Science.gov

Sample records for aqueous processing material

  1. Aqueous processing in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Mooiman, Michael B.; Sole, Kathryn C.

    1994-06-01

    Reviews of aqueous processing in JOM have traditionally focused on hydrometallurgical process routes. This article, however, addresses the application of aqueous processing in materials engineering and presents some promising developments that employ aqueous-based routes for the manufacture of high-tech components and specialty products. Such applications include producing metallic and ceramic powders; etching; surface modification by electroplating and electroless plating; manufacturing jewelry and intricate components by electroforming; and producing advanced ceramics, composites, and nanophase materials by sol-gel and biomimetic processing.

  2. Aqueous processing of composite lithium ion electrode material

    SciTech Connect

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  3. Materials compatibility for 238Pu-HNO3/HF solution containment: 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Reimus, M. A.; Pansoy-Hjelvik, M. E.; Silver, G.; Brock, J.; Nixon, J.; Ramsey, K. B.; Moniz, P.

    2000-07-01

    The Power Source Technologies Group at Los Alamos National Laboratory is building a 238Pu Aqueous Scrap Recovery Line at the Plutonium Facility. The process line incorporates several unit operations including dissolution, filtration, ion exchange, and precipitation. During 1997-1999, studies were carried out to determine the chemistry used in the full-scale process. Other studies focussed on the engineering design of the operation. Part of the engineering design was to determine, in compatibility studies, the materials for reaction and storage vessels which will contain corrosive 238Pu-HNO3/HF solutions. The full-scale line is to be operational by the end of year 2000.

  4. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  5. Aqueous slurries of carbonaceous materials

    SciTech Connect

    Schick, M.J.; Knitter, K.A.

    1984-03-13

    Aqueous carbonaceous slurries having reduced viscosity, a stabilized network of carbonaceous material in water and improved pumpability are obtained by having present a salt of naphthalenesulfonic acid formaldehyde condensate and at least one water soluble polymer selected from the group consisting of sodium alginate, guar gum, locust bean gum, carboxymethylhydroxypropyl guar gum, hydroxypropyl guar gum and guarpak guar gum. For example, a mixture of 96.8% by weight of ammonium naphthalenesulfonic acid formaldehyde condensate and 3.2% by weight of sodium alginate can be added to an aqueous coal slurry in an amount of 0.31% by weight of the slurry.

  6. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  7. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  8. Germanium: An aqueous processing review

    SciTech Connect

    Lier, R.J.M. van; Dreisinger, D.B.

    1995-08-01

    In industrial aqueous solutions, germanium generally occurs in trace amounts amid high concentrations of other metals, such as zinc, copper and iron. Separation of germanium from these metals as well as its isolation from gallium and indium pose a real challenge to the hydrometallurgist. After a brief discussion of the aqueous chemistry of germanium, this paper reviews the flowsheet of the Apex Mine in Utah. The Apex property was the only mine in the world to be operated primarily for production of gallium and germanium, but apparently closed due to great operating difficulties. Several process variants proposed for the treatment of the Apex ore, including bioleaching methods, are addressed. Following a more general description of the behavior of germanium in hydrometallurgical zinc processing streams, available technology for its recovery from aqueous solutions is summarized. Precipitation, solvent extraction, ion exchange, electrowinning, ion flotation and liquid-membrane separation are all outlined in terms of the aqueous chemistry of germanium. Finally, the production of high purity germanium dioxide and metal is briefly discussed. 61 refs.

  9. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    NASA Astrophysics Data System (ADS)

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  10. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Noguchi, Yohei; Yamamoto, Taibou; Hieda, Junko; Saito, Nagahiro; Takai, Osamu; Tsuchimoto, Akiharu; Nojima, Kazuhiro; Okabe, Youji

    2013-12-01

    Solution plasma processing (SPP) has been performed on multiwalled carbon nanotubes (MWCNTs) in ammonia aqueous solution. The MWCNTs, which do not disperse in aqueous solution, uniformly dispersed after the SPP. Only 2 h was required to obtain 10 g of the dispersed MWCNTs, while 7 days and additional chemicals were required for 185 mg in a previous study. The X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the SPP-treated MWCNTs revealed that nitrogen- and oxygen-containing groups are formed on the MWCNTs. Serious damage to the MWCNT structure was not observed in the Raman spectrum or transmission electron microscopy images of the SPP-treated MWCNTs. The composite materials prepared using polyamide 6 with the SPP-treated MWCNTs showed better tensile, bending, and impact strength than those prepared with nontreated MWCNTs.

