clinically available samples of aqueous humor and to document the detectability of certain biomarkers in the aqueous. Methods We used a technology developed by Luminex xMAP to analyze hundreds of analytes in a small sample. Aqueous from eight normal and two diabetic patients was analyzed. Results Of the 90 analytes evaluated, 52 (57%) were detectable in the normal aqueous. To place these results in biological context, we analyzed the list of expressed analytes using the MetaCore database. The functional pathways, networks, biological processes, and disease processes that these analytes represented were identified. Several ocular pathology-related processes were represented in the aqueous. The detected analytes represented biomarkers of several relevant disease processes including vascular diseases, arteriosclerosis, ischemia, necrosis, and inflammation. To provide the proof of principle that the aqueous profile could offer useful information about the pathophysiological processes, we analyzed two aqueous samples from diabetic patients. These limited samples showed the differences between normal and diabetic samples, including those relevant to diabetic retinopathy such as vascular endothelial growth factor (VEGF), C reactive protein, glutathione, and cytokines. Several biomarker groups for disease processes relevant to diabetes were perturbed. Conclusions These results demonstrate that multiplex analysis of the aqueous can be a useful tool in screening for any

  15. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    PubMed

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells. PMID:26447826

  16. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  17. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOEpatents

    Boyle, Timothy J.; Voigt, James A.

    1997-01-01

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  18. Simple, benign, aqueous-based amination of polycarbonate surfaces

    DOE PAGESBeta

    VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; Brumbach, Michael T.; Spoerke, Erik D.; Henderson, Ian; Bachand, George D.

    2015-03-18

    Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.

  19. Aqueous photocatalytic oxidation of sulfamethizole.

    PubMed

    Klauson, D; Krichevskaya, M; Borissova, M; Preis, S

    2010-12-14

    Aqueous photocatalytic oxidation (PCO) of a non-biodegradable sulphonamide antibiotic sulfamethizole was studied. The impacts of photocatalyst dose, initial pH, and substrate concentration in the range from 1 to 100 mg L(-1) were examined with a number of organic and inorganic by-products determined, suggesting the initial break-up of the SMZ molecule at the sulphonamide bond. The experiments were carried out under artificial near-UV and visible light, and solar radiation using Degussa P25 and less efficient visible light-sensitive C-doped titanium dioxide as photocatalysts. PMID:21275251

  20. Supramolecular Polymers in Aqueous Media.

    PubMed

    Krieg, Elisha; Bastings, Maartje M C; Besenius, Pol; Rybtchinski, Boris

    2016-02-24

    This review discusses one-dimensional supramolecular polymers that form in aqueous media. First, naturally occurring supramolecular polymers are described, in particular, amyloid fibrils, actin filaments, and microtubules. Their structural, thermodynamic, kinetic, and nanomechanical properties are highlighted, as well as their importance for the advancement of biologically inspired supramolecular polymer materials. Second, five classes of synthetic supramolecular polymers are described: systems based on (1) hydrogen-bond motifs, (2) large π-conjugated surfaces, (3) host-guest interactions, (4) peptides, and (5) DNA. We focus on recent studies that address key challenges in the field, providing mechanistic understanding, rational polymer design, important functionality, robustness, or unusual thermodynamic and kinetic properties. PMID:26727633

  1. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  2. Thermosensitive aqueous solutions of polyvinylacetone

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Tai; Wang, Yusong; Shi, Lei; Zhu, Qingren; Pang, Wenmin; Xu, Guoyong; Lu, Fei

    2006-04-01

    The dimethylketals of poly(vinyl alcohol), termed polyvinylacetone (PVKA), of moderate ketalization degree in the range from 0.28 to 0.6 exhibited temperature-induced phase transition in aqueous solution, as revealed by cloud point measurements and electron micrographs, which was then further investigated on molecular level using solution-state 1H NMR measurements. The present phase transition is caused by the amphiphilic characteristics in the polymer chain. Moreover, this finding could be further applied as a novel strategy in the syntheses of thermosensitive polymer by the hydrophobic functionalities of linear polyol.

  3. Bimatoprost Effects on Aqueous Humor Dynamics in Monkeys

    PubMed Central

    Woodward, David F.; Krauss, Achim H.-P.; Nilsson, Siv F. E.

    2010-01-01

    The effects of bimatoprost on aqueous humor dynamics were quantified in monkey eyes. Uveoscleral outflow was measured by the anterior chamber perfusion method, using FITC-dextran. Total outflow facility was determined by the two-level constant pressure method. Aqueous flow was measured with a scanning ocular fluorophotometer. Uveoscleral outflow was 0.96 ± 0.19 μL min−1 in vehicle-treated eyes and 1.37 ± 0.27 μL min−1 (n = 6; P < .05) in eyes that received bimatoprost 0.01% b.i.d. × 5 days. Bimatoprost had no effect on total outflow facility, which was 0.42 ± 0.05 μL min−1 at baseline and 0.42 ± 0.04 μL min−1 after bimatoprost treatment. Bimatoprost had no significant effect on aqueous humor flow. This study demonstrates that bimatoprost increases uveoscleral outflow but not total outflow facility or aqueous humor flow, indicating that it lowers intraocular pressure in ocular normotensive monkeys by a mechanism that exclusively involves uveoscleral outflow. PMID:20508775

  4. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. PMID:27031800

  5. Dimensional analysis of aqueous magnetic fluids

    NASA Astrophysics Data System (ADS)

    Răcuciu, M.; Creangă, D. E.; Suliţanu, N.; Bădescu, V.

    2007-11-01

    A comparison of the synthesis and characterization of three aqueous magnetic fluids intended for biomedical applications is presented. Stable colloidal suspensions of iron oxide nanoparticles were prepared by a co-precipitation method with the magnetite cores being coated with β-cyclodextrin, tetramethylammonium hydroxide and citric acid. Rheological properties of the fluids were investigated, i.e. viscosity (capillary method) and surface tension (stalagmometric method) in correlation with their density (picnometric method). The dimensional distributions of the ferrophase particles physical diameter of these three magnetic fluids - revealed on the basis of transmission electron microscopy (TEM) data - as well as the diameter distributions of some other magnetic fluids presented in the literature, were comparatively analyzed using the box-plot statistical method. In order to extract complementary data on the magnetic diameter of an iron oxide core, magnetization measurements as well as X-ray diffraction pattern analysis were carried out. Interpretation of all the measurement data was accomplished by assessing the suitability of the three magnetic fluid samples from the viewpoint of their stability and biocompatibility.

  6. Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity.

    PubMed

    Wheat, P E; Tumeo, M A

    1997-01-01

    An investigation to determine the ability of ultrasonic radiation to chemically alter polycyclic aromatic hydrocarbons (PAHs) in aqueous solution has been conducted. The data indicate that chemical alteration of PAHs can be induced under intense ultrasonic treatment. The extent and outcome of reaction is a function of irridation time and aqueous solution parameters. Reaction products were analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Reaction products from ultrasonic treatment of aqueous solutions of biphenyl include ortho, meta, and para-1,1 biphenols. The principal product from ultrasonic treatment of aqueous phenanthrene solutions appears to be a phenanthrene-diol. The number and composition of reaction products for both PAHs tested suggest that a free radical mechanism is likely during aqueous high intensity ultrasonic treatment. The use of ultrasound to treat PAH contaminated aqueous solutions in tandem with other methodologies appears promising. However, the toxicity of reaction products produced by treatment remains to be determined. PMID:11233926

  7. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  8. Formaldehyde migration in aqueous extracts from paper and cardboard food packaging materials in Turkey.

