Science.gov

Sample records for aqueous nitrate plutonium

  1. Aqueous nitrate flowsheet optimization and enhancement using the ATLAS facility

    SciTech Connect

    Schreiber, S.B.; Punjak, W.A.; Yarbro, S.L.

    1993-08-01

    The Advanced Testing Line for Actinide Separations (ATLAS) is a pilot plant of all aqueous nitrate plutonium recovery and purification operations within the Los Alamos Plutonium Facility. The main unit operations include dissolution, anion exchange, precipitations, evaporation, calcination, and waste stream polishing. In the current political environment, the emphasis has been redirected from the traditional goal of recovering a pure plutonium product to that of generating ``clean`` effluents while placing the plutonium into a form suitable for long term storage. The ATLAS facility is uniquely suited to fulfill this new role in the development and demonstration of new or revisited technologies. This report summarizes recent work in equipment improvements to the batch dissolver, an evaluation of homogeneous hydroxide precipitations, a demonstration of nitric acid recycle, and the preparation of neptunium and plutonium standards.

  2. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  3. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  4. Benchmark Evaluation of Plutonium Nitrate Solution Arrays

    SciTech Connect

    M. A. Marshall; J. D. Bess

    2011-09-01

    In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter perturbation methods. It was found that uncertainty in the impurities in the polyethylene bottles, reflector position, bottle outer diameter, and critical array spacing had the largest effect. The total uncertainty ranged from 0.00651 to 0.00920 ?keff. Evaluation methods and results will be presented and discussed in greater detail in the full paper.

  5. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  6. Exclusion of Nitrate from Frozen Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Marrocco, H. A.; Michelsen, R. R.

    2013-12-01

    Reactions occurring at the surface of ice, sea ice, and snow in Earth's cryosphere have an impact on the composition of the overlying atmosphere. In order to elucidate reaction mechanisms and model their contributions to atmospheric processes, the morphology of frozen aqueous surfaces and amounts of reactants contained therein must be determined. To this end, the exclusion of nitrate ions to the surface of frozen aqueous solutions has been studied by attenuated total reflection infrared spectroscopy (ATR-IR). In this technique the near-surface region of the frozen films are interrogated to a depth of a few hundred nanometers from the film-crystal interface. Aqueous solutions (0.001 to 0.01 M) of sodium nitrate (NaNO3), magnesium nitrate (Mg(NO3)2), and nitric acid (HNO3) were quickly frozen on the germanium ATR crystal and observed at a constant temperature of about -18C. In addition to ice and the solutes, liquid water in varying amounts was observed in the spectra. The amount of nitrate in the surface liquid is three to four orders of magnitude higher than in the unfrozen solution. While all the nitrate salts exhibit exclusion to the unfrozen surface, the dynamics are different for different counter-ions. Results are compared to freezing point depression data and the predictions of equilibrium thermodynamics.

  7. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  8. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  9. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A. (Knoxville, TN)

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  10. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  11. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.4 in slab geometry

    SciTech Connect

    Pohl, B.A.; Keeton, S.C.

    1997-09-01

    R. C. Lloyd of PNL has completed and published a series of critical experiments with mixed plutonium- uranium nitrate solutions (Reference 1). This series of critical experiments was part of an extensive program jointly sponsored by the U. S. Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and was carried out in the mid-1980`s. The experiments evaluated here (published as Report PNL-6327) were performed with mixed plutonium- uranium nitrate solution in a variable thickness slab tank with two 106.7 cm square sides and a width that could be varied from 7.6 to 22.8 cm. The objective of these experiments was to obtain experimental data to permit the validation of computer codes for criticality calculations and of cross-section data to minimize the uncertainties inherent therein, so that facility safety, efficiency, and reliability could be enhanced. The concentrations of the solution were about 105, 293, and 435 g(Pu+U)/liter with a ratio of plutonium to total heavy metal (plutonium plus uranium) of about 0. 40 for all eight experiments. Four measurements were made with a water reflector, and four with no reflector. Following the publication of the initial PNL reports, considerable effort was devoted to an extensive reevaluation of this series of experiments by a collaboration of researchers from ORNL, PNL, and PNC (Reference 2). Their work resulted in a more accurate description of the ``as built`` hardware configuration and the materials specifications. For the evaluations in this report, the data published in Reference 2 by Smolen et al. is selected to supersede the original PNL report. Eight experiments have been evaluated and seven (063, 064, 071, 072, 074, 075, and 076) provide benchmark criticality data. Experiment 073 could not achieve criticality within vessel height limitations.

  12. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  13. Precipitation of nitrates and nitrites by solventing out from aqueous solutions

    SciTech Connect

    Ata, L.; Alfassi, Z.B.

    1986-01-01

    The separation of nitrates from nitrites and the separation of various nitrates and nitrites by solventing out from aqueous solution by three miscible organic solvents (MOS) were studied. The MOS's investigates were acetone, acetonitrile, and tetrahydrofuran.

  14. Criticality experiments with a mixed-oxide fuel pin array in plutonium-uranium nitrate solutions

    SciTech Connect

    Lloyd, R.C.; Smolen, G.R.; Matsumoto, T.

    1989-01-01

    A series of critical experiments was completed with an array of mixed-oxide (MOX) fuel pins surrounded by plutonium-uranium nitrate solutions. The experiments were performed under a joint Criticality Data Development Program between the US Department of Energy and the Power Reactor and Nuclear Fuel development Corporation of Japan. The critical experiments were performed in the Critical Mass Laboratory (CML) of the Pacific Northwest Laboratory (PNL). The objectives of these experiments are to provide criticality data for a heterogeneous system of fuel pins moderated with plutonium-uranium and to determine the effectiveness of soluble gadolinium as a neutron absorber for criticality control in optimizing the physical size of equipment. Experiments have been performed in a similar configuration; however, these new experiments provide criticality data for a tighter fuel lump spacing, where soluble neutron poisons are not as effective.

  15. Aqueous polymer-nitrate solution deposition of YBCO films

    NASA Astrophysics Data System (ADS)

    Patta, Y. R.; Wesolowski, D. E.; Cima, M. J.

    2009-02-01

    High critical current density YBa 2Cu 3O 7-x (YBCO) films were prepared by solution deposition of aqueous non-fluorine precursors. Non-fluorine polymer-assisted deposition (PAD) processes utilizing rheology modifiers and chelating agents were used to produce 50 nm films with a critical current density ( Jc) over 3 MA/cm 2 and 400 nm films with Jc > 1 MA/cm 2.Tc measurements indicated that films have Tc values near 90 K. The total heat treatment time to produce these high performance films was less than 4 h. Rheology modifiers such as polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) were used to increase the thickness of deposited films independent of the solution cation concentration. Chelating agents such as polyethylene glycol (PEG) and sucrose increased the barium ion solubility. Nitrate crystallization during deposition was controlled through rapid drying with vacuum and coating with hot solutions.

  16. Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution

    SciTech Connect

    Lloyd, R.C. ); Smolen, G.R. )

    1988-08-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

  17. Plutonium silicate alteration phases produced by aqueous corrosion of borosilicate glass.

    SciTech Connect

    Fortner, J. A.; Mertz, C. J.; Bakel, A. J.; Finch, R. J.; Chamerlain, D. B.

    1999-11-22

    Borosilicate glasses loaded with {approx}10 wt % plutonium were found to produce plutonium-silicate alteration phases upon aqueous corrosion under a range of conditions. The phases observed were generally rich in lanthanide (Ln) elements and were related to the lanthanide orthosilicate phases of the monoclinic Ln{sub 2}SiO{sub 5} type. The composition of the phases was variable regarding [Ln]/[Pu] ratio, depending upon type of corrosion test and on the location within the alteration layer. The formation of these phases likely has implications for the incorporation of plutonium into silicate alteration phases during corrosion of titanate ceramics, high-level waste glasses, and spent nuclear fuel.

  18. Effects of inhaled plutonium nitrate on bone and liver in dogs

    SciTech Connect

    Dagle, G.E.; Weller, R.E.; Watson, C.R.; Buschbom, R.L.

    1994-04-01

    The life-span biological effects of inhaled soluble, alpha-emitting radionuclides deposited in the skeleton and liver were studied in 5 groups of 20 beagles exposed to initial lung depositions ranging from 0.48 to 518 Bq/g of lung. Average plutonium amounts in the lungs decreased to approximately 1% of the final body deposition in dogs surviving 5 years or more; more than 90% of the final depositions accumulated in the liver and skeleton. The liver-to-skeletal ratio of deposited plutonium was 0.83. The incidence of bone tumors, primarily osteogenic sarcomas causing early mortality, at final group average skeletal depositions of 15.8, 2.1, and 0.5 Bq/g was, respectively, 85%, 50%, and 5%; there were no bone tumors in exposure groups with mean average depositions lower than 0.5 Bq/g. Elevated serum liver enzyme levels were observed in exposure groups down to 1.3 Bq/g. The incidence of liver tumors at final group average liver depositions of 6.9, 1.3, 0.2, and 0.1 Bq/g, was, respectively, 25%, 15%, 15%, and 15%; one hepatoma occurred among 40 control dogs. The risk of the liver cancer produced by inhaled plutonium nitrate was difficult to assess due to the competing risks of life shortening from lung and bone tumors.

  19. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  20. Plutonium (IV) complexation by nitrate in acid solutions of ionic strengths from 2 to 19 molal

    SciTech Connect

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.; Cisneros, M.A.; Smith, C.A.

    1997-09-01

    Titrations of Pu(IV) with HNO{sub 3} in a series of aqueous HClO{sub 4} solutions ranging in ionic strength from 2 to 19 molal were followed using absorption spectrophotometry. The Pu 5f-5f spectra in the visible and near IR range change with complex formation. At each ionic strength, a series of spectra were obtained by varying nitrate concentration. Each series was deconvoluted into spectra f Pu{sup 4+}(aq), Pu(NO{sub 3}){sup 3+} and Pu(NO{sub 3}){sub 2}{sup 2+} complexes, and simultaneously their formation constants were determined. When corrected for the incomplete dissociation of nitric acid, the ionic strength dependence of each formation constant can be described by two parameters, {beta}{sup 0} and {Delta}{var_epsilon} using the formulae of specific ion interaction theory. The difficulties with extending this analysis to higher nitrate coordination numbers are discussed.

  1. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G. (Los Alamos, NM); Blum, Thomas W. (Los Alamos, NM)

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  2. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  3. Synthesis and structures of plutonyl nitrate complexes: is plutonium heptavalent in PuO3(NO3)2(-) ?

    PubMed

    Maurice, Rmi; Renault, Eric; Gong, Yu; Rutkowski, Philip X; Gibson, John K

    2015-03-01

    Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuOx(NO3)y(-) resulted in the elimination of NO2 to produce PuOx+1(NO3)y-1(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, Pu(V)O2(NO3)2(-) and Pu(VI)O2(NO3)3(-), were produced from Pu(III)(NO3)4(-) and Pu(IV)(NO3)5(-), respectively, by the elimination of two NO2 molecules. CID of Pu(VI)O2(NO3)3(-) resulted in NO2 elimination to yield PuO3(NO3)2(-), in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of Pu(V)O2(NO3)2(-) and Pu(VI)O2(NO3)3(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO3(NO3)2(-) is essentially a plutonyl(VI) core, Pu(VI)O2(2+), coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spin-orbit free state of PuO3(NO3)2(-), the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)-O bonding configuration is favored, in which an oxygen radical is involved. PMID:25695878

  4. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    SciTech Connect

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-31

    Strong base, nitrate anion exchange (IX) is crucial to the purification of {sup 238}Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from {sup 238}Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain {sup 238}Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed.

  5. Extraction of trivalent rare-earth metal nitrates from concentrated aqueous salt solutions by triisoamyl phosphate

    SciTech Connect

    Pyartman, A.K.; Keskinov, V.A.; Puzikov, E.A.

    1995-01-01

    Equations are proposed for describing isotherms of extraction of trivalent rare earth metal nitrates from concentrated aqueous salt solutions by neat triisoamyl phosphate, which allow for variations in the activity coefficients of the components in organic phase over a wide range of its compositions. The phase extraction constants have been determined, with a hypothetical 1 mol kg{sup {minus}1} aqueous solution of a rare-earth metal nitrate and the state of pure components in organic phase with a mole fraction of 1.0 taken as standard.

  6. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  7. Ab initio investigation of the aqueous solvation of the nitrate ion.

    PubMed

    Pruitt, Spencer R; Brorsen, Kurt R; Gordon, Mark S

    2015-10-28

    The surface affinity of the nitrate ion in aqueous clusters is investigated with a variety of theoretical methods. A sampling of structures in which the nitrate ion is solvated by 32 water molecules is optimized using second order Møller-Plesset perturbation theory (MP2). Four of these MP2 optimized structures are used as starting points for fully ab initio molecular dynamics simulations at the dispersion corrected restricted Hartree-Fock (RHF-D) level of theory. The nitrate ion solvated by 16, 32, and 64 water molecules is also investigated with umbrella sampling molecular dynamics simulations using QM/MM methodology, where the nitrate ion is modeled with MP2 and the water molecules are described using either the non-empirical effective fragment potential (EFP) or the empirical TIP5P potential. The turning point between surface and interior solvation of the nitrate ion is predicted to lie around a cluster size of 64 water molecules. PMID:26412597

  8. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    SciTech Connect

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25/sup 0/C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations.

  9. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jacob W.; Lam, Royce K.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David; Saykally, Richard J.

    2015-08-01

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3- and NO2-. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  10. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  11. Radiolysis of hexavalent plutonium in solutions of uranyl nitrate containing fission product simulants

    NASA Astrophysics Data System (ADS)

    Rance, Peter J. W.; Zilberman, B. Ya.; Akopov, G. A.

    2000-07-01

    The effect of the inherent radioactivity on the chemical state of plutonium ions in solution was recognized very shortly after the first macroscopic amounts of plutonium became available and early studies were conducted as part of the Manhattan Project. However, the behavior of plutonium ions, in nitric acid especially, has been found to be somewhat complex, so much so that a relatively modern summary paper included the comment that, "The vast amount of work carried out in nitric acid solutions can not be adequately summarized. Suffice it to say results in these solutions are plagued with irreproducibility and induction periods" Needless to say, the presence of other ions in solution, as occurs when irradiated nuclear fuel is dissolved, further complicates matters. The purpose of the work described below was to add to the rather small amount of qualitative data available relating to the radiolytic behavior of plutonium in solutions of irradiated nuclear fuel.

  12. Kinetic studies of nitrate removal from aqueous solution using granular chitosan-Fe(III) complex.

    PubMed

    Hu, Qili; Chen, Nan; Feng, Chuanping; Zhang, Jing; Hu, Weiwu; Lv, Long

    2016-01-01

    In the present study, a granular chitosan-Fe(III) complex was prepared as a feasible adsorbent for the removal of nitrate from an aqueous solution. There was no significant change in terms of nitrate removal efficiency over a wide pH range of 3-11. Nitrate adsorption on the chitosan-Fe(III) complex followed the Langmuir-Freundlich isotherm model. In order to more accurately reflect adsorption and desorption behaviors at the solid/solution interface, kinetic model I and kinetic model II were proposed to simulate the interfacial process in a batch system. Nitrate adsorption on the chitosan-Fe(III) complex followed the pseudo-first-order kinetic model and kinetic model I. The proposed half-time could provide useful information for optimizing process design. Adsorption and desorption rate constants obtained from kinetic model I and kinetic model II were beneficial to understanding the interfacial process and the extent of adsorption reaction. Kinetic model I and kinetic model II implied that nitrate uptake exponentially approaches a limiting value. PMID:26942545

  13. 310 nm irradiation of atmospherically relevant concentrated aqueous nitrate solutions: nitrite production and quantum yields.

    PubMed

    Roca, Maryuri; Zahardis, James; Bone, Jason; El-Maazawi, Mohamed; Grassian, Vicki H

    2008-12-25

    The heterogeneous processing of atmospheric aerosols by reaction with nitrogen oxides results in the formation of particulate and adsorbed nitrates. The water content of these hygroscopic nitrate aerosols and consequently the nitrate ion concentration depend on relative humidity, which can impact the physicochemical properties of these aerosols. This report focuses on the 310 nm photolysis of aqueous sodium and calcium nitrate solutions at pH 4 over a wide concentration range of nitrate ion concentrations representative of atmospheric aerosols. In particular, the quantum yield (phi) of nitrite formation was measured and found to significantly decrease at high concentrations of nitrate for Ca(NO(3))(2). In particular, phi for Ca(NO(3))(2) was found to have a maximum value of (7.8 +/- 0.1) x 10(-3) for nitrate ion solution concentrations near one molal, with the smallest quantum yield for the highest concentration solution above 14 m nitrate ion, phi = (2.3 +/- 2.0) x 10(-4). The effect of the addition of the radical scavenger, formate, on the 310 nm photolysis of these solutions was also investigated and found to increase phi by a factor of 2 or more for both sodium and calcium nitrate solutions. In the presence of formate, Ca(NO(3))(2) solutions again showed a significant decrease in phi with increasing NO(3)(-) concentration: phi = (1.4 +/- 0.1) x 10(-2) at (1.0 +/- 0.1) x 10(-2) m NO(3)(-) compared to phi = (4.2 +/- 0.3) x 10(-3) at 14.9 +/- 0.1 m NO(3)(-). This decrease in phi was not observed in NaNO(3) solutions. The change in electronic structure, as evident by the more pronounced shift of the n-pi* absorption band away from actinic wavelengths with increasing concentration for Ca(NO(3))(2) compared to NaNO(3), is most likely the origin of the greater decrease in phi for Ca(NO(3))(2) compared to NaNO(3) at elevated NO(3)(-) concentrations. The role of nitrate photochemistry in atmospheric aerosols and the atmospheric implications of these concentration dependent quantum yields are discussed. PMID:19053540

  14. Structure Determination of Plutonium Oxide Precipitates Formed from Aqueous Plutonium IV and V Solutions and in the Presence of Goethite

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zavarin, M.; Zhao, P.; Begg, J.; Kersting, A. B.

    2012-12-01

    A series of aqueous Pu(IV) and Pu(V) batch sorption experiments with goethite (?-FeOOH) in a pH 8 0.5 buffer solution (5mM NaCl + 0.7 mM NaHCO3) at room temperature (25 C) were performed. Intrinsic Pu colloids were synthesized in alkaline solution (pH 8, 25 C) and acidic solution (0.1 M HNO3, ~80 C for 10-20 min), respectively, for comparison. Morphology, distribution and crystal structure of Pu oxide precipitates, as well as interaction between the Pu precipitates and goethite, were investigated using transmission electron microscopy (TEM). The Pu oxide precipitates formed from the sorption experiments consist of 3-5 nm primary crystalline particles (nanocrystals) irrespective of the initial form of Pu. The Pu oxide nanocrystals adopt two different crystal structures, either fcc PuO2 or bcc Pu4O7. The relative abundance of one form over the other depends on the initial form of Pu, Pu concentration, and the presence of goethite. For the high Pu concentration sorption cases (>9,000 nmol/m2 goethite), fcc PuO2 is the predominant phase occurring in both aqueous Pu(IV) and Pu(V) samples. In the Pu(IV) samples, the fcc PuO2 nanocrystals form mainly as a product of hydrolysis in solution. In the Pu(V) samples, the fcc PuO2 nanocrystals form by redox reactions dominantly occurring on goethite surface following the sorption of Pu(V). At lower Pu concentrations, the bcc Pu4O7 becomes dominant in the presence of goethite. The bcc Pu4O7 forms directly on the goethite surface as a 3-5 nm isolated nanocrystal in both Pu(IV) and Pu(V) samples and has specific crystallographic orientation relationships to goethite. Nucleation of the bcc Pu4O7 may occur by substitution of Pu(III) at the Fe(III) position on the goethite surface. In the absence of goethite, the intrinsic Pu colloids formed in alkaline solution (pH 8, 25 C) are also comprised of 3-5 nm fcc PuO2 nanocrystals. As for the intrinsic Pu colloids precipitated from the acidic solution (0.1 M HNO3) at an elevated temperature, their solution exhibits the classic green color attributed to colloidal Pu(IV)[1], but the constitutive fcc PuO2 nanocrystals are only 2-3 nm in diameter. The 2-3nm PuO2 nanocrystals can self-assemble to form 10 nm to 100 nm Pu colloidal aggregates that produce electron diffraction patterns that are indicative of much larger well ordered "single crystals" of PuO2. [1] Cleveland, J. M. The Chemistry of Plutonium; The American Nuclear Society: La Grange Park, Illinois, 1979. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  15. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    NASA Astrophysics Data System (ADS)

    Ganot, Yuval; Bar, Ilana

    2015-09-01

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO3), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν1(NO3-), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  16. Glancing-angle Raman study of nitrate and nitric acid at the air-aqueous interface

    NASA Astrophysics Data System (ADS)

    Wren, Sumi N.; Donaldson, D. J.

    2012-01-01

    Glancing-angle Raman spectra of aqueous KNO3 and HNO3 solutions were used to determine the degree of nitric acid dissociation, ?, in the bulk and in the surface region. Our results suggest that ? in the surface region is similar to that in the bulk and highlight the importance of water molecule availability to the dissociation process. Using the ?'s and the ?-symNO3- Raman intensities, we obtained an adsorption isotherm for NO3- to the surface region from which we calculated a Kads, of 0.19 0.03 L mol-1, implying that nitrate exhibits an almost neutral surface affinity.

  17. Anisole Nitration During Gamma-Irradiation of Aqueous Nitrite and Nitrate Solutions: Free Radical Versus Ionic Mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas D. Cullen

    2010-04-01

    The nitration of aromatic compounds in the condensed phase is of interest to nuclear waste treatment applications. This chapter discusses our investigation of radiolytic aromatic nitration mechanisms in the condensed phase toward understanding the nitration products created during nuclear fuel reprocessing. The nitration reactions of anisole, a model aromatic compound, were studied in ?-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. Neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Irradiation of neutral nitrite anisole solution resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the •NO2 radical.

  18. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  19. Method for recovering aluminum fluoride from fluorine-containing aqueous aluminum nitrate solutions

    SciTech Connect

    Ishimi, H.; Shimauchi, H.; Tanaka, C.

    1983-02-22

    In a process for converting UF/sub 6/ into UO/sub 2/, the UF/sub 6/ is brought into contact with an aqueous aluminum nitrate solution. The resultant product is solvent extracted with tributyl phosphate to remove uranyl nitrate. The raffinate has a fluorine/aluminum (F/Al) weight ratio within the range of from about 0.5 to about a sufficient quantity of hydrofluoric acid is added to T raffinate to minimize the solubility of aluminum fluoride (AlF/sub 3/) therein and thereby maximize the precipitation potential of AlF/sub 3/. Generally this occurs when sufficient hydrofluoric acid has been added to cause the F/Al weight ratio to be within the range of from about 1.8 to about 2.2. As a result of this treatment, the raffinate is divided into an uranium-containing aqueous solution and an AlF/sub 3/ precipitate which contains substantially no uranium.

  20. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  1. Anisole nitration during gamma-irradiation of aqueous nitrite and nitrate solutions: Free radical versus ionic mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas Cullen

    2010-04-01

    Radiolytic aromatic nitration mechanisms in the condensed phase are ubiquitous, and especially of interest in atmospheric aerosol chemistry, water treatment by advanced oxidation technologies, and nuclear fuel reprocessing. Here, the radiolytically-induced nitration reactions of anisole, the simplest aryl alkyl ether, were investigated in ?-irradiated acidic nitrate solution, and in neutral nitrate and nitrite solutions. The nitrated anisole product distribution was the same with and without radiation in acidic solution, although more products were formed as a result of irradiation. This suggests that the mechanism of nitration in acidic solution is nitronium ion- induced electrophilic aromatic substitution. The rate of production of nitrated products in neutral nitrate solution was much lower, although the distribution of isomers was similar to that expected for nitronium ion electrophilic nitration. In contrast, the product distribution in neutral nitrite solution approached a statistically random substitution pattern, suggesting a non-electrophilic free radical reaction involving •NO2 radical. When hydroxyl radical (•OH) was scavenged by varying the initial nitrite concentration, the concentration of nitrated products increased with increasing nitrite, indicating that the reaction was probably one of direct •NO2 radical addition. However, this latter mechanism will not be important in acidic solutions, such as those often encountered in atmospheric aerosols or ?-irradiated nuclear fuel reprocessing solutions, due to low amounts of produced •NO2 radical and the low reaction rate constants for the •NO2 radical with aromatic compounds.

  2. The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts.

    PubMed

    Richards-Henderson, Nicole K; Anderson, Crisand; Anastasio, Cort; Finlayson-Pitts, Barbara J

    2015-12-28

    The photochemistry of nitrate ions in bulk aqueous solution is well known, yet recent evidence suggests that the photolysis of nitrate may be more efficient at the air-water interface. Whether and how this surface enhancement is altered by the presence of different cations is not known. In the present studies, thin aqueous films of nitrate salts with different cations were deposited on the walls of a Teflon chamber and irradiated with 311 nm light at 298 K. The films were generated by nebulizing aqueous 0.5 M solutions of the nitrate salts and the generation of gas-phase NO2 was monitored with time. The nitrate salts fall into three groups based on their observed rate of NO2 formation (RNO2): (1) RbNO3 and KNO3, which readily produce NO2 (RNO2 > 3 ppb min(-1)), (2) Ca(NO3)2, which produces NO2 more slowly (RNO2 < 1 ppb min(-1)), and (3) Mg(NO3)2 and NaNO3, which lie between the other two groups. Neither differences in the UV-visible spectra of the nitrate salt solutions nor the results of bulk-phase photolysis studies could explain the differences in the rates of NO2 production between these three groups. These experimental results, combined with some insights from previous molecular dynamic simulations and vibrational sum frequency generation studies, show that cations may impact the concentration of nitrate ions in the interface region, thereby directly impacting the effective quantum yields for nitrate ions. PMID:26577172

  3. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction. PMID:26387324

  4. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  5. Extraction of rare-earth metal(III) nitrates by neutral organophosphorus compounds from concentrated aqueous salt solutions

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.

    1995-07-20

    Equations describing isotherms of extraction of rare-earth metal(III) nitrates by neutral organo-phosphorus compounds over a wide range of component concentrations in aqueous and organic phases have been proposed. Constants of phase extraction and empirical parameters characterizing the influence of organic phase composition on the activity coefficients of the components have been presented.

  6. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.5 in Annular Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete annular cylinder containing B{sub 4}C. Interior to the concrete insert was a stainless steel bottle containing plutonium-uranium solution. The concentration of the solution in the annular region was varied from 116 to 433 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  7. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property.

    PubMed

    Song, Wen; Gao, Baoyu; Xu, Xing; Wang, Fang; Xue, Nan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2016-03-01

    A novel adsorbent of magnetic amine-crosslinked biopolymer based corn stalk (MAB-CS) was synthesized and used for nitrate removal from aqueous solution. The characters and adsorption mechanisms of this bio-adsorbent were determined by using VSM, TGA, XRD, SEM, TEM, FT-IR and XPS, respectively. The results revealed that the saturated magnetization of MAB-CS reached 6.25emu/g. Meanwhile, the studies of various factors indicated that this novel magnetic bio-adsorbent performed well over a considerable wide pH range of 6.0∼9.0, and the presence of PO4(3-) and SO4(2-) would markedly decrease the nitrate removal efficiency. Furthermore, the nitrate adsorption by MAB-CS perfectly fitted the Langmuir isotherm model (R(2)=0.997-0.999) and pseudo second order kinetic model (R(2)=0.953-0.995). The calculated nitrate adsorption capacity of MAB-CS was 102.04mg/g at 318K by Langmuir model, and thermodynamic study showed that nitrate adsorption is an spontaneous endothermic process. The regeneration experiments indicated its merit of regeneration and stability with the recovery efficient of 118∼147%. By integrating the experimental results, it was found that the removal of nitrate was mainly via electrostatic attraction and ion exchange. And this novel bio-adsorbent prepared in this work could achieve effective removal of nitrate and rapid separation from effluents simultaneously. PMID:26561752

  8. Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces

    SciTech Connect

    Shaughnessy, Dawn A.; Nitsche, Heino; Booth, Corwin H.; Shuh, David K.; Waychunas, Glenn A.; Wilson, Richard E.; Cantrell, Kirk J.; Serne, R. Jeffrey

    2001-11-01

    The sorption of Pu(VI) and Pu(V) onto manganite (MnOOH) and Hausmannite (Mn3O4) was studied at pH 5. Manganite sorbed 21-24% from a 1x10-4 M plutonium solution and the hausmannite removed between 43-66% of the plutonium. The increased sorption by hausmannite results from its larger surface area (about twice that of manganite) plus a larger number of active surface sites. X-ray absorption near-edge structure (XANES) spectra taken at the Pu LIII edge were compared to standard spectra of plutonium in single oxidation states. Based on these spectra, it appears that both manganite and hausmannite reduce the higher valent plutonium species to Pu(IV). Between 53-59% of the plutonium was present as Pu(IV) in the manganite samples while 55-61% of the plutonium complexed to the hausmannite had also been reduced to Pu(IV). The exact mechanism behind this redox interaction between the plutonium and the manganese needs to be identified.