  11. Materials processing in space

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.

    1982-01-01

    Processing-refining of raw materials from extraterrestrial sources is detailed for a space materials handling facility. The discussion is constrained to those steps necessary to separate desired components from raw or altered input ores, semi-purified feedstocks, or process scrap and convert the material into elements, alloys, and consumables. The materials are regarded as originating from dead satellites and boosters, lunar materials, and asteroids. Strong attention will be given to recycling reagent substances to avoid the necessity of transporting replacements. It is assumed that since no aqueous processes exist on the moon, the distribution of minerals will be homogeneous. The processing-refining scenario will include hydrochemical, pyrochemical, electrochemical, and physical techniques selected for the output mass rate/unit plant mass ratio. Flow charts of the various materials processing operations which could be performed with lunar materials are provided, noting the necessity of delivering several alloying elements from the earth due to scarcities on the moon.

  12. Aqueous processing of actinides at Savannah River

    SciTech Connect

    Gray, J.H.

    1990-01-01

    A number of changes affecting the DP-Complex are having an impact on operations at the Savannah River Site (SRS). In order for SRS to continue as a major contributor within the DP-Complex and remain in position to respond to requests based on new initiatives, programs aimed at redirecting the actinide processing activities have been started. One area undergoing process modifications is F-Canyon, where most of the plutonium feedstocks are processed. Programs already underway that are affecting the dissolution of plutonium materials in canyon dissolvers and the purification of aqueous streams in the second plutonium solvent extraction cycle are discussed. Issues influencing program direction involve environmental concerns, waste minimization, health protection, storage limitations, and material recycle. Each of these issues is discussed in relation to operations in F-Canyon and results based on initial development studies are presented.

  13. Nanostructured hybrid materials from aqueous polymer dispersions.

    PubMed

    Castelvetro, Valter; De Vita, Cinzia

    2004-05-20

    Organic-inorganic (O-I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of electronic and optoelectronic devices, in controlled release and bioencapsulation, as active substrates for chromatographic separation and catalysis, as nanofillers for composite films in packaging and coating, in nanowriting and nanolithography, etc. A synergistic combination or totally new properties with respect to the two components of the hybrid can arise from nanostructuration, achieved by surface modification of nanostructures, self-assembling or simply heterophase dispersion. In fact, owing to the extremely large total surface area associated with the resulting morphologies, the interfacial interactions can deeply modify the bulk properties of each component. A wide range of starting materials and of production processes have been studied in recent years for the controlled synthesis and characterization of hybrid nanostructures, from nanoparticle or lamellar dispersions to mesoporous materials obtained from templating nanoparticle dispersions in a continuous, e.g. ceramic precursor, matrix. This review is aimed at giving some basic definitions of what is intended as a hybrid (O-I) material and what are the main synthetic routes available. The various methods for preparing hybrid nanostructures and, among them, inorganic-organic or O-I core-shell nanoparticles, are critically analyzed and classified based on the reaction medium (aqueous, non-aqueous), and on the role it plays in directing the final morphology. Particular attention is devoted to aqueous systems and water-borne dispersions which, in addition to being environmentally more acceptable or even a

  14. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    SciTech Connect

    Glass, R.S.

    1985-09-01

    The US Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics.

  15. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    A broad range of electrochemical techniques are employed in this dissertation to investigate a selected set of aqueous electrochemical systems that are relevant for materials processing in the fabrication of microelectronic devices and direct alcohol fuel cells. In terms of technical applications, this work covers three main experimental systems: (i) chemical mechanical planarization (CMP), (ii) electro-less nickel deposition, and (iii) direct alkaline glycerol fuel cells. The first two areas are related to electronic device fabrications and the third topic is related to cost-effective energy conversion. The common electrochemical aspect of these different systems is that, in all these cases the active material characteristics are governed by complex (often multi-step) reactions occurring at metal-liquid (aqueous) interfaces. Electro-analytical techniques are ideally suited for studying the detailed mechanisms of such reactions, and the present investigation is largely focused on developing adequate analytical strategies for probing these reaction mechanisms. In the fabrication of integrated circuits, certain steps of materials processing involve CMP of Al deposited on thin layers of diffusion barrier materials like Ta/TaN, Co, or Ti/TiN. A specific example of this situation is found in the processing of replacement metal gates used for high-k/metal-gate transistors. Since the commonly used barrier materials are nobler than Al, the Al interface in contact with the barrier can become prone to galvanic corrosion in the wet CMP environment. Using model systems of coupon electrodes and two specific barrier metals, Ta and Co, the electrochemical factors responsible for these corrosion effects are investigated here in a moderately acidic (pH = 4.0) abrasive-free solution. The techniques of cyclic voltammetry and impedance spectroscopy are combined with strategic measurements of galvanic currents and open circuit potentials (OCPs). L-ascorbic acid (AA) is employed as a