    PubMed

    Dogan, Canan Ekinci; Sancı, Rukiye

    2015-01-01

    Migration of formaldehyde to aqueous extracts from paper and cardboard food packaging materials was determined by an ultraviolet visible-spectrophotometric method at 410 nm. Intraday and interday precision of the method, expressed as coefficient of variation, varied between 1.5 to 4.4% and 7 to 8.8%, respectively. The limit of quantification was 0.28 mg kg(-1) for formaldehyde in aqueous extracts. The recovery of the method was over 90% for two different concentration levels in aqueous extracts. The method was applied to the migration of formaldehyde to aqueous extracts from 31 different paper and cardboard materials collected from the packaging sector, intended for food contact, such as tea filters, hot water filters, paper pouches and folding boxes. The results were between limit of detection 0.23 mg/kg and 40 mg kg(-1) and were evaluated according to the relevant directives. PMID:26098861

  9. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    PubMed

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles. PMID:26716878

  10. Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: a green chemistry approach.

    PubMed

    Patrício, Pamela da Rocha; Mesquita, Maiby Cabral; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2011-10-15

    We have investigated the extraction behavior of the metallic ions Co(II), Fe(III) and Ni(II) as a function of the amount of potassium thiocyanate used as an extracting agent, using the following aqueous two-phase systems (ATPS): PEO + (NH(4))(2)SO(4) + H(2)O, PEO + Li(2)SO(4) + H(2)O, L35 + (NH(4))(2)SO(4) + H(2)O and L35 + (Li)(2)SO(4)+H(2)O. Metal extraction from the salt-rich phase to the polymer-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and polymer that forms the ATPS. Maximal extraction percentages were obtained for Co(II) (99.8%), Fe(III) (12.7%) and Ni(II) (3.17%) when the ATPS was composed of PEO1500 + (NH(4))(2)SO(4) + H(2)O containing 1.4 mmol of KSCN at pH 4.0, providing separation factors as high as S(Co, Fe) = 3440 and S(Co, Ni) = 15,300. However, when the same ATPS was used at pH 2.0, the maximal extraction percentages for iron and nickel were 99.5% and 4.34%, respectively, with S(Fe, Ni) equal to 4380. The proposed technique was shown to be efficient in the extraction of Co(II) and Fe(III), with large viability for the selective separation of Co(II) and Fe(III) ions in the presence of Ni(II). PMID:21864977

  11. Oxidation of Glyoxal in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Schaefer, Thomas; Herrmann, Hartmut

    2014-05-01

    Large amounts of volatile organic compounds (VOCs) are emitted into the atmosphere from biogenic and anthropogenic sources. The emitted VOCs can be further oxidized in the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) to form semivolatile carbonyl compounds. For example, the carbonyl compound glyoxal can be produced by the oxidation process of isoprene. Additionally, these semivolatile carbonyl compounds might be important for the formation of secondary organic aerosol (SOA) by partitioning between gas- and liquid phase of pre-existing particles. In the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) these compounds can be further oxidized, e.g., by radicals (OH and NO3) leading to peroxy radicals and then to substituted organics. Two concepts exist in the literature to describe the glyoxal oxidation pathway via alkyl radicals to the peroxy radicals by the addition of molecular oxygen. The first one[1] states that peroxy radical formation occurs with a rate constant of k = 1 × 109 M-1 s-1. The second concept[2] assumes that this is a minor reaction pathway because of the lower rate constant of k = 1 × 106 M-1 s-1. The difference in the rate constants of the oxygen addition is of about three orders of magnitude which might lead to different oxidation products and yields in aqueous solution. In the present work, the formation and the decay of the formed glyoxyl radicals and glyoxyl peroxy radicals were studied in low and high concentrated oxygen solutions using a laser photolysis long path absorption setup (LP-LPA). To clarify the difference a method introduced by Adams et al., 1969[3] to measure the rate constant of the oxygen addition on alkyl radical was modified for laser flash photolysis conditions and successfully applied. In this study a rate constant for the addition reaction of molecular oxygen of k = 8 × 108 M-1 s-1 was measured. This clearly indicates

  12. Safety and antidiarrheal activity of Priva adhaerens aqueous leaf extract in a murine model

    PubMed Central

    Nansunga, Miriam; Barasa, Ambrose; Abimana, Justus; Alele, Paul E.; Kasolo, Josephine

    2014-01-01

    Ethnopharmacological relevance Priva adhaerens (Forssk.) Chiov., a wildly growing plant, is reported in central Uganda to be an effective traditional remedy for diarrhea. The objective of this study was to provide a scientific basis for the ethnopharmacological utility of this plant whose aqueous leaf and shoot extract was evaluated for acute toxicity and antidiarrheal activity using a murine model. Materials and methods Acute toxicity of the aqueous leaf and shoot extract was assessed after determining the major phytochemicals present in the extract. The aqueous leaf and shoot extract was assayed against castor oil-induced diarrhea, transit time, and enteropooling, in comparison to loperamide, a standard drug. Results The oral LD50 value obtained for Priva adhaerens aqueous extract was greater than 5000 mg/kg in rats; the aqueous leaf and shoot extract possessed several important phytochemicals. Furthermore, the aqueous extract significantly, and dose-dependently, reduced frequency of stooling in castor oil-induced diarrhea, intestinal motility, and castor oil-induced enteropooling in rats. Conclusion This murine model shows that it is relatively safe to orally use the aqueous leaf and shoot extract of Priva adhaerens . The aqueous extract contains phytochemicals that are active for the treatment of diarrhea in a rat model. PMID:25304198

  13. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  14. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  15. Oxidative Stress Levels in Aqueous Humor from High Myopic Patients

    PubMed Central

    Kim, Eun Bi; Kim, Ha Kyoung; Hyon, Joon Young; Wee, Won Ryang

    2016-01-01

    Purpose To compare oxidative stress status in the aqueous humor of highly myopic eyes and control eyes. Methods Aqueous humor samples were collected from 15 highly myopic eyes (high myopia group) and 23 cataractous eyes (control group) during cataract surgery. Central corneal thickness, corneal endothelial cell density, hexagonality of corneal endothelial cells, and cell area of corneal endothelial cells were measured using specular microscopy. Axial length was measured using ultrasound biometry. 8-Hydroxydeoxyguanosine (8-OHdG) and malondialdehyde levels were measured using enzyme-linked immunosorbent assay. Results 8-OHdG level was lower in the aqueous humor of myopic patients than in that of control group (p = 0.014) and was positively correlated with central corneal thickness and negatively correlated with axial length (r = 0.511, p = 0.02; r = -0.382, p < 0.001). There was no correlation between 8-OHdG level and corneal endothelial cell density, hexagonality, or cell area. Malondialdehyde level did not show any correlation with any parameters evaluated. Conclusions 8-OHdG might be a sensitive biomarker for evaluating oxidative stress status in the eye. Oxidative stress level was lower in the aqueous humor of highly myopic eyes compared to that in control eyes, which indicates lower metabolic activity in these eyes. PMID:27247516

  16. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  17. Stability of selenourea in aqueous solutions

    SciTech Connect

    Mel'chekova, Z.E.

    1983-06-10

    Studies of the synthesis of metal selenides from aqueous solutions are being conducted within the framework of investigations on the creation of new semiconductor materials. Selenourea in solution is a complex multicomponent system. The products of hydrolytic decomposition are H/sub 2/CN/sub 2/, Se/sup 2 -/, and HSe/sup -/. As a result of the oxidation of selenium-containing decomposition products by atmospheric oxygen, elementary selenium is formed. The decomposition of selenourea in alkaline sulfite solutions is accompanied by the dissolution of Se/sup 2 -/ and HSe/sup 0/ ions (Se/sup 0/), with the formation of selenosulfate. A study of the kinetics of decomposition was conducted under the conditions of formation of metal selenides, which do not exclude the oxidation process. The end product of the decomposition of selenourea in alkaline sulfite solutions is selenosulfate. The formation of selenosulfate was demonstrated by the isolation of elementary selenium under the action of formaldehyde. The rate constants of the decomposition of selenourea were calculated by the method of changes in concentration, slope of the straight lines, and a logarithmic method. The use of methods of monitoring of selenourea and its decomposition products permitted a theoretical substantiation of the selection of the optimum conditions of formation of metal selenides.