  9. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.5 in slab and cylindrical geometry

    SciTech Connect

    Lloyd, R.C.

    1986-12-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylindrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 112 to 332 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  10. A direct nitrogen-15 NMR study of praseodymium(III)-nitrate complex formation in aqueous solvent mixtures

    SciTech Connect

    Fratiello, A.; Kubo-Anderson, V.; Azimi, S.; Chavez, O.; Laghaei, F.; Perrigan, R.D. )

    1993-06-01

    A direct, low-temperature nitrogen-15([sup 15]N) NMR technique has been applied to the study of inner-shell complex formation between praseodymium(III) and nitrate ion in aqueous solvent mixtures. In water-acetone mixtures at [minus]95[degrees]C, ligand exchange is slow enough to permit the observation of [sup 15]N NMR signals for uncomplexed and coordinated nitrate ion, but satisfactory resolution is obtained only by the addition of Freon-12 to these systems for study at [minus]110 to [minus]115[degrees]C. Four coordinated nitrate signals are generally observed and a very small signal for an additional complex, or an isomer of one of the others, appears at the highest nitrate concentrations. Signals for the mono- and dinitrato complexes are unambiguously identified, but with the exception of the trinitrato complex, several possibilities exist for the remaining peaks. To overcome excessive viscosity signal broadening, measurements in methanol and ethanol are possible only with praseodymium trifluoromethanesulfonate (triflate). Coordinated nitrate signals in aqueous and anhydrous methanol are observed only for the mono- and dinitrato species, and signal areas indicate a maximum of two moles of nitrate per Pr(III) are complexes. A third signal is evident in the ethanol solution spectra, and the presence of this higher complex was confirmed by area measurement of the fraction of bound nitrate. The extent of complex formation in these solvent systems is attributed to differences in the dielectric constant. A comparison of the complexing tendencies of Pr(III) to other ions studied by this NMR method suggests that possibility of a coordination number change across the lanthanide series. Preliminary [sup 15]N NMR results for metal-ion complexes with the isothiocyanate ion are presented. 63 refs., 3 figs., 1 tab.

  11. Hydroxyl radical, sulfate radical and nitrate radical reactivity towards crown ethers in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wan, L. K.; Peng, J.; Lin, M. Z.; Muroya, Y.; Katsumura, Y.; Fu, H. Y.

    2012-05-01

    Reaction rate constants of crown ethers (12-crown-4, 15-crown-5, 18-crown-6) and their analogs 1,4-dioxane (6C2) with some important oxidative radicals, hydroxyl radical (rad OH), sulfate radical (SO4rad -) and nitrate radical (NO3rad ), were determined in various aqueous solutions by pulse radiolysis and laser photolysis techniques. The reaction rate constants for 6C2 and crown ethers with rad OH and SO4rad - increase with the number of hydrogen atoms in the ethers, indicating that the hydrogen-atom abstraction is a dominant reaction between crown ethers and these two radicals. The presence of cations in solution has negligible effect on the rate constants of crown ether towards rad OH and SO4rad -. However, for the NO3rad , the rate constants are not proportional to the number of hydrogen atoms in ethers, and 12-crown-4 (12C4) is the most reactive compared with other crown ethers. Except 12C4 and 6C2, the cations in the aqueous solution affect the reactivities of 15-crown-5 (15C5) and 18-crown-6 (18C6). The cations with high binding stability for crown ether would improve the reactivity of 15C5. For the studied crown ethers, the reaction rate constants of these oxidative radicals have the order rad OH>SO4rad ->NO3rad . Furthermore, the formation of radicals after the reaction of crown ethers with sulfate radical could be observed in the range of 260-280 nm using laser photolysis and pulse radiolysis. This is the first report on the kinetic behavior of crown ethers with NO3rad , and it would be helpful for the understanding of stability of crown ethers in the processing of spent nuclear fuel.

  12. Luminescence, absorption, and Stern-Volmer studies of cerium chloride and nitrate compounds in acidic and neutral aqueous, and non-aqueous solutions

    NASA Astrophysics Data System (ADS)

    Forcha, Derick; Brown, Kwame J.; Assefa, Zerihun

    2013-02-01

    Complexation of cerium chloride and nitrate in neutral and acidic aqueous solutions as well as in anhydrous alcohol solutions were investigated using emission, excitation, and absorption spectroscopic techniques. In aqueous solution cerium chloride shows a strong, and broad emission centering at 365 nm. The excitation spectra are observed at 266 and 296 nm with the shorter wavelength showing the highest intensity. Cerium chloride compound also strongly emits in methanol (MeOH), where the broad emission spectrum is red shifted by 10-375 nm. The excitation spectrum in MeOH shows bands at 255 and 309 nm, respectively with the longer wavelength band (at 309 nm) dominating. The relative intensities of these two excitation bands are reversed in protic aqueous solution. In contrast, solutions of cerium nitrate are only weakly luminescent in aqueous media, while the emission is totally quenched in MeOH solution. These observations indicate that the spectral profiles are largely influenced by the extent of inner-sphere coordination and the type of the dominant species in solutions. Both nitrate and chloride anions show enhanced inner-sphere coordination in MeOH when compared with that of the aqueous media. However, enhanced inner-sphere complexation of the NO3- ion quenches the emission, while the reverse effect is observed upon Cl- coordination. Stern-Volmer studies provide quenching constant, Ksv, value of 577 M-1. The calculated rate constant kr is 1.3 1010 M-1 s-1 indicating diffusion controlled bimolecular process as the major mode of interaction.

  13. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry. PMID:25271384

  14. Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate

    NASA Astrophysics Data System (ADS)

    Fallavena, Thuanny; Antonow, Muriel; Gonalves, Reinaldo Simes

    2006-11-01

    Different electrochemical methods were employed in order to confirm the ability of caffeine (1,3,7-trimethylxanthine) to inhibit the corrosion processes of copper in aqueous potassium nitrate solutions in the absence and in the presence of chloride. Some experiments were repeated in potassium perchlorate in order to compare the influence of the medium. The interaction between the organic compound and the electrode surface occurs independently of the electrode potential. However, maximum interaction was observed at 0.0 V (Ag/AgCl) in aerated solutions, and at -0.25 V (Ag/AgCl) in deaerated solutions. The presence of the organic compound adsorbed on the electrode surface was confirmed by comparing the voltammograms of copper electrode in the absence and presence of 1.5 mmol L -1 of dissolved caffeine. The same results were observed by comparing polarization curves in the absence and in the presence of caffeine. Anodic currents decrease noticeably in the presence of the organic compound. Chronoamperometric experiments were conclusive to prove the inhibitor capability of caffeine to decrease the corrosion dissolution processes of copper under anodic polarization.

  15. Aqueous atmospheric chemistry: formation of 2,4-dinitrophenol upon nitration of 2-nitrophenol and 4-nitrophenol in solution.

    PubMed

    Vione, Davide; Maurino, Valter; Minero, Claudio; Pelizzetti, Ezio

    2005-10-15

    Field studies have shown that the powerful phytotoxic agent 2,4-dinitrophenol is very likely to form in the atmospheric aqueous phase upon nitration of 2-nitrophenol or 4-nitrophenol. However, until now, the nitration pathway and the relative importance of the two mononitrophenols as sources of 2,4-dinitrophenol were not known. The present study shows that 2,4-dinitrophenol formation from mononitrophenols can take place upon photolysis and photooxidation of nitrite/nitrous acid (NO2-/HONO) and that nitrogen dioxide plays a key role in the process. A possible pathway might be the reaction between light-excited mononitrophenols (both 2- and 4-isomers) and nitrogen dioxide, in the presence of oxygen. As an alternative, nitration might involve *NO3 + *NO2. Possible sources of nitrogen dioxide in the atmospheric aqueous phase are dissolution from the gas phase and oxidation of NO2-. In the latter case, however, it is necessary that NO2- oxidation is faster than the oxidation of mononitrophenols. This would happen, for instance, in the presence of hematite under irradiation. Radiation absorption and scattering by hematite would also inhibit the direct photolysis of nitrophenols. The formation rate and the yield of 2,4-dinitrophenol are slightly higher when starting from 2-nitrophenol than those from 4-nitrophenol, but they are compensated by the higher concentration of 4-nitrophenol in the atmospheric aqueous phase. PMID:16295857

  16. Ion Exchange Automatic Elution System Used in the Full-Scale Aqueous Scrap Purification of Plutonium-238 Dioxide

    NASA Astrophysics Data System (ADS)

    Matonic, John H.; Teague, Jonathan G.; Spengler, Diane J.; Dinh, Peter

    2005-02-01

    The Aqueous Scrap Recovery process at Los Alamos is designed to produce pure Plutonium Oxide (238PuO2) from scrap or impure sources. The incoming 238PuO2 contains a significant amount of impurities that must be removed before it can be processed any further. One of the purification steps involves the ion exchange process. This process sorbs the putative [Pu(NO3)6]2- dianion onto an anion exchange resin (Reillex HPQ), while impurities are washed from the Pu sorbed resin. Most impurities in the solution do not sorb to the resin and are part of the effluent stream. During the wash cycle, 7 M of nitric acid is pumped through the resin column to wash the resin of unsorbed impurities. The solution collected (with impurities) is the wash stream. In some cases, an online gamma spectrophotometer is used to monitor the wash stream for 234U and 241Am, and ensures that a large percentage of these isotopes have washed through the column, indicating efficient separation from the plutonium. In the final step of the process, the Pu is released (desorbed) from the resin by pumping eluant through the column during the elution cycle. Typically, the eluant used to desorb the plutonium is 0.45 M HNO3. The focus of this presentation discusses an automated elution process that has been incorporated into the system used at Los Alamos in the event that the operators must vacate the laboratory in the case of an emergency. The automated elution process is triggered by temperature, pressure, and liquid level signals being monitored on both Ion Exchange columns. The automated system relies on the commercially available Lookout software to control each pump and valve in the system and is programmed to perform an automatic elution for a preset time if any of the operational limiting conditions are met.

  17. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  18. Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant.

    PubMed

    Wang, Shu; Lin, Kunning; Chen, Nengwang; Yuan, Dongxing; Ma, Jian

    2016-01-01

    Determination of nitrate in aqueous samples is an important analytical objective for environmental monitoring and assessment. Here we report the first automatic flow injection analysis (FIA) of nitrate (plus nitrite) using VCl3 as reductant instead of the well-known but toxic cadmium column for reducing nitrate to nitrite. The reduced nitrate plus the nitrite originally present in the sample react with the Griess reagent (sulfanilamide and N-1-naphthylethylenediamine dihydrochloride) under acidic condition. The resulting pink azo dye can be detected at 540nm. The Griess reagent and VCl3 are used as a single mixed reagent solution to simplify the system. The various parameters of the FIA procedure including reagent composition, temperature, volume of the injection loop, and flow rate were carefully investigated and optimized via univariate experimental design. Under the optimized conditions, the linear range and detection limit of this method are 0-100M (R(2)=0.9995) and 0.1M, respectively. The targeted analytical range can be easily extended to higher concentrations by selecting alternative detection wavelengths or increasing flow rate. The FIA system provides a sample throughput of 20h(-1), which is much higher than that of previously reported manual methods based on the same chemistry. National reference solutions and different kinds of aqueous samples were analyzed with our method as well as the cadmium column reduction method. The results from our method agree well with both the certified value and the results from the cadmium column reduction method (no significant difference with P=0.95). The spiked recovery varies from 89% to 108% for samples with different matrices, showing insignificant matrix interference in this method. PMID:26695325

  19. Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals.

    PubMed

    Liou, Ya Hsuan; Lin, Chin Jung; Weng, Shih Chi; Ou, Hsin Hung; Lo, Shang Lien

    2009-04-01

    In the case of the reduction of nitrate in groundwater, the problem is how to convert nitrate [N(+V)] selectively to nontoxic dinitrogen [N(O)] and not to completely reduced ammonia [N(-III)]. Unfortunately, near 100% of the total nitrogen in nitrate is reductively converted to ammonia using naked zerovalent iron (ZVI) thus far reported. In this study, deposition of noble metals (Pt, Pd, and Au) and Cu on iron surface to offer favorable pathways for nitrate reduction was fabricated using either the complete mixing orthe successive method with spontaneous redox reactions. The prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy/energy disperse X-ray spectroscopy, and electrochemical analysis. The formation of N2 from the reduction of nitrate was confirmed by residual gas analyzer coupled to a high vacuum system. Based on the experimental results, the ZVI deposited Pd and Cu closely is suggested to promote the abstraction of oxygen from NOx by adsorbed atomic hydrogen on the Cu surface, and enhance N2 formation on the Pd surface. An optimum N2 selectivity of approximately 30% obtained in the alkaline solution containing nitrate using 0.3 wt.% Pd-0.5 wt% Cu/Fe is evident. For groundwater treatment, iron deposited Pd and Cu could facilitate the development of a process requiring neither a massive addition of chemicals nor complex equipment. PMID:19452905

  20. An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions

    PubMed Central

    Campos, Inmaculada; Pascual, Lluis; Soto, Juan; Gil-Snchez, Luis; Martnez-Mez, Ramn

    2013-01-01

    An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni) encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH4)2SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate. PMID:24145916

  1. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex

    NASA Astrophysics Data System (ADS)

    Hu, Qili; Chen, Nan; Feng, Chuanping; Hu, WeiWu

    2015-08-01

    In the present study, In order to efficiently remove nitrate, granular chitosan-Fe3+ complex with high chemical stability and good environmental adaptation was synthesized through precipitation method and characterized using SEM, XRD, BET and FTIR. The nitrate adsorption performance was evaluated by batch experiments. The results indicated that granular chitosan-Fe3+ complex was an amorphous and mesoporous material. The BET specific surface area and average pore size were 8.98 m2 g-1 and 56.94 , respectively. The point of zero charge was obtained at pH 5. The maximum adsorption capacity reached 8.35 mg NO3--N g-1 based on Langmuir-Freundlich model. Moreover, no significant change in the nitrate removal efficiency was observed in the pH range of 3.0-10.0. The adverse influence of sulphate on nitrate removal was the most significant, followed by bicarbonate and fluoride, whereas chloride had slightly adverse effect. Adsorption process followed the pseudo-second-order kinetic model, and the experimental equilibrium data were fitted well with the Langmuir-Freundlich and D-R isotherm models. Thermodynamic parameters revealed that nitrate adsorption was a spontaneous and exothermic process. Granular chitosan-Fe3+ complex could be effectively regenerated by NaCl solution.

  2. Plutonium Chemistry in the UREX+ Separation Processes

    SciTech Connect

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  3. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    SciTech Connect

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.

  4. Nitrate-induced photodegradation of atenolol in aqueous solution: kinetics, toxicity and degradation pathways.

    PubMed

    Ji, Yuefei; Zeng, Chao; Ferronato, Corinne; Chovelon, Jean-Marc; Yang, Xi

    2012-07-01

    The extensive utilization of ?-blockers worldwide led to frequent detection in natural water. In this study the photolysis behavior of atenolol (ATL) and toxicity of its photodegradation products were investigated in the presence of nitrate ions. The results showed that ATL photodegradation followed pseudo-first-order kinetics upon simulated solar irradiation. The photodegradation was found to be dependent on nitrate concentration and increasing the nitrate from 0.5 mML(-1) to 10 mML(-1) led to the enhancement of rate constant from 0.00101 min(-1) to 0.00716 min(-1). Hydroxyl radical was determined to play a key role in the photolysis process by using isopropanol as molecular probe. Increasing the solution pH from 4.8 to 10.4, the photodegradation rate slightly decreased from 0.00246 min(-1) to 0.00195 min(-1), probably due to pH-dependent effect of nitrate-induced .OH formation. Bicarbonate decreased the photodegradation of ATL in the presence of nitrate ions mainly through pH effect, while humic substance inhibited the photodegradation via both attenuating light and competing radicals. Upon irradiation for 240 min, only 10% reduction of total organic carbon (TOC) can be achieved in spite of 72% transformation rate of ATL, implying a majority of ATL transformed into intermediate products rather than complete mineralization. The main photoproducts of ATL were identified by using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques and possible nitrate-induced photodegradation pathways were proposed. The toxicity of the phototransformation products was evaluated using aquatic species Daphnia magna, and the results revealed that photodegradation was an effective mechanism for ATL toxicity reduction in natural waters. PMID:22497785

  5. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.

    PubMed

    Fan, Xiaomeng; Guan, Xiaohong; Ma, Jun; Ai, Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased. PMID:19862914

  6. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  7. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

  8. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Simulations

    SciTech Connect

    Odoh, Samuel O.; Bylaska, Eric J.; De Jong, Wibe A.

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics and the first hydrolysis constants of Pu3+, Pu4+, PuO2+ and PuO22+ ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO22+ species is coordinated to 5 aquo ligands while the pentavalent PuO2+ complex is coordinated to 4 aquo ligands. The Pu3+ and Pu4+ ions are both coordinated to 8 water molecules. The first hydrolysis constants obtained for Pu3+ and PuO22+ are 6.65 and 5.70 respectively, all within 0.3 pH units of the experimental values (6.90 and 5.50 respectively). The hydrolysis constant of Pu4+, 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2+, 9.51, supports the experimental results of Bennett et al. (Radiochim. Act. 1992, 56, 15). A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  9. Concentration dependence of the structure of aqueous solutions of lutetium nitrate according to X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Grechin, O. V.; Trostin, V. N.

    2014-02-01

    Aqueous solutions of lutetium nitrate over a wide range of concentrations are studied by X-ray diffraction under standard temperature and pressure. The low-angle peaks in experimental scattering intensity curves are interpreted. It is shown that the structure of these solutions can be of two types. It is found that a saturated solution and solutions concentrated to a molar ratio of 1: 20 have a quasi-crystalline structure resulting from interionic interactions. It is determined that dilute solutions form a water-like structure characterized by a tetrahedral network of hydrogen bonds between the water molecules. It is found that low-angle peaks also appear in the intensity curves of dilute solutions; this proves that the so-called "long-range" order is preserved in these solutions. It is revealed that in all the studied systems, the contributions to the total scattering pattern that are responsible for the occurrence of pre-peaks are intercationic interactions.

  10. Measurements of Al(NO sub 3 ) sub 3 activities in aqueous nitrate solutions

    SciTech Connect

    Chaiko, D.J.; Fredrickson, D.R.; Difilippo, A.A.; Smidt, S.M.; Vandegrift, G.F. ); Tasker, I.R. )

    1992-01-01

    Aluminum nitrate activity coefficient obtained by vapor pressure osmometry are compared with activity coefficients derived from nitric acid extraction measurements using Bromley's correlation. This solvent extraction approach was possible because of the poor extraction of Al{sup 3+}(D{sub Al} {le} 10{sup {minus}3}) by the chosen solvents. The solvent compositions were 0.25M CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide) in tetrachloroethylene (TCE) and 0.25M CMPO with 0.75M tributyle phosphate (TBP) in TCE. In both approaches, nitric acid was used to supress the hydrolysis of Al{sup 3+}. At high ionic strengths, the two techniques yielded very similar activity coefficients for Al(NO{sub 3}){sub 3}. However, at intermediate and very low ionic strengths, the two procedures produced activity coefficients which differed considerably from each other. 2 figures, 3 tables, 18 references.

  11. Measurements of Al(NO{sub 3}){sub 3} activities in aqueous nitrate solutions

    SciTech Connect

    Chaiko, D.J.; Fredrickson, D.R.; Difilippo, A.A.; Smidt, S.M.; Vandegrift, G.F.; Tasker, I.R.

    1992-09-01

    Aluminum nitrate activity coefficient obtained by vapor pressure osmometry are compared with activity coefficients derived from nitric acid extraction measurements using Bromley`s correlation. This solvent extraction approach was possible because of the poor extraction of Al{sup 3+}(D{sub Al} {le} 10{sup {minus}3}) by the chosen solvents. The solvent compositions were 0.25M CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide) in tetrachloroethylene (TCE) and 0.25M CMPO with 0.75M tributyle phosphate (TBP) in TCE. In both approaches, nitric acid was used to supress the hydrolysis of Al{sup 3+}. At high ionic strengths, the two techniques yielded very similar activity coefficients for Al(NO{sub 3}){sub 3}. However, at intermediate and very low ionic strengths, the two procedures produced activity coefficients which differed considerably from each other. 2 figures, 3 tables, 18 references.

  12. A spectrophotometric study of Am(III) complexation with nitrate in aqueous solution at elevated temperatures.

    PubMed

    Tian, Guoxin; Shuh, David K

    2014-10-21

    The complexation of americium(iii) with nitrate was studied at temperatures from 10 to 85 C in 1 M HNO3-HClO4 by spectrophotometry. The 1?:?1 complex species, AmNO3(2+), was identified and the stability constants were calculated from the absorption spectra recorded for titrations at several temperatures. Specific ion interaction theory (SIT) was used for ionic strength corrections to obtain the stability constants of AmNO3(2+) at infinite dilution and variable temperatures. The absorption spectra of Am(iii) in diluted HClO4 were also reviewed, and the molar absorptivity of Am(iii) at around 503 nm and 813 nm was re-calibrated by titrations with standardized DTPA solutions to determine the concentration of Am(iii). PMID:24999760

  13. Studies on Nylon-66 membrane using aqueous solutions of potassium and lead nitrate salts as permeants

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Ram, Bali

    2015-03-01

    Measurements on hydrodynamic and electro-osmotic permeability of water and aqueous solutions of KNO3 and Pb(NO3)2 in the concentration (C) range of 10 -4 10^{-4} M to 10 -3 10^{-3} M are made across the Nylon-66 membrane. The data obtained are used to ascertain the form of transport equation using the theory of non-equilibrium thermodynamics. Conductance of membrane equilibrated with water and aqueous solutions are measured and the data are used to estimate phenomenological coefficients. These phenomenological coefficients are used to determine the average pore radius, the average number of pores and the membrane constant. Zeta potentials are evaluated using electro-osmotic permeability and membrane-permeant conductance data to understand the electrical nature of the membrane-permeant interface. It is observed that hydrodynamic permeability and electro-osmotic permeability depend linearly on the applied pressure difference and the potential difference, respectively.

  14. Kinetics and spectroscopy of the NO/sub 3/ radical in aqueous ceric nitrate-nitric acid solutions

    SciTech Connect

    Wine, P.H.; Mauldin, R.L. III; Thorn, R.P.

    1988-03-10

    A pulsed laser photolysis-long-path absorption apparatus has been employed to investigate the kinetics and spectroscopy of the NO/sub 3/ radical in aqueous nitric acid solution. NO/sub 3/ was prepared by photolysis of cerium ammonium nitrate, Ce(N-H/sub 4/)/sub 2/(NO/sub 3/)/sub 6/. Much lower NO/sub 3/ concentrations were employed than in all previous work on this well-studied photochemical system. Important new findings are (1) the NO/sub 3/(aq) extinction coefficient is considerably larger than previously thought, (2) the appearance of NO/sub 3/ following absorption of a laser photon occurs on a time scale that is fast compared to our 50-ns time resolution, and (3) low concentrations of NO/sub 3/ and other reactive species result in background NO/sub 3/ decay rates which are about an order of magnitude slower than any reported previously. New rate data are reported for the reaction of NO/sub 3/ with Ce(III) and for the reaction SO/sub 4//sup -/ + NO/sub 3//sup -/ ..-->.. NO/sub 3/ + SO/sub 4//sup 2 -/.

  15. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin. [Lewatit MP-500-FK; Pu/sup +/

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs.

  16. /sup 252/Cf-source-driven neutron noise measurements of subcriticality for a slab tank containing aqueous Pu-U nitrate

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.; Robinson, R.C.; Seino, H.

    1987-08-01

    In order to study nuclear criticality safety related to the development of fast breeder technology, /sup 252/Cf-source-driven neutron noise analysis measurements were performed with a Pu-U nitrate solution in a slab tank of various heights and thickness varying 11.43 cm to 19.05 cm. The results and conclusions of these experiments are (1) a capability to measure the subcriticality of a multiplying system of slab geometry to a k/sub eff/ as low as 0.7 was demonstrated, (2) calculated neutron multiplication factors agreed with those from the experiments within approx.0.02, and (3) the applicability of the method for plutonium solution systems was demonstrated. This paper describes measurements in which the height of the slab was varied for a fixed thickness and the thickness varied for a fixed height, which are the first applications of this measurement method to slab geometry.

  17. Heavy-metal-induced Inhibition of Aspergillus niger nitrate reductase: Applications for Rapid Contaminant Detection in Aqueous Samples

    SciTech Connect

    Apel, William Arnold; Aiken, Abigail Marie; Peyton, Brent Michael; Petersen, James N.

    2003-03-01

    Enzyme inhibition assays have the potential to rapidly screen and identify heavy metals in environmental samples. Inhibition of nitrate reductase (NR) was examined as a method for detecting toxic metals. The activity of NR (EC 1.6.6.2) from Aspergillus niger was assayed as a function of metal concentration in the presence of Cd2+, Cr3+, Cr6+, Cu2+, Ni2+, Pb2+, and Zn2+. NR exhibited sensitivity to these metals at concentrations below 10 µM. Various buffers were screened for their ability to protect NR activity from metal inhibition, and 3-(N-morpholino) propanesulfonic acid (MOPS) was selected as the buffering system for the NR assays as it exhibited the least interference with metal inhibition, thus providing increased assay sensitivity. The hypothesis that chelating agents could prevent the inhibition of NR activity by metal ions was also tested. Results indicated that 10 mM ethylenediaminetetraacetic acid (EDTA) could protect NR activity from inhibition by Cr3+, Cu2+, Cd2+, Ni2+, and Zn2+ at concentrations below 100 µM, but that the EDTA had no effect on NR inhibition by Cr6+. An amount of 10 mM nitrilotriacetic acid (NTA) prevented NR inhibition by Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+ at metal concentrations below 100 µM. However, 10 mM NTA was unable to protect the enzyme from inhibition by either Cr3+ or Cr6+. These results indicated that through specific metal chelation, a NR-based method for individually quantifying Cr3+ and Cr6+ species in aqueous solutions could be developed. The ability to restore activity to NR which been previously inhibited by exposure to 100 µM Pb2+, Cd2+, Zn2+, Cu2+, and Cr3+ was explored to determine whether NR activity could be recovered by EDTA additions for use in consecutive metal inhibition assays. The results showed NR activity could not be regained after exposure to Cr3+ or Cu2+, but did partially recover activity after Cd2+, Pb2+, and Zn2+ exposure.

  18. Chemical Reactivity of alpha-Pinene-derived Products in the Aqueous Phase: Implications on the Fate of Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Rindelaub, J. D.; Hostetler, M. A.; Lipton, M. A.; Shepson, P. B.