  16. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  17. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  18. ASRM process development in aqueous cleaning

    NASA Astrophysics Data System (ADS)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  19. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  20. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  1. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    A broad range of electrochemical techniques are employed in this dissertation to investigate a selected set of aqueous electrochemical systems that are relevant for materials processing in the fabrication of microelectronic devices and direct alcohol fuel cells. In terms of technical applications, this work covers three main experimental systems: (i) chemical mechanical planarization (CMP), (ii) electro-less nickel deposition, and (iii) direct alkaline glycerol fuel cells. The first two areas are related to electronic device fabrications and the third topic is related to cost-effective energy conversion. The common electrochemical aspect of these different systems is that, in all these cases the active material characteristics are governed by complex (often multi-step) reactions occurring at metal-liquid (aqueous) interfaces. Electro-analytical techniques are ideally suited for studying the detailed mechanisms of such reactions, and the present investigation is largely focused on developing adequate analytical strategies for probing these reaction mechanisms. In the fabrication of integrated circuits, certain steps of materials processing involve CMP of Al deposited on thin layers of diffusion barrier materials like Ta/TaN, Co, or Ti/TiN. A specific example of this situation is found in the processing of replacement metal gates used for high-k/metal-gate transistors. Since the commonly used barrier materials are nobler than Al, the Al interface in contact with the barrier can become prone to galvanic corrosion in the wet CMP environment. Using model systems of coupon electrodes and two specific barrier metals, Ta and Co, the electrochemical factors responsible for these corrosion effects are investigated here in a moderately acidic (pH = 4.0) abrasive-free solution. The techniques of cyclic voltammetry and impedance spectroscopy are combined with strategic measurements of galvanic currents and open circuit potentials (OCPs). L-ascorbic acid (AA) is employed as a

  2. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F.

    2010-02-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10-6 M-1 min-1 and kH3O+II≤10-3 M-1 min-1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS). Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  3. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  4. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  5. Materials processing in space

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility and possible advantages of processing materials in a nongravitational field are considered. Areas of investigation include biomedical applications, the processing of inorganic materials, and flight programs and funding.

  6. Process for removing mercury from aqueous solutions

    DOEpatents

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  7. Process for removing mercury from aqueous solutions

    DOEpatents

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  8. Determination of dimensions of exfoliating materials in aqueous suspensions.

    PubMed

    Karpovich, Anastasia L; Vlasova, Maria F; Sapronova, Natalya I; Sukharev, Valentin S; Ivanov, Victor V

    2016-01-01

    A method for measurement of dimensions of platy particles of exfoliating, or delaminating, materials, such as clays, in aqueous suspensions in situ is proposed. Equivalent spherical diameter (esd), measured by many common methods, depends more on the major (lateral) dimension of a particle, while it is less sensitive to changes of the particle thickness. Addition of the second method, results of which are a function of the particle diameter and thickness too, would provide more accurate determination of the particle dimensions. Previously, a combination of low-temperature nitrogen adsorption (BET) and dynamic light scattering (DLS) methods for determination of specific surface area of dry powder of platy particles and their esd in suspension was suggested. While such combination was suitable for measurement of particle size for non-exfoliating materials, it gave incorrect results for exfoliating materials, which dramatically change their surface area when dispersed in liquid. We modify this method by substituting BET method with NMR relaxometry, which allows to measure wetted surface area of the dispersed material directly in suspension. The advantages of this method are:•More accurate determination of diameter and thickness of platy, particularly exfoliating, materials directly in suspension.•Possibility of routine monitoring of particle size changes during the dispersing process. PMID:27408825

  9. Photochemical processing of aqueous atmospheric brown carbon

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D.

    2015-06-01

    Atmospheric brown carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  10. Photochemical processing of aqueous atmospheric brown carbon

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D.

    2015-01-01

    Atmospheric Brown Carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate atmospheric relevance of this work, we also performed direct photolysis experiments on water soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  11. Simultaneous microemulsion-aqueous phase flooding process

    SciTech Connect

    Reed, R. L.