  18. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  19. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  20. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  1. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent...

  2. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity....

  3. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. PMID:27485150

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    necessary for commercial fuel processing supporting transmutation of transplutonium elements. This research project continued basic themes investigated by this research group during the past decade. In the Fuel Cycle Research and Development program at DOE, the current favorite process for accomplishing the separation of trivalent actinides from fission product lanthanides is the TALSPEAK process. TALSPEAK is a solvent extraction method (developed at Oak Ridge National Lab in the 1960s) based on the combination of a cation exchanging extractant (e.g., HDEHP), an actinide-selective aminopolycarboxylate complexing agent (e.g., DTPA), and a carboxylic acid buffer to control pH in the range of 3-4. Considerable effort has been expended in this research group during the past 8 years to elaborate the details of TALSPEAK in the interest of developing improved approaches to the operation of TALSPEAK-like systems. In this project we focused on defining aggregation phenomena in conventional TALSPEAK separations, on supporting the development of Advanced TALSPEAK processes, on profiling the aqueous complexation kinetics of lanthanides in TALSPEAK relevant aqueous media, on the design of new diglycolamide and N-donor extractants, and on characterizing cation-cation complexes of pentavalent actinides.

  5. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles' surfaces

  6. Metal separations using aqueous biphasic partitioning systems

    SciTech Connect

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  7. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Shū

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  8. Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes

    PubMed Central

    Huang, Alex S.; Saraswathy, Sindhu; Dastiridou, Anna; Begian, Alan; Mohindroo, Chirayu; Tan, James C. H.; Francis, Brian A.; Hinton, David R.; Weinreb, Robert N.

    2016-01-01

    Purpose To assess the ability of trabecular micro-bypass stents to improve aqueous humor outflow (AHO) in regions initially devoid of AHO as assessed by aqueous angiography. Methods Enucleated human eyes (14 total from 7 males and 3 females [ages 52–84]) were obtained from an eye bank within 48 hours of death. Eyes were oriented by inferior oblique insertion, and aqueous angiography was performed with indocyanine green (ICG; 0.4%) or fluorescein (2.5%) at 10 mm Hg. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas. Experimentally, some eyes (n = 11) first received ICG aqueous angiography to determine angiographic patterns. These eyes then underwent trabecular micro-bypass sham or stent placement in regions initially devoid of angiographic signal. This was followed by fluorescein aqueous angiography to query the effects. Results Aqueous angiography in human eyes yielded high-quality images with segmental patterns. Distally, angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Trabecular bypass but not sham in regions initially devoid of ICG aqueous angiography led to increased aqueous angiography as assessed by fluorescein (P = 0.043). Conclusions Using sequential aqueous angiography in an enucleated human eye model system, regions initially without angiographic flow or signal could be recruited for AHO using a trabecular bypass stent. PMID:27588614

  9. Adsorption analysis of ammonia in an aqueous solution

    SciTech Connect

    Arman, B.; Panchal, C.B.

    1993-08-01

    An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

  10. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOEpatents

    Elliott, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  11. Formation and disappearance of superoxide radicals in aqueous solutions. [79 references

    SciTech Connect

    Allen, A O; Bielski, B H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO/sub 2//HO/sub 2//sup -/ by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O/sub 2//sup -/, and photosensitization; and properties of HO/sub 2//O/sub 2//sup -/ in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction.

  12. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  13. Mars Aqueous Chemistry Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Benton, Clark C. (Editor)

    1995-01-01

    The concept of an aqueous-based chemical analyzer for Martian surface materials has been demonstrated to be feasible. During the processes of analysis, design, breadboarding, and most importantly, testing, it has become quite apparent that there are many challenges in implementing such a system. Nonetheless, excellent progress has been made and a number of problems which arose have been solved. The ability to conduct this work under a development environment which is separate and which precedes the project-level development has allowed us to find solutions to these implementation realities at low cost. If the instrument had been selected for a mission without this laboratory pre-project work, the costs of implementation would be much higher. In the four areas covered in Sections D, E, F, and G of this Final Report, outstanding progress has been made. There still remains the task of flight-qualifying certain of the components. This is traditionally done under the aegis of a Flight Project, but just as the concept development can be done at much lower cost when kept small and focused, so could the qualification program of critical parts benefit. We recommend, therefore, that NASA consider means of such qualifications and brass-boarding, in advance of final flight development. This is a generic recommendation, but hardware such as the Mars aqueous chemistry experiment (MACE) and other similarly-new concepts are particularly applicable. MACE now has wide versatility, in being able to reliably dispense both liquids and solids as chemical reagents to an entire suite of samples. The hardware and the experiment is much simpler than was developed for the Viking Biology instrument, yet can accomplish all the inorganic chemical measurements that the Viking desing was capable of. In addition, it is much more flexible and versatile to new experiment protocols (and reagents) than the Viking design ever could have been. MACE opens up the opportunity for many different scientific

  14. Mars Aqueous Chemistry Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Benton, Clark C.

    1995-12-01

    The concept of an aqueous-based chemical analyzer for Martian surface materials has been demonstrated to be feasible. During the processes of analysis, design, breadboarding, and most importantly, testing, it has become quite apparent that there are many challenges in implementing such a system. Nonetheless, excellent progress has been made and a number of problems which arose have been solved. The ability to conduct this work under a development environment which is separate and which precedes the project-level development has allowed us to find solutions to these implementation realities at low cost. If the instrument had been selected for a mission without this laboratory pre-project work, the costs of implementation would be much higher. In the four areas covered in Sections D, E, F, and G of this Final Report, outstanding progress has been made. There still remains the task of flight-qualifying certain of the components. This is traditionally done under the aegis of a Flight Project, but just as the concept development can be done at much lower cost when kept small and focused, so could the qualification program of critical parts benefit. We recommend, therefore, that NASA consider means of such qualifications and brass-boarding, in advance of final flight development. This is a generic recommendation, but hardware such as the Mars aqueous chemistry experiment (MACE) and other similarly-new concepts are particularly applicable. MACE now has wide versatility, in being able to reliably dispense both liquids and solids as chemical reagents to an entire suite of samples. The hardware and the experiment is much simpler than was developed for the Viking Biology instrument, yet can accomplish all the inorganic chemical measurements that the Viking design was capable of. In addition, it is much more flexible and versatile to new experiment protocols (and reagents) than the Viking design ever could have been. MACE opens up the opportunity for many different scientific

  15. Aqueous processing in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Mooiman, Michael B.; Sole, Kathryn C.

    1994-06-01

    Reviews of aqueous processing in JOM have traditionally focused on hydrometallurgical process routes. This article, however, addresses the application of aqueous processing in materials engineering and presents some promising developments that employ aqueous-based routes for the manufacture of high-tech components and specialty products. Such applications include producing metallic and ceramic powders; etching; surface modification by electroplating and electroless plating; manufacturing jewelry and intricate components by electroforming; and producing advanced ceramics, composites, and nanophase materials by sol-gel and biomimetic processing.

  16. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  17. Aqueous Alteration of Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ziegler, K.; Weisberg, M. K.; Gounelle, M.; Berger, E. L.; Le, L.; Ivanov, A.