    2014-12-01

    The production of organic nitrates has significant atmospheric importance due to the impact on regional air quality by influencing NOx lifetimes and ozone formation. Additionally, these low volatility compounds readily partition into the particle phase and are important contributors to secondary organic aerosol. Once in the aerosol phase, organic nitrates undergo further chemical reactions that govern their fate in the atmosphere and, consequently, their impact on air quality. Recent research indicates that the presence of water on aerosol particles has a major impact on the reactivity of organic nitrates and that condensed phase hydrolysis leads to the destruction of organic nitrate species, depending on structure. Despite this knowledge, the chemical mechanisms, products, product reactivity and volatility are still uncertain, negatively impacting our understanding of aerosol phase processing and the contribution to air quality. To further understand the atmospheric impact of aerosol phase hydrolysis, we analyzed both condensed phase hydrolysis reactions involving alpha-pinene-derived standards and alpha-pinene photochemical chamber reaction filter samples, using a suite of spectroscopic and mass spectrometric techniques. We were able to measure the pH-dependent hydrolysis rate constants for several types of organic nitrates and identify specific reaction products. The chemistry involved exhibits a strong dependence on pH, providing important mechanistic clues. The results of this study will significantly contribute to our knowledge of aerosol phase chemistry and the impact on regional air quality with respect to the fate of organic nitrate species.

  19. Solvent extraction system for plutonium colloids and other oxide nano-particles

    SciTech Connect

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  20. RISM-SCF-SEDD study on the symmetry breaking of carbonate and nitrate anions in aqueous solution.

    PubMed

    Vchirawongkwin, Viwat; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-08-19

    The planarity of carbonate and nitrate anions was investigated in the gas and solution phases by means of the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method. The computed optimized geometries and solvation structures are compared with the diffraction data. In the solution phase, the symmetry of carbonate anion is changed from D3h to C3v, whereas the planarity of nitrate anion is still retained. These are fully consistent with experimental knowledge. The classical electrostatic model was also utilized to elucidate the mechanism of the symmetry breaking. It should be emphasized that the symmetry breaking occurs not only by a specific solvent molecule attaching to the ion but by an overall electrostatic interaction between the infinite number of solvent molecules and the ion. PMID:20734470

  1. Structural characterization of zinc(II) chloride in aqueous solution and in the protic ionic liquid ethyl ammonium nitrate by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Angelo, Paola; Zitolo, Andrea; Ceccacci, Francesca; Caminiti, Ruggero; Aquilanti, Giuliana

    2011-10-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the species and structures existing in a series of ZnCl2-H2O-NaCl solutions with different chloride/zinc ratios and in a solution of ZnCl2 in the protic ionic liquid ethyl ammonium nitrate (EAN). The average coordination numbers and distances of zinc species were determined from the analysis of the EXAFS data. In aqueous solution the number of chloride ions tightly bounded to Zn2+ is significantly related to the chloride/zinc ratio, and no inner complex formation between Zn2+ and Cl- ions has been detected for low ZnCl2 concentration (0.1 and 0.2 M). Conversely, in the same concentration range (0.13 M) the ZnCl2 species do not dissociate in EAN and the Zn2+ first coordination shell has two chloride ions and is completed by two oxygen atoms of the nitrate anion. The results of this investigation show that notwithstanding the existence of similar characteristics between EAN and water, the solvation properties of the two solvents are markedly different.

  2. High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions

    NASA Astrophysics Data System (ADS)

    Vujković, Milica; Mitrić, Miodrag; Mentus, Slavko

    2015-08-01

    The nanodispersed NaTi2(PO4)3/C composite containing 20-25 wt.% of in-situ formed carbon, was synthesized by gel combustion procedure followed by a heat treatment at 650, 700 and 750 °C. The samples calcined at 700 and 750 °C displayed crystalline nasicon structure. They were subjected to the investigation of intercalation/deintercalation kinetics in aqueous NaNO3 and LiNO3 solutions, using cyclic voltammetry and galvanostatic charging/discharging measurements. As regards to the effect of electrolyte composition, the reactions were evidenced to be roughly twice faster in sodium nitrate than in lithium nitrate solution. Among the samples treated at 700 and 750 °C, better performance was evidenced for the sample treated at lower temperature. Coulombic capacity in NaNO3 solution at charging rate 1C amounted to ∼70 mAh g-1 and ∼55 mAh g-1 for the sample calcined at 700 and 750 °C, respectively, and displayed surprisingly slight dependence on charging rate up to even 100C.

  3. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    SciTech Connect

    Benson, J.M.; Barr, E.B.; Lundgren, D.L.

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl{sub 4} and plutonium compounds. Future exposures may occur during {open_quotes}cleanup{close_quotes} operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl{sub 4} by hamsters reduces uptake of {sup 239}Pu solubilized from lung, shunting the {sup 239}Pu to the skeleton.

  4. Early processes in positron and positronium chemistry: possible scavenging of epithermal e+ by nitrate ion in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Stepanov, Serge V.; Byakov, Vsevolod M.; Dupltre, Gilles; Zvezhinskiy, Dmitrii S.; Stepanov, Petr S.; Zaluzhnyi, Alexandr G.

    2015-06-01

    Positron ionization slowing down, formation of the positron track, reactions of e+ with track species and its interaction with a scavenger on a subpicosecond timescale, including the process of the positronium formation process are discussed. Interpretation of the positron annihilation lifetime data on positronium formation in aqueous solutions of NO-3 anions, known as efficient scavengers of the presolvated track electrons, suggests that these ions may also capture epithermal (presolvated) positrons as well.

  5. 17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  6. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  7. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  8. Removal of americium from aqueous nitrate solutions by sorption onto PC88A-impregnated macroporous polymeric beads.

    PubMed

    Pathak, S K; Tripathi, S C; Singh, K K; Mahtele, A K; Kumar, Manmohan; Gandhi, P M

    2014-08-15

    The removal of Am (III) ions from aqueous solutions was studied by solid-liquid extraction using indigenously synthesized Extractant Impregnated Macroporous Polymeric Beads (EIMPBs). These beads were prepared by an in situ phase inversion method using polyethersulfone (PES) as base polymer and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) as an extractant. The synthesized EIMPBs were characterized by FTIR, TGA and SEM techniques. The batch equilibration study using these beads for the uptake of Am (III) was carried out as a function of parameters, like pH, equilibration time, Am (III) concentration, etc. The blank polymeric beads, without PC88A, have shown negligible sorption of Am (III) under the experimental conditions. The experimental data on the sorption behavior of Am (III) on the polymeric beads fitted well in the pseudo-second-order kinetics model. The synthesized polymeric beads exhibited very good sorption capacity for Am (III) at pH 3. The reusability of the beads was also ascertained by repetitive sorption/desorption of Am (III) up to 10 cycles of operation, without any significant change in their sorption characteristics. PMID:24997262

  9. Effect of Y(III) distribution between aqueous nitrate and organic D2EHPA solutions on the Y(III) precipitation stripping using oxalic acid

    SciTech Connect

    Iglesias, M.; Antico, E.; Salvado, V.; Masana, A.; Valiente, M.

    1999-03-01

    The solvent extraction process of yttrium(III) from nitrate media by di(2-ethylhexyl) phosphoric acid (D2EHPA, represented as HA) has been studied as a first step to accomplish the homogeneous precipitation of yttrium oxalate from an organic metal loaded D2EHPA solution. The analysis of liquid-liquid distribution data at low metal concentrations determined YA{sub 3{center_dot}}2HA as the only metal organic species formed during the extraction, with a formation constant of log{beta} = 16.410 {+-} 0.055. A polymerization of such organic metal species was observed at high metal loading of the organic phase. A comparison of these results with previous studies carried out in chloride or perchlorate media reveals a strong influence of the aqueous medium on the metal species formed in the organic phase, affecting mostly the stoichiometry of such species. The homogeneous precipitation of yttrium as yttrium oxalate using oxalic acid has been carried out as direct recovery of the metal from the organic solution. The observed precipitation-stripping kinetics has been related to the formation of organic yttrium species. The acidity of the stripping solution and the oxalic acid concentration also affects the kinetics and the precipitation yield. The morphology and particle size distribution of the powders obtained support the mentioned influence of the precipitation-stripping kinetics.

  10. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  11. Polymerization of Pu(IV) in aqueous nitric acid solutions

    SciTech Connect

    Toth, L.M.; Friedman, H.A.; Osborne, M.M.

    1980-10-01

    The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to establish the influence of large UO{sub 2}(NO{sub 3}){sub 2} concentrations on the polymerization rates and, more generally, to review the influence of the major parameters on the polymer reaction. Typically, experiments have been performed at 50{sup 0}C and with 0.05 M Pu in nitric acid solutions that vary in acidity from 0.07 to 0.4 M. An induction period usually precedes the polymer growth stage during which time nucleation of primary hydrolysis products occurs. Uranyl nitrate retards the polymerization reaction by approximately 35% in spite of the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation, expressed as d(percent polymer)/dt, has been shown to depend on the total plutonium concentration in reactions where the Pu(IV) concentration remained constant; and it is therefore suggested that the polymer reaction rate is not first order with respect to the concentration of plutonium as was previously thought. It has been shown further that accurate acid determinations on stock reagents are essential in order to obtain reliable polymerization experiments. Satisfactory procedures for these analyses did not exist, so appropriate modifications to the iodate precipitation methods were developed. The most ideal plutonium reagent material has been shown to be crystalline Pu(IV) nitrate because it can be added directly to acid solutions without the occurrence of unintentional hydrolysis reactions.

  12. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  13. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  14. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3 ), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions. Environ Toxicol Chem 2015;34:2816-2823. 2015 SETAC. PMID:26094724

  15. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

  16. Modified titrimetric determination of plutonium using photometric end-point detection

    SciTech Connect

    Baughman, W.J.; Dahlby, J.W.

    1980-04-01

    A method used at LASL for the accurate and precise assay of plutonium metal was modified for the measurement of plutonium in plutonium oxides, nitrate solutions, and in other samples containing large quantities of plutonium in oxidized states higher than +3. In this modified method, the plutonium oxide or other sample is dissolved using the sealed-reflux dissolution method or other appropriate methods. Weighed aliquots, containing approximately 100 mg of plutonium, of the dissolved sample or plutonium nitrate solution are fumed to dryness with an HC1O/sub 4/-H/sub 2/SO/sub 4/ mixture. The dried residue is dissolved in dilute H/sub 2/SO/sub 4/, and the plutonium is reduced to plutonium (III) with zinc metal. The excess zinc metal is dissolved with HCl, and the solution is passed through a lead reductor column to ensure complete reduction of the plutonium to plutonium (III). The solution, with added ferroin indicator, is then titrated immediately with standardized ceric solution to a photometric end point. For the analysis of plutonium metal solutions, plutonium oxides, and nitrate solutions, the relative standard deviation are 0.06, 0.08, and 0.14%, respectively. Of the elements most likely to be found with the plutonium, only iron, neptunium, and uranium interfere. Small amounts of uranium and iron, which titrate quantitatively in the method, are determined by separate analytical methods, and suitable corrections are applied to the plutonium value. 4 tables, 4 figures.

  17. LABORATORY INVESTIGATIONS OF INTERACTIONS OF IRRADIATED O-XYLENE/NOX/SO2/AIR MIXTURES WITH AQUEOUS MEDIA CONTAINING SODIUM FLUORIDE, SODIUM TRIFLUOROACETATE, AMMONIUM NITRATE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    Laboratory experiments were conducted to investigate interactions between complex air mixtures and aqueous films containing hydrolysis products of hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) oxidation products. he experiments consisted of exposing aqueous films con...

  18. Plutonium aging

    SciTech Connect

    Olivas, J.D.

    1999-03-01

    The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

  19. Thermochemical nitrate reduction

    SciTech Connect

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

  20. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    SciTech Connect

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  1. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  2. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  3. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  4. Nitrate reduction

    SciTech Connect

    Dziewinski, J.J.; Marczak, S.

    2000-02-29

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals. Many industrial and agricultural processes result in nitrate wastes which would be harmful to the environment if released.

  5. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  6. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  7. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  8. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal. PMID:22738207

  9. Oxidation of Nitric Oxide in Aqueous Solution to Nitrite but not Nitrate: Comparison with Enzymatically Formed Nitric Oxide From L-Arginine

    NASA Astrophysics Data System (ADS)

    Ignarro, Louis J.; Fukuto, Jon M.; Griscavage, Jeannete M.; Rogers, Norma E.; Byrns, Russell E.

    1993-09-01

    Nitric oxide (NO) in oxygen-containing aqueous solution has a short half-life that is often attributed to a rapid oxidation to both NO^-_2 and NO^-_3. The chemical fate of NO in aqueous solution is often assumed to be the same as that in air, where NO is oxidized to NO_2 followed by dimerization to N_2O_4. Water then reacts with N_2O_4 to form both NO^-_2 and NO^-_3. We report here that NO in aqueous solution containing oxygen is oxidized primarily to NO^-_2 with little or no formation of NO^-_3. In the presence of oxyhemoglobin or oxymyoglobin, however, NO and NO^-_2 were oxidized completely to NO^-_3. Methemoglobin was inactive in this regard. The unpurified cytosolic fraction from rat cerebellum, which contains constitutive NO synthase activity, catalyzed the conversion of L-arginine primarily to NO^-_3 (NO^-_2/NO^-_3 ratio = 0.25). After chromatography on DEAE-Sephacel or affinity chromatography using 2',5'-ADP-Sepharose 4B, active fractions containing NO synthase activity catalyzed the conversion of L-arginine primarily to NO^-_2 (NO^-_2/NO^-_3 ratio = 5.6) or only to NO^-_2, respectively. Unpurified cytosol from activated rat alveolar macrophages catalyzed the conversion of L-arginine to NO^-_2 without formation of NO^-_3. Addition of 30 ?M oxyhemoglobin to all enzyme reaction mixtures resulted in the formation primarily of NO^-_3 (NO^-_2/NO^-_3 ratio = 0.09 to 0.20). Cyanide ion, which displaces NO^-_2 from its binding sites on oxyhemoglobin, inhibited the formation of NO^-_3, thereby allowing NO^-_2 to accumulate. These observations indicate clearly that the primary decomposition product of NO in aerobic aqueous solution is NO^-_2 and that further oxidation to NO^-_3 requires the presence of additional oxidizing species such as oxyhemoproteins.

  10. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  11. Evaluation of nitrate destruction methods

    SciTech Connect

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-03-30

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy`s Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream.

  12. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  13. Extraction of selected transplutonium(III) and lanthanide(III) ions by dihexyl-N,N-diethylcarbamoylmethylphosphonate from aqueous nitrate media

    SciTech Connect

    Horwitz, E.P.; Muscatello, A.C.; Kalina, D.G.; Kaplan, L.

    1981-05-01

    The extraction behavior of selected transplutonium(III) and lanthanide(III) ions from nitrate solution was studied using relatively pure dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP). The data obtained for Am(III) and Eu(III) using DHDECMP were compared with analogous measurements obtained with dibutyl butylphosphonate (DB(BP)) and in certain cases with dihexyl-N,N-diethylcarbamoylethylphosphonate (DHDECEP). It was found that both the nitrate and extractant concentration dependencies were third power. The K/sub d/'s for Am(III) and for Eu(III) measured from low acid LiNO/sub 3/ solutions were similar for DHDECMP, DHDECEP, and DB(BP), thus giving no evidence for any significant chelation effect for DHDECMP. Significant differences among DHDECMP, DHDECEP, and DB(BP) are found for the extraction of Am(III) and Eu(III) from 1 to 5 M HNO/sub 3/. These differences are explained by the ability of DHDECMP (and to a lesser extent, DHDECEP) to buffer itself against HNO/sub 3/ by protonation of the amide group. The K/sub d/'s for Am(III) through Fm(III) and for La(III) through Lu(III) measured from LiNO/sub 3/ and HNO/sub 3/ using DHDECMP show a definite tetrad effect when plotted as a function of Z. The K/sub d/'s for the lanthanides generally decrease with Z whereas the K/sub d/'s for the transplutonium elements change very little with Z.

  14. A direct carbon-13 and nitrogen-15 NMR study of europium(III) complexation-nitrate and europium(III)-isothiocyanate complexation in aqueous solvent mixtures

    SciTech Connect

    Fratiello, A.; Kubo-Anderson, V.; Bolanos, E.

    1996-04-01

    A direct low-temperature nuclear magnetic resonance spectroscopic study of europium(III)-nitrate contact ion-pairing has been completed, and preliminary results for europium(III)-isothiocyanate have been obtained. In water-acetone-Freon mixtures, at - 110{degrees}C to - 120{degrees}C, four {sup 15}N NMR signals are observed for coordinated nitrate ion. Area evaluations of the signals and their concentration dependence indicate the formation of Eu(NO{sub 3}){sup 2+}, Eu(NO{sub 3}){sup 1}{sub 2}{sup +}, and two higher complexes, possibly the tetra-, with either the penta- or hexanitrato. This correlates well with similar {sup 15}N NMR results obtained for Ce(III), Pr(III), Nd(III), and Sm(III). As a result of a higher dielectric constant, complex formation is significantly less in water-methanol mixtures, wherein only three complexes form with Eu(NO{sub 3}){sup 1}{sub 2}{sup +} dominating at the highest anion concentrations. Competitive complexing experiments in water-methanol also were made by {sup 35}Cl NMR chemical shift and linewidth measurements, as well as {sup 15}N NMR. Initial experiments with the Eu{sup 3+}-NCS{sup -} system show four coordinated anion signals, displaced from the bulk anion peak by about -250 ppm and -2,500 ppm in the {sup 13}C and {sup 15}N NMR spectra, respectively. Area evaluations are consistent with the presence of Eu(NCS){sup 2+} through Eu(NCS){sup 1}{sub 4}{sup -} in these solutions. A consideration of the chemical shifts identified the nitrogen atom as the site of binding in the NCS{sup -}. A discussion of these preliminary results, as well as those for several other metal-ions, will be presented.

  15. Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique.

    PubMed

    Meichtry, Jorge M; Levy, Ivana K; Mohamed, Hanan H; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2016-03-16

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) . PMID:26710930

  16. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  17. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  18. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  19. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  20. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry (Los Alamos, NM); Avens, Larry R. (Los Alamos, NM); Trujillo, Eddie A. (Espanola, NM)

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  1. Conversion of mixed plutonium-uranium oxides. [COPRECAL

    SciTech Connect

    Thomas, L.L.

    1980-04-01

    Coprocessing is among the several reprocessing schemes being considered to improve the proliferation resistance of the back end of the nuclear fuel cycle. Coconversion of mixed oxides has been developed but not demonstrated on a production scale. AGNS developed a preliminary conceptual design for a production scale facility to convert mixed plutonium-uranium nitrate to the mixed oxide.

  2. PLUTONIUM-239 AND AMERICIUM-241 UPTAKE BY PLANTS FROM SOIL

    EPA Science Inventory

    Alfalfa was grown in soil contaminated with plutonium-239 dioxide (239PuO2) at a concentration of 29.7 nanocuries per gram (nCi/g). In addition to alfalfa, radishes, wheat, rye, and tomatoes were grown in soils contaminated with americium-241 nitrate (241Am(NO3)3) at a concentrat...

  3. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  4. Plutonium recovery at the Los Alamos Scientific Laboratory

    SciTech Connect

    Christensen, E.L.

    1980-06-01

    Research programs have led to the adoption of procedures for all phases of plutonium recovery and purification. This report discusses some of the many procedures required to recover and purify the plutonium contained in the residues generated by LASL research, process development, and production activities. The report also discusses general plant facilities, the liquid and gaseous effluents, and solid waste management practices at the New Plutonium Facility, TA-55. Many of the processes or operations are merely steps in preparing the feed for one of the purification systems. For example, the plutonium is currently removed from noncombustibles in the pickling operation with an HNO/sub 3/ leach. The HNO/sub 3/ leach solution is the product of this operation and is sent to one of the nitrate anion-exchange systems for concentration and purification.

  5. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  6. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  7. Trawsfynydd Plutonium Estimate

    SciTech Connect

    Reid, Bruce D.; Gerlach, David C.; Heasler, Patrick G.; Livingston, J.

    2009-11-20

    Report serves to document an estimate of the cumulative plutonium production of the Trawsfynydd Unit II reactor (Traws II) over its operating life made using the Graphite Isotope Ratio Method (GIRM). The estimate of the plutonium production in Traws II provided in this report has been generated under blind conditions. In other words, the estimate ofthe Traws II plutonium production has been generated without the knowledge of the plutonium production declared by the reactor operator (Nuclear Electric). The objective of this report is to demonstrate that the GIRM can be employed to serve as an accurate tool to verify weapons materials production declarations.

  8. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  9. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  10. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  11. Plutonium storage phenomenology

    SciTech Connect

    Szempruch, R.

    1995-12-01

    Plutonium has been produced, handled, and stored at Department of Energy (DOE) facilities since the 1940s. Many changes have occurred during the last 40 years in the sources, production demands, and end uses of plutonium. These have resulted in corresponding changes in the isotopic composition as well as the chemical and physical forms of the processed and stored plutonium. Thousands of ordinary food pack tin cans have been used successfully for many years to handle and store plutonium. Other containers have been used with equal success. This paper addressees the exceptions to this satisfactory experience. To aid in understanding the challenges of handling plutonium for storage or immobilization the lessons learned from past storage experience and the necessary countermeasures to improve storage performance are discussed.

  12. Disposition of excess plutonium

    SciTech Connect

    Willett, L.R. )

    1993-01-01

    The projected availability of up to 50 tonnes, i.e., 50,000 kg, of excess plutonium from the U.S. nuclear weapons program by the year 2005 has captured the interest of nuclear power proponents as well as opponents. Proponents see an opportunity in the availability of additional fissile material that can further the development of advanced nuclear reactors while simultaneously consuming the excess plutonium. Opponents of nuclear power see an opportunity not only to ensure that the number of nuclear weapons in the world remains at currently projected reduced levels but also to dispose of the excess plutonium in a way that renders it permanently unusable. As both the custodian and manager of excess plutonium from retired nuclear weapons, the U.S. Department of Energy (DOE) is evaluating options for disposition of the excess plutonium. This paper reviews a number of available options for disposition and considers issues that must be addressed.

  13. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  14. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  15. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  16. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  17. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, Paul A. (Knoxville, TN); Stines, William B. (Knoxville, TN)

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  18. Evaluation of nitrate and nitrite destruction/separation technologies

    SciTech Connect

    Hobbs, D.T.

    1997-08-29

    This report describes and evaluates four types of nitrate and nitrite destruction and separation technologies that could be used to treat the aqueous, alkaline, nitrate-bearing mixed waste that is generated by the In-Tank Precipitation (ITP) process at the Savannah River Site (SRS). The technologies considered in this report include thermal, hydrothermal, chemical, and electrochemical technologies.

  19. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  20. Photochemical reduction of uranyl nitrate

    SciTech Connect

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  1. Effects of various moderators on the critical mass of plutonium

    SciTech Connect

    Doherty, A.L.

    1986-01-01

    The fissile material storage tanks in the Hanford Plutonium Critical Mass Laboratory (CML) in Richland, Washington, are presently being upgraded. During the design and planning phase of this modification, criticality analysis was necessary to compare potential moderator/absorber materials used as isolators between tanks. A parameter study was performed to assist in determining the appropriate moderator material to be used in the plutonium nitrate storage tank system in the mix room at the CML. Four moderator/absorber materials were identified as providing adequate isolation between the tanks.

  2. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  3. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  4. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  5. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    PubMed

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prssmann, Tim; Wang, Di; Kbel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.20.9?nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]?3?H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. PMID:25042621

  6. Plutonium: Requiem or reprieve

    SciTech Connect

    Pillay, K.K.S.

    1996-01-01

    Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

  7. Plutonium dissolution process

    DOEpatents

    Vest, Michael A. (Oak Park, IL); Fink, Samuel D. (Aiken, SC); Karraker, David G. (Aiken, SC); Moore, Edwin N. (Aiken, SC); Holcomb, H. Perry (North Augusta, SC)

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  8. Uranium and plutonium in hair as an indicator of body burden in mice of different age and sex

    SciTech Connect

    Bentley, K.W.; Wyatt, J.H.; Wilson, D.J.; Dixon, R.J.

    1982-06-01

    The uptake of uranium-235 and plutonium-239 in mice of different age and sex is examined in a controlled study. The animals received a single intraperitoneal dose of either plutonium-239 nitrate or uranium-235 nitrate at amounts of 0.2 mg/kg and 1.0 mg/kg respectively. Seven days after radioisotope administration, the animals were sacrificed and the uranium or plutonium content of the hair (including skin) was measured directly by delayed neutron analysis. Results show a higher retention of both uranium and plutonium in the whole body of young animals, but for specific whole body burden there was a marked increase with age for plutonium and only a slight increase for uranium. Sex did not appear to have any significant influence on the residual whole body or hair burdens. (JMT)

  9. Spectroscopy of plutonium-organic complexes

    SciTech Connect

    Richmann, M.K.; Reed, D.T.

    1995-12-31

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10{sup {minus}3}--10{sup {minus}7} M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes.

  10. Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide

    SciTech Connect

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2003-06-28

    Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution.

  11. COGEMA Experience in Uranous Nitrate Preparation

    SciTech Connect

    Tison, E.; Bretault, Ph.

    2006-07-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N{sub 2}H{sub 5}NO{sub 3}) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The yield of the operation and its simplicity were the main reasons for this choice. Nowadays, our catalytic hydrogenation process is used in all the commercial reprocessing plants worldwide: THORP at Sellafield, UP3 and UP2 800 at La Hague, and RRP at Rokkasho-Mura. In this process, uranyl nitrate is reduced to uranous nitrate by hydrogen in presence of a platinum based catalyst. Most of the plants implement the reaction in the same kind of reactor: 'co-current, up-flow and fixed-bed reactor'. For UP2 800 at La Hague, started in 1994, a new kind of reactor allowing a higher capacity has been developed. In this reactor, the catalyst bed is not fixed but circulating (fluidized bed). The aim of the paper is to describe both reactor technology implemented in La Hague (fixed bed and fluidized bed), to show their performance in terms of capacity and yield and to compare their operating and maintenance principles. (authors)

  12. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  13. Enzyme catalytic nitration of aromatic compounds.

    PubMed

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration. PMID:26002502

  14. Plutonium Disposition Now!

    SciTech Connect

    Buckner, M.R.

    1995-05-24

    A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000`s. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries.

  15. INTERCOMPARISON OF PLUTONIUM-239 MEASUREMENTS

    EPA Science Inventory

    In 1977 the U.S. Environmental Protection Agency distributed calibrated solutions of plutonium-239 to laboratories interested in participating in an intercomparison study of plutonium analysis. Participants were asked to perform a quantitative radioactivity analysis of the soluti...

  16. Tracing nitrate in watersheds

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Plants need nitrogen to grow, and nitrate is a common fertilizer ingredient, but high levels of nitrate contamination in drinking water sources can cause health problems. It is generally known that nitrogen flows through watersheds from upslope areas down to streams, but the relationships between upslope soil solution or groundwater nitrate concentrations and stream water nitrate levels—and the ways in which land use changes may alter this relationship—are not fully understood.

  17. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  18. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33 Section 181.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions...

  19. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  20. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  1. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  2. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  3. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  4. Plutonium-DTPA Model Application with USTUR Case 0269.

    PubMed

    Konzen, Kevin; Brey, Richard; Miller, Scott

    2016-01-01

    A plutonium-DTPA (Pu-DTPA) biokinetic model was introduced that had originated from the study of a plutonium-contaminated wound. This work evaluated the extension of the Pu-DTPA model to United States Transuranium and Uranium Registry (USTUR) Case 0269 involving an acute inhalation of a plutonium nitrate aerosol. Chelation was administered intermittently for the first 7 mo as Ca-EDTA, mostly through intravenous injection, with Ca-DTPA treatments administered approximately 2.5 y post intake. Urine and fecal bioassays were collected following intake for several years. Tissues were collected and analyzed for plutonium content approximately 38 y post intake. This work employed the Pu-DTPA model for predicting the urine and fecal bioassay and final tissue quantity at autopsy. The Pu-DTPA model was integrated with two separate plutonium systemic models (i.e., ICRP Publication 67 and its proposed modification). This work illustrated that the Pu-DTPA model was useful for predicting urine and fecal bioassay, including final tissue quantity, 38 y post intake. PMID:26606066

  5. Geochemical association of plutonium in the caithness environment

    NASA Astrophysics Data System (ADS)

    Cook, G. T.; Baxter, M. S.; Duncan, H. J.; Toole, J.; Malcolmson, R.