    1980-12-23

    A method of enhanced oil recovery is disclosed wherein an upper-phase or a middle-phase microemulsion and an immiscible aqueous phase are simultaneously injected into a subterranean formation. The viscosities of the injected phases are adjusted so that the aqueous phase/microemulsion viscosity ratio approximates the reservoir brine/oil viscosity ratio. The injection rates of the injected phases are such that similar oil, microemulsion and aqueous phase velocities are achieved in the reservoir. Oil is displaced to a production well and recovered.

  12. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  13. Aqueous cutting fluid for machining fissionable materials

    SciTech Connect

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  14. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    SciTech Connect

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  15. SITE TECHNOLOGY CAPSULE: PINTAIL SYSTEMS INC'S AQUEOUS BIOCYANIDE PROCESS

    EPA Science Inventory

    A field treatability study of an innovative biological treatment technology for cyanide destruction and metals immobilizaton from an aqueous mine process stream was held at the Echo Bay/McCoy Cove mine site in Nevada. The Aqueous Biocyanide Process, developed and operated by Pint...

  16. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  17. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  18. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    NASA Astrophysics Data System (ADS)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-10-01

    Huygens crater is a well preserved peak ring structure in the Noachian highlands. It uplifted pre-Noachian crustal materials and experienced subsequent aqueous activity and volcanic resurfacing making it an ideal location to explore.

  19. Anionic dispersants for aqueous slurries of carbonaceous materials

    SciTech Connect

    Schick, M.J.; Kelley, E.L.

    1985-01-08

    Aqueous carbonaceous slurries having reduced viscosity, a stabilized network of carbonaceous material in water and improved pumpability are obtained by having present as a dispersant an alkali or ammonium bisalkyl sulfosuccinate. An example is the sodium salt of bis-2-ethylhexyl sulfosuccinate.

  20. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. PMID:27031800

  1. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  2. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  3. Extraterrestrial materials processing

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.

    1982-01-01

    The first year results of a multi-year study of processing extraterrestrial materials for use in space are summarized. Theoretically, there are potential major advantages to be derived from the use of such materials for future space endeavors. The types of known or postulated starting raw materials are described including silicate-rich mixed oxides on the Moon, some asteroids and Mars; free metals in some asteroids and in small quantities in the lunar soil; and probably volatiles like water and CO2 on Mars and some asteroids. Candidate processes for space materials are likely to be significantly different from their terrestrial counterparts largely because of: absence of atmosphere; lack of of readily available working fluids; low- or micro-gravity; no carbon-based fuels; readily available solar energy; and severe constraints on manned intervention. The extraction of metals and oxygen from lunar material by magma electrolysis or by vapor/ion phase separation appears practical.

  4. Ultrasonic Processing of Materials

    SciTech Connect

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  5. Superconducting materials processing

    NASA Technical Reports Server (NTRS)

    Hurley, John S.; Karikari, Emmanuel K.; Hiamang, S. O.; Danjaji, M.; Bassey, Affiong; Morgan, Andre

    1995-01-01

    The effects of materials processing on the properties and behavior of high temperature yttrium barium copper oxide (YBCO) superconductors were investigated. Electrical, magnetic, and structural characteristics of thin films (300 nm) YBA2CU3O(delta) structures grown by pulsed laser deposition on LaAlO3 and SrTiO3 substrates were used to evaluate processing. Pole projection and thin film diffraction measurements were used to establish grain orientation and verify structural integrity of the samples. Susceptibility magnetization, and transport measurements were used to evaluate the magnetic and electrical transport properties of the samples. Our results verified that an unfortunate consequence of processing is inherent changes to the internal structure of the material. This effect translates into modifications in the properties of the materials, and undesired feature that makes it very difficult to consistently predict material behavior. The results show that processing evaluation must incorporate a comprehensive understanding of the properties of the materials. Future studies will emphasize microstructural characteristics of the materials, in particular, those microscopic properties that map macroscopic behavior.

  6. Aqueous cleaning and verification processes for precision cleaning of small parts

    NASA Technical Reports Server (NTRS)

    Allen, Gale J.; Fishell, Kenneth A.

    1995-01-01

    The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.

  7. Aqueous enzymatic oil extraction from seeds, fruits, and other oil-rich plant materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several methods have been developed to obtain oil from corn germ, oilseeds, and other oil-rich plant materials using aqueous enzymatic methods. Unlike traditional oil extraction methods, these new processes are performed without the use of presses and without organic solvents. Beginning with olive...