    2014-01-01

    The Kaidun meteorite is different from all other meteorites [1], consisting largely of a mixture of “incompatible” types of meteoritic material – carbonaceous and enstatite chondrites, i.e. corre-sponding to the most oxidized and the most reduced samples of meteorite materials, including CI1, CM1-2, CV3, EH3-5, and EL3. In addition to these, minor amounts of ordinary and R chondrites are present. In addition, approximately half of the Kaidun lithologies are new materials not known as separate meteorites. Among these are aqueously altered enstatite chondrites [1], which are of considerable interest because they testify that not all reduced asteroids escaped late-stage oxidation, and hydrolysis, and also because hydrated poorly crystalline Si-Fe phase, which in turn is re-placed by serpentine (Figs 3-5). In the end the only indication of the original presence of metal is the re-sidual carbides. In other enstatite chondrite lithogies (of uncertain type) original silicates and metal have been thoroughly replaced by an assemblage of authi-genic plagioclase laths, calcite boxwork, and occasion-al residual grains of silica, Cr-rich troilite, ilmenite, and rare sulfides including heideite (Fig. 6). Fe and S have been largely leached from the rock (Fig. 4). Again the accessory phases are the first clue to the original character of the rock, which can be verified by O isotopes. It is fortunate that Kaidun displays every step of the alteration process.

  18. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  19. Densities of aqueous blended amines

    SciTech Connect

    Hsu, C.H.; Li, M.H.

    1997-05-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas and synthetic ammonia industries and petroleum chemical plants for the removal of CO{sub 2} and H{sub 2}S from gas streams. The densities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA) + water, DEA + 2-amino-2-methyl-1-propanol (AMP) + water, and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) + water were measured from 30 C to 80 C. A Redlich-Kister equation of the excess volume was applied to represent the density. Based on the available density data for five ternary systems: MEA + MDEA + H{sub 2}O, MEA + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. The density calculations show quite satisfactory results. The overall average absolute percent deviation is about 0.04% for a total of 686 data points.

  20. Viscosities of aqueous blended amines

    SciTech Connect

    Hsu, C.H.; Li, M.H.

    1997-07-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas, oil refineries, petroleum chemical plants, and synthetic ammonia industries for the removal of acidic components like CO{sub 2} and H{sub 2}S from gas streams. The viscosities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA), DEA + 2-amino-2-methyl-1-propanol (AMP), and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) were measured from 30 C to 80 C. A Redlich-Kister equation for the viscosity deviation was applied to represent the viscosity. On the basis of the available viscosity data for five ternary systems, MEA + MDEA + H{sub 2}O, MEA + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. For the viscosity calculation of the systems tested, the overall average absolute percent deviation is about 1.0% for a total of 499 data points.

  1. Nanostructured hybrid materials from aqueous polymer dispersions.

    PubMed

    Castelvetro, Valter; De Vita, Cinzia

    2004-05-20

    Organic-inorganic (O-I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of electronic and optoelectronic devices, in controlled release and bioencapsulation, as active substrates for chromatographic separation and catalysis, as nanofillers for composite films in packaging and coating, in nanowriting and nanolithography, etc. A synergistic combination or totally new properties with respect to the two components of the hybrid can arise from nanostructuration, achieved by surface modification of nanostructures, self-assembling or simply heterophase dispersion. In fact, owing to the extremely large total surface area associated with the resulting morphologies, the interfacial interactions can deeply modify the bulk properties of each component. A wide range of starting materials and of production processes have been studied in recent years for the controlled synthesis and characterization of hybrid nanostructures, from nanoparticle or lamellar dispersions to mesoporous materials obtained from templating nanoparticle dispersions in a continuous, e.g. ceramic precursor, matrix. This review is aimed at giving some basic definitions of what is intended as a hybrid (O-I) material and what are the main synthetic routes available. The various methods for preparing hybrid nanostructures and, among them, inorganic-organic or O-I core-shell nanoparticles, are critically analyzed and classified based on the reaction medium (aqueous, non-aqueous), and on the role it plays in directing the final morphology. Particular attention is devoted to aqueous systems and water-borne dispersions which, in addition to being environmentally more acceptable or even a

  2. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution. PMID:22894111

  3. Surface tension of low-temperature aqueous solutions

    SciTech Connect

    Horibe, A.; Fukusako, S.; Yamada, M.

    1996-03-01

    Measurements of the surface tension have been carried out to determine the effects of both temperature and concentration on the surface tension of aqueous solutions of sodium chloride, propylene glycol, and ethylene glycol. A differential capillary-rise method was employed for the measurements. The results show that the surface tension of the ethylene glycol solution and the propylene glycol solution increases as the concentration of the solution decreases, while for the sodium chloride solution the surface tension increases monotonically as the concentration increases. The surface tension of the liquids was found to be an almost-linear function of temperature from 20{degrees}C to just above the freezing temperature. Equations for the surface tension of the three binary aqueous solutions as a function of temperature and concentration are presented.

  4. Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath

    PubMed Central

    2012-01-01

    A conventional ultrasonic bath was used to examine the feasibility of forming aqueous spherical gold nanoparticles (GNPs) under atmospheric conditions. The effects of ultrasonic energy on the size and morphology of GNPs were also investigated. Highly monodispersed spherical GNPs were successfully synthesised by sodium citrate reduction in a conventional ultrasonic bath, without an additional heater or magnetic stirrer, as evidenced by ultraviolet–visible spectra and transmission electron microscopy. Ultrasonic energy was shown to be a key parameter for producing spherical GNPs of tunable sizes (20 to 50 nm). A proposed scheme for understanding the role of ultrasonic energy in the formation and growth of GNPs was discussed. The simple single-step method using just a conventional ultrasonic bath as demonstrated in this study offers new opportunities in the production of aqueous suspensions of monodispersed spherical GNPs. PMID:22839598

  5. Antiinflammatory activity of the aqueous leaf extract of Byrsocarpus coccineus.

    PubMed

    Akindele, A J; Adeyemi, O O

    2007-01-01

    The antiinflammatory effect of the aqueous leaf extract of Byrsocarpus coccineus was evaluated using the carrageenan and egg albumin induced rat paw edema, xylene induced mouse ear edema and formaldehyde induced arthritis inflammation tests. The extract administered orally at doses of 50, 100, 200 and 400 mg/kg b.w produced a significant (P<0.05) dose dependent inhibition of edema formation in all four methods used. The results obtained suggest that the aqueous leaf extract of B. coccineus is endowed with effective antiinflammatory activity mediated via either inhibition of phospholipase A(2) (PLA(2)) activity or cyclooxygenase cascade and by blocking the release of vasoactive substances (histamine, serotonin and kinins). These findings seem to justify the use of the plant in traditional African medicine in the treatment of inflammation, including arthritic conditions. PMID:17118572

  6. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution, II

    NASA Astrophysics Data System (ADS)

    Saita, Takao; Matumura, On

    1983-08-01

    It has been found that Na-PAA molecules in dilute aqueous solution are degraded by shearing stress, oxidation and photolysis during usual viscosity measurements with a capillary viscometer. The results of previous viscosity measurements, mainly about the mechanochemical degradation in air and in air-free conditions, showed that the degradation rate increases with increasing shear stress, and with decreasing polymer concentration. In this work, the effects of the molecular weight and temperature on the degradation rate are measured using a capillary viscometer in air, and the photodegradation of Na-PAA and PAA in aqueous solution irradiated with UV light are studied by viscosity measurements in air, and by UV absorption and ESR methods. The results show that the degradation of molecules is enhanced by an increase in the molecular weight and strongly accelerated by a rise in temperature and by UV irradiation, and is accompanied by free-radical chain reactions.