    1984-06-01

    Levels and geochemical associations of plutonium have been studied in soils and marine particulates from the immediate environment of Dounreay Nuclear Development Establishment (DNPDE), Caithness. The maximum plutonium deposition in the soil correspons to a level eleven times higher than the expected weapons-testing fallout value and represents a < 1% increment above the natural radionuclide activity of the soil. Sequential leaching of a range of samples using selective extractants has been employed to determine the geochemical asocciations of the plutonium. The extracted phases are classified as (i) readily available, (ii) exchangeable and specific adsorption sites, (iii) insoluble organic chelated complexes, (iv) sesquioxides, (v) residual. In general, it is found that > 98% of the plutonium is associated with fractions (iii) to (v), the majority being in fraction (iii). Marine particulate material which accumulates on the shoreline rocks and dries as a fine crust shows a rather similar leaching pattern. The off-shore sediment on the other hand has 20% approx. within fraction (ii), probably reflecting plutonium associated with carbonate material. Particle track detector analyses of the particulate material using Lexan polycarbonate and cellulose nitrate detector films reveals that 10-15% of the fissile nuclide content is concentrated as localised enrichments of < 20 ?m diameter.

  6. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  7. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    SciTech Connect

    Kyser, E.; King, W.; O'Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  8. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  9. Atomic spectrum of plutonium

    SciTech Connect

    Blaise, J.; Fred, M.; Gutmacher, R.G.

    1984-08-01

    This report contains plutonium wavelengths, energy level classifications, and other spectroscopic data accumulated over the past twenty years at Laboratoire Aime Cotton (LAC) Argonne National Laboratory (ANL), and Lawrence Livermore National Laboratory (LLNL). The primary purpose was term analysis: deriving the energy levels in terms of quantum numbers and electron configurations, and evaluating the Slater-Condon and other parameters from the levels.

  10. Collector for recovering gallium from weapons plutonium

    SciTech Connect

    Philip, C.V.; Anthony, R.G.; Chokkaram, S.

    1998-09-01

    Currently, the separation of gallium from weapons plutonium involves the use of aqueous processing using either solvent extraction of ion exchange. However, this process generates significant quantities of liquid radioactive wastes. A Thermally Induced Gallium Removal process, or TIGR, developed by researchers at Los Alamos National Laboratories, is a simpler alternative to aqueous processing. This research examined this process, and the behavior of gallium suboxide, a vapor that is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C during the TIGR process. Through experimental procedures, efforts were made to prevent the deposition of corrosive gallium onto furnace and vent surfaces. Experimental procedures included three options for gallium removal and collection: (1) collection of gallium suboxide through use of a cold finger; (2) collection by in situ air oxidation; and (3) collection of gallium on copper. Results conclude all three collection mechanisms are feasible. In addition, gallium trioxide exists in three crystalline forms, and each form was encountered during each experiment, and that each form will have a different reactivity.

  11. Recovery of plutonium from electrorefining anode heels at Savannah River

    SciTech Connect

    Gray, J H; Gray, L W; Karraker, D G

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control.

  12. Report of scouting study on precipitation of strontium, plutonium, and americium from Hanford complexant concentrate waste

    SciTech Connect

    Herting, D.L.

    1995-09-05

    A laboratory scouting test was conducted of precipitation methods for reducing the solubility of radionuclides in complexant concentrate (CC) waste solution. The results show that addition of strontium nitrate solution is effective in reducing the liquid phase activity of 90Sr (Strontium) in CC waste from tank 107-AN by 94% when the total strontium concentration is adjusted to 0.1 M. Addition of ferric nitrate solution effective in reducing the 241Am (Americium) activity in CC waste by 96% under the conditions described in the report. Ferric nitrate was also marginally effective in reducing the solubility of 239/240Pu (Plutonium) in CC waste

  13. NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN

    SciTech Connect

    Steimke, J.; Williams, M.; Steeper, T.; Leishear, R.

    2012-05-29

    Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin, nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same before the current treatment (759 ppm dry) and after treatment (745 ppm dry or {approx}248 ppm wet). Treatment of the second batch of resin (No.23408) was very successful. Chloride concentration decreased from 120,000 ppm dry to an average of 44 ppm dry or {approx}15ppm wet, which easily passes the 250 ppm wet criterion. Per guidance from HB Line Engineering, SRNL blended Batch 80302 resin with Batch P9059 resin which had been treated previously by ResinTech to remove chloride. The chloride concentrations for the two drums of Batch P9059 were 248 ppm dry ({approx}83 ppm wet) {+-}22.8% and 583 ppm dry ({approx}194 ppm wet) {+-} 11.8%. The blended resin was packaged in five gallon buckets.

  14. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    DOEpatents

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  15. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  16. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  17. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  18. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  19. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  20. 4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  1. Complexation of Plutonium (IV) With Sulfate At Variable Temperatures

    SciTech Connect

    Y. Xia; J.I. Friese; D.A> Moore; P.P. Bachelor; L. Rao

    2006-10-05

    The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO{sub 3} solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO{sub 4}{sup -} complexes, dominant in the aqueous phase, were calculated from the effect of [HSO{sub 4}{sup -}] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation.

  2. Lithium metal reduction of plutonium oxide to produce plutonium metal

    SciTech Connect

    Coops, M.S.

    1992-06-02

    This patent describes a method for production of plutonium metal from plutonium oxide by metallic lithium reduction, with regeneration of lithium reactant. It comprises: reacting the plutonium oxide with metallic lithium; oxides and unreacted lithium; subliming the product lithium oxide and unreacted lithium from unreacted plutonium oxide with high heat and low pressure; recapturing the product lithium oxides; reacting the recaptured product lithium oxides with anhydrous hydrochloric acid to produce lithium chloride salt; and decomposing product lithium chloride salt by electrolysis to regenerate lithium metal.

  3. Surprising Coordination for Plutonium in the First Plutonium (III) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-03-21

    The first plutonium(III) borate, Pu{sub 2}[B{sub 12}O{sub 18}(OH){sub 4}Br{sub 2}(H{sub 2}O){sub 3}]0.5H{sub 2}O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  4. Recovery of americium-241 from aged plutonium metal

    SciTech Connect

    Gray, L.W.; Burney, G.A.; Reilly, T.A.; Wilson, T.W.; McKibben, J.M.

    1980-12-01

    About 5 kg of ingrown /sup 241/Am was recovered from 850 kg of aged plutonium using a process developed specifically for Savannah River Plant application. The aged plutonium metal was first dissolved in sulfamic acid. Sodium nitrite was added to oxidize the plutonium to Pu(IV) and the residual sulfamate ion was oxidized to nitrogen gas and sulfate. The plutonium and americium were separated by one cycle of solvent extraction. The recovered products were subsequently purified by cation exchange chromatography, precipitated as oxalates, and calcined to the oxides. Plutonium processng was routine. Before cation exchange purification, the aqueous americium solution from solvent extraction was concentrated and stripped of nitric acid. More than 98% of the /sup 241/Am was then recovered from the cation exchange column where it was effectively decontaminated from all major impurities except nickel and chromium. This partially purified product solution was concentrated further by evaporation and then denitrated by reaction with formic acid. Individual batches of americium oxalate were then precipitated, filtered, washed, and calcined. About 98.5% of the americium was recovered. The final product purity averaged 98% /sup 241/AmO/sub 2/; residual impurities were primarily lead and nickel.

  5. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    SciTech Connect

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-02

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  6. Mechanics of plutonium metal aerosolization

    SciTech Connect

    Alvis, J.M.

    1996-06-01

    Reliable estimates of hazards posed by a plutonium release are contingent on the availability of technical data to define the source term for aerosolization of plutonium oxide particles and the resulting size distribution. The release of aerosols from the oxidation of plutonium metal depends partly on the forces acting on the particles while they remain attached to the bulk material and partly on the ability of the airstream around the metal ingot to transport the particles when they detach. The forces that attach or detach the plutonium oxide particles can be described as binding of the particle to the metal or oxide layer around it and expansion and contraction stresses and external vibration. Experimental data forms the basis for defining size distributions and release fractions for plutonium oxide. The relevance of the data must be evaluated in the light of the chemical and physical properties of plutonium metal, plutonium oxide, and intermediate Plutonium compounds. The effects of temperature on reaction kinetics must also be understood when evaluating experimental data. Size distribution functions are remarkably similar for products of all Pu+gas reactions. The distributions are all bimodal. Marked differences are seen in the sizes of large particles depending on reaction temperature and reaction rate. However, the size distributions of small particles are very similar. The bimodal distribution of small particles vanishes as the sizes of the large particles decrease to the point of equal dimensions with the small particles. This is the situation realized for the fine plutonium oxide powder produced by air oxidation at room temperature. This report addresses important factors for defining the formation of an aerosol from the oxidation of plutonium metal. These factors are oxidation kinetics of plutonium metal and plutonium hydride, the particle distribution of products formed by the reactions, and the kinetics of processes limiting entrainment of particles.

  7. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  8. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  9. CSER 00-003 Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    SciTech Connect

    LAN, J.S.

    2000-07-13

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material.

  10. Technical report for the generic site add-on facility for plutonium polishing

    SciTech Connect

    Collins, E. D.

    1998-06-01

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can b e dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C.

  11. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    SciTech Connect

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  12. Probing Phonons in Plutonium

    NASA Astrophysics Data System (ADS)

    Wong, Joe

    2004-03-01

    The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)

  13. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  14. Photochemical preparation of plutonium pentafluoride

    DOEpatents

    Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

    1987-01-01

    The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

  15. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  16. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  17. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  18. Electrolytic removal of nitrate from crop residues.

    PubMed

    Colon, G; Sager, J C

    2001-01-01

    The Controlled Ecological Life Support System (CELSS) resource recovery system, which is a waste-processing system,uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. Crop residues contain a significant amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, and 2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. The nitrate anion causes several problems in the resource recovery system in such a way that removal prior to the process is highly desirable. The technique proposed to remove nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand was a four-compartment electrolytic cell. In order to establish the electrolytic cell performance variables, experiments were carried out using potato crop residue aqueous leachate as the diluate solution. The variables studied were the potato biomass leachate composition and electrical properties, preparation of compartment solutions to be compatible with the electrolytic system, limiting current density, nutrients removal rates as a function of current density, fluid hydrodynamic conditions, applied voltage, and process operating time during batch recirculation operation. Results indicated that the limiting current density (maximum operating current density) was directly proportional to the solution electrical conductivity an a power function of the linear fluid velocity in the range between 0.083 and 0.403 m/s. During the electrolytic cell once-through operation, the nitrate, potassium, and other nutrient removal rates were proportional to the current density and were inversely proportional to fluid velocity. The removal of monovalent ions was found to be higher than divalent ones. Under batch recirculation operation at constant applied voltage of 4.5 and 8.5 V, it was found that the nutrient removal rates were independent of applied voltage, but were proportional to the ions concentration and operating time. PMID:11676458

  19. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s and the softening of the calculated T[100] branch near the X point, which is not observed experimentally. These differences are significant and thus provide a framework for refined theoretical treatments. Systematic HRIXS experiments as a function of temperature and concentration in the fcc Pu-Ga alloys are underway.

  20. Dissolution behavior of plutonium containing zirconia-magnesia ceramics

    NASA Astrophysics Data System (ADS)

    Holliday, Kiel; Hartmann, Thomas; Cerefice, Gary; Czerwinski, Ken

    2012-03-01

    This study explores the dissolution properties of zirconia-magnesia ceramics containing plutonium as the basis of an inert matrix nuclear fuel. The magnesium oxide phase remains pure MgO, while the zirconia incorporates a small amount of magnesium oxide along with all of the plutonium oxide and erbium oxide. The performance of the material under reactor and repository environments was examined. Reactor conditions are examined using a pressure vessel to expose the material to 300 C water. To assess the performance of the material as a waste form it was submerged in 90 C water for 1000 h. In both aqueous dissolution studies there was minimal release of less than 0.8 wt.% of plutonium from the material. To examine the potential for recycling, the dissolution behavior of the fuel matrix was examined in acidic solutions: pure nitric acid and a nitric acid-hydrofluoric acid-peroxide solution. Both acidic media exhibit potential for dissolving plutonium from the zirconia matrix. The experiments performed in this study are meant to lay a foundation for the chemical performance of zirconia-magnesia inert matrix fuel containing fissile material and burnable poison.

  1. Dissolution Behavior of Plutonium Containing Zirconia-Magnesia Ceramics

    SciTech Connect

    Kiel Holliday; Thomas Hartmann; Gary Cerefice; Ken Czerwinski

    2012-03-01

    This study explores the dissolution properties of zirconia-magnesia ceramics containing plutonium as the basis of an inert atrix nuclear fuel. The magnesium oxide phase remains pure MgO, while the zirconia incorporates a small amount of magnesium oxide along with all of the plutonium oxide and erbium oxide. The performance of the material under reactor and repository environments was examined. Reactor conditions are examined using a pressure vessel to expose the material to 300 degrees C water. To assess the performance of the material as a waste form it was submerged in 90 degrees C water for 1000 h. In both aqueous dissolution studies there was minimal release of less than 0.8 wt.% of plutonium from the material. To examine the potential for recycling, the dissolution behavior of the fuel matrix was examined in acidic solutions: pure nitric acid and a nitric acid-hydrofluoric acid-peroxide solution. Both acidic media exhibit potential for dissolving plutonium from the zirconia matrix. The experiments performed in this study are meant to lay a foundation for the chemical performance of zirconia-magnesia inert matrix fuel containing fissile material and burnable poison.

  2. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  3. Low temperature oxidation of plutonium

    SciTech Connect

    Nelson, Art J.; Roussel, Paul

    2013-05-15

    The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

  4. Recovery of plutonium by pyroredox processing

    SciTech Connect

    McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

    1985-01-01

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 2 figs., 5 tabs.

  5. Fluorescence-based measurement of water-dissolved nitrate ions

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Street, Nicolas J.

    1999-02-01

    A novel method for measuring ion concentration is reported based on a photochemical reaction between reduced nitrate ions and 2-amino-1-napthalene sulphonic acid. Reduced nitrate ions, in the form of nitrite, react with phot excited 2-amino-1- naphthalene sulphonic acid in acidic media resulting in the formation of a fluorescent product. The photochemical reaction was found selective to nitrite ions, with interference only from sulphide, sulphite, thiosulphate and iron (III) among various water dissolved ionic species investigated. The reported reaction offers a method to measure both nitrate and nitrite ion concentrations. The calibration plot was linear over the investigated range of 0 1 - 12 (mu) M and a detection limit of 24 nM plus or minus 2.4 nM. The method which was used to investigate nitrite ion concentrations in North London tap water and commercially available bottled water was found to be suitable for nitrate and nitrite ion measurement in such aqueous media.

  6. Increase of the transdermal penetration of testosterone by miconazole nitrate.

    PubMed

    Baert, Bram; Roche, Nathalie; Burvenich, Christian; De Spiegeleer, Bart

    2012-12-01

    Miconazole nitrate is an imidazole derivative used to treat skin disorders caused by fungi. The aim of this study was to investigate in a systematic way whether miconazole nitrate can have skin penetration enhancing properties. Using Franz diffusion cells, three representative model compounds (caffeine, testosterone and ibuprofen) were applied to human skin as 10 mM aqueous-ethanolic solutions with or without 1 mM of miconazole nitrate. The apparent permeability coefficient K(p) for each of the model compounds was determined with and without miconazole nitrate. While a statistically significant penetration enhancement effect of 33% was found for testosterone, no overall statistically significant effect could be demonstrated for caffeine and ibuprofen. The increase in skin permeability of testosterone is mainly due to an improved partitioning from the dose solution into the skin, thereby resulting in a higher delivery through the human skin. Our results indicate that miconazole can act as a penetration enhancer. PMID:23263811

  7. Long term plutonium solubility and speciation studies in a synthetic brine

    SciTech Connect

    Nitsche, Heino; Roberts, K.; Xi, Ruihua

    1993-12-31

    The rate at which elements can be transported in groundwater systems is governed in part by the solubility of the element in the groundwater. This report documents plutonium solubility experiments in a brine simulant relevant to the Waste Isolation Pilot Plant. Approximately 1 to 2.5 mL of five stock solutions containing single oxidation states of plutonium (Pu(IV)-polymer, Pu{sup 3+}, Pu{sup 4+}, PuO{sub 2}{sup +}, and PuO{sub 2}{sup 2+}) were added to {approximately}75 mL of synthetic H-17 Brine in five reaction vessels. Initial plutonium concentrations ranged from 1.3 {times} l0{sup {minus}4} to 5.l {times} l0{sup {minus}4} M (moles per liter) total plutonium. Because these initial concentrations were far above the plutonium solubility limit in H-17 Brine, plutonium-containing solids precipitated. Aqueous plutonium concentrations were measured over time until steady-state was reached, requiring over 300 days in H-17 Brine.

  8. Synthesis and Structural Characterization of a Molecular Plutonium(IV) Compound Constructed from Dimeric Building Blocks

    SciTech Connect

    Runde, Wolfgang; Brodnax, Lia F.; Goff, George S.; Peper, Shane M.; Taw, Felicia L.; Scott, Brian L.

    2007-04-01

    Single crystals of Na8Pu2(O2)2(CO3)612H2O, exhibiting mu2, eta2-O2 ligands in unprecedented Pu(IV) dimeric units, were obtained at ambient temperature from aqueous Plutonium(IV) peroxide carbonate solution.

  9. Hydroxylamine Nitrate Decomposition under Non-radiological Conditions

    SciTech Connect

    McFarlane, Joanna; Delmau, Laetitia Helene; DePaoli, David W.; Mattus, Catherine H.; Phelps, Clarice E.; Roach, Benjamin D.

    2015-07-01

    Hydroxylamine nitrate (HAN) is used to reduce Pu(IV) to Pu(III) in the separation of plutonium from uranium. HAN becomes unstable under certain conditions and has been known to explode, causing injury to humans including death. Hence, it is necessary to deactivate HAN once the reduction of plutonium is finished. This report reviews what is known about the chemistry of HAN and various methods to achieve a safe decomposition. However, there are areas where more information is needed to make a decision about the handling of HAN in reprocessing of nuclear fuel. Experiments have demonstrated a number of non-radiolytic ways to safely decompose HAN, including heating in HNO3, photolytic oxidation in the presence of H2O2, and the addition of a metal such as Fe(III) that will oxidize the HAN.

  10. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  11. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  12. Electrospun cellulose nitrate nanofibers.

    PubMed

    Nartker, Steven; Drzal, Lawrence T

    2010-09-01

    Cellulose nitrate nonwoven mats of submicron-sized fibers (100-1200 nm in diameter) were obtained by electrospinning cellulose nitrate solutions. Two solvent systems were evaluated. A 70:30 (wt) ratio of ethanol to acetone and a 60:40 (wt) ratio of tetrahydrofuran (THF) to N,N-dimethylformamide (DMF) were studied. The effects of the two solvent systems, and type two different collectors; void gap, and steel drum coated with polyvinylidene dichloride (PVDC), were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers. PMID:21133109

  13. Reduced-size plutonium sample processing and packaging for the PAT-2 package

    SciTech Connect

    Kuhn, E.; Deron, S.; Aigner, H.; Andersen, J.A.

    1982-01-01

    A light-water container for the air transport of plutonium safeguards samples, the PAT-2 package, has been developed in the USA and is now licensed by the US NRC (Certificate of Compliance) and the US DOT (IAEA Certificate of Competent Authority). The very limited available space in this package for plutonium-bearing samples required the design of small-size canisters to meet the needs of international safeguards. The suitability of a new small canister and vial for powder and solution samples has been tested in an intralaboratory experiment. The results of the experiment, based on the concept of pre-weighed samples, show that the tested canister and quartz vial can be used successfully for containing small size PuO/sub 2/ powder samples of homogeneous source material, as well as for dried aliguands of plutonium nitrate solutions.

  14. Mechanism study of nitrate reduction by nano zero valent iron.

    PubMed

    Hwang, Yu-Hoon; Kim, Do-Gun; Shin, Hang-Sik

    2011-01-30

    This study investigates the fate of nitrogen species during nitrate reduction by nano-scale zero valent iron (NZVI) and related reaction mechanisms. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. NZVI has great ability to reduce nitrate. However, the question of what end-product results from nitrate reduction by NZVI has sparked controversy. Establishing nitrogen mass balance by quantitative analysis of aqueous phase and gas-phase nitrogen species, this study clearly determines that nitrate was converted to ammonium ion followed by ammonia stripping under a strong alkaline condition, which leads to a decrease in the total aqueous nitrogen amount. Moreover, some of the major reactions, which consisted of nitrate reduction, ammonia production, and ammonia stripping were modelled by pseudo first-order kinetics. According to the model estimation results, additional reaction mechanisms would exist in an early stage of reaction. This might be due to the adsorption and desorption reaction which could be explained by the core-shell structure model. PMID:21093984

  15. Nitrated phenols in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Harrison, Mark A. J.; Barra, Silvia; Borghesi, Daniele; Vione, Davide; Arsene, Cecilia; Iulian Olariu, Romeo

    2005-01-01

    This paper reviews the data concerning the atmospheric occurrence of nitrophenols, both in the gas and in the condensed phase (rainwater, cloud, fog and snow). Data obtained from field campaigns are reported, together with a description of the analytical techniques employed for the identification and quantification of nitrophenols. Analysis is usually performed using techniques such as High Performance Liquid Chromatography (HPLC) or Gas Chromatography-Mass Spectrometry (GC-MS), with the sampling method largely determined according to the matrix under investigation. The sources of atmospheric nitrophenols include direct emissions resulting from combustion processes, hydrolysis of pesticides (e.g. parathion) and the secondary formation of nitrophenols in the atmosphere. Atmospheric nitration of phenol can take place both in the gas and liquid phases, but the relative importance of these processes is still under discussion. The gas-phase nitration involves reaction between phenol and radOH+radNO2 during the day or radNO3+radNO2 during the night. Gas-phase nitration during the day yields only 2-nitrophenol (2-NP); while during the night it is thought that both 2-NP and 4-nitrophenol (4-NP) may be formed. Because of many gaps in the experimental evidence it is apparent that more research is required to indicate whether the 4-NP present in the environment can be accounted for by this nighttime process. Nitration in the condensed phase can be initiated by electrophilic nitration agents such as N2O5 and ClNO2. Other liquid-phase processes can also take place, in the presence of radNO3, nitrate and nitrite, in the dark and under irradiation. Condensed-phase processes have been shown to yield 2- and 4-NP in similar amounts. It is also important to consider the atmospheric sinks of nitrophenols. The rate constant for the reaction between 2-NP and radOH in the gas phase is rather low (9.010-13 cm3 molecule-1 s-1), while incomplete data are available for the reaction with radNO3. In addition, condensed-phase processes might also represent an important nitrophenol sink. Potential loss routes include the reaction with radicals such as radOH and radNO3 in aqueous solution as well as the nitration to form the dinitrophenols.

  16. The chemistry of tributyl phosphate at elevated temperatures in the Plutonium Finishing Plant Process Vessels

    SciTech Connect

    Barney, G.S.; Cooper, T.D.

    1994-06-01

    Potentially violent chemical reactions of the tributyl phosphate solvent used by the Plutonium Finishing Plant at the Hanford Site were investigated. There is a small probability that a significant quantity of this solvent could be accidental transferred to heated process vessels and react there with nitric acid or plutonium nitrate also present in the solvent extraction process. The results of laboratory studies of the reactions show that exothermic oxidation of tributyl phosphate by either nitric acid or actinide nitrates is slow at temperatures expected in the heated vessels. Less than four percent of the tributyl phosphate will be oxidized in these vented vessels at temperatures between 125{degrees}C and 250{degrees}C because the oxidant will be lost from the vessels by vaporization or decomposition before the tributyl phosphate can be extensively oxidized. The net amounts of heat generated by oxidation with concentrated nitric acid and with thorium nitrate (a stand-in for plutonium nitrate) were determined to be about -150 and -220 joules per gram of tributyl phosphate initially present, respectively. This is not enough heat to cause violent reactions in the vessels. Pyrolysis of the tributyl phosphate occurred in these mixtures at temperatures of 110{degrees}C to 270{degrees}C and produced mainly 1-butene gas, water, and pyrophosphoric acid. Butene gas generation is slow at expected process vessel temperatures, but the rate is faster at higher temperatures. At 252{degrees}C the rate of butene gas generated was 0.33 g butene/min/g of tributyl phosphate present. The measured heat absorbed by the pyrolysis reaction was 228 J/g of tributyl phosphate initially present (or 14.5 kcal/mole of tributyl phosphate). Release of flammable butene gas into process areas where it could ignite appears to be the most serious safety consideration for the Plutonium Finishing Plant.

  17. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  18. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  19. Influence of chemical form, feeding regimen, and animal species on the gastrointestinal absorption of plutonium

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Cohen, N.; Ralston, L.G.; Oldham, R.D.; Moretti, E.S.; Ayres, L.

    1985-01-01

    We evaluated the effect of chemical form and feeding regimen on the gastrointestinal (GI) absorption of plutonium in adult mice at plutonium concentrations relevant to the establishment of drinking water standards. Mean fractional GI absorption values in fasted adult mice were: Pu(VI) bicarbonate, 15 x 10/sup -4/; Pu(IV) bicarbonate, 20 x 10/sup -4/; Pu(IV) nitrate (pH2), 17 x 10/sup -4/; Pu(IV) citrate, 24 x 10/sup -4/; and Pu(IV) polymer, 3 x 10/sup -4/. Values in fed adult mice were: Pu(VI) bicarbonate, 1.4 x 10/sup -4/; Pu(IV) polymer, 0.3 x 10/sup -4/. Pu(VI) is the oxidation state in chlorinated drinking waters and Pu(IV) is the oxidation state in many untreated natural waters. To assess the validity of extrapolating data from mice to humans, we also determined the GI absorption of Pu(VI) bicarbonate in adult baboons with a dual-isotope method that does not require animal sacrifice. Fractional GI absorption values obtained by this method were 23 +- 10 x 10/sup -4/ for fasted baboons (n=5) and 1.4 +- 0.9 x 10/sup -4/ for fed baboons (n=3). We have so far validated this method in one baboon and are currently completing validation in two additional animals. At low plutonium concentrations, plutonium oxidation state (Pu(VI) vs Pu(IV)) and administration medium (bicarbonate vs nitrate vs citrate) had little effect on the GI absorption of plutonium in mice. Formation of Pu(IV) polymers and animal feeding decreased the GI absorption of plutonium 5- to 10-fold. The GI absorption of Pu(VI) bicarbonate in both fed and fasted adult baboons appeared to be the same as in fed and fasted adult mice, respectively. 17 refs., 2 tabs.

  20. Microdistribution and long-term retention of 239Pu (NO3)4 in the respiratory tracts of an acutely exposed plutonium worker and experimental beagle dogs.

    PubMed

    Nielsen, Christopher E; Wilson, Dulaney A; Brooks, Antone L; McCord, Stacey L; Dagle, Gerald E; James, Anthony C; Tolmachev, Sergei Y; Thrall, Brian D; Morgan, William F

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [(239)Pu (NO(3))(4)] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histologic lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a nonuniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the subpleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential to increase cancer risk. PMID:22962267

  1. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    SciTech Connect

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  2. Electrochemical reduction of nitrate in the presence of an amide

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  3. Sonochemical Synthesis of Layered Copper Hydroxy Nitrate Nanosheets.