  8. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  9. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    PubMed

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte. PMID:26759354

  10. Processing of lunar materials

    NASA Astrophysics Data System (ADS)

    Poisl, W. Howard; Fabes, B. D.

    1994-07-01

    A variety of products made from lunar resources will be required for a lunar outpost. These products might be made by adapting existing processing techniques to the lunar environment, or by developing new techniques unique to the moon. In either case, processing techniques used on the moon will have to have a firm basis in basic principles of materials science and engineering, which can be used to understand the relationships between composition, processing, and properties of lunar-derived materials. These principles can also be used to optimize the properties of a product, once a more detailed knowledge of the lunar regolith is obtained. Using three types of ceramics (monolithic glasses, glass fibers, and glass-ceramics) produced from lunar simulants, we show that the application of materials science and engineering priciples is useful in understanding and optimizing the mechanical properties of ceramics on the moon. We also demonstrate that changes in composition and/or processing can have a significant effect on the strength of these materials.

  11. Processing Materials in Space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1982-01-01

    Suggested program of material processing experiments in space described in 81 page report. For each experiment, report discusses influence of such gravitational effects as convection, buoyancy, sedimentation, and hydrostatic pressure. Report contains estimates of power and mission duration required for each experiment. Lists necessary equipment and appropriate spacecraft.

  12. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  13. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  14. AQUEOUS ELECTROCHEMICAL MECHANISMS IN ACTINIDE RESIDUE PROCESSING

    EPA Science Inventory

    The United States Department of Energy is faced with the stabilization and disposition of hundreds of metric tons of plutonium - and uranium-bearing residue materials resulting from 50+ years of nuclear weapons production activities. These materials are presently in storage at si...

  15. Innovative industrial materials processes

    SciTech Connect

    Hane, G.; Abarcar, R.; Hauser, S.G.; Williams, T.A.

    1983-08-01

    This paper reviews innovative industrial materials processes that have the potential for significant improvements in energy use, yet require long-term research to achieve that potential. Potential revolutionary alternatives are reviewed for the following industries: iron and steel; aluminum; petroleum refining; paper and pulp; food and kindred products; stone, clay and glass; textiles; and chemicals. In total, 45 candidate processes were identified. Examples of these processes include direct steelmaking and ore-to-powder systems that potentially require 30% and 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization that offer up to 90% reductions in energy use when compared with distillation; cold processing of cement that offers a 50% reduction in energy requirements; and dry forming of paper that offers a 25% reduction in the energy needed for papermaking.

  16. Micro-materials processing

    NASA Astrophysics Data System (ADS)

    Cohen, M. G.; Kaplan, R. A.; Arthurs, E. G.

    1982-06-01

    A model analysis of the absorption of laser energy in the millijoule range by a thin film on a substrate is presented to illustrate the underlying physical mechanism of laser micro-materials processing. The analysis is followed by a discussion of several applications from the electronics and semiconductor industries, including resistor trimming, laserscribing, laser damage gettering, laser marking, ablation of metal films, and mask repair. Finally, several uses of lasers in the diamond industry, such as removal of flaws from gemstone diamonds, diamond sawing, and diamond inscription, are briefly reviewed.

  17. Lunar materials and processes

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1986-01-01

    The paper surveys current information, describes some important unknowns about lunar materials, and discusses ways to gain more scientific and engineering knowledge concerning the industrial processes that could be used on the moon for the production of products useful in future enterprises in space. Lunar rocks and soils are rich in oxygen, but it is mostly chemically bound in silicates, so that chemical or thermal energy must be supplied to recover it. Iron and titanium are abundant and, in some of their known forms, readily recoverable; aluminum is plentiful but harder to extract. Methods for recovering lunar oxygen and metals fall into three classes: chemical, electrolytic, and dissociative, broadly characterized by their respective process temperatures. Examples of these methods are briefly discussed.

  18. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors. PMID:25283598

  19. Organic-aqueous crossover coating process for the desmopressin orally disintegrating microparticles.

    PubMed

    Kim, Ju-Young; Hwang, Kyu-Mok; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok

    2015-02-01

    The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability. PMID:24252109

  20. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  1. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  2. Differential capacitance probe for process control involving aqueous dielectric fluids

    DOEpatents

    Svoboda, John M.; Morrison, John L.

    2002-10-08

    A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.