  7. Aqueous humor cytokine profiling in patients with wet AMD

    PubMed Central

    Liu, Fang; Ding, Xiaoyan; Yang, Yu; Li, Jiaqing; Tang, Miao; Yuan, Miner; Hu, Andina; Zhan, Zongyi; Li, Zijing

    2016-01-01

    Purpose To investigate the chemokine expression profiles in the aqueous humor of wet age-related macular degeneration (wet AMD) patients and to correlate their levels with clinical findings. Methods Undiluted aqueous humor samples (100–200 μl) were obtained from 16 wet AMD eyes and 12 control eyes. Forty chemokines were measured using a multiplex method. A 6×6 mm area of the macular region centered on the fovea was examined using spectral domain optical coherence tomography (SD-OCT). Results The detection rates were 50% or more for 15 chemokines. Compared with the control group, the aqueous humor in wet AMD patients showed a significantly higher expression of CXCL10 (p=0.004), CCL14 (p=0.002), CXCL16 (p=0.013), CXCL7 (p=0.033), and CCL22 (p=0.037), while growth-related oncogene (GRO) was significantly decreased in the wet AMD patients (p=0.001). When compared with treatment-naïve patients, the recurrent group had significant upregulation of CXCL10 (p=0.012) and CCL22 (p=0.002). CXCL16 was positively correlated with lesion size, and CCL22 was higher in patients whose OCT images showed intraretinal fluid (IRF) or hyperreflective foci (HF). Conclusions Elevated levels of inflammation-related chemokines, including CXCL10, CCL14, CXCL16, CXCL7, and CCL22, in the aqueous humor of AMD patients may suggest a pathogenic role for inflammation. CXCL10 and CCL22 were more elevated in eyes with recurrent wet AMD than in treatment-naïve eyes. CXCL16 was positively correlated with lesion size. The increase in CCL22 was correlated with the presence of IRF or HF. These data may be of interest in the search for biomarkers associated with wet AMD and may potentially indicate different treatment strategies. PMID:27122966

  8. Tannin (Polyphenol) Stability in Aqueous Solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the chemical stability of tannins (polyphenolics) in soils is critical to understanding their biological activities and fate. We examined the stability of chemically defined tannins in aqueous solutions under conditions simulating natural and laboratory conditions. We evaluated tanni...

  9. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  10. Precipitation of neptunium dioxide from aqueous solution

    SciTech Connect

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  11. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    PubMed Central

    Sharifipour, Farideh; Idani, Esmaeil; Zamani, Mitra; Helmi, Toktam; Cheraghian, Bahman

    2013-01-01

    Purpose To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group) in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV) and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V). Results Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001) and mean arterial PO2 was 85.7±7.9, 184.6±46, and379.1±75.9 mmHg, respectively (P values <0.001). Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001). There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001). The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels. PMID:23943686

  12. Evaluation of aqueous preparations from herbal drugs.

    PubMed

    Vitková, Zuzana; Brázdovicová, Bronislava; Ralbovská, Katarína; Halenárová, Andrea

    2010-01-01

    The paper presents results obtained within analysis of aqueous preparations obtained from the herbal drugs, (APHD) which are available in pharmacy as mass produced drugs. In particular, the following drugs were analyzed: CYNAROFIT, L'ALIAFIT, Tinctura belladonnae, Tinctura gentianae, Tinctura chinae a Tinctura valerianae made by Calendula, j.s.c.--Slovakia and Tinctura valerianae made by IVAX-Czech republic. Tictura valerianae magistraliter was prepared in a laboratory. The APHDs were analyzed under the following aspects: amount of dry matter, density, index of refraction, pH value, content of ethanol, influence of the light on these parameters as well as the global appearance of samples. In parallel to that, the stability of samples Tinctura valerianae prepared by two different manufacturers and the samples of magistraliter preparations were compared. It was found that storing samples delivered by Calendula j.s.c. does not significantly influenced their stability neither in the light nor in the dark, kept at the temperature of 20-25 degrees C over the time interval of 6 months. All samples were in agreement with the norms of companies as well as with both Czechoslovak (CSL 4) and Slovak (SL 1) pharmacopoeias. Besides, the results obtained show that a kind of extraction methods (percolation, maceration) does not influence neither quality nor stability of the samples Tinctura valerianae. PMID:20210084

  13. Aqueous enzymatic oil extraction from seeds, fruits, and other oil-rich plant materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several methods have been developed to obtain oil from corn germ, oilseeds, and other oil-rich plant materials using aqueous enzymatic methods. Unlike traditional oil extraction methods, these new processes are performed without the use of presses and without organic solvents. Beginning with olive...

  14. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOEpatents

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  15. Aqueous foam toxicology evaluation and hazard review

    SciTech Connect

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  16. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  17. Aqueous Photochemistry of Glyoxylic Acid.

    PubMed

    Eugene, Alexis J; Xia, Sha-Sha; Guzman, Marcelo I

    2016-06-01

    Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging of photoproducts is studied by UV-visible and fluorescence spectroscopies to reveal that the optical properties are altered by the glyoxal produced. The optical properties display periodicity in the time domain of the UV-visible spectrum of chromophores with absorption enhancement (thermochromism) or loss (photobleaching) during nighttime and daytime cycles, respectively. During irradiation, excited state glyoxylic acid can undergo α-cleavage or participate in hydrogen abstractions. The use of (13)C nuclear magnetic resonance spectroscopy (NMR) analysis shows that glyoxal is an important intermediate produced during direct photolysis. Glyoxal quickly reaches a quasi-steady state as confirmed by UHPLC-MS analysis of its corresponding (E) and (Z) 2,4-dinitrophenylhydrazones. The homolytic cleavage of glyoxylic acid is proposed as a fundamental step for the production of glyoxal. Both carbon oxides, CO2(g) and CO(g) evolving to the gas-phase, are quantified by FTIR spectroscopy. Finally, formic acid, oxalic acid, and tartaric acid photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection and (1)H NMR spectroscopy. A reaction mechanism is proposed based on all experimental observations. PMID:27192089

  18. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    SciTech Connect

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  19. Fenton chemistry at aqueous interfaces

    PubMed Central

    Enami, Shinichi; Sakamoto, Yosuke; Colussi, Agustín J.

    2014-01-01

    In a fundamental process throughout nature, reduced iron unleashes the oxidative power of hydrogen peroxide into reactive intermediates. However, notwithstanding much work, the mechanism by which Fe2+ catalyzes H2O2 oxidations and the identity of the participating intermediates remain controversial. Here we report the prompt formation of O=FeIVCl3− and chloride-bridged di-iron O=FeIV·Cl·FeIICl4− and O=FeIV·Cl·FeIIICl5− ferryl species, in addition to FeIIICl4−, on the surface of aqueous FeCl2 microjets exposed to gaseous H2O2 or O3 beams for <50 μs. The unambiguous identification of such species in situ via online electrospray mass spectrometry let us investigate their individual dependences on Fe2+, H2O2, O3, and H+ concentrations, and their responses to tert-butanol (an ·OH scavenger) and DMSO (an O-atom acceptor) cosolutes. We found that (i) mass spectra are not affected by excess tert-butanol, i.e., the detected species are primary products whose formation does not involve ·OH radicals, and (ii) the di-iron ferryls, but not O=FeIVCl3−, can be fully quenched by DMSO under present conditions. We infer that interfacial Fe(H2O)n2+ ions react with H2O2 and O3 >103 times faster than Fe(H2O)62+ in bulk water via a process that favors inner-sphere two-electron O-atom over outer-sphere one-electron transfers. The higher reactivity of di-iron ferryls vs. O=FeIVCl3− as O-atom donors implicates the electronic coupling of mixed-valence iron centers in the weakening of the FeIV–O bond in poly-iron ferryl species. PMID:24379389