    PubMed

    Anandan, Sambandam; Wu, Jerry J; Ashokkumar, Muthupandian

    2015-11-01

    Sonochemical reduction of copper nitrate, using 20 kHz ultrasound in aqueous solutions in the presence of urea, led to the formation of layered copper hydroxy nitrate nanosheets, as evidenced by scanning and transmission electron microscopy images. Fourier-transform infrared, X-ray diffraction, and X-ray photoelectron spectroscopy analyses were used to characterize layered Cu2 (OH)3 NO3 nanosheets. The ultrasound-assisted progressive hydrolysis of urea and in situ formation of Cu(0) through the sonochemical reduction process induced homogeneous nucleation and crystallization of layered Cu2 (OH)3 NO3 nanosheets. PMID:26314269

  4. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  5. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  6. Multiple Oxygen Isotope Photochemistry of Nitrate in Ice

    NASA Astrophysics Data System (ADS)

    McCabe, J. R.; Boxe, C. S.; Colussi, A.; Hoffman, M. R.; Thiemens, M. H.

    2004-12-01

    Nitrate (NO3 -) is a major anion in polar ice [de Angelis and Legrand, 1995;Dibb et al., 1998;Silvente and Legrand, 1995]. As the primary sink for atmospheric NOx, nitrate's chemical history is a link to understanding the nitrogen budget and oxidation capacity of the polar atmosphere over time. Our understanding of variations in ice core nitrate concentrations has been limited by depositional and post-depositional loss processes, associated with temperature, accumulation rate, diffusion, photochemistry and volatilization [Wolff, 1995]. The first report of multiple oxygen isotope composition of nitrate in ice cores (Alexander et al., 2004) demonstrates the ability to observe changes in the oxidation capacity of past atmospheres. To accurately interpret this and future isotopic data, we need to ascertain the oxygen isotope fractionation (? 17O, ? ^{18}O) associated with the photolysis of nitrate in ice. Post-depositional processes, such as nitrate photolysis and volatilization may alter the initial isotopic signal of nitrate in the snowpack. A series of nitrate photolysis experiments were conducted on 10 mM solutions of Fisher KNO_{3} and USGS-35 NaNO_{3} at 313 20 nm over 12 to 48 hours and between -30 and 25 C. With initial mass-dependent nitrate, a strict mass-dependent fractionation was observed in the residual irradiated nitrate. However, after 12 and 24 hours of irradiation, mass-independent USGS-35 NaNO3 (? 17O = 21.0 \\pm 0.4 ) displayed a decrease of 1.6 0.4 and 2.0 \\pm 0.4 % at 25 \\degC, 1.2 0.4 and 1.3 \\pm 0.4 at -5\\degC, 0.2 0.4 \\permil and 1.1 \\pm 0.4 at -30\\degC, respectively. The greater isotope effect at higher temperatures may be due to a thicker quasi-liquid layer (QLL) allowing faster rates for secondary nitrate producing reactions between H_{2}O and photoproducts NO, NO_{2}, NO_{2}$-. In the aqueous phase this effect is even greater. Hence, we infer that the production of nitrate via these 'secondary processes' has positive temperature dependence, causing a noticeable but minor decrease in ? 17O. The potential application of utilizing ? 17O -NO3- as a new technique to interpret the nitrate ice record to increase our understanding of the polar paleoatmosphere is evaluated in the context of the present measurements.

  7. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  8. [Photodegradation of UV filter PABA in nitrate solution].

    PubMed

    Meng, Cui; Ji, Yue-Fei; Zeng, Chao; Yang, Xi

    2011-09-01

    The aqueous photolysis of a UV filter p-aminobenzoic acid (PABA) using Xe lamp as simulated solar irradiation source was investigated in the presence of nitrate ions. The effects of pH, concentration of nitrate ions and concentration of humic substance in natural water on the photodegradation of PABA were studied. The results showed that photodegradation of PABA in nitrate solution followed the first order kinetics. The increasing concentration of nitrate ion increased favored the photodegradaton of PABA, of which the first order constant increased from 0.002 2 min(-10 to 0.017 9 min(-1). The photodegradation of PABA promoted with the increase of pH while the increasing concentration of humic substance showed inhibiting effect. Hydroxyl radicals determined by the molecular probe method played a very importnant role in the photolysis process of PABA. Photoproducts upon irradiation of PABA in nitrate solution were isolated by means of solid-phase extraction (SPE) and identified by LC-MS techniques. The probable photoinduced degradation pathways in nitrate solution were proposed. PMID:22165219

  9. Plutonium Proliferation: The Achilles Heel of Disarmament

    SciTech Connect

    Leventhal, Paul

    2001-02-07

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  10. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  11. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  12. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2011-10-01 2011-10-01 false Plutonium shipments. 175.704 Section...

  13. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2012-10-01 2012-10-01 false Plutonium shipments. 175.704 Section...

  14. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2014-10-01 2014-10-01 false Plutonium shipments. 175.704 Section...

  15. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2013-10-01 2013-10-01 false Plutonium shipments. 175.704 Section...

  16. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  17. Plutonium stabilization and packaging system

    SciTech Connect

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  18. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford site, Washington.

    PubMed

    Singleton, Michael J; Woods, Katharine N; Conrad, Mark E; Depaolo, Donald J; Dresel, P Evan

    2005-05-15

    The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from unsaturated zone (UZ) core samples and groundwater samples indicate at least four potential sources of nitrate in groundwaters at the U.S. DOE Hanford Site in south-central Washington. Natural sources of nitrate identified include microbially produced nitrate from the soil column (delta15N of 4 - 8 per thousand, delta18O of -9 to 2 per thousand) and nitrate in buried caliche layers (delta15N of 0-8 per thousand, delta 18O of -6to 42 per thousand). Isotopically distinctindustrial sources of nitrate include nitric acid in low-level disposal waters (delta15N approximately per thousand, delta 18O approximately 23%o) per thousandnd co-contaminant nitrate in high-level radioactive waste from plutonium processing (6'5delta1of 8-33 % o, per thousand18delta oO -9 to 7%0). per thousandThe isotopic compositions of nitrate from 97 groundwater wells with concentrations up to 1290 mg/L NO3- have been analyzed. Stable isotope analyses from this study site, which has natural and industrial nitrate sources, provide a tool to distinguish nitrate sources in an unconfined aquiferwhere concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Hanford are nitric acid and natural nitrate flushed out of the UZ during disposal of low-level wastewater. Nitrate associated with high-level radioactive UZ contamination does not appear to be a major source of groundwater nitrate at this time. PMID:15952359

  19. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  20. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M. (Los Alamos, NM); Coburn, Michael D. (Los Alamos, NM)

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  1. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  2. Plutonium immobilization form evaluation

    SciTech Connect

    Gray, L. W., LLNL

    1998-02-13

    The 1994 National Academy of Sciences study and the 1997 assessment by DOE`s Office of Nonproliferation and National Security have emphasized the importance of the overall objectives of the Plutonium Disposition Program of beginning disposition rapidly. President Clinton and other leaders of the G-7 plus one (`Political Eight`) group of states, at the Moscow Nuclear Safety And Security Summit in April 1996, agreed on the objectives of accomplishing disposition of excess fissile material as soon as practicable. To meet these objectives, DOE has laid out an aggressive schedule in which large-scale immobilization operations would begin in 2005. Lawrence Livermore National Laboratory (LLNL), the lead laboratory for the development of Pu immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), was requested by MD to recommend the preferred immobilization form and technology for the disposition of excess weapons-usable Pu. In a series of three separate evaluations, the technologies for the candidate glass and ceramic forms were compared against criteria and metrics that reflect programmatic and technical objectives: (1) Evaluation of the R&D and engineering data for the two forms against the decision criteria/metrics by a technical evaluation panel comprising experts from within the immobilization program. (2) Integrated assessment by LLNL immobilization management of the candidate technologies with respect to the weighted criteria and other programmatic objectives, leading to a recommendation to DOE/MD on the preferred technology based on technical factors. (3) Assessment of the decision process, evaluation, and recommendation by a peer review panel of independent experts. Criteria used to assess the relative merits of the immobilization technologies were a subset of the criteria previously used by MD to choose among disposition options leading to the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials, January 1997. Criteria were: (1) resistance to Pu theft, diversion, and recovery by a terrorist organization or rogue nation; (2) resistance to recovery and reuse by host nation; (3) technical viability, including technical maturity, development risk, and acceptability for repository disposal; (4) environmental, safety, and health factors; (5) cost effectiveness; and (6) timeliness. On the basis of the technical evaluation and assessments, in September, 1997, LLNL recommended to DOE/MD that ceramic technologies be developed for deployment in the planned Pu immobilization plant.

  3. Structure and spectroscopy of hydrated neptunyl(VI) nitrate complexes.

    PubMed

    Lindqvist-Reis, Patric; Apostolidis, Christos; Walter, Olaf; Marsac, Remi; Banik, Nidhu Lal; Skripkin, Mikhail Yu; Rothe, Jörg; Morgenstern, Alfred

    2013-11-21

    Complexation between hexavalent neptunium and nitrate was studied in aqueous nitric acid solution using optical absorption, vibrational and X-ray absorption spectroscopies. Distributions of aqueous [NpO2](2+), [NpO2(NO3)](+) and [NpO2(NO3)2] species were obtained as a function of nitric acid concentration between 0 and 14 M. The crystal structure of [NpO2(NO3)2(H2O)2]·H2O was determined. PMID:24042456

  4. Plutonium inventory characterization technical evaluation report

    SciTech Connect

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  5. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  6. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  7. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  8. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  9. The First Weighing of Plutonium

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1967-09-10

    Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  10. Burning weapons-grade plutonium in reactors

    SciTech Connect

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO{sub 2} fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle.

  11. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    SciTech Connect

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between measured or values predicted by the SRNL model and values predicted by the OLI AG model was very poor. The much higher predicted concentrations by the OLI AQ model appears to be the result of the model predicting the predominate Pu oxidation state is Pu(V) which is reported as unstable below sodium hydroxide (NaOH) concentrations of 6 M. There was very good agreement between the predicted Pu concentrations using the SRNL model and the model developed by Delegard and Gallagher with the exception of solutions that had very high OH{sup -} (15 M) concentrations. The lower Pu solubilities in these solutions were attributed to the presence of NO{sub 3}{sup -} and NO{sub 2}{sup -} which limit the oxidation of Pu(IV) to Pu(V).

  12. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-06-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented.

  13. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    SciTech Connect

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-08-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations.

  14. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACYL NITRATES

    EPA Science Inventory

    Salmonella typhimurium strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chlororoxyacetyl nitrate (CPAN). as phase concentrations for the individ...

  15. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACL NITRATES

    EPA Science Inventory

    Salmonella typhimurium, strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chloroperoxyacetyl nitrate (CPAN). as-phase concentrations for t...

  16. Tubulin nitration in human gliomas.

    PubMed

    Fiore, Gabriella; Di Cristo, Carlo; Monti, Gianluca; Amoresano, Angela; Columbano, Laura; Pucci, Pietro; Cioffi, Fernando A; Di Cosmo, Anna; Palumbo, Anna; d'Ischia, Marco

    2006-02-01

    Immunohistochemical and biochemical investigations showed that significant protein nitration occurs in human gliomas, especially in grade IV glioblastomas at the level of astrocytes and oligodendrocytes and neurones. Enhanced alpha-tubulin immunoreactivity was co-present in the same elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide mass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumour samples but is unmodified in grade I samples and in non-cancerous brain tissue. These results provide the first characterisation of endogenously nitrated tubulin from human tumour samples. PMID:16257120

  17. dl-Asparaginium nitrate

    PubMed Central

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +NO3 ?, alternatively called (1RS)-2-carbamoyl-1-carboxyethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cationcation OH?O hydrogen bond in the structure, together with other strong cationcation NH?O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cationcation CH?O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cationanion NH?O hydrogen bonds, as well as by one weak CH?O interaction, thus forming a three-dimensional network. Some of the cationanion NH?O hydrogen bonds are bifurcated of the type DH?(A 1,A 2). PMID:21577586

  18. Collaborative study of the colorimetric determination of nitrate and nitrite in cheese.

    PubMed

    Hamilton, J E

    1976-03-01

    A quantitative colorimetric method for the determination of nitrate and nitrite in cheese has been subjected to collaborative study. The method includes clarification of an aqueous extract of cheese with zinc hydroxide, reduction of nitrate to nitrite via a spongy cadmium collumn (the nitrite originally present is unaltered), diazotization of sulfanilic acid with the nitrite, and coupling with 1-naphthylamine hydrochloride to form a pink azo dye whose absorbance is measured at 522 nm. The spectrophotometric responses are compared to a standard curve. In samples containing both nitrate and nitrite, nitrate is determined by difference. A standard deviation of 5.5 was obtained (5 of 6 collaborators) when a cheese sample spiked with 276 ppm sodium nitrate was analyzed by the method. The method has been adopted as official first action. PMID:1254548

  19. Thermal Decomposition of Nitrated Tributyl Phosphate

    SciTech Connect

    Paddleford, D.F.; Hou, Y.; Barefield, E.K.; Tedder, D.W.; Abdel-Khalik, S.I.

    1995-01-01

    Contact between tributyl phosphate and aqueous solutions of nitric acid and/or heavy metal nitrate salts at elevated temperatures can lead to exothermic reactions of explosive violence. Even though such operations have been routinely performed safely for decades as an intrinsic part of the Purex separation processes, several so-called ``red oil`` explosions are known to have occurred in the United States, Canada, and the former Soviet Union. The most recent red oil explosion occurred at the Tomsk-7 separations facility in Siberia, in April 1993. That explosion destroyed part of the unreinforced masonry walls of the canyon-type building in which the process was housed, and allowed the release of a significant quantity of radioactive material.

  20. LOW TEMPERATURE PROCESS FOR THE REMOVAL AND RECOVERY OF CHLORIDES AND NITRATES FROM AQUEOUS NITRATE SOLUTIONS

    DOEpatents

    Savolainen, J.E.

    1963-01-29

    A method is described for reducing the chloride content of a solution derived from the dissolution of a stainless steel clad nuclear fuel element with an aqua regia dissolution medium. The solutlon is adjusted to a nitric acid concentration in the range 5 to 10 M and is countercurrently contacted at room temperature with a gaseous oxide of nitrogen selected from NO, NO/sub 2/, N/sub 2/ O/sub 3/, and N/sub 2/O/sub 4/. Chlo ride is recovered from the contacted solution as nitrosyl chloride. After reduction of the chloride content, the solution is then contacted with gaseous NO to reduce the nitric acid molarity to a desired level. (AEC)

  1. Processes for extraction of uranium and radium from uranium-containing ores using ferric nitrate

    SciTech Connect

    Nirdosh, I.

    1987-03-10

    A process is described for the extraction of both uranium and radium from uranium ores in the presence of an interfering sulfate ion resulting from the presence of sulfide therein by use of an aqueous ferric nitrate leachant including the steps of: (a) mechanically treating the finely ground ore for the removal of sulfide therefrom; (b) leaching the mechanically treated finely ground ore with aqueous acidic ferric nitrate solution in a concentration from 0.01 to 0.1M for the removal of uranium and radium therefrom to result in a liquid ferric nitrate leachate containing radium and uranium and a wet cake containing radium, uranium and ferric nitrate; (c) treating the ferric nitrate leachate to separate uranium and radium therefrom; (d) separately treating the wet cake for removal of retained ferric nitrate and the residual radium and uranium therefrom; and (e) recirculating a major portion of the ferric nitrate leachate from step (c) for the leaching of more of the mechanically treated finely ground ore.

  2. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  3. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    NASA Astrophysics Data System (ADS)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  4. A review of the corrosion and pyrophoricity behavior of uranium and plutonium

    SciTech Connect

    Totemeier, T.C.

    1995-06-01

    This report presents a review of the corrosion and pyrophoricity behavior of uranium and plutonium. For each element, the reactions with oxygen, water vapor, and aqueous solutions are described in terms of reaction rates, products, and mechanisms. Their pyrophoric tendencies in terms of measured ignition temperatures are discussed, and the effects of the important variables specific area, gas composition, and prior storage rare stated. The implications of the observed behavior for current storage issues are considered.

  5. Protein nitration in cardiovascular diseases.

    PubMed

    Turko, Illarion V; Murad, Ferid

    2002-12-01

    There is growing evidence that cardiovascular disease is associated with progressive changes in the production of free radicals and radical-derived reactive species. These intermediates react with all major cellular constituents and may serve several physiological and pathophysiological functions. The nitration of protein tyrosine residues has been used as a footprint for in vivo production of radical and nonradical reactive species. Tyrosine nitration may alter protein function and metabolism and therefore, provides for further dysfunctional changes. This review focuses on an appearance of tyrosine nitrated proteins in cardiovascular tissues under different settings of cardiovascular disease. Sources of reactive species, putative mechanisms of protein nitration in vivo, as well as protein nitration under normal physiological conditions, are also described. The goal of this review is to attract more attention to identification of specific proteins, which undergo tyrosine nitration and to study a correlation between their altered function and pathology. Understanding how protein nitration affects disease progression may offer a unique option for design of antioxidant therapy for the treatment of cardiovascular complications. At the same time, protein nitration can be a biological marker of efficiency of antioxidant therapy. PMID:12429871

  6. Nitrate | Cancer Trends Progress Report

    Cancer.gov

    Nitrates and nitrites are nitrogen-oxygen chemical units that naturally occur in soil, water, and some foods. When taken into the body by drinking water and through other dietary sources, nitrate and nitrite can react with amines and amides to form N-nitroso compounds (NOC), which are known to cause cancer in animals and may cause cancer in humans.

  7. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  8. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  9. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  10. Nitrate source indicators in ground water of the Scimitar Subdivision, Peters Creek area, Anchorage, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Strelakos, Pat M.; Jokela, Brett

    2000-01-01

    A combination of aqueous chemistry, isotopic measurement, and in situ tracers were used to study the possible nitrate sources, the factors contributing to the spatial distribution of nitrate, and possible septic system influence in the ground water in the Scimitar Subdivision, Municipality of Anchorage, Alaska. Two water types were distinguished on the basis of the major ion chemistry: (1) a calcium sodium carbonate water, which was associated with isotopically heavier boron and with chlorofluorocarbons (CFC's) that were in the range expected from equilibration with the atmosphere (group A water) and (2) a calcium magnesium carbonate water, which was associated with elevated nitrate, chloride, and magnesium concentrations, generally isotopically lighter boron, and CFC's concentrations that were generally in excess of that expected from equilibration with the atmosphere (group B water). Water from wells in group B had nitrate concentrations that were greater than 3 milligrams per liter, whereas those in group A had nitrate concentrations of 0.2 milligram per liter or less. Nitrate does not appear to be undergoing extensive transformation in the ground-water system and behaves as a conservative ion. The major ion chemistry trends and the presence of CFC's in excess of an atmospheric source for group B wells are consistent with waste-water influences. The spatial distribution of the nitrate among wells is likely due to the magnitude of this influence on any given well. Using an expanded data set composed of 16 wells sampled only for nitrate concentration, a significant difference in the static water level relative to bedrock was found. Well water samples with less than 1 milligram per liter nitrate had static water levels within the bedrock, whereas those samples with greater than 1 milligram per liter nitrate had static water levels near or above the top of the bedrock. This observation would be consistent with a conceptual model of a low-nitrate fractured bedrock aquifer that receives slow recharge from an overlying nitrate-enriched surficial aquifer.

  11. Protein nitration by polluted air.

    PubMed

    Franze, Thomas; Weller, Michael G; Niessner, Reinhard; Pschl, Ulrich

    2005-03-15

    The effects of air pollution on allergic diseases are not yetwell-understood. Here, we show that proteins, in particular birch pollen proteins including the allergen Bet v 1, are efficiently nitrated by polluted air. This posttranslational modification of proteins is likely to trigger immune reactions and provides a molecular rationale for the promotion of allergies bytraffic-related air pollution. Enzyme immunoassays have been used to determine equivalent degrees of nitration (EDN) for protein samples exposed to urban outdoor air and synthetic gas mixtures. The observed rates of nitration were governed by the abundance of nitrogen oxides and ozone, and concentration levels typical for summer smog conditions led to substantial nitration within a few hours to days (EDN up to 20%). Moreover, nitrated proteins were detected in urban road dust, window dust, and fine air particulate matter (EDN up to 0.1%). PMID:15819224

  12. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  13. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  14. Plutonium decontamination studies using Reverse Osmosis

    SciTech Connect

    Plock, C.E.; Travis, T.N.

    1980-06-17

    Water in batches of 45 gallons each, from a creek crossing the Rocky Flats Plant, was transferred to the Reverse Osmosis (RO) laboratory for experimental testing. The testing involved using RO for plutonium decontamination. For each test, the water was spiked with plutonium, had its pH adjusted, and was then processed by RO. At a water recovery level of 87%, the plutonium decontamination factors ranged from near 100 to 1200, depending on the pH of the processed water.

  15. Addressing mixed waste in plutonium processing

    SciTech Connect

    Christensen, D.C.; Sohn, C.L. ); Reid, R.A. . Anderson Schools of Management)

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed.

  16. Influence of Iron Redox Transformations on Plutonium Sorption to Sediments

    SciTech Connect

    Hixon, Amy E.; Hu, Yung-Jin; Kaplan, Daniel I.; Kukkadapu, Ravi K.; Nitsche, Heino; Qafoku, Odeta; Powell, Brian A.

    2010-10-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation state. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (dithionite-citrate-bicarbonate) to selectively leach and/or reduce iron oxide and phyllosilicate phases. Mssbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides. Sorption of Pu(V) was monitored over one week for each of six treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. Mssbauer spectroscopy showed that the sediment contained 25-30% hematite, 60-65% Al-goethite, and <10%Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate buffer, DCB), much of the hematite and goethite disappeared and the Fe in the phyllosilicate reduced to Fe(II). The rate of sorption was found to correlate with the 1 fraction of Fe(II) remaining within each treated sediment phase. Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu(IV). Similar to the sorption kinetics, the reduction rate was correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings should influence the conceptual models of long-term stewardship of Pu contaminated sites that have fluctuating redox conditions, such as vadose zones or riparian zones.

  17. Plutonium transmutation in thorium fuel cycle

    SciTech Connect

    Necas, Vladimir; Breza, Juraj |; Darilek, Petr

    2007-07-01

    The HELIOS spectral code was used to study the application of the thorium fuel cycle with plutonium as a supporting fissile material in a once-through scenario of the light water reactors PWR and VVER-440 (Russian design). Our analysis was focused on the plutonium transmutation potential and the plutonium radiotoxicity course of hypothetical thorium-based cycles for current nuclear power reactors. The paper shows a possibility to transmute about 50% of plutonium in analysed reactors. Positive influence on radiotoxicity after 300 years and later was pointed out. (authors)

  18. Removal of nitrate ions from water by activated carbons (ACs)Influence of surface chemistry of ACs and coexisting chloride and sulfate ions

    NASA Astrophysics Data System (ADS)

    Ota, Kazunari; Amano, Yoshimasa; Aikawa, Masami; Machida, Motoi

    2013-07-01

    Adsorptive removal of nitrate ions in aqueous solution using activated carbons (ACs) was examined. After ash was removed from Filtrasorb 400 AC, oxidation and outgassing and several heat treatments were carried out to modify the textural and surface properties of ACs. AC oxidized with 8 M nitric acid followed by outgassing at 900 C (Ox-9OG) exhibited the greatest Langmuir adsorption capacity and affinity for nitrate removal among the total 7 ACs examined. Influence of coexisting chloride and sulfate ions was investigated as well to inspect the nitrate adsorption sites. The highest amount of sites which adsorbed nitrate ions exclusively could be observed for Ox-9OG adsorbent even though as great as 250 times greater number of chloride or sulfate ions over nitrate ions were present in the same aqueous system. Some basic oxygen species on carbon were estimated to work as selective adsorption sites for nitrate ions.

  19. The effect of mass on the gastrointestinal absorption of plutonium and neptunium

    SciTech Connect

    Sullivan, M.F.; Miller, B.M.; Ryan, J.L.

    1983-04-01

    Absorption and retention of plutonium were determined in mice after intragastric administration of either 6 x 10/sup -4/ or 1.5 mg/kg in bicarbonate, citrate, or nitrate media. At the higher concentration, absorption of the citrate was greater than that of the nitrate; at the lower concentration, chemical form was not an important factor in absorption. Concentration and chemical form had much less influence on absorption by the neonatal (versus the adult) rat. The transfer factor (f/sub 1/) for neonates was between one and two orders of magnitude higher than for adults. Absorption and retention of neptunium were determined in rats and/or mice after intragastric administration at doses ranging from 2.2 x 10/sup -7/ to 43 mg/kg in nitrate solutions of pH 1.5. At the higher concentrations, absorption was 1.5 to 2.7%. For lower concentrations, absorption was 25 to 65 times less. In contrast to results obtained in adult animals, absorption of neptunium by neonates decreased with increasing dose. The data obtained in adult animals suggest that the f/sub 1/ factor recommended by the ICRP for plutonium should be increased by a factor of 10, but the neptunium f/sub 1/ factor, in contrast, should be decreased by a factor of 10.

  20. EXPERIENCES IN DECONTAMINATION & DEMOLITION OF A FORMER PLUTONIUM CONCENTRATION FACILITY HANFORD RESERVATION

    SciTech Connect

    BISHOP, G.E.

    2002-06-01

    The 233-S Plutonium Concentration Facility received plutonium nitrate paste from the nearby Reduction-Oxidation (REDOX) Facility and concentrated the plutonium for shipment to Hanford's Plutonium Finishing Plant. Operations ceased in 1967 and the Facility languished in a state of minimal maintenance until the mid-1990's when a decision was made to decontaminate and demolish (D&D) it. This work is being performed as a pilot project that integrates DOE nuclear safety analysis and worker safety requirements with Environmental Protection Agency (EPA) requirements under CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act, 1980). The pilot project is a CERCLA non-time critical removal action. Difficulties were encountered during D&D. These included conflict between the development of the safety basis as an EPA pilot project and DOE requirements for safety analysis reports, updating the safety analysis to keep it current with field conditions, and major difficulties with nondestructive assays (NDA) of the contaminated waste. No demonstrable benefit has been obtained by integrating the EPA and DOE safety methodologies.

  1. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  2. Modeling of distribution and speciation of plutonium in the Urex extraction system

    SciTech Connect

    Paulenova, A.; Tkac, P.; Vandegrift, G.F.; Krebs, J.F.

    2008-07-01

    The PUREX extraction process is used worldwide to recover uranium and plutonium from dissolved spent nuclear fuel using the tributylphosphate-nitric acid extraction system. In the recent decade, significant research progress was achieved with the aim to modify this system by addition of a salt-free agent to optimize stripping of plutonium from the tributylphosphate (TBP) extraction product (UREX). Experimental results on the extraction of Pu(IV) with and without acetohydroxamic acid in the HNO{sub 3}/TBP (30 vol %) were used for the development of a thermodynamic model of distribution and speciation of Pu(IV) in this separation process. Extraction constants for several sets of nitric acid, nitrate, and acetohydroxamic acid concentrations were used to model the obtained data. The extraction model AMUSE (Argonne Model for Universal Solvent Extraction) was employed in our calculations. (authors)

  3. A Pulse Radiolysis Investigation of the Reactions of Tributyl Phosphate with the Radical Products of Aqueous Nitric Acid Irradiation

    SciTech Connect

    Bruce J. Mincher; Stephen R. Mezyk; Leigh R. Martin

    2008-07-01

    Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous, phase. However, the radiolytic degradation of TBP has been shown to reduce the separation factors for fission products, and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions TBP and HDBP with the hydroxyl radical ((5.00 +/- 0.02) x 109, (4.40 +/- 0.10) x 109), hydrogen atom ((1.8 +/- 0.2) x 108, (1.1 +/- 0.1) x 108), nitrate radical ((4.3 +/- 0.7) x 106, (2.9 +/- 0.2) x 106) and nitrite radical (< 2 x 105, < 2 x 105) M-1 s-1 with TBP and HDBP, respectively. These data are used to discuss the mechanism of TBP radical-induced degradation.