  3. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  4. Ancient impact and aqueous processes at Endeavour Crater, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Bell, J.F., III; Calef, F.J., III; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A., Jr.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  5. Ancient impact and aqueous processes at Endeavour Crater, Mars.

    PubMed

    Squyres, S W; Arvidson, R E; Bell, J F; Calef, F; Clark, B C; Cohen, B A; Crumpler, L A; de Souza, P A; Farrand, W H; Gellert, R; Grant, J; Herkenhoff, K E; Hurowitz, J A; Johnson, J R; Jolliff, B L; Knoll, A H; Li, R; McLennan, S M; Ming, D W; Mittlefehldt, D W; Parker, T J; Paulsen, G; Rice, M S; Ruff, S W; Schröder, C; Yen, A S; Zacny, K

    2012-05-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region. PMID:22556248

  6. Do aqueous ternary complexes influence the TALSPEAK process?

    SciTech Connect

    Leggett, C. j.; Liu, G.; Jensen, M. P.; Chemical Sciences and Engineering Division

    2010-01-01

    The aqueous speciation of trivalent lanthanide and actinide cations in solutions containing DTPA (diethylenetriamine-N,N,N',N',N'-pentaacetic acid) and lactic acid were studied under conditions representative of the TALSPEAK process. Spectrophotometric titrations, fluorescence spectroscopy, and thermometric titrations were used to search for indications of ternary metal-DTPA-lactate complexes. The addition of lactate anions to metal-DTPA complexes was undetectable by any of these techniques, even at free lactate concentrations of 0.75 M. Although lactic acid is necessary for the optimal performance of the TALSPEAK process, we find that the fractions of aqueous ternary Ln3+/An3+-DTPA-lactate complexes are far too low to account for the observed acid dependence of TALSPEAK metal extraction.

  7. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  8. Transparent materials processing system

    NASA Technical Reports Server (NTRS)

    Hetherington, J. S.

    1977-01-01

    A zero gravity processing furnace system was designed that will allow acquisition of photographic or other visual information while the sample is being processed. A low temperature (30 to 400 C) test model with a flat specimen heated by quartz-halide lamps was constructed. A high temperature (400 to 1000 C) test model heated by resistance heaters, utilizing a cylindrical specimen and optics, was also built. Each of the test models is discussed in detail. Recommendations are given.

  9. Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution.

    PubMed

    Shen, Feng; Su, Jialei; Zhang, Xiao; Zhang, Keqiang; Qi, Xinhua

    2016-10-01

    A carbonaceous adsorbent for effectively removing Cr(VI) was synthesized by facile hydrothermal carbonization of chitosan (HTC-chitosan). The prepared HTC-chitosan exhibited good stability in acid solution while the amine groups were retained completely after simple and green hydrothermal carbonization treatment. Structure characteristics of the HTC-chitosan as well as its adsorption behaviors for Cr(VI) in aqueous solution were investigated. Under optimal conditions, the adsorption capacity of the HTC-chitosan for Cr(VI) reached as high as 388.60mgg(-1), which was much higher than that of other materials reported previously. The prepared HTC-chitosan adsorbent could be reused at least five times with adsorption efficiency more than 92%. These results indicate that HTC-chitosan exhibited great superiority for Cr(VI) adsoption from aqueous solution both in terms of the preparation process and adsorption performance. PMID:27259645

  10. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  11. Nanofibers of Ca2Fe2O5: A novel material for aqueous supercapacitor

    NASA Astrophysics Data System (ADS)

    Sundriyal, Sandeep Kumar; Bhagwan, Jai; Sharma, Yogesh

    2016-05-01

    Porous, aligned and high aspect ratio nanofibers of Ca2Fe2O5 (CFO) have been fabricated by varying various system and process parameter of electrospinning technique for the first time. CFO nanofibers are further characterized by XRD, FESEM and BET surface area. The diameter of as-spun nanofibers of CFO was found to be polymer concentration dependent. Heating profile is found to be responsible for alignment of CFO nanofibers. For the first time, novel CFO nanofibers were subjected to cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) cycling to investigate its energy storage performance as electrode material for aqueous supercapacitor, and accordingly preliminary results are discussed.