  20. Ion solvation in aqueous and non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Arslanargin, Ayse

    The thermodynamics of ion solvation is studied in both water and some organic solvents using computational and theoretical techniques. Free energy partitioning analysis is employed to explore the driving forces for ions interacting with the water liquid/vapor interface using optimized point charge models for the Na+ and I- ions and the extended simple point charge water model. The absolute hydration free energy is partitioned into cavity formation, attractive van der Waals, local electrostatic, and far-field electrostatic contributions. The bulk hydration free energy of the ions is computed first, followed by the free energy to insert the ions at the center of a water slab. Shifts of the ion free energies occur in the slab geometry are consistent with the extended simple point charge water model surface potential of the water liquid/vapor interface. Then the free energy profiles are examined for ion passage from the slab center to the dividing surface. The profiles show that, for the large chaotropic I- ion, the relatively flat total free energy profile results from the near cancellation of several large contributions. On the other hand, the small Na+ ion is repelled from the liquid/vapor interface mainly by the far field electrostatic term. The far-field electrostatic part of the free energy, largely due to the water liquid/vapor interface potential, has an important effect on ion distributions near the surface in the classical model. However, that the individual forms of the local and far-field electrostatic contributions are expected to be model dependent when comparing classical and quantum results. Non-aqueous solvents such as ethylene carbonate, and propylene carbonate are widely used as liquid electrolytes in electrochemical energy storage systems. The electrolyte structure affects the efficiency of the ion transport, and understanding the solvent structure is essential for battery performance enhancements. Free energy and enthalpy of solvation calculations

  1. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  2. ASRM process development in aqueous cleaning

    NASA Astrophysics Data System (ADS)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  3. In honour of N. Yngve Öhrn: surveying proton cancer therapy reactions with Öhrn's electron nuclear dynamics method. Aqueous clusters radiolysis and DNA-base damage by proton collisions

    NASA Astrophysics Data System (ADS)

    Mclaurin, Patrick M.; Privett, Austin J.; Stopera, Christopher; Grimes, Thomas V.; Perera, Ajith; Morales, Jorge A.

    2015-02-01

    Proton cancer therapy (PCT) utilises high-energy H+ projectiles to cure cancer. PCT healing arises from its DNA damage in cancerous cells, which is mostly inflicted by the products from PCT water radiolysis reactions. While clinically established, a complete microscopic understanding of PCT remains elusive. To help in the microscopic elucidation of PCT, Professor Öhrn's simplest-level electron nuclear dynamics (SLEND) method is herein applied to H+ + (H2O)3-4 and H+ + DNA-bases at ELab = 1.0 keV. These are two types of computationally feasible prototypes to study water radiolysis reactions and H+-induced DNA damage, respectively. SLEND is a time-dependent, variational, non-adiabatic and direct-dynamics method that adopts a nuclear classical-mechanics description and an electronic single-determinantal wavefunction. Additionally, our SLEND + effective-core-potential method is herein employed to simulate some computationally demanding PCT reactions. Due to these attributes, SLEND proves appropriate for the simulation of various types of PCT reactions accurately and feasibly. H+ + (H2O)3-4 simulations reveal two main processes: H+ projectile scattering and the simultaneous formation of H and OH fragments; the latter process is quantified through total integrals cross sections. H+ + DNA-base simulations reveal atoms and groups displacements, ring openings and base-to-proton electron transfers as predominant damage processes. The authors warmly dedicate this SLEND investigation in honour of Professor N. Yngve Öhrn on the occasion of his 80th birthday celebration during the 54th Sanibel Symposium in St. Simons' Island, Georgia, on February 16-21, 2014. Associate Professor Jorge A. Morales was a former chemistry PhD student under the mentorship of Professor Öhrn and Dr Ajith Perera took various quantum chemistry courses taught by Professor Öhrn during his chemistry PhD studies. Both Jorge and Ajith look back to those great times of their scientific formation under

  4. Preparation of thin ceramic films via an aqueous solution route

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  5. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  6. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  7. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  8. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  9. Aqueous Alteration on Mars. Chapter 23

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.

    2007-01-01

    Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the

  10. Anti-Inflammatory Activity of Aqueous Extract of Beta Vulgaris L.

    PubMed Central

    Jain, Swati; Garg, Vipin Kumar; Sharma, Pramod Kumar

    2011-01-01

    The present study deals with the investigation of phytochemically evaluated aqueous extract of leaves of Beta vulgaris for its anti-inflammatory activity. The anti-inflammatory activity was evaluated by carrageenan induced rat paw oedema method for acute inflammation and cotton pellet granuloma method for chronic inflammation. The standard drug used was indomethacin (10 mg/kg) for both the models. In both methods, aqueous extract at a dose level of 1000 mg/kg has shown significant activity which is comparable to that of the standard PMID:24826006

  11. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  12. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  13. Apparatus and methods for hydrocarbon extraction

    DOEpatents

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  14. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-10-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  15. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-05-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  16. Viscosity and density of aqueous solutions of hydrazine and phenylhydrazine as functions of temperature at atmospheric pressure

    SciTech Connect

    Safarov, M.M.; Kartavchenko, A.V.; Zaripova, M.A.

    1995-10-01

    Using the method of hydrostatic weighing and a capillary viscosimeter, we measured the density and viscosity of aqueous solutions of hydrazine and phenylhydrazine in the temperature range from 293 to 353 K and obtained an empirical equation.

  17. Synthesis and characterization of aqueous quantum dots for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Hui

    Quantum Dots (QDs) are semiconductor nanocrystals (1˜20 nm) exhibiting distinctive photoluminescence (PL) properties due to the quantum confinement effect. Having many advantages over organic dyes, such as broad excitation and resistance to photobleaching, QDs are widely used in bioapplications as one of most exciting nanobiotechnologies. To date, most commercial QDs are synthesized through the traditional organometallic method and contain toxic elements, such as cadmium, lead, mercury, arsenic, etc. The overall goal of this thesis study is to develop an aqueous synthesis method to produce nontoxic quantum dots with strong emission and good stability, suitable for biomedical imaging applications. Firstly, an aqueous, simple, environmentally friendly synthesis method was developed. With cadmium sulfide (CdS) QDs as an example system, various processing parameters and capping molecules were examined to improve the synthesis and optimize the PL properties. The obtained water soluble QDs exhibited ultra small size (˜5 nm), strong PL and good stability. Thereafter, using the aqueous method, the zinc sulfide (ZnS) QDs were synthesized with different capping molecules, i.e., 3-mercaptopropionic acid (MPA) and 3-(mercaptopropyl)trimethoxysilane (MPS). Especially, via a newly developed capping molecule replacement method, the present ZnS QDs exhibited bright blue emission with a quantum yield of 75% and more than 60 days lifetime in the ambient conditions. Two cytotoxicity tests with human endothelial cells verified the nontoxicity of the ZnS QDs by cell counting with Trypan blue staining and fluorescence assay with Alamar Blue. Taking advantage of the versatile surface chemistry, several strategies were explored to conjugate the water soluble QDs with biomolecules, i.e., antibody and streptavidin. Accordingly, the imaging of Salmonella t. cells and biotinylated microbeads has been successfully demonstrated. In addition, polyethylenimine (PEI)-QDs complex was formed and

  18. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kaji, Masao; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    To improve the thermal performance of high temperature generator of absorption chiller/heater, heat transfer characteristics of flow boiling of lithium bromide aqueous solution in the subcooled region were experimentally investigated. Experiments were made for water and lithium bromide aqueous solution flowing in a rectangular channel (5 mm × 20 mm cross section) with one side wall heated. Boiling onset quality of lithium bromide aqueous solution is greater than that of water. The heat transfer coefficient of lithium bromide aqueous solution is about a half of that of water under the same experimental conditions of inlet velocity and heat flux. The experimental data of heat transfer coefficient for water are compared with the empirical correlation of Thom et al.11) and a fairly good agreement is obtained. The predictive calculations by the method of Sekoguchi et al.12) are compared with the data for water and lithium bromide aqueous solution. Agreement between them is good for water, while the results for lithium bromide aqueous solution are not satisfactory.