  4. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  5. Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater

    SciTech Connect

    Conrad, Mark; Bill, Markus

    2008-08-01

    The nitrogen ({delta}{sup 15}N) and oxygen ({delta}{sup 18}O) isotopic compositions of nitrate in the environment are primarily a function of the source of the nitrate. The ranges of isotopic compositions for nitrate resulting from common sources are outlined in Figure 1 from Kendall (1998). As noted on Figure 1, processes such as microbial metabolism can modify the isotopic compositions of the nitrate, but the effects of these processes are generally predictable. At Hanford, nitrate and other nitrogenous compounds were significant components of most of the chemical processes used at the site. Most of the oxygen in nitrate chemicals (e.g., nitric acid) is derived from atmospheric oxygen, giving it a significantly higher {delta}{sup 18}O value (+23.5{per_thousand}) than naturally occurring nitrate that obtains most of its oxygen from water (the {delta}{sup 18}O of Hanford groundwater ranges from -14{per_thousand} to -18{per_thousand}). This makes it possible to differentiate nitrate from Hanford site activities from background nitrate at the site (including most fertilizers that might have been used prior to the Department of Energy plutonium production activities at the site). In addition, the extreme thermal and chemical conditions that occurred during some of the waste processing procedures and subsequent waste storage in select single-shell tanks resulted in unique nitrate isotopic compositions that can be used to identify those waste streams in soil and groundwater at the site (Singleton et al., 2005; Christensen et al., 2007). This report presents nitrate isotope data for soil and groundwater samples from the Hanford 200 Areas and discusses the implications of that data for potential sources of groundwater contamination.

  6. Surplus Plutonium Disposition Final Environmental Impact Statement

    SciTech Connect

    N /A

    1999-11-19

    In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

  7. Reactive sintering of plutonium-bearing titanates.

    SciTech Connect

    Hash, M. C.

    1999-06-24

    Titanate ceramics are being developed for the immobilization of weapons-grade plutonium. These multi-phase ceramics are intended to be both corrosion and proliferation resistant. Reactive sintering techniques were refined to reproducibly provide titanate ceramics for further characterization and testing. Plutonium-bearing pyrochlore-rich composites were consolidated to greater than 90% of their theoretical density.

  8. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, L.

    2000-04-28

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

  9. Development program to recycle and purify plutonium-238 oxide fuel from scrap

    SciTech Connect

    Schulte, L.D.; Silver, G.L.; Avens, L.R.; Jarvinen, G.D.; Espinoza, J.; Foltyn, E.M.; Rinehart, G.H.

    1996-12-31

    Nuclear Materials Technology (NMT) Division has initiated a development program to recover and purify plutonium-238 oxide from impure sources. A glove box line has been designed and a process flowsheet developed to perform this task on a large scale. The initial effort has focused on purification of {sup 238}PuO{sub 2} fuel that fails to meet General Purpose Heat Source (GPHS) specifications because of impurities. The notable non-actinide impurities were silicon and phosphorus, but aluminum, chromium, iron and nickel were also near or in excess of limits specified by GPHS fuel powder specifications. Among actinide impurities, uranium is of paramount concern because {sup 234}U is the daughter of {sup 2238}Pu by alpha decay, and is the largest actinide impurity. An aqueous method based on nitric acid was selected for purification of the {sup 238}PuO{sub 2} fuel. All aqueous processing used high purity reagents, and was performed in PTFE apparatus to minimize introduction of new contaminants. Impure {sup 238}PuO{sub 2} was first dissolved in refluxing HNO{sub 3}/HF and then the solution was filtered. The dissolved {sup 238}Pu was adjusted to the trivalent state by an excess of reducing reagents to compensate for radiolytic effects, precipitated as plutonium(III) oxalate, and recovered by filtration. The plutonium(III) oxalate was subsequently calcined to convert the plutonium to the oxide. Decontamination factors for silicon, phosphorus and uranium were excellent. Decontamination factors for aluminum, chromium, iron and nickel were very good. The purity of the {sup 238}PuO{sub 2} recovered from this operation was significantly better than specifications. Efforts continue to develop the capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel in a glovebox environment. Plutonium-238 materials targeted for recovery includes impure oxide and scrap items that are lean in {sup 238}Pu values.

  10. Development program to recycle and purify plutonium-238 oxide fuel from scrap

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Silver, Gary L.; Avens, Larry R.; Jarvinen, Gordon D.; Espinoza, Jacob; Foltyn, Elizabeth M.; Rinehart, Gary H.

    1997-01-01

    Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory (LANL) has initiated a development program to recover & purify plutonium-238 oxide from impure sources. A glove box line has been designed and a process flowsheet developed to perform this task on a large scale. Our initial effort has focused on purification of 238PuO2 fuel that fails to meet General Purpose Heat Source (GPHS) specifications because of impurities. The most notable non-actinide impurity was silicon, but aluminum, chromium, iron and nickel were also near or in excess of limits specified by GPHS fuel powder specifications. 234U was by far the largest actinide impurity observed in the feed material because it is the daughter product of 238Pu by alpha decay. An aqueous method based on nitric acid was selected for purification of the 238PuO2 fuel. All aqueous processing used high purity reagents, and was performed in PTFE apparatus to minimize introduction of new contaminants. Impure 238PuO2 was finely milled, then dissolved in refluxing HNO3/HF and the solution filtered. The dissolved 238Pu was adjusted to the trivalent state by an excess of reducing reagents to compensate for radiolytic effects, precipitated as plutonium(III) oxalate, and recovered by filtration. The plutonium(III) oxalate was subsequently calcined to convert the plutonium to the oxide. Decontamination factors for silicon, phosphorus and uranium were excellent. Decontamination factors for aluminum, chromium, iron and nickel were very good. The purity of the 238PuO2 recovered from this operation was significantly better than specifications. Efforts continue to develop the capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel in a glove box environment. Plutonium-238 materials targeted for recovery includes impure oxide and scrap items that are lean in 238Pu values.

  11. Dry process for recovering gallium from weapons plutonium using a rotary furnace equipped with a copper collector

    NASA Astrophysics Data System (ADS)

    Philip, C. V.; Anthony, Rayford G.; Shivraj, Chokkaram; Philip, Elizabeth; Pitt, W. Wilson; Roundhill, Max; Beard, Carl

    2000-07-01

    Currently the separation of gallium from weapons plutonium is achieved using complex aqueous processing involving solvent extraction and ion exchange; this process generates large quantities of wastewater containing radioactive materials. At Los Alamos National Laboratory, researchers have been developing a simpler alternative process referred to as the thermally induced gallium removal (TIGR) process; vaporized gallium suboxide is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C or higher. During the TIGR process some of the gallium suboxide prematurely decomposes to gallium metal and gallium trioxide, which deposit on furnace and vent surfaces.

  12. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

  13. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  14. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  15. Winter Wheat and Maize Response to Urea Ammonium Nitrate and a New Urea Formaldehyde Polymer Fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slow release nitrogen (N) fertilizers have potential to improve yield and nitrogen use efficiency (NUE) in winter wheat (Triticum aestivum L.) and maize (Zea mays L.). A slow release urea formaldehyde polymer (UFP) was compared with conventional aqueous urea-ammonium nitrate (UAN) [(NH2)2CO, NH4NO3]...

  16. New Fecal Method for Plutonium and Americium

    SciTech Connect

    Maxwell, S.L. III

    2000-06-27

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  17. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  18. Application of PGNAA to plutonium surveillance

    SciTech Connect

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1997-12-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is a well-established tool for nondestructive elemental analysis of bulk samples. At Los Alamos National Laboratory we are investigating the use of PGNAA as a diagnostic tool for a number of applications, particularly matrix characterization for nondestructive assay and plutonium surveillance. Surveillance is an essential feature of most plutonium facility operations, including routine material processing and research, short-term storage, and processing operations prior to disposal or long-term storage. The ability to identify and assay specific elements from gamma-ray-produced active neutron interrogation (e.g., by neutron capture, nonelastic scattering, and the decay of activation products) makes PGNAA an ideal tool for surveillance. For example, PGNAA can help confirm item descriptions (for example, plutonium chloride versus plutonium oxide). This feature is particularly important in operations involving poorly characterized legacy materials where the material form could adversely impact plutonium-processing operations.

  19. Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction.

    PubMed

    Babaei, Ali Akbar; Azari, Ali; Kalantary, Roshanak Rezaei; Kakavandi, Babak

    2015-01-01

    Herein, multi-wall carbon nanotubes (MWCNTs) were used as the carrier of nano-zero valent iron (nZVI) particles to fabricate a composite known as nZVI@MWCNTs. The composite was then characterized and applied in the nitrate removal process in a batch system under anoxic conditions. The influential parameters such as pH, various concentrations of nitrate and composite were investigated within 240 min of the reaction. The mechanism, kinetics and end-products of nitrate reduction were also evaluated. Results revealed that the removal nitrate percentage for nZVI@MWCNTs composite was higher than that of nZVI and MWCNTs alone. Experimental data from nitrate reduction were fitted to the Langmuir-Hinshelwood kinetic model. The values of observed rate constant (kobs) decreased with increasing the initial concentration of nitrate. Our experiments proved that the nitrate removal efficiency was favorable once both high amounts of nZVI@MWCNTs and low concentrations of nitrate were applied. The predominant end-products of the nitrate reduction were ammonium (84%) and nitrogen gas (15%). Our findings also revealed that ZVI@MWCNTs is potentially a good composite for removal/reduction of nitrate from aqueous solutions. PMID:26606093

  20. Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

    SciTech Connect

    Robinson, J.M.; Foy, B.R.; Dell'Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J.; Breshears, D.; Brewer, R.; Eaton, H.; McFarland, R.; McInroy, R.; Reynolds, T.; Sedillo, M.; Wilmanns, E.; Buelow, S.J.

    1993-01-01

    This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 [degree]K to 873[degree]K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 [degree]K to 798 [degree]K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 [degree]K to 1963 mg/kg at 30.3 MPa and 723[degree]K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723[degree]K and 798[degree]K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 [degree]K.

  1. Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

    SciTech Connect

    Robinson, J.M.; Foy, B.R.; Dell`Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J.; Breshears, D.; Brewer, R.; Eaton, H.; McFarland, R.; McInroy, R.; Reynolds, T.; Sedillo, M.; Wilmanns, E.; Buelow, S.J.

    1993-03-01

    This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 {degree}K to 873{degree}K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 {degree}K to 798 {degree}K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 {degree}K to 1963 mg/kg at 30.3 MPa and 723{degree}K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723{degree}K and 798{degree}K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 {degree}K.

  2. Viscosity of Molten Sodium Nitrate

    NASA Astrophysics Data System (ADS)

    Nunes, V. M. B.; Loureno, M. J. V.; Santos, F. J. V.; de Castro, C. A. Nieto

    2006-11-01

    New experimental data for the viscosity of molten sodium nitrate from its melting point up to 752 K, at atmospheric pressure, with an estimated uncertainty of 2.1%, were measured with an oscillating cup viscometer. A preliminary reference correlation and reference data are proposed, based on the best available data for the viscosity of molten sodium nitrate, for temperatures between 590 and 750 K, with an estimated absolute uncertainty of 0.066 mPa s ( k = 2).

  3. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  4. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  5. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  6. The geochemistry of plutonium in fresh and marine water environments

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.

    1983-04-01

    The chemical behaviour of plutonium in the hydrosphere is a subject of both great practical and intrinsic importance. The production and eventual disposal of Pu and other artificial radionuclides dictates that this be the case. The main objective of this paper is to provide a synthesis and critical examination of currently published data and interpretations on the geochemistry of Pu in natural waters and sediments. Where appropriate, an attempt is made to reinterpret published data with the aim of establishing the relationships between geochemical and biological processes and the distribution, concentration and speciation of Pu. Particular attention is paid to the question of the potential for the chemical remobilization of Pu from the solid to the aqueous phase. Approximately one third of the text deals with freshwaters (mostly lakes) while two thirds discusses the estuarine, coastal and open ocean environments.

  7. Plutonium focus area. Technology summary

    SciTech Connect

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  8. Automated amperometric plutonium assay system

    SciTech Connect

    Burt, M.C.

    1985-01-01

    The amperometric titration for plutonium assay has been used in the nuclear industry for over twenty years and has been in routine use at the Hanford Engineering Development Laboratory since 1976 for the analysis of plutonium oxide and mixed oxide fuel material for the Fast Flux Test Facility. It has proven itself to be an accurate and reliable method. The method may be used as a direct end point titration or an excess of titrant may be added and a back titration performed to aid in determination of the end point. Due to the slowness of the PuVI-FeII reaction it is difficult to recognize when the end point is being approached and is very time consuming if the current is allowed to decay to the residual value after each titrant addition. For this reason the back titration in which the rapid FeII-CrVI reaction occurs is used by most laboratories. The back titration is performed by the addition of excess ferrous solution followed by two measured aliquots of standard dichromate with measurement of cell current after each addition.

  9. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.

    PubMed

    Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M

    2009-03-15

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified. PMID:18639378

  10. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  11. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  12. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  13. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  14. Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium

    PubMed Central

    ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

    2013-01-01

    Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

  15. Surface Nanobubbles in Nonaqueous Media: Looking for Nanobubbles in DMSO, Formamide, Propylene Carbonate, Ethylammonium Nitrate, and Propylammonium Nitrate.

    PubMed

    An, Hongjie; Liu, Guangming; Atkin, Rob; Craig, Vincent S J

    2015-07-28

    Surface nanobubbles produced by supersaturation during the exchange of ethanol for water are routinely observed on hydrophobic surfaces, are stable for days, and have contact angles that are very much greater than observed macroscopically. Here, we test the hypothesis that nanobubbles can also be observed in nonaqueous solvents in order to ascertain if their anomalous lifetimes and contact angles are related to properties of the solvent. Nanobubbles were seen in the protic solvents formamide, ethylammonium nitrate, and propylammonium nitrate, but not in propylene carbonate or dimethyl sulfoxide. Solvents in which nanobubbles were observed exhibit a three-dimensional hydrogen-bonding network. Like in aqueous systems, the nanobubbles were stable for days and exhibited high contact angles (?165). PMID:26153620

  16. Synthesis of nano-structured polypyrrole/copper electrodes for nitrate and nitrite electroreduction

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Nguyen Bui, Nhat; Do, Duong Kim Bao; Pham, Anh Minh

    2010-09-01

    Nanostructured polypyrrole film was synthesized onto a copper electrode in solutions of oxalic and salicylic acids and their buffers. The electrooxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied using chronoamperometry. The nanoporous structure of the synthesized Ppy films was characterized by scanning electron microscopy (SEM). Nitrate and nitrite reduction were performed by an electrochemical method under potentiostatic conditions. The Ppy/Cu electrodes prepared in the oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than that for the electrodes prepared in oxalic acid solution. After 20?h of electrolysis, the nitrite was reduced completely with 100% efficiency and the nitrate was reduced with 35% efficiency. Report submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9-12 November 2010.

  17. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  18. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect

    Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  19. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  20. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  1. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  2. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  3. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  4. The metabolism of plutonium and related elements

    SciTech Connect

    Not Available

    1986-01-01

    This report reviews, updates and extends the information on the metabolism of plutonium, neptunium and the trivalent actinides, previously reviewed in ICRP Publication 19, with special reference to the absorption from the gastro-intestinal tract, the retention times in liver and skeleton, the influence of bone re-modelling on the microdistribution within the skeleton and the relation of actinide metabolism to that of other radionuclides. Contents (partial): Introduction; The chemistry of plutonium and related elements; Entry of actinides by inhalation; Entry of actinide elements via the gastro-intestinal tract; The penetration of plutonium and other actinides through the intact skin; Distribution and retention of systemically absorbed actinides; General conclusions.

  5. Immobilization of excess weapons plutonium in Russia

    SciTech Connect

    Borisov, G B; Jardine, L J; Mansourov, O A

    1999-01-25

    In this paper, we examine the logic and framework for the development of a capability to immobilize excess Russian weapons plutonium by the year 2004. The initial activities underway in Russia, summarized here, include engineering feasibility studies of the immobilization of plutonium-containing materials at the Krasnoyarsk and Mayak industrial sites. In addition, research and development (R&D) studies are underway at Russian institutes to develop glass and ceramic forms suitable for the immobilization of plutonium-containing materials, residues, and wastes and for their geologic disposal.

  6. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  7. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  8. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    SciTech Connect

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-11-29

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some of the more interesting results of these investigations are presented.

  9. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact with metallographic polishing lubricants, solvents, or chemicals. And water being one of the most reactive solutions, is not used in the preparation. Figure 2 shows an example of a plutonium sample in which an oxide film has formed on the surface due to overexposure to solutions. it has been noted that nucleation of the hydride/oxide begins around inclusions and samples with a higher concentration of impurities seem to be more susceptible to this reaction. Figure 3 shows examples of small oxide rings, forming around inclusions. Lastly, during the cutting, grinding, or polishing process there is enough stress induced in the sample that the surface can transform from the soft face-centered-cubic delta phase (30 HV) to the strain-induced monoclinic alpha{prime} phase (300 HV). Figure 4 and 5 shows cross-sectional views of samples in which one was cut using a diamond saw and the other was processed through 600 grit. The white layers on the edges is the strain induced alpha{prime} phase. The 'V' shape indentation in Figure 5 was caused by a coarser abrasive which resulted in transformations to a depth of approximately 20 {micro}m. Another example of the transformation sensitivity of plutonium can be seen in Figure 6, in which the delta phase has partly transformed to alpha{prime} during micro hardness indentation.

  10. Opportunities in Plutonium Metallurgical Research

    SciTech Connect

    Schwartz, Adam J.

    2007-07-01

    This is an exciting time to be involved in plutonium metallurgical research. Over the past few years, there have been significant advances in our understanding of the fundamental materials science of this unusual metal, particularly in the areas of self-irradiation induced aging of Pu, the equilibrium phase diagram, the homogenization of {delta}-phase alloys, the crystallography and morphology of the {alpha}'-phase resulting from the isothermal martensitic phase transformation, and the phonon dispersion curves, among many others. In addition, tremendous progress has been made, both experimentally and theoretically, in our understanding of the condensed matter physics and chemistry of the actinides, particularly in the area of electronic structure. Although these communities have made substantial progress, many challenges still remain. This brief overview will address a number of important challenges that we face in fully comprehending the metallurgy of Pu with a specific focus on aging and phase transformations. (author)

  11. Management of plutonium in THORP

    SciTech Connect

    Parkes, P.; Evans, M.

    1996-12-31

    British Nuclear Fuels Ltd. (BNFL) is currently actively commissioning its state-of-the-art thermal oxide reprocessing plant (THORP). In its first 10 yr of operation, it will process {approximately}8000t of oxide fuel from advanced gas-cooled reactors (AGRs) and light water reactors (LWRs). The bulk of this fuel belongs to overseas customers, notably Germany and Japan. The reprocessing plant itself will separate the irradiated fuel, after a suitable period of storage in water-filled ponds to allow for the bulk of the short-lived fission product to decay, into its components of cladding, fission products, and purified uranium and plutonium oxides. The zirconium cladding remaining after dissolution will be encapsulated into a cement-based matrix, and the fission products will be vitrified for eventual disposal in an underground repository. Effluents from the processes are processed in a series of associated plants.

  12. Effect of surface property of activated carbon on adsorption of nitrate ion.

    PubMed

    Iida, Tatsuya; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2013-01-01

    In this study, the removal of acidic functional groups and introduction of basic groups/sites on activated carbons (ACs) by outgassing and ammonia gas treatment were respectively carried out to enhance the nitrate ion adsorption in aqueous solution. Then, the relationships between nitrate ion adsorption and solution pH as well as surface charge of AC were investigated to understand the basic mechanisms of nitrate ion adsorption by AC. The result showed that the nitrate ion adsorption depended on the equilibrium solution pH (pHe) and the adsorption amount was promoted with decreasing pHe. The ACs treated by outgassing and ammonia gas treatment showed larger amount of nitrate ion adsorption than that by untreated AC. These results indicated that, since basic groups/sites could adsorb protons in the solution, the AC surface would be charged positively, and that the nitrate ion would be electrically interacted with positively charged carbon surface. Accordingly, it was concluded that basic groups/sites on the surface of AC could promote nitrate ion adsorption. PMID:24189304

  13. Crevice Repassivation Potential of Alloy 22 in High-Nitrate Dust Deliquescence Type Environments

    SciTech Connect

    Lian, T; Gdowski, G E; Hailey, P D; Rebak, R B

    2007-02-08

    The nitrate ion (NO{sub 3}{sup -}) is an inhibitor for crevice corrosion of Alloy 22 (N06022) in chloride (Cl{sup -}) aqueous solutions. Naturally formed electrolytes may contain both chloride and nitrate ions. The higher the ratio R = [NO{sub 3}{sup -}]/[Cl{sup -}] in the solution the stronger the inhibition of crevice corrosion. Atmospheric desert dust contains both chloride and nitrate salts, generally based on sodium (Na{sup +}) and potassium (K{sup +}). Some of these salts may deliquescence at relatively low humidity at temperatures on the order of 150 C and higher. The resulting deliquescent brines are highly concentrated and especially rich in nitrate. Electrochemical tests have been performed to explore the anodic behavior of Alloy 22 in high chloride high nitrate electrolytes at temperatures as high as 150 C at ambient atmospheres. Naturally formed brines at temperatures higher than 120 C do not induce crevice corrosion in Alloy 22 because they contain high levels of nitrate. The inhibitive effect of nitrate on crevice corrosion is still active for temperatures higher than 100 C.

  14. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  15. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  16. What is plutonium stabilization, and what is safe storage of plutonium?

    SciTech Connect

    Forsberg, C.W.

    1995-06-29

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

  17. Spectrophotometric determination of plutonium-239 based on the spectrum of plutonium(III) chloride

    SciTech Connect

    Temer, D.J.; Walker, L.F.

    1994-07-01

    This report describes a spectrophotometric method for determining plutonium-239 (Pu-239) based on the spectrum of Pu(III) chloride. The authors used the sealed-reflux technique for the dissolution of plutonium oxide with hydrochloric acid (HCl) and small amounts of nitric and hydrofluoric acids. To complex the fluoride, they added zirconium, and to reduce plutonium to Pu(III), they added ascorbic acid. They then adjusted the solution to a concentration of 2 M HCl and measured the absorbances at five wavelengths of the Pu(III) chloride spectrum. This spectrophotometric determination can also be applied to samples of plutonium metal dissolved in HCl.

  18. Method for dissolving plutonium oxide with HI and separating plutonium

    DOEpatents

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  19. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161

  20. Oxidant supply and aqueous photochemical SOA formation in cloud droplets and aqueous aerosol

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ervens, B.; Lim, Y. B.

    2012-12-01

    Many recent laboratory, field and model studies point to significant contributions to the total secondary organic aerosol (SOA) budget from aqueous phase reactions in cloud droplets and aqueous aerosol particles. Laboratory studies of the photochemical oxidation of glyoxal and methylglyoxal in the aqueous phase show a strong dependence on the initial concentration of dissolved organics, with preferential formation of large molecules (dimers, oligomers) at the high concentrations found in ambient deliquesced aerosol particles. In such experimental studies OH radicals are produced in the aqueous phase (via hydrogen peroxide photolysis) and OH radical is assumed to be the major oxidant. An explicit aqueous photooxidation mechanism has been validated, in part, based on the observed temporal evolution of organic intermediates and products in these experiments. In this work, this mechanism was incorporated into multiphase process models (box, cloud parcel) in order to further explore aqueous SOA formation in dilute cloud droplets and concentrated aerosol particles. We found that the predicted SOA mass in both aqueous phases can be comparable despite the much lower liquid water content in aerosols, where oligomer formation is favored. Direct uptake from the gas phase was the largest source of OH radicals in the aqueous phase. In-situ production through the Fenton reaction (Fe), hydrogen peroxide and nitrate photolysis were minor sources. Since phase transfer is slower than the OH(aq) consumption by organics, modeled OH(aq) concentrations were smaller by 1-2 orders of magnitude than predicted based on thermodynamic equilibrium. Our model studies suggest that, unless there are substantial additional sources of OH radical in the aqueous phase, aqueous SOA formation will be oxidant limited. Since the phase transfer rate is a function of the drop (or particle) surface area, aqueous SOA formation may occur preferentially at or near the drop/particle surface (e.g., be surface-limited) and thus add SOA mass preferentially to particle populations with higher surface/volume ratios. These model results will be compared and contrasted with aqueous sulfate formation. We will discuss our findings in the context of ambient data that might suggest a preferential aqueous SOA formation in smaller (high surface/volume) particles. We will also highlight current gaps in our understanding of oxidant production and cycling in the aqueous phase that might influence our results and change dependencies on bulk water volume versus surface area.

  1. Design and evaluation of plutonium electrorefining cells

    SciTech Connect

    Not Available

    1987-01-01

    A plutonium electrorefining cell was designed for stationary furnace operation. This cell and the LANL electrorefining cell were evaluated. Results of this evaluation and comparison to existing production electrorefining at Rocky Flats are presented.

  2. A Plutonium Storage Container Pressure Measurement Technique

    SciTech Connect

    Grim, T.J.

    2002-05-10

    Plutonium oxide and metal awaiting final disposition are currently stored at the Savannah River Site in crimp sealed food pack cans. Surveillances to ensure continued safe storage of the cans include periodic lid deflection measurements using a mechanical device.

  3. Recommendations for plutonium colloid size determination

    SciTech Connect

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated.

  4. Plutonium Immobilization Bagless Transfer Can Size Evaluation

    SciTech Connect

    Kriikku, E.; Stokes, M.; Rogers, L.; Ward, C.

    1998-02-01

    This report identifies and documents the most appropriate bagless transfer can size to support Plutonium Immobilization Can Loading operations. Also, this report considers can diameter, can wall thickness, and can length.

  5. Plutonium finishing plant dangerous waste training plan

    SciTech Connect

    ENTROP, G.E.

    1999-05-24

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

  6. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  7. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  8. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process and immobilize 17 tonnes of plutonium in ten years. The project schedule for either case is shown in a table.

  9. Plutonium-238 processing at Savannah River Plant

    SciTech Connect

    Burney, G.A.

    1983-01-01

    Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

  10. Development of a plutonium solution-assay instrument with isotopic capability

    SciTech Connect

    Hsue, S.T.; Marks, T.

    1992-09-01

    A new generation of solution-assay instrument has been developed to satisfy all the assay requirements of an aqueous plutonium-recovery operation. The assay is based on a transmission-corrected passive assay technique. We have demonstrated that the system can cover a concentration range of 0.5--300 g/{ell} with simultaneous isotopic determination. The system can be used to assay input and eluate streams of the recovery operation. The system can be modified to measure low-concentration effluent solutions from the recovery operation covering 0.01--40 g/{ell}. The same system has also been modified to assay plutonium solutions enriched in {sup 242}Pu. 6 refs.

  11. Plutonium Finishing Plant safety evaluation report

    SciTech Connect

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  12. System 80+: The premier plutonium burner

    SciTech Connect

    Crump, N.W.; Flynn, E.P.; Knapp, R.W. )

    1993-01-01

    The disarmament plans of both the United States and the former Soviet Union will result in the need to dispose of excess plutonium on both sides. While the final details remain to be determined, it is currently anticipated that device disassembly will result in a requirement to [open quotes]denature[close quotes] (i.e., make unsuitable for weapons use) [approximately]100 tonnes of plutonium by 2018. The denaturing of the plutonium is accomplished by the buildup of [sup 240]Pu content in the material through in-reactor irradiation of plutonium-bearing fuel. The System 80+[trademark] standard design is of particular interest because its predecessor, System 80[trademark], was originally specifically designed to make use of an all-plutonium core. A single System 80+[trademark] reactor can meet the 100-tonne disposal requirement. Because the System 80+[trademark] advanced standard plant design is based on a proven technology base and is very far along in the US Nuclear Regulatory Commission (NRC) design certification process, it would provide the quickest, most economical vehicle for denaturing the surplus plutonium.