  12. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  13. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  14. Laser Processing Architecture for Improved Material Processing

    NASA Astrophysics Data System (ADS)

    Livingston, Frank E.; Helvajian, Henry

    This chapter presents a novel architecture and software-hardware design system for materials processing techniques that are widely applicable to laser direct-write patterning tools. This new laser material processing approach has been crafted by association with the genome and genotype concepts, where predetermined and prescribed laser pulse scripts are synchronously linked with the tool path geometry, and each concatenated pulse sequence is intended to induce a specific material transformation event and thereby express a particular material attribute. While the experimental approach depends on the delivery of discrete amplitude modulated laser pulses to each focused volume element with high fidelity, the architecture is highly versatile and capable of more advanced functionality. The capabilities of this novel architecture fall short of the coherent spatial control techniques that are now emerging, but can be readily applied to fundamental investigations of complex laser-material interaction phenomena, and easily integrated into commercial and industrial laser material processing applications. Section 9.1 provides a brief overview of laser-based machining and materials processing, with particular emphasis on the advantages of controlling energy deposition in light-matter interactions to subtly affect a material's thermodynamic properties. This section also includes a brief discussion of conventional approaches to photon modulation and process control. Section 9.2 comprehensively describes the development and capabilities of our novel laser genotype pulse modulation technique that facilitates the controlled and precise delivery of photons to a host material during direct-write patterning. This section also reviews the experimental design setup and synchronized photon control scheme, along with performance tests and diagnostic results. Section 9.3 discusses selected applications of the new laser genotype processing technique, including optical property variations

  15. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  16. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  17. Small scale flow processes in aqueous heterogeneous porous media

    SciTech Connect

    Rashidi, M.; Dickenson, E.

    1996-04-01

    Small scale flow processes in aqueous heterogeneous porous systems have been studied experimentally via novel nonintrusive fluorescence imaging techniques. The techniques involve 3D visualization and quantification of flow fields within a refractive index-matched transparent porous column. The refractive index-matching yields a transparent porous medium, free from any scattering and refraction at the solid-liquid interfaces, as a result allowing direct optical probing at any point within the porous system. By illuminating the porous regions within the column with a planar sheet of laser beam, flow processes through the porous medium can be observed microscopically, and qualitative and quantitative in-pore transport information can be obtained at a good resolution and a good accuracy. A CCD camera is used to record the fluorescent images at every vertical plane location while sweeping back and forth across the column. These digitized flow images are then analyzed and accumulated over a 3D volume within the column. Series of flow experiments in aqueous, refractive index-matched, porous systems packed with natural mineral particles have been performed successfully in these laboratories.

  18. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  19. Extraterrestrial materials processing and construction

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1978-01-01

    Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.

  20. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  1. Processes for treating cellulosic material

    NASA Technical Reports Server (NTRS)

    Ladisch, Michael R. (Inventor); Kohlman, Karen L. (Inventor); Westgate, Paul L. (Inventor); Weil, Joseph R. (Inventor); Yang, Yiqi (Inventor)

    1998-01-01

    Disclosed are processes for pretreating cellulosic materials in liquid water by heating the materials in liquid water at a temperature at or above their glass transition temperature but not substantially exceeding 220.degree. C., while maintaining the pH of the reaction medium in a range that avoids substantial autohydrolysis of the cellulosic materials. Such pretreatments minimize chemical changes to the cellulose while leading to physical changes which substantially increase susceptibility to hydrolysis in the presence of cellulase.

  2. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  3. Energy Implications of Materials Processing

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1976-01-01

    Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…

  4. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  5. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    PubMed

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  6. Hybrid inorganic-organic aqueous base compatible waveguide materials for optical interconnect applications

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew L.; Allen, Craig; Ho, Tuan; Little, Luke; Pawlowski, Nathan; Pugliano, Nick; Shelnut, James G.; Sicard, Bruno; Zheng, Hai Bin; Khanarian, Garo

    2003-11-01

    There are a number of organic, inorganic, and hybrid inorganic waveguide materials that are currently being used for a wide variety of optical interconnect applications. Depending upon the approach, waveguide formation is performed using a combination of lithographic and/or reactive ion etch (RIE) techniques. Often the processes involved with waveguide formation require unique processing conditions, hazardous process chemicals, and specialized pieces of capital equipment. In addition, many of the materials have been optimized for silicon substrates but are not compatible with printed wire board (PWB) substrates and processes. We have developed compositions and processes suitable for the creation of optical, planar waveguides on both silicon and PWB substrates. Based on silicate technology, these compositions use lithographic techniques to define waveguides, including aqueous, alkaline development. The resulting planar waveguides take advantage of the glass-like nature of silicate chemistry wedded with the simplicity of standard lithographic processes. Attenuation at typical wavelengths has been found to compete well with the non-silicate-based technologies available today. Single-mode (SM) and multi-mode (MM) waveguides with losses ranging from 0.6 dB/cm @ 1550nm, 0.2 dB/cm @1320nm, and <0.1 @ 850nm are feasible. Composition, process, and physical properties such as optical, thermal and mechanical properties will be discussed.

  7. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  8. Materials Applications for Non-Lethal: Aqueous Foams

    SciTech Connect

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  9. FINAL REPORT. AQUEOUS ELECTROCHEMICAL MECHANISMS IN ACTINIDE RESIDUE PROCESSING

    EPA Science Inventory

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of lean processing waste and represent a significant fraction of the U. S. Department of...

  10. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  11. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  12. Aqueous processing of organic compounds in carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  13. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  14. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  15. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  16. Use of electrochemically activated aqueous solutions in the manufacture of fur materials.

    PubMed

    Danylkovych, Anatoliy G; Lishchuk, Viktor I; Romaniuk, Oksana O

    2016-01-01

    The influence of characteristics of electrochemically activated aqueous processing mediums in the treatment of fur skins with different contents of fatty substances was investigated. The use of electroactive water, namely anolytes and catholytes, forgoing antiseptics or surface-active materials, helped to restore the hydration of fur skins and to remove from them soluble proteins, carbohydrates and fatty substances. The activating effect of anolyte and catholyte in solutions of water on the processes of treating raw furs is explained by their special physical and chemical properties, namely the presence of free radicals, ions and molecules of water which easily penetrate cells' membranes and into the structure of non-collagen components and microfiber structure of dermic collagen. The stage of lengthy acid and salt treatment is excluded from the technical treatment as a result of using electroactivated water with high oxidizing power. A low-cost technology of processing different kinds of fur with the use of electroactivated water provides for substantial economy of water and chemical reagents, a two to threefold acceleration of the soaking and tanning processes and creation of highly elastic fur materials with a specified set of physical and chemical properties. At the same time the technology of preparatory processes of fur treatment excludes the use of such toxic antiseptics as formalin and sodium silicofluoride, which gives grounds to regard it as ecologically safe. PMID:27026908

  17. Multifunctional modification of wool using an enzymatic process in aqueous-organic media.

    PubMed

    Hossain, Kh M Gaffar; González, María Díaz; Lozano, Guillem Rocasalbas; Tzanov, Tzanko

    2009-04-20

    An enzymatic method using laccases for grafting the water insoluble phenolic compound lauryl gallate on wool fabric was developed. To find the compromise conditions at which the substrate is soluble while the enzyme remains active, the reaction was carried out in an 80/20 (v/v, %) aqueous-ethanol mixture, where the enzyme retains 75-80% of its activity. The enzymatic coating of wool with lauryl gallate provided in a one-step process a multifunctional textile material with antioxidant, antibacterial and water repellent properties. PMID:19428731

  18. Failure processes unidirectional composite materials

    SciTech Connect

    Sundaresan, M.J.

    1988-01-01

    Failure processes in unidirectional composite materials subjected to quasi-static tensile load along the fiber direction are investigated. The emphasis in this investigation is to identify the physical processes taking place during the evolution of failure in these materials. An extensive literature review is conducted and the information relevant to the present topic is summarized. The nature of damage growth in five different commercially available composite systems are studied. In-situ scanning electron microscopy is employed for identifying the failure events taking place at the microscopic level. Acoustic emission monitoring is used for estimating the rate of damage growth on a global scale and determining the size of individual failure events. Results show the important roles of the matrix material and the interphase in determining the tensile strength of unidirectional composite materials. Several failure modes occurring at the microscopic scale are revealed for the first time. Further, the results indicate that dynamic fracture participates to a significant extent in determining the failure process in these materials. Based on the results the influence of various parameters in determining the composite strength is described.

  19. Formaldehyde migration in aqueous extracts from paper and cardboard food packaging materials in Turkey.

    PubMed

    Dogan, Canan Ekinci; Sancı, Rukiye

    2015-01-01

    Migration of formaldehyde to aqueous extracts from paper and cardboard food packaging materials was determined by an ultraviolet visible-spectrophotometric method at 410 nm. Intraday and interday precision of the method, expressed as coefficient of variation, varied between 1.5 to 4.4% and 7 to 8.8%, respectively. The limit of quantification was 0.28 mg kg(-1) for formaldehyde in aqueous extracts. The recovery of the method was over 90% for two different concentration levels in aqueous extracts. The method was applied to the migration of formaldehyde to aqueous extracts from