  19. Antibacterial Efficacy of Aqueous Ozone in Root Canals Infected by Enterococcus faecalis

    PubMed Central

    Hubbezoglu, Ihsan; Zan, Recai; Tunc, Tutku; Sumer, Zeynep

    2014-01-01

    Background: In endodontics, the elimination of resistant bacteria such as Enterococcus faecalis plays an important role for treatment success in root canals. Therefore, new alternative irrigants (instead of sodium hypochlorite) have been researched to achieve ideal endodontic treatment. Objectives: The aim of the present study was to evaluate and to compare the antibacterial effect of aqueous ozone with different concentrations and techniques of application (manual and ultrasonic) against E. faecalis in human root canals. Patients and Methods: Eighty single-root mandibular premolar teeth were selected, prepared and sterilized. E. faecalis was incubated in the root canals and kept at 37°C for 24 h. The teeth were divided into four main groups each has 20 members: NaOCl (positive control) group; 8 ppm aqueous ozone group; 12 ppm aqueous ozone group; and 16 ppm aqueous ozone group. While half of the specimens were disinfected with aqueous ozone by manual technique, the other half was disinfected with the aqueous ozone by ultrasonic technique. Conventional irrigation technique was simultaneously applied with ultrasonic vibration that was produced by VDW.ULTRA device. The disinfection procedures were performed for 180 s to ensure standardization of all the working groups. Paper points (placed in the root canals before and after the disinfection procedures) were transferred to Eppendorf tubes containing 0.5 mL of brain heart infusion broth. Then, 50 μL of the suspension was inoculated onto broth agar media. Microbial colonies were counted, and the data were evaluated statistically using 2-way analysis of variance (ANOVA) and Tukey tests. Results: Although the antibacterial effect of 16 ppm aqueous ozone using a manual technique had an insufficient effect, its ultrasonic application technique resulted in complete disinfection in the root canals. Conclusions: The bactericidal activity of high concentration of aqueous ozone combined with ultrasonic application technique

  20. RUTHENIUM DECONTAMINATION METHOD

    DOEpatents

    Gresky, A.T.

    1960-07-19

    A liquid-liquid extraction method of separating uranium from fission products is given. A small amount of a low molecular weight ketone is added to an acidic aqueous solution containing neutron-irradiated uranium and its associated fission products. The resulting solution is digested and then contacted with an organic liquid that extracts uranium values. The purpose of the step of digesting the aqueous solution in the presence of the ketone is to suppress the extractability of ruthenium.

  1. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  2. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-01

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions. PMID:23435853

  3. Grinding and cooking dry-mill germ to optimize aqueous enzymatic oil extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The many recent dry grind plants that convert corn to ethanol are potential sources of substantial amounts of corn oil. This report describes an aqueous enzymatic extraction (AEE) method to separate oil from dry-mill corn germ (DMG). The method is an extension of AEE previously developed for wet...

  4. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  5. RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Elson, R.E.

    1959-07-14

    The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.

  6. Atomistic insights into aqueous corrosion of copper.

    SciTech Connect

    Jeon, B.; Sankaranarayanan, S. K. R. S.; van Duin, A. C. T.; Ramanathan, S.

    2011-06-21

    Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl{sup -} concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.

  7. [Aqueous Fingerprint of Printing and Dyeing Wastewater].

    PubMed

    Wang, Shi-feng; Wu, Jing; Cheng, Cheng; Yang, Lin; Zhao, Yu-fei; Lü, Qing; Fu, Xin-mei

    2015-12-01

    Aqueous fingerprint has an advantage to represent the organic components of water samples as compared to traditional parameters such as chemical oxygen demand (COD) and total organic carbon (TOC). Printing and dyeing wastewater is one of the major types of industrial wastewater in China. It is of huge volume and heavy pollution, containing large numbers of luminescent components and being difficult to be degraded. In this study the aqueous fingerprint of printing and dyeing wastewater was investigated with the fluorescent spectrometry. The experimental results showed that there existed two peaks in the aqueous fingerprint of the printing and dyeing wastewater, locating at the excitation/emission wavelength around 230/340 nm and 280/310 nm respectively. The intensity of the excitation/emission wavelength at 230/340 nm was higher than that of 280/310 nm. The locations and intensities of peaks varied within small range. The intensities of the two peaks linearly correlated with coefficient of 0.910 8 and slope of 1.506. The intensity ratio of Peak at 280/310 nm to Peak at 230/340 nm averagely was 0.777, ranging between 0.712 and 0.829. It was found that the aqueous fingerprints of sewage and aniline compounds were significantly different from that of the printing and dyeing wastewater, but the aqueous fingerprints of several types of widely-used dye were similar to that of the printing and dyeing wastewater. Thus dye may be the main luminescent components in the wastewater. The aqueous fingerprint can be used as a novel tool of early warning of waterbodies. PMID:26964226

  8. Hydrate-based heavy metal separation from aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  9. An aqueous route to organically functionalized silica diatom skeletons

    NASA Astrophysics Data System (ADS)

    Fowler, Christabel E.; Buchber, Catherine; Lebeau, Bénédicte; Patarin, Joël; Delacôte, Cyril; Walcarius, Alain

    2007-04-01

    Diatomaceous earth was functionalized by grafting organotrialkoxysilane precursors onto the surface of the porous silica cell walls of this biomineral. Vinyl- and mercapto-containing structures were prepared in aqueous media without disruption of the diatomic architecture. Successful grafting of the organic moieties was confirmed using solid state 29Si MAS NMR spectroscopy, and the presence of the intact diatom framework by scanning electron microscopy. The sorption properties of mercaptopropyl-functionalized diatoms towards heavy metals was studied by measuring the accessibility and diffusion rates of mercury(II) species to the binding sites (-SH) by the means of electrochemical methods.

  10. Non-aqueous electrolytes for lithium ion batteries

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  11. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  12. Stable Aqueous Dispersion of Exfoliated Graphene for Tribological Applications.

    PubMed

    Liang, Shuaishuai; Shen, Zhigang; Yi, Min; Liu, Lei; Cai, Chujiang; Zhang, Xiaojing; Ma, Shulin

    2016-02-01

    In this study, the directly exfoliated graphene prepared by a jet cavitation method was tested as additive in pure water toward tribological applications. Reductions of friction coefficient and wear volume up to 22.8% and 44.4% respectively were achieved by addition of the graphene flakes. The as-prepared aqueous graphene dispersions exhibited high stability against sedimentation, and concurrently maintained their tribological properties after deposited for 15 days. The improvement in lubricating and anti-wear performances can be attributed to the graphene network formed on the sliding surfaces during the test. PMID:27433609

  13. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  14. Far infrared spectra of metal complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Carr, C.; Goggin, P. L.

    Using F.t.i.r. and multiple acquisition methods, far i.r. spectra with fairly good S/N ratios can be obtained from aqueous solutions in about 4 hours. Spectra are presented for some concentrated ruthenium(III) chloride systems where the colour precludes Raman spectroscopy. To obtain spectra without interference from water or hydrated cations, quantitative subtraction techniques are employed for separate removal of each component. Results are presented for some indium(III) halide and gallium(III) bromide systems.