  13. Nitration of the Birch Pollen Allergen Bet v 1.0101: Efficiency and Site-Selectivity of Liquid and Gaseous Nitrating Agents

    PubMed Central

    2014-01-01

    Nitration of the major birch pollen allergen Bet v 1 alters the immune responses toward this protein, but the underlying chemical mechanisms are not yet understood. Here we address the efficiency and site-selectivity of the nitration reaction of recombinant protein samples of Bet v 1.0101 with different nitrating agents relevant for laboratory investigations (tetranitromethane, TNM), for physiological processes (peroxynitrite, ONOO), and for the health effects of environmental pollutants (nitrogen dioxide and ozone, O3/NO2). We determined the total tyrosine nitration degrees (ND) and the NDs of individual tyrosine residues (NDY). High-performance liquid chromatography coupled to diode array detection and HPLC coupled to high-resolution mass spectrometry analysis of intact proteins, HPLC coupled to tandem mass spectrometry analysis of tryptic peptides, and amino acid analysis of hydrolyzed samples were performed. The preferred reaction sites were tyrosine residues at the following positions in the polypeptide chain: Y83 and Y81 for TNM, Y150 for ONOO, and Y83 and Y158 for O3/NO2. The tyrosine residues Y83 and Y81 are located in a hydrophobic cavity, while Y150 and Y158 are located in solvent-accessible and flexible structures of the C-terminal region. The heterogeneous reaction with O3/NO2 was found to be strongly dependent on the phase state of the protein. Nitration rates were about one order of magnitude higher for aqueous protein solutions (?20% per day) than for protein filter samples (?2% per day). Overall, our findings show that the kinetics and site-selectivity of nitration strongly depend on the nitrating agent and reaction conditions, which may also affect the biological function and adverse health effects of the nitrated protein. PMID:24517313

  14. Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents.

    PubMed

    Reinmuth-Selzle, Kathrin; Ackaert, Chlo; Kampf, Christopher J; Samonig, Martin; Shiraiwa, Manabu; Kofler, Stefan; Yang, Hong; Gadermaier, Gabriele; Brandstetter, Hans; Huber, Christian G; Duschl, Albert; Oostingh, Gertie J; Pschl, Ulrich

    2014-03-01

    Nitration of the major birch pollen allergen Bet v 1 alters the immune responses toward this protein, but the underlying chemical mechanisms are not yet understood. Here we address the efficiency and site-selectivity of the nitration reaction of recombinant protein samples of Bet v 1.0101 with different nitrating agents relevant for laboratory investigations (tetranitromethane, TNM), for physiological processes (peroxynitrite, ONOO(-)), and for the health effects of environmental pollutants (nitrogen dioxide and ozone, O?/NO?). We determined the total tyrosine nitration degrees (ND) and the NDs of individual tyrosine residues (NDY). High-performance liquid chromatography coupled to diode array detection and HPLC coupled to high-resolution mass spectrometry analysis of intact proteins, HPLC coupled to tandem mass spectrometry analysis of tryptic peptides, and amino acid analysis of hydrolyzed samples were performed. The preferred reaction sites were tyrosine residues at the following positions in the polypeptide chain: Y83 and Y81 for TNM, Y150 for ONOO(-), and Y83 and Y158 for O?/NO?. The tyrosine residues Y83 and Y81 are located in a hydrophobic cavity, while Y150 and Y158 are located in solvent-accessible and flexible structures of the C-terminal region. The heterogeneous reaction with O?/NO? was found to be strongly dependent on the phase state of the protein. Nitration rates were about one order of magnitude higher for aqueous protein solutions (?20% per day) than for protein filter samples (?2% per day). Overall, our findings show that the kinetics and site-selectivity of nitration strongly depend on the nitrating agent and reaction conditions, which may also affect the biological function and adverse health effects of the nitrated protein. PMID:24517313

  15. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  16. Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.

    PubMed

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-03-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  17. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  18. Guidelines for international plutonium management: Overview and implications

    SciTech Connect

    Bryson, M.C.; Fitzgerald, C.P.; Kincaid, C.

    1998-12-31

    In September, 1997, nine of the world`s plutonium-using countries agreed to a set of guidelines for international plutonium management, with acceptances to be submitted to the International Atomic Energy Agency on December 1. Following three years of discussion, the guidelines provide a unified package of accepted rules for the storage, handling, and transportation of civil plutonium as well as military plutonium that has been declared as no longer required for defense purposes. New requirements include a formal declaration of national plutonium strategies, which will recognize the environmental, economic, and proliferation concerns and the consequent importance of balancing plutonium supply and demand. Nations will also make annual declaration of their non-military stockpiles of unirradiated plutonium, together with estimates of the plutonium content in spent reactor fuel. These guidelines represent the first formally accepted recognition of the need for plutonium management of this scope and could thus provide a partial basis for future monitoring and policy regimes.

  19. Preparation of thin ceramic films via an aqueous solution route

    DOEpatents

    Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  20. CHEMOX: An integrated facility for the conversion of Russian weapon-grade plutonium into oxide for MOX fuel fabrication

    NASA Astrophysics Data System (ADS)

    Glagovski, E.; Kolotilov, Y.; Sicard, B.; Josso, F.; Fraize, G.; Herlet, N.; Villa, A.; Brossard, P.

    2000-07-01

    In the frame of the trilateral agreement between Russia, Germany and France, the CHEMOX (chemistry from metal into oxide) facility is proposed for the conversion of the alloyed plutonium coming from the dismantling of nuclear pits into an oxide suitable for MOX fuel fabrication and irradiation in VVER- or BN-type reactors. For the CHEMOX facility an aqueous conversion process has been chosen for its versatility, and compatibility with known technologies and with existing on-site treatment facilities.

  1. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, 5f Resonant Photoemission from Plutonium, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, and D.K. Shuh, Photoelectron Spectroscopy of Plutonium at the Advanced Light Source, UCRL-JC-145703, J. Nucl. Sci. Tech./ Proc. of Actinides 2001, submitted November 2001.

  2. Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications

    SciTech Connect

    Schulte, L.D.; Espinoza, J.M.; Ramsey, K.B.; Rinehart, G.H.; Silver, G.L.; Purdy, G.M.; Jarvinen, G.D.

    1997-11-01

    The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments allowing more time for neutralized solutions of plutonium-238 to precipitate resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

  3. Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications

    SciTech Connect

    Schulte, L.D.; Purdy, G.M.; Jarvinen, G.D.; Ramsey, K.; Silver, G.L.; Espinoza, J.; Rinehart, G.H.

    1998-01-01

    The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover & purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments on neutralized solutions of plutonium-238 resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel. {copyright} {ital 1998 American Institute of Physics.}

  4. Nonreversible immobilization of water-borne plutonium onto self-assembled adlayers of silanized humic materials.

    PubMed

    Shcherbina, Natalia S; Kalmykov, Stepan S; Karpiouk, Leonid A; Ponomarenko, Sergey A; Hatfield, Kirk; Haire, Richard; Perminova, Irina V

    2014-02-18

    The objective was to study plutonium partitioning between immobile and mobile humic materials at the water-solid interfaces. Immobilization of the humic materials on solid supports was performed in situ using self-adhesive silanized humic derivatives. The presence of the humic adlayers on solid supports was shown to significantly enhance Pu sorption and its retention under both steady state and dynamic conditions. While plutonium may exist in multiple oxidations states plus colloidal forms, the major thrust in this work was to study the behavior of most mobile--the PuO2(+) form in dilute solutions. The values of the plutonium partition coefficients (Kd) between water and humics-coated silica gels after 10 days exposure reached 1.6 10(4) L kg(-1) at pH 7.5 under anaerobic conditions with a total plutonium concentration of 1.2 10(-8) M exceeding those for the uncoated SiO2 (6.3 10(2) L kg(-1)). Column tests showed substantial sequestration of water-borne plutonium (up to 73%) on the humics-coated silica gels. Remobilization experiments conducted under batch conditions at different pH values (3.5, 4.5, 7.5) showed that no more than 3% of the sequestered Pu was remobilized from the humics-coated silica gels by treatment with dissolved humic materials at environmentally relevant pH of 7.5. Consequently, silanized humic materialas can be seen as both molecular probes and as potent candidate materials for scavenging mobile Pu from an aqueous phase. PMID:24533599

  5. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  6. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  7. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  8. Method for Plutonium-Gallium Separation by Anodic Dissolution of a Solid Plutonium-Gallium Alloy

    SciTech Connect

    Miller, William E.; Tomczuk, Zygmunt

    1998-12-08

    Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu-Ga) alloy by using an electrorefining process. The solid Pu-Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu-Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500 C, resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.

  9. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  12. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    PubMed Central

    Macedo, Mara Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  13. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis.

    PubMed

    Macedo, Mara Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-07-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  14. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  15. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  16. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  17. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  18. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  19. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or

  20. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  1. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  2. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  3. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  4. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  5. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  6. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  7. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate..., combustible liquids, corrosive liquids, chlorates, permanganates, finely divided metals, caustic...

  8. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... safe distance from electric wiring, steam pipes, radiators or any heating mechanism. (4)...

  9. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... safe distance from electric wiring, steam pipes, radiators or any heating mechanism. (4)...

  10. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... safe distance from electric wiring, steam pipes, radiators or any heating mechanism. (4)...

  11. Comment on the paper by R. Sankar, C.M. Ragahvan, R. Mohan Kumar, R. Jayavel, Growth and characterization of bis-glycine sodium nitrate (BGSN), a novel semiorganic nonlinear optical crystal, J. Crystal Growth 309 (2007) 30 36

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.

    2008-08-01

    It is argued that the conclusion of the authors of the title paper on obtaining of a new crystal bis-glycine sodium nitrate is erroneous. From an aqueous solution containing 2 glycine+NaNO 3 the authors actually have obtained earlier known crystals: glycine (alpha form) and glycine sodium nitrate.

  12. Preserving Plutonium-244 as a National Asset

    SciTech Connect

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis; Collins, Emory D; Romano, Catherine E; Wham, Robert M

    2011-01-01

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.

  13. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  14. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  15. Long-term plutonium storage: Design concepts

    SciTech Connect

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-08-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs.

  16. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  17. Mammalian nitrate biochemistry: metabolism and endogenous synthesis.

    PubMed

    Wagner, D A; Young, V R; Tannenbaum, S R; Schultz, D S; Deen, W M

    1984-01-01

    The metabolic fate of an oral dose of 3.5 mmol 15N-labelled nitrate was investigated in young adults. An average of 60% of the 15N-nitrate dose appeared in the urine within 48 h; less than 0.1% appeared in the faeces. Some of the 15N label of nitrate was found in the urine (3%) and faeces (0.2%) in the form of ammonia and urea; the remainder of the dose was attributed to nitrate loss via metabolism to other reduced nitrogen compounds. Studies with germ-free rats indicated that half of the nitrate metabolism is due to mammalian processes. These and previous studies show that not all of the nitrate excreted in the urine is of dietary origin but evolves from endogenous synthesis. An oral dose of 15N-ammonium acetate was incorporated into urinary 15N-nitrate in rats, suggesting that ammonia is a precursor of nitrate. Furthermore, Escherichia coli lipopolysaccharide was found to be a potent stimulus of nitrate excretion (nine-fold increase), due to an increased rate of synthesis. Two other types of experimentally induced inflammatory states - injection of carrageenan and of turpentine - enhanced nitrate synthesis. It is proposed that the pathway of nitrate biosynthesis may be the result of oxidation of reduced nitrogen compounds by oxygen radicals generated by an activated reticuloendothelial system. PMID:6533015

  18. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  19. 71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  20. 69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  1. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  2. Plutonium transport in the environment.

    PubMed

    Kersting, Annie B

    2013-04-01

    The recent estimated global stockpile of separated plutonium (Pu) worldwide is about 500 t, with equal contributions from nuclear weapons and civilian nuclear energy. Independent of the United States' future nuclear energy policy, the current large and increasing stockpile of Pu needs to be safely isolated from the biosphere and stored for thousands of years. Recent laboratory and field studies have demonstrated the ability of colloids (1-1000 nm particles) to facilitate the migration of strongly sorbing contaminants such as Pu. In understanding the dominant processes that may facilitate the transport of Pu, the initial source chemistry and groundwater chemistry are important factors, as no one process can explain all the different field observations of Pu transport. Very little is known about the molecular-scale geochemical and biochemical mechanisms controlling Pu transport, leaving our conceptual model incomplete. Equally uncertain are the conditions that inhibit the cycling and mobility of Pu in the subsurface. Without a better mechanistic understanding for Pu at the molecular level, we cannot advance our ability to model its transport behavior and achieve confidence in predicting long-term transport. Without a conceptual model that can successfully predict long-term Pu behavior and ultimately isolation from the biosphere, the public will remain skeptical that nuclear energy is a viable and an attractive alternative to counter global warming effects of carbon-based energy alternatives. This review summarizes our current understanding of the relevant conditions and processes controlling the behavior of Pu in the environment, gaps in our scientific knowledge, and future research needs. PMID:23458827

  3. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 C.

  4. [Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene].

    PubMed

    Wang, Li-Qun; Wang, Yong; Dong, Ying; Wang, Wen-Bing

    2003-09-01

    Excessive nitrate accumulated in plants affects vegetable quality severely and excessive nitrate ingestion would do harm to human health. Assimilatory NADH: nitrate reductase (NR, EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)- and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. Enhancing the activity of NR is conducive to reduce the concentration of nitrate in plants. The experiments were conducted to investigate the activity of nitrate reductase in different plant tissues and the relationship between external inducing solution concentration and NR activity (NRA) in plant leaves. Six plant seedlings growing in solution culture were deprived of an external nitrogen (N) supply for 2 weeks. On selected days, three of six plant seedlings were exposed to 50mmol/L NO3- for 0, 2, 5, 8, 11h, and four of the six plant seedlings were exposed to 0, 10, 30, 50mmol/L NO3- for 2h. The NRA was determined in vivo at 538nm using spectrophotometer. The results showed that NRA increased when those plant seedlings were induced by nitrate solution. The change trends of NRA in roots and in leaves of cole, pea and tomato were different during treating time. The NRA in cole leaves was higher than that in its root and in other two plants and increased along with inducing time, but the NRA in bea and tomato was highest when the treating time was 8h and 2h, respectively. The highest NRA in leaves of three kinds of Chinese cabbages and tomato was induced by different concentrations of KNO3 solution. In tomato leaves, the highest NRA was induced by 10 - 30mmol/L KNO3 solution. In three Chinese cabbages, Brassica chinensis L. cv. AJH, XBC and KR-605, the highest NRA was induced by 10, 30, 10mmol/L KNO3 solution, respectively. The results indicated that the response manners of NRA in plants to external nitrate solutions were different. According to these results, the level of NR mRNA in plants could be enhanced by nitrate inducement. The total RNA was isolated from tomato leaves and root which induced by 30mmol/L KNO3 solution for 2h, and NR cDNA was obtained by RT-PCR using the specific primers. The fragments of PCR products were cloned and sequenced. There are 2736 base pairs in the whole cDNA fragment. The deduced protein sequence contains 911 amino acids. The NR gene can be fused to the CaMV 35S promoter, then introduced to higher plants, such as vegetables. It is hoped to decrease drastically the nitrate content of the transgenic plants. PMID:15969098

  5. Nitrate Utilization by the Diatom Skeletonema costatum

    PubMed Central

    Serra, Juan L.; Llama, Maria J.; Cadenas, Eduardo

    1978-01-01

    Nitrate uptake has been studied in nitrogen-deficient cells of the marine diatom Skeletonema costatum. When these cells are incubated in the presence of nitrate, this ion is quickly taken up from the medium, and nitrite is excreted by the cells. Nitrite is excreted following classical saturation kinetics, its rate being independent of nitrate concentration in the incubation medium for nitrate concentration values higher than 3 micromolar. Nitrate uptake shows mixed-transfer kinetics, which can be attributed to the simultaneous contributions of mediated and diffusion transfer. Cycloheximide and p-hydroxymercuribenzoate inhibit the carrier-mediated contribution to nitrate uptake, without affecting the diffusion component. When cells are preincubated with nitrate, the net nitrogen uptake is increased. PMID:16660652

  6. Assimilatory nitrate reductase from Acinetobacter calcoaceticus.

    PubMed

    Villalobo, A; Roldn, J M; Rivas, J; CrdenasJ

    1977-03-01

    A soluble nitrate reductase from the bacterium Acinetobacter calcoaceticus grown on nitrate has been characterized. The reduction of nitrate to nitrite is mediated by an enzyme of 96000 molecular weight that can use as electron donors either viologen dyes chemically reduced with dithionite or enzymatically reduced with NAD(P)H, through specific diaphorases which utilize viologens as electron acceptors. Nitrate reductase activity is molybdenumdependent as shown by tungstate antagonistic experiments and is sensitive to--SH reagents and metal chelators such as KCN. The enzyme synthesis is repressed by ammonia. Moreover, nitrate reductase activity undergoes a quick inactivation either by dithionite and temperature or by dithionite in the presence of small amounts of nitrate. Cyanate prevents this inactivating process and can restore the activity once the inactivation had occurred, thus suggesting that an interconversion mechanism may participate in the regulation of Acinetobacter nitrate reductase. PMID:849099

  7. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  8. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    SciTech Connect

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool.

  9. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  10. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  11. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  12. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  13. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  14. Aripiprazole salts. I. Aripiprazole nitrate.

    PubMed

    Freire, Eleonora; Polla, Griselda; Baggio, Ricardo

    2012-04-01

    The crystal structure of aripiprazole nitrate (systematic name: 4-(2,3-dichlorophenyl)-1-{4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy]butyl}piperazin-1-ium nitrate), C(23)H(28)Cl(2)N(3)O(2)(+)NO(3)(-) or AripH(+)NO(3)(-), is presented and the molecule compared with the aripiprazole molecules reported so far in the literature. Bond distances and angles appear very similar, except for a slight lengthening of the C-NH distances involving the protonated N atom, and the main differences are to be found in the molecular spatial arrangement (revealed by the sequence of torsion angles) and the intermolecular interactions (resulting from structural elements specific to this structure, viz. the nitrate counter-ions on one hand and the extra protons on the other hand as hydrogen-bond acceptors and donors, respectively). The result is the formation of [100] strips, laterally linked by weak ?-? and C-Cl...? interactions, leading to a family of undulating sheets parallel to (010). PMID:22476150

  15. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  16. Interaction of divalent plutonium and curium

    SciTech Connect

    Mikheev, N.B.; Kazakevich, M.Z.; Rumer, I.A.

    1988-11-01

    It has been established that at plutonium concentrations ranging from 10/sup -5/ to 10/sup -4/ mole % the oxidation potentials of the Pu/sup 3 +//Pu/sup 2 +/ and Cm/sup 3 +//Cm/sup 2 +/ pairs increased by 0.15-0.2 V due to the dimerization of Pu/sup 2 +/ and the formation of mixed dimers of plutonium and curium. Promethium(2+) does not have a similar ability to form mixed dimers owing to the fact that Pm/sup 2 +/ does not have a free d electron. The oxidation potential of the Pm/sup 3 +//Pm/sup 2 +/ pair does not vary in the presence of massive quantities of plutonium

  17. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  18. The United States Plutonium Balance, 1944 - 2009

    SciTech Connect

    2012-06-01

    This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

  19. Disposition of plutonium in deep boreholes

    SciTech Connect

    Halsey, W.G.; Jardine, L.J.; Walter, C.E.

    1995-05-01

    Substantial inventories of excess plutonium are expected to result from dismantlement of U.S. and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. A variety of disposition options are under consideration. One option is to place the plutonium either directly or in an immobilized form at the bottom of a deep borehole that is then sealed. Deep-borehole disposition involves placing plutonium several kilometers deep into old, stable, rock formations that have negligible free water present. Containment assurance is based on the presence of ancient groundwater indicating lack of migration and communication with the biosphere. Recovery would be extremely difficult (costly) and impossible to accomplish clandestinely.

  20. Excess plutonium disposition using ALWR technology

    SciTech Connect

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  1. Unraveling Pathways of Guaiacol Nitration in Atmospheric Waters: Nitrite, A Source of Reactive Nitronium Ion in the Atmosphere.

    PubMed

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-08-01

    The tropospheric aqueous-phase aging of guaiacol (2-methoxyphenol, GUA), a lignocellulosic biomass burning pollutant, is addressed in this work. Pathways of GUA nitration in aqueous solution under atmospherically relevant conditions are proposed and critically discussed. The influence of NaNO2 and H2O2, hydroxyl radical scavenger, and sunlight was assessed by an experimental-modeling approach. In the presence of the urban pollutant, nitrite, GUA is preferentially nitrated to yield 4- and 6-nitroguaiacol. After a short lag-time, 4,6-dinitroguaiacol is also formed. Its production accelerates after guaiacol is completely consumed, which is nicely described by the model function accounting for NO2(•) and NO2(+) as nitrating agents. Although the estimated second-order kinetic rate constants of methoxyphenol nitration with NO2(•) are substantially higher than the corresponding rate constants of nitration with NO2(+), nitration rates are competitive under nighttime and liquid atmospheric aerosol-like conditions. In contrast to concentrations of radicals, which are governed by the interplay between diffusion-controlled reactions and are therefore mostly constant, concentrations of electrophiles are very much dependent on the ratio of NO2(-) to activated aromatics in solution. These results contribute substantially to the understanding of methoxyphenol aging in the atmospheric waters and underscore the importance of including electrophilic aromatic substitution reactions in atmospheric models. PMID:26162010

  2. Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics.

    PubMed

    Hwang, Y H; Kim, D G; Ahn, Y T; Moon, C M; Shin, H S

    2010-01-01

    This study investigates the fate of nitrogen species during nitrate reduction by nanoscale zero valent iron (NZVI) as well as the related kinetics. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The pseudo first order kinetic constant of nitrate reduction at 30 degrees C with an NZVI/nitrate ratio of 1.25:1, which were the reference conditions of this study, was 4.08 h(-1) (R(2)=0.955). A nitrogen mass balance was established by quantitative analysis of aqueous-phase and gas-phase nitrogen species. The results confirm that the nitrate was converted to ammonium ion, that ammonia stripping subsequently occurred under a strong alkaline condition, and that the total amount of aqueous nitrogen was consequently reduced. The nitrate reduction rate also increased with a lower pH and a higher temperature when microscale ZVI was used. However, in contrast to the reaction by microscale ZVI, the nitrate reduction rate by NZVI was higher for an unbuffered condition, possibly due to the abundance of surface atoms and the smaller size. PMID:20150707

  3. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  4. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  5. Study of the formation, prevention, and recovery of plutonium from plutonium esters in the Purex process

    SciTech Connect

    Gray, L. W.; Burney, G. A.

    1981-01-01

    The Savannah River Plant uses the basic Purex process to separate /sup 239/Pu from /sup 238/U and fission products. Dark-brown, dense solids containing up to 30% Pu have previously occurred in rotameters in the plutonium finishing operations. The kinetics of formation of this mixture of DBP- and MBP-Pu esters suggest two methods to prevent the formation of the solids. A selective dissolution method using NaOH metathesis has been developed to separate the phosphate ester from the plutonium before dissolution of the residual plutonium hydroxide in a HNO/sub 3/-HF medium.

  6. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    SciTech Connect

    Rudin, Sven Peter

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  7. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-12-05

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements.

  8. Removal of Uranium from Plutonium Solutions by Anion Exchange

    SciTech Connect

    Rudisill, T.S.

    2002-03-22

    The anion exchange capacity in the HB-Line Phase II Facility will be used to purify plutonium solutions potentially containing significant quantities of depleted uranium. Following purification, the plutonium will be precipitated as an oxalate and calcined to plutonium oxide (PuO2) for storage until final disposition.

  9. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  10. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  11. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  12. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  13. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  14. VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING 559. THE LABORATORY WAS USED TO ANALYZE THE PURITY OF PLUTONIUM. PLUTONIUM SAMPLES WERE CONTAINED WITHIN GLOVE BOXES - Rocky Flats Plant, Chemical Analytical Laboratory, North-central section of Plant, Golden, Jefferson County, CO

  15. 15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  16. Preparation of a glovebox for casting enriched plutonium.

    SciTech Connect

    Ronquillo, R. D.; Trujillo, C. M.; Trujillo, C. C.

    2002-01-01

    Objectives: Prepare existing glovebox for casting, heat treating and storing enriched plutonium, Upgrade seismic systems to reduce dispersion hazard, Upgrade atmospheric systems to reduce oxidation of plutonium, Upgrade vacuum system to prevent oxidation, InstalI/upgrade induction heating systems to melt plutonium and heat mold

  17. Closure Welding of Plutonium Bearing Storage Containers

    SciTech Connect

    Cannell, G.R.

    2002-02-28

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers.

  18. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  19. Complexation of Lanthanides with Nitrate at Variable Temperatures: Thermodynamics and Coordination Modes

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2008-12-10

    Complexation of neodymium(III) with nitrate was studied at variable temperatures (25, 40, 55 and 70 C) by spectrophotometry and microcalorimetry. The NdNO{sub 3}{sup 2+} complex is weak and becomes slightly stronger as the temperature is increased. The enthalpy of complexation at 25 C was determined by microcalorimetry to be small and positive, (1.5 {+-} 0.2) kJ {center_dot} mol{sup -1}, in good agreement with the trend of the stability constant at variable temperatures. Luminescence emission spectra and lifetime of Eu(III) in nitrate solutions suggest that inner-sphere and bidentate complexes form between trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) and nitrate in aqueous solutions. Specific Ion Interaction approach (SIT) was used to obtain the stability constants of NdNO{sub 3}{sup 2+} at infinite dilution and variable temperatures.

  20. Analysis of nitrate in environmental samples by reversed-phase HPLC

    SciTech Connect

    Schroeder, D.C.

    1987-09-01

    A method is presented for the analysis of nitrate in natural waters and waste water by high-performance liquid chromatography (HPLC) with a reversed-phase octadecyl column, aqueous phosphoric acid/dihydrogen phosphate mobile phase, and UV detector. The optimum nitrate concentration is 0.3 to 3 mg/L as N with linear detector response below 3 mg/L. The detection limit is 0.007 mg/L. Relative standard deviations in the optimum range are consistently less than one percent. Several potential interferences have been investigated; nitrite and organic chromophores are resolved from nitrate and do not interfere. Hexavalent chromium and sulfate are slight positive interferences, negligible at typical environmental concentrations. The method produces results in agreement with the accepted chromotropic acid method except in samples from eutrophic lakes, for which evidence is presented indicating that the chromotropic acid is inaccurate.

  1. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Green, Stefan; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Boonchayanant, Dr. Benjaporn; Loeffler, Frank E; Jardine, Philip M; Criddle, Craig

    2010-06-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H{sub 2}S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 {mu}M.

  2. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  3. Nitrate deposition and impact on Adirondack streams

    SciTech Connect

    Simonin, H.A.; Kretser, W.A.

    1997-12-31

    Acidic deposition has a great impact on water chemistry and fish populations in the Adirondack region. Although the Clean Air Act Amendments of 1990 have resulted in some reductions of sulfate deposition, nitrate deposition has not yet been well controlled, and continues to impact aquatic resources. As part of the USEPA funded Episodic Response Project four Adirondack headwater streams were intensively monitored over an 18 month period. Atmospheric deposition was also monitored at a centrally located station. The quantity of nitrate being deposited on the study watersheds was calculated based on monthly net deposition data which ranged from 0.6 kg/ha/month to 3.6 kg/ha/month. These data were then compared to the monthly export of nitrate from the watershed in these streams. Nitrate concentrations were highest in the streamwater during the spring snowmelt period prior to the time when forest vegetation actively utilizes nitrate. On an annual basis the amount of nitrate which left the watershed via stream water exceeded the amount which fell as nitrate deposition. These data are important in documenting the impact of nitrate in the acidification of Adirondack streams during the spring, which coincides with brook trout hatching. Control programs for nitrous oxide emissions are presently aimed at reducing ozone levels during the May-September period. These emissions control programs need to be expanded to also reduce nitrate deposition in the sensitive Adirondack region during the winter and spring periods when nitrate deposition has its greatest impact on aquatic resources.

  4. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Mller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of ?-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  5. Growth, Structural, Spectral and Optical Studies of Glycine Sodium Nitrate Doped Potassium Dihydrogen Phosphate Single Crystals

    NASA Astrophysics Data System (ADS)

    Loretta, Fernando; Rani, T. Josephine; Perumal, S.; Ramalingom, S.

    2011-10-01

    Single crystals of Pure and Glycine sodium nitrate (GSN) doped Potassium dihydrogen Phosphate (KDP) were grown from aqueous solution by slow evaporation technique. The cell parameters of the grown pure and GSN doped KDP crystals were estimated by Single X-ray diffraction studies. The functional groups present in the grown crystals were ascertained using FTIR spectral analysis. The UV-Vis-NIR transmission spectra reveals that the semiorganic dopant has increased the optical transparency of the KDP crystals.

  6. Structural and spectroscopic characterization of plutonyl(VI) nitrate under acidic conditions.

    PubMed

    Gaunt, Andrew J; May, Iain; Neu, Mary P; Reilly, Sean D; Scott, Brian L

    2011-05-16

    The plutonyl(VI) dinitrate complex [PuO(2)(NO(3))(2)(H(2)O)(2)]H(2)O (1) has been structurally characterized by single-crystal X-ray diffraction and spectroscopically characterized by solid-state vis-NIR and Raman spectroscopies. Aqueous solution spectroscopic studies indicate only weak plutonyl(VI) nitrate complexation, with the mononitrate complex dominating and negligible dinitrate formation, even in concentrated nitric acid. PMID:21510662

  7. Disposition of Mixed Waste Organics at the Los Alamos Plutonium Facility

    SciTech Connect

    Ortiz, E.M.; Coriz, F.; Schreiber, S.B.; Balkey, S.; Yarbro, S.L.

    1999-02-01

    Twenty-six organic solution items totaling 37 L had been stored in the Plutonium Facility vault at the Los Alamos National Laboratory, some for up to 18 years. They were residues from analytical analyses of radioactive solutions. All items had a Resource Conservation and Recovery Act (RCRA) defined hazardous waste combined with special nuclear materials (SNM) and were stored as a mixed waste in a vault room pending disposition. Seventeen items had plutonium concentrations above established discard limits for organics. Due to their age, the containers were not suitable for long-term storage because a container failure would contaminate the vault area and personnel. Therefore, an aqueous-based flowsheet was developed to remove the plutonium so that the items could be discarded. The procedure was a wash with either sodium fluoride and/or potassium hydroxide solution followed by absorbing the discardable organic residues on vermiculite. When this approach did not work permission was obtained to discard the items as a transuranic (TRU) mixed waste without further treatment. The remaining nine solution items were consolidated into two items, repackaged, and stored for future disposition. The overall effort required approximately four months to disposition all the items. This report details the administrative and regulatory requirements that had to be addressed, the results of processing, and the current status of the items.

  8. Chloride removal from plutonium-aluminum alloy dissolver solution prior to purex solvent extraction

    SciTech Connect

    Holcomb, H.P.

    1990-01-01

    The Savannah River Plant (SRP), operated by E. I. du Pont de Nemours Co. for the United States Department of Energy, has successfully recovered plutonium from plutonium-aluminum alloy processed through the F-Canyon Separations facility. The alloy, produced at the Rocky Flats Plant, results from recovery of plutonium residues from spent chloride salts from pyrochemical processing. The alloy, termed scrub alloy'' or Rocky Flats scrub alloy'' (RFSA), contains up to 15 weight percent chloride impurity prior to mercuric ion catalyzed dissolution with fluoride-containing nitric acid. Solutions containing 850 to 3000 {mu}g/mL (parts per million) of chloride result. During subsequent Purex solvent extraction of this solution with 30% tri-n-butyl phosphate in normal paraffin diluent, chloride is rejected to the aqueous waste stream. This stream is eventually evaporated for waste treatment and acid recovery. Chloride concentrations in the product streams, subject to further processing, must be less than 100 {mu}g/mL to prevent excessive corrosion of equipment. This paper describes scrub alloy production at RFP, its dissolution and head end treatment to remove chloride, chloride values in subsequent processing streams including environmental discharges, and the turbidimetric analysis technique. 2 tabs.

  9. Plutonium scrap recovery at Savannah River: Past, present, and vision of the future

    SciTech Connect

    Gray, L.W.; Gray, J.H.; Blancett, A.L.; Lower, M.W.; Rudisill, T.S.

    1988-01-01

    As a result of the changing requirement, plus environmental and regulatory commitments, SRP now has essentially completed its paradigm shift. SRP has been transformed from primarily a reprocessor of irradiated uranium targets to primarily a reprocessor of non-specification plutonium. This is the mission which will carry SRP into the 21st Century. Accomplishment of the defined goals for the three-pronged RandD program will achieve several objectives: exploit new processes for recovering low-grade scraps; enhance SRP's position to incorporate pyrochemical processes where they are attractive or beneficial to plant scrap recovery; provide SRL/SRP with a capability to develop compatible aqueous pyrochemical processes; identify material compatibility requirements for the incorporation of pyrochemical processes at SRP; promote development and demonstration of improved NDA instrumentation to accurately measure plutonium holdups in solid residues; identify and implement the technology required for reagent preparation and atmospheric quality control; provide a means to compare economic options for emerging new processes; and as a result, identify process steps which will also put SRP in a position to readily adapt to changing plutonium missions.

  10. Trace analysis of urea nitrate by liquid chromatography-UV/fluorescence.

    PubMed

    de Perre, Chlo; McCord, Bruce

    2011-09-10

    In this paper we have adapted a technique, previously used to determine the presence of urea in aqueous samples of wine and urine, to detect trace levels of urea nitrate explosives. The procedure involves the reaction of the uronium ion (protonated urea) with a fluorophore, xanthydrol. By modification of the procedure to utilize non-aqueous reagents, in neutral conditions, it can be made specific to the presence of the urea nitrate ion pair. The procedure includes selective detection of derivatization products by UV and fluorescence following separation by High-Performance Liquid Chromatography (HPLC). Analytical method development included optimization of HPLC conditions (solvent, gradient), UV and fluorescence wavelengths, and derivatization parameters (xanthydrol amount, reaction times, temperature). The extraction of urea nitrate from surfaces was also investigated and optimized. For best quantification, it was shown that an internal standard was required; this resulted in a quantification limit around 0.17mM (21mg/L). The entire procedure could be performed in less than 30min per sample and potential interferences such as ammonium, nitrate, and urea did not produce a response under standard conditions. PMID:21621354

  11. Continuous process for the production of powdered uranium dioxide from uranyl nitrate

    SciTech Connect

    Divins, L.A.; Runion, H.L.

    1987-04-07

    A method is described of producing uranium dioxide powder for the fabrication of nuclear fuel from acidic solutions containing uranyl nitrate, comprising the sequence of steps of: (a) continuously reacting an acidic aqueous solution of uranyl nitrate with ammonium hydroxide added in less than stoichiometric amount for complete uranium precipitation, neutralizing any free acid and precipitating a portion of the uranium content of the solution as ammonium uranate solids; (b) continuously aging the product resulting from reacting the uranyl nitrate of the solution with less than a stoichiometric amount of ammonium hydroxide, including the precipitated ammonium uranate solids while maintaining the solids substantially suspended in the medium of the aqueous solution; (c) thereafter continuously reacting the aged product comprising uranyl nitrate and precipitated ammonium uranate with additional added ammonium hydroxide in amount at least sufficient to complete the precipitation of the uranium of the solution as ammonium uranate solids; and (e) calcining the dewatered ammonium uranate solids in a reducing atmosphere and thereby converting the ammonium uranate solids in a reducing atmosphere and thereby converting the ammonium uranate to uranium dioxide powder.

  12. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect

    Kim, Jae Wook; Mielke, Charles H.; Zapf, Vivien; Baiardo, Joseph P.; Mitchell, Jeremy N.; Richmond, Scott; Schwartz, Daniel S.; Mun, Eun D.; Smith, Alice Iulia

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  13. Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter.

    PubMed

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Ji, Bin; Chen, Dan; Zhang, Huining; Sun, Yuchong; Tian, Jun

    2016-02-01

    A continuous-upflow biofilter packed with sponge iron was constructed for nitrate removal under an anaerobic atmosphere. Microbacterium sp. W5, a nitrate reducing and Fe(II) oxidizing strain, was added to the biofilter as an inoculum. The best results were achieved when NO3 (-)-N concentration was 30 mg/L and Fe(2+) was 800 mg/L. Nitrite in influent would inhibit nitrate removal and aqueous Fe(2+) resulted in encrustation. Fe(II)EDTA would prevent cells from encrustation and the maximum nitrogen removal efficiency was about 90 % with Fe(II)EDTA level of 1100 mg/L. Nitrate reduction followed first-order reaction kinetics. Characteristics of biofilms were analyzed by X-ray fluorescence spectroscopy. PMID:26650718

  14. Plutonium dispersal in fires: Summary of what is known

    SciTech Connect

    Condit, R.H.

    1993-07-01

    In view of the great public apprehension about plutonium and nuclear weapons we should explore ways to prevent, limit, or mitigate possible plutonium dispersals. This review is primarily a tutorial on what is known about plutonium dispersal in fires. It concludes that in most types of fires involving plutonium the amount released will not be an immediate danger to life. Indeed, in many cases very few personnel will receive more than the lung burden allowed by current regulations for plutonium workers. However, the dangers may be significant in special situations, unusual terrains, certain meteorological conditions, and very high burn temperatures.

  15. Nitrates

    MedlinePLUS

    ... or interactions with other medicines and vitamin or herbal supplements. This information should not be used as medical ... your doctor about every medicine and vitamin or herbal supplement that you are taking, so he or she ...

  16. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  17. The Arabidopsis NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators.

    PubMed

    Xu, Na; Wang, Rongchen; Zhao, Lufei; Zhang, Chengfei; Li, Zehui; Lei, Zhao; Liu, Fei; Guan, Peizhu; Chu, Zhaohui; Crawford, Nigel M; Wang, Yong

    2016-02-01

    We show that NITRATE REGULATORY GENE2 (NRG2), which we identified using forward genetics, mediates nitrate signaling in Arabidopsis thaliana. A mutation in NRG2 disrupted the induction of nitrate-responsive genes after nitrate treatment by an ammonium-independent mechanism. The nitrate content in roots was lower in the mutants than in the wild type, which may have resulted from reduced expression of NRT1.1 (also called NPF6.3, encoding a nitrate transporter/receptor) and upregulation of NRT1.8 (also called NPF7.2, encoding a xylem nitrate transporter). Genetic and molecular data suggest that NRG2 functions upstream of NRT1.1 in nitrate signaling. Furthermore, NRG2 directly interacts with the nitrate regulator NLP7 in the nucleus, but nuclear retention of NLP7 in response to nitrate is not dependent on NRG2. Transcriptomic analysis revealed that genes involved in four nitrogen-related clusters including nitrate transport and response to nitrate were differentially expressed in the nrg2 mutants. A nitrogen compound transport cluster containing some members of the NRT/PTR family was regulated by both NRG2 and NRT1.1, while no nitrogen-related clusters showed regulation by both NRG2 and NLP7. Thus, NRG2 plays a key role in nitrate regulation in part through modulating NRT1.1 expression and may function with NLP7 via their physical interaction. PMID:26744214

  18. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  19. Plutonium Immobilization Can Loading Preliminary Specifications

    SciTech Connect

    Kriikku, E.

    1998-11-25

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  20. Electrochemically Modulated Separation for Plutonium Safeguards

    SciTech Connect

    Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2013-12-31

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  1. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  2. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  3. Plutonium Immobilization Can Loading Equipment Review

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.

    1998-05-01

    This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations.

  4. PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS

    EPA Science Inventory

    The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium (Pu) in soils for 50 years. There is scientific uncertainty about the levels of risk to human health posed by this accumulation and whether Pu is ...

  5. A strategy for weapons-grade plutonium disposition

    SciTech Connect

    Sylvester, K.W.B.

    1994-09-01

    A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly correlates to a significantly increased predetonation probability. Rare earth diluents were also examined (using MCNP) for their ability to increase the compressed critical mass of the WGPu mixture. The rare earths (notably Eu) were effective in this regard. As Pu-239 has a 24,100 year half life, reactivity control in the long term is an environmental safety issue. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added elements` effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The elements had no negative effect on the environmental durability of the glasses tested at 90 C and minimal effect at room temperature. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products).

  6. Microbial degradation of glycerol nitrates.

    PubMed Central

    Wendt, T M; Cornell, J H; Kaplan, A M

    1978-01-01

    The fate of glycerol trinitrate when exposed to microbial attack has been investigated. Contrary to some earlier reports, this compound was readily biodegraded by employing batch or continuous techniques under a variety of cultural conditions. Breakdown of glycerol trinitrate took place stepwise via the dinitrate and mononitrate isomers, with each succeeding step proceeding at a slower rate. After a residence time of 8 to 15 h, none of the glycerol nitrates could be detected in the effluent from a continuous-culture apparatus (chemostat) supplied with an influent containing 30 mg of glycerol trinitrate per liter. PMID:103501

  7. Methemoglobinemia by cerium nitrate poisoning.

    PubMed

    Attof, Rachid; Rachid, Attof; Magnin, Christophe; Christophe, Magnin; Bertin-Maghit, Marc; Marc, Bertin-Maghit; Olivier, Laure; Laure, Olivier; Tissot, Sylvie; Sylvie, Tissot; Petit, Paul; Paul, Petit

    2006-12-01

    Cerium nitrate is a topical antiseptic used with silver sulfadiazine (Flammacerium) for the treatment of serious burns. This topical agent can induce methemoglobinemia, but no cases have been reported in the recent literature. In this article, we present the case of a 16-year old girl, with third-degree burns over 95% of her body. After daily dressings of Flammacerium, on the sixth day she developed a bluish skin coloring. When tested for methemoglobinemia, levels of 31.8% were found. These returned to normal after classic treatment with Methylene blue. PMID:17027160

  8. Emergency planning and community right-to-know section 313. guidance for reporting aqueous ammonia

    SciTech Connect

    1995-07-01

    The four actions taken are summarized: (1) delete ammonium sulfate (solution) from the EPCRA section 313 list of toxic chemicals, (2) require that threshold and release determinations for aqueous ammonia be based on 10 percent of total aqueous ammonia present in aqueous solutions of ammonia, (3) modify the ammonia listing by adding the following qualifier: ammonia (includes anhydrous ammonia and aqueous ammonia from water dissociable ammonium salts and other sources; 10 percent of total aqueous ammonia is reportable under this listing), and (4) delete ammonium nitrate (solution) as a separately listed chemical on the EPCRA section 313 list of toxic chemicals. At the time that these actions were finalized, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessay to facilitate accurate reporting for aqueous ammonia. This document constitutes such guidance for reporting under the ammonia listing.

  9. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  10. Plutonium, Mineralogy and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long-term accumulation of radiation damage as a function of the thermal period of a geologic repository. As an example, with a 10 wt.% loading of 239Pu, Gd2Ti2O7 will become amorphous in less than 1,000 years, while Gd2Zr2O7 will persist as a disordered defect fluorite structure. Thus, the radiation stability of different pyrochlores is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

  11. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Mller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of ?-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  12. Plutonium AMS measurements in Yangtze River estuary sediment

    NASA Astrophysics Data System (ADS)

    Tims, S. G.; Pan, S. M.; Zhang, R.; Fifield, L. K.; Wang, Y. P.; Gao, J. H.

    2010-04-01

    The Yangtze River is the largest single source of sediment to the continental shelf of the East China Sea. The quantity of material exported by the river is expected to decrease substantially as a consequence of an extensive continuing program of dam construction within the river catchment. We report here AMS measurements of plutonium isotope concentrations and ratios for selected depth increments from a sediment core, collected from the sub-aqueous delta of the Yangtze River estuary. The Pu derives from atmospheric nuclear weapons testing in the 1950s and 1960s, and is potentially a useful tracer of sediment deposition times in the marine environment. The results show considerable structure in the depth-concentration profile, and offer an excellent opportunity to compare Pu with the more commonly used 137Cs isotopic tracer. The AMS data show superior sensitivity and indicate that the 240Pu/ 239Pu ratio can provide a check on the deposition dates. The changes in the 240Pu and 239Pu concentrations and the 240Pu/ 239Pu ratios with sediment depth all indicate the possibility of using Pu as a geochronological tool for coastal sediment studies.

  13. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  14. Nitrate uptake improvement by modified activated carbons developed from two species of pine cones.

    PubMed

    Nunell, G V; Fernandez, M E; Bonelli, P R; Cukierman, A L

    2015-02-15

    Activated carbons from two species of pine cones (Pinus canariensis and Cupressus sempervirens) were prepared by phosphoric acid activation and tested for the removal of nitrate ions from aqueous solution. To investigate the feasibility of improving their nitrate adsorption capacity, two different post-treatmentsa thermal treatment and a treatment with saturated urea solutionwere also applied to the prepared activated carbons. Comparison of the treated and untreated activated carbons showed that both post-treatments improved the nitrate adsorption performance more than twice. The maximum adsorption capacity, as evaluated from determination of the adsorption isotherms for the P. canariensis based carbons, and their proper representation by the Langmuir model, demonstrated that the post-treatment with the urea solution led to activated carbons with increased nitrate removal effectiveness, even superior to other reported results. Enhancements in their adsorption capacity could be mainly ascribed to higher contents of nitrogen and basic functional groups, whereas porous structure of the activated carbons did not seem to play a key role in the nitrate uptake. PMID:25460695

  15. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.

    PubMed

    Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Gbel, Cornelia; Feussner, Ivo; Sthr, Christine

    2010-01-01

    Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate. PMID:19937342

  16. Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil

    NASA Astrophysics Data System (ADS)

    Grosjean, Eric; Grosjean, Daniel; Woodhouse, Luis F.; Yang, Yueh-Jiun

    For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline-MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.1050.004 ( R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.0370.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.0280.015 (ppb/ppb, range 0.005-0.078, n=41). On several days PAN accounted for large fractions of the total ambient NO x in the late morning and afternoon hours, e.g., PAN/NO x?0.58 and PAN/(NO x-NO) ?0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996-April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc.), which accounted for ca. 17% of the total PAN and total PPN formation potentials. Overall, the results indicate a major role for aromatics and alkenes and a minor role for acetaldehyde and ethanol as precursors to peroxyacyl nitrates in the Porto Alegre urban area.

  17. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    PubMed Central

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the highest nitrate uptake rate, but all species showed rapid removal of nitrate from groundwater. The nitrate uptake rate increased proportionally with increasing light intensity up to 100 ?mol of photons m?2 s?1, which parallels photosynthetic activity. The nitrate uptake rate was affected by inoculum size (i.e., cell density), fixed-nitrogen level in the cells in the inoculum, and aeration rate, with vigorously aerated, nitrate-sufficient cells in mid-logarithmic phase having the highest long-term nitrate uptake rate. Average nitrate uptake rates up to 0.05 mM NO3? h?1 could be achieved at a culture optical density at 730 nm of 0.5 to 1.0 over a 2-day culture period. This result compares favorably with those reported for nitrate removal by other cyanobacteria and algae, and therefore effective nitrate removal from groundwater using this organism could be anticipated on large-scale operations. PMID:10618214

  18. Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes.

    PubMed Central

    Hwang, C F; Lin, Y; D'Souza, T; Cheng, C L

    1997-01-01

    Nitrate increases the transcription of the two Arabidopsis thaliana nitrate reductase genes. We demonstrated previously that 238 and 330 bp of the 5' flanking regions, designated as NP1 and NP2, of the two nitrate reductase genes NR1 and NR2, respectively, are sufficient for nitrate-dependent transcription (Y. Lin, C.-F. Hwang, J.B. Brown, C.-L. Cheng [1994] Plant Physiol 106: 477-484). Here we identify the cis-acting elements of NP1 and NP2 that are necessary for nitrate-dependent transcription by linker-scanning (LS) analysis. In transgenic plants one LS mutant of NP1 and two LS mutants of NP2 exhibited significantly lower nitrate-induced reporter gene chloramphenicol acetyltransferase activity. To distinguish which of these three mutants lost nitrate inducibility, competitive reverse-transcriptase polymerase chain reaction was used to measure the chloramphenicol acetyltransferase mRNA levels before and after nitrate induction. The single LS mutant in NP1 lost its response to nitrate, whereas the two LS mutants in NP2 partially lost their response to nitrate. A 12-bp sequence is conserved between the NP1 site and the two NP2 sites. This sequence motif is also conserved in the 5' flanking regions of other nitrate-inducible plant genes. Gel mobility shift experiments indicate that these three regions bind to similar proteins. The binding is constitutive with respect to nitrate treatment and was observed in both nonphotosynthetic suspension cells and green leaves. PMID:9085575

  19. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    PubMed

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations. PMID:24664980

  20. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 ?Determination of Nitrate-Nitrite by Automated Colorimetry,? employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  1. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system.

    PubMed

    Niemann, Volker; Koch-Singenstreu, Mareike; Neu, Ancilla; Nilkens, Stephanie; Götz, Friedrich; Unden, Gottfried; Stehle, Thilo

    2014-04-01

    Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate was solved at 2.35Å resolution, revealing a GAF domain fold. Isothermal titration calorimetry experiments showed that NreA binds nitrate with low micromolar affinity (KD=22μM). Two crystal forms for NreA were obtained, with either bound nitrate or iodide. While the binding site is hydrophobic, two helix dipoles and polar interactions contribute to specific binding of the ions. The expression of nitrate reductase (NarGHI) was examined using a narG-lip (lipase) reporter gene assay in vivo. Expression was regulated by the presence of NreA and nitrate. Structure-guided mutations of NreA reduced its nitrate binding affinity and also affected the gene expression, thus providing support for the function of NreA as a nitrate receptor. PMID:24389349

  2. Studies on the reverse osmosis treatment of uranyl nitrate solution

    SciTech Connect

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.; Ramani, P.S. )

    1992-03-01

    The aqueous effluent generated in uranium processing, particularly in the nuclear fuel fabrication step, contains mainly uranium nitrate. This requires treatment before discharge into the environment to meet stringent standards. This paper presents the performance of cellulose acetate membranes with regard to rejection of uranium under reverse osmotic conditions for feed concentrations up to 200 mg/l of uranium, which corresponds to the levels normally prevalent in the effluents. The use of additives like the disodium salt of ethylenediaminetetraacetic acid and sodium sulfate for the improvement of reverse osmosis performance of the above membranes was also investigated. In the light of the experimental results, the suitability of reverse osmosis for the decontamination of uranium effluents is discussed.

  3. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  4. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    SciTech Connect

    FINFROCK SH

    2011-10-25

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safety margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the resulting k{sub eff} values).

  5. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

  6. Plutonium contamination in the environment. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the ecological impact of plutonium contamination in the environment. Topics include plutonium contamination in freshwater and marine sediments, plutonium bioaccumulation, plutonium transport in the food chain, plutonium accumulation in the soil, methods of analysis, plutonium removal from contaminated soils, and plutonium contamination from nuclear fallout and nuclear waste. Government regulations on containment and disposal of plutonium contaminated wastes are described. Government regulations regarding plutonium levels in consumer products and drinking water are discussed. (Contains a minimum of 208 citations and includes a subject term index and title list.)

  7. Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why?

    PubMed

    Papaspyrou, Sokratis; Smith, Cindy J; Dong, Liang F; Whitby, Corinne; Dumbrell, Alex J; Nedwell, David B

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases. PMID:24728381

  8. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases. PMID:24728381

  9. Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the formation of silver nanoparticles (NPs) using silver nitrate in a poly(ethylene glycol) (PEG) aqueous solution, which acts as both a reducing and stabilizing agent, the PEG chain structure was found to play a significant role. Even though PEG 100 (100 kg/mol) has limited reducing sites of hyd...

  10. Convergence of Biological Nitration and Nitrosation via Symmetrical Nitrous Anhydride

    PubMed Central

    Vitturi, Dario A.; Minarrieta, Lucia; Salvatore, Sonia R.; Postlethwait, Edward M.; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Current perspective holds that the generation of secondary signaling mediators from nitrite (NO2?) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2? and LC-MS/MS analysis of products revealed that NO2? also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by nitric oxide (NO) autoxidation via symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3) formation. While theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in viv, with the concerted reactions of NO and NO2? shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2? propagation of NO signaling and the regulation of both biomolecule function and signaling network activity via NO2?-dependent nitrosation and nitration reactions. PMID:26006011

  11. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride.

    PubMed

    Vitturi, Dario A; Minarrieta, Lucia; Salvatore, Sonia R; Postlethwait, Edward M; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R; Freeman, Bruce A; Schopfer, Francisco J

    2015-07-01

    The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2(-)) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2(-) and LC-MS/MS analysis of products reveals that NO2(-) also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide (()NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of ()NO and NO2(-) shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2(-) propagation of ()NO signaling and the regulation of both biomolecule function and signaling network activity via NO2(-)-dependent nitrosation and nitration reactions. PMID:26006011

  12. Emulsion explosives containing high concentrations of calcium nitrate

    SciTech Connect

    Jessop, H.A.; Funk, A.G.

    1982-10-26

    A water-in-oil emulsion blasting agent is described having a discontinuous aqueous oxidizer salt solution phase which contains a calcium nitrate (CN) to ammonium nitrate (AN) weight ratio of 1.5 or greater, a continuous oil or water-immiscible liquid organic phase, an emulsifier, and, optionally, a density reducing agent. It is found that emulsion slurry blasting agents containing this relatively high amount of CN to AN have properties that conventional emulsion slurry explosives, those containing more AN than CN or solely AN, do not. Specifically, one property is that the high-CN emulsion blasting agents of the present composition can have much smaller critical diameters but yet pass the US DOT Blasting Agent tests. This result will be shown in the examples that follow. Thus, if AN is present as the principal oxidizer salt, emulsion explosives that have small critical diameters, and even those with relatively large critical diameters, generally are too sensitive to pass the Blasting Agent tests. If CN is the principal oxidizer, the emulsion blasting agents are less sensitive and more likely to pass the tests. This effect of CN has commercial significance. 10 claims.

  13. Environmentally Responsible Use of Nanomaterials for the Photocatalytic Reduction of Nitrate in Water

    NASA Astrophysics Data System (ADS)

    Doudrick, Kyle

    Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4 +, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2 -. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).

  14. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Federal Bureau of Investigation FR Federal Register HMR Hazardous Materials Regulations HMT Hazardous... ``Secure Handling of Ammonium Nitrate Program'' on October 29, 2008. See 73 FR 64280. The ANPRM solicited... interacting with state and local governments regarding ammonium nitrate security. ] See 73 FR 64280,...

  15. HEALTH EFFECTS OF NITRATES IN WATER

    EPA Science Inventory

    A multi faceted study of the health effects of nitrate in drinking water using epidemiological and toxicological techniques is reported. The results of the epidemiological studies indicate that infants consuming appreciable amounts of water high in nitrates in the form of powdere...

  16. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  17. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  18. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... FR 64280 (advance notice of proposed rulemaking); 76 FR 46908 (notice of proposed rulemaking... Program Web site in mid-October at http://www.dhs.gov/ files/ ] programs/ammonium-nitrate-security-program...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate...

  19. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    SciTech Connect

    Ervin, P. F.; Conradson, S. D.

    2002-02-25

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

  20. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15?) for nitrate uptake and nitrate efflux (2.0 0.3 and 1.2 0.4, respectively). The O isotope effects (18?) for nitrate uptake and nitrate efflux were indistinguishable (2.8 0.6), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 0.4 and for efflux of 2.3 0.9. The 15? for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15?org) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5 or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18?org:15?org) of 1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18?org:15?org to rise appreciably above 1 when 15?org is low (e.g., yielding a ratio of 1.1 when 15?org is 5). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in association with low isotope effects, calling for isotopic studies of nitrate transport by other phytoplankton strains.