  15. Cytogenetic changes induced by aqueous ferrofluids in agricultural plants

    NASA Astrophysics Data System (ADS)

    Răcuciu, Mihaela; Creangă, Dorina

    2007-04-01

    In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 μL/L. The agricultural species ( Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.

  16. Multinuclear magnetic resonance studies on aqueous suspensions of synthetic saponites

    SciTech Connect

    Grandjean, J.; Robert, J.L.

    1997-03-01

    The structure at the liquid/solid interface of synthetic saponites is monitored by NMR methods. These results are compared with data obtained with a natural saponite. The mean orientation of interfacial water molecules is different for synthetic and natural saponites. Interaction of water molecules or counterions with the solid surface depends on the charge layer of the synthetic clays. Water/acetonitrile and sodium/tetrapropylammonium cation competitions have been studied. Significant changes of the orientation of interfacial water molecules and removal of sodium counterions are observed only with the lowest charged saponite. Aqueous suspensions of swelling clays find uses in many industrial applications including drilling fluids, suspending agents, and water treatment.

  17. Reductive dehalogenation of bromoform in aqueous solution.

    PubMed Central

    Betterton, E A; Arnold, R G; Kuhler, R J; Santo, G A

    1995-01-01

    The hybrid semiconducter-macrocycle catalyst TiO2-cobalt phthalocyanine promotes the solar photolysis of aqueous bromoform under anaerobic conditions. The major decomposition products are dibromoethane and HBr. Bromomethane and methane were produced only after prolonged photolysis (30 hr). Acetone, derived from added 2-propanol, was the only observed oxidation product. Preliminary experiments showed that electrolytic reduction of aqueous carbon tetrachloride at a vitamin B12-modified silver electrode produced the expected lower homologues but with surprisingly high yields of methane. PMID:8565919

  18. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  19. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  20. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique.

    PubMed

    Nasrabadi, M N; Mohammadi, A; Jalali, M

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required. PMID:19328700

  1. Dependences between the boiling point of binary aqueous-organic mixtures and their composition

    NASA Astrophysics Data System (ADS)

    Preobrazhenskii, M. P.; Rudakov, O. B.

    2015-01-01

    The optimum three-parametric regression basis set that reflects the properties of permutation symmetry and takes into account the specificity of isobars of aqueous-organic mixtures is constructed. The optimum algorithm for the calculation of the regression parameters of the boiling point isobars is proposed. The parameters are calculated for a series of systems. The accuracy of the method proposed for the regression description of the dependence of the boiling point of binary aqueous-organic mixtures on the composition is determined by empirical inaccuracies and is sufficient for the most part of practical applications. Methods for increasing the accuracy of the regression description of equilibrium homogeneous systems are formulated.

  2. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R. Braşoveanu, Mirela Iacob, Nicuşor

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  3. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  4. Immersion freezing of aqueous suspensions of K-feldspar

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Leisner, Thomas

    2014-05-01

    Recent laboratory measurements showed an increased ice nucleation ability of Kalium-rich feldspar particles in the immersion freezing mode [1]. It was suggested that the proportion of K-feldspar in atmospherically relevant ice nuclei is related to their ice nucleation ability. The importance of K-feldspar is further supported by the field measurements, indicating that it can make a mass fraction of up to 24% in Asian and African mineral dusts [2]. In this contribution we present results of immersion freezing experiments with monodisperse droplets of aqueous suspensions of K-feldspar on a cold stage. We show that the ice nucleation activity strongly depends on i) the particle size distribution (in particular the ice nucleation properties of submicron feldspar particles) ii) the weight concentration of the particles in the aqueous suspension and thus on the total particle surface immersed into the droplets and iii) the age of the particles in an aqueous environment. Further a comparison of different K-feldspars is presented indicating that the origin and the processing methods have a significant impact on the IN activity. The mineralogical composition of feldspar samples is analyzed by means of Raman spectroscopy and a quantification of the particle surface is carried out with environmental scanning electron microscopy (ESEM). The results of freezing experiments are interpreted within the concept of ice nucleation active surface site (INAS) density, which allows a comparison with data obtained with different experimental methods (IN counters, expansion chambers, etc.) 1. Atkinson, J.D., et al., The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 2013. 498(7454): p. 355-358. 2. Nickovic, S., et al., Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmospheric Chemistry and Physics, 2012. 12(2): p. 845-855.

  5. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  6. PHOTOREACTION OF VALEROPHENONE IN AQUEOUS SOLUTION

    EPA Science Inventory

    Kinetics and products of the photoreaction of the phenyl ketone valerophenone were investigated as a function of temperature, pH, and wavelength in aqueous solution. Under these conditions (<10-4M), the photoreactions are pseudo-first-order with respect to valerophenone concentra...

  7. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  8. ACUTE TOXICITY OF AQUEOUS AND CHIRNONOMUS DECORUS

    EPA Science Inventory

    Fourth instar larvae of the midge, Chironomus decorus, were exposed copper in water and copper in food and substrate (bound forms). opper present in aqueous forms was more toxic than when it was present in bound forms. he relationship between copper in water and copper in midges ...

  9. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  10. Novel aqueous aluminum/sulfur batteries

    SciTech Connect

    Licht, S.; Peramunage, D. )

    1993-01-01

    Aluminum sulfur batteries based on concentrated polysulfide catholytes and an alkaline aluminum anode are introduced and investigated. The new battery is expressed by aluminum oxidation and aqueous sulfur reduction for an overall battery discharge consisting of 2Al + S[sub 4][sup 2[minus

  11. PHOTOCHEMISTRY IN AQUEOUS SURFACE LAYERS: 1-NAPHTHOL

    EPA Science Inventory

    1-Naphthol was reactive toward direct photolysis in buffered aqueous solutions (at pH 7, halflife in sunlight was about 90 min) and in cyclohexane (halflife about 15 min). The reaction rate in water increased with pH. The mechanisms of the principal photolysis pathways in both so...

  12. Water & Aqueous Solutions. Final Progress Report

    SciTech Connect

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING

    EPA Science Inventory

    The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. Bosch has succeeded in eliminating all their CFC-113 use and so f...

  14. REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING

    EPA Science Inventory

    The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. osch has succeeded in eliminating all their CFC-113 use and so far...

  15. AQUEOUS RELAXATION REAGENTS IN NITROGEN-15 NMR

    EPA Science Inventory

    Electron-nuclear relaxation times T(1)supe's for 15N and 13C in natural abundance are measured for a series of amines in aqueous solution using Gd(III) complexes of a series of polyaminocarboxylate ligands as paramagnetic relaxation reagents (PARRs). The PARRs are classified by t...

  16. AQUEOUS CLEANING OF PRINTED CIRCUIT BOARD STENCILS

    EPA Science Inventory

    The USEPA through NRMRL has partnered with the California Dept. of Toxic Substance Control under an ETV Pilot Project to verigy polllution prevention, recycling and waste treatment technologies. One of the projects selected for verification was the ultrasonic aqueous cleaning tec...

  17. Heat capacity of alkanolamine aqueous solutions

    SciTech Connect

    Chiu, L.F.; Li, M.H.

    1999-12-01

    Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to represent the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.

  18. The molecular velocity of sound. [aqueous solutions

    NASA Technical Reports Server (NTRS)

    Auslaender, D.; Onitiu, L.

    1974-01-01

    The molecular velocity of sound was calculated according to Rao's formula and the temperature and concentration dependences of this value were studied in aqueous solutions of alkali and alkaline-earth halides. Study of relative association brought to light characteristic effects of ions. The variation of the relative association can be explained by a breaking of hydrogen bonds by ions and thermal agitation.

  19. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  20. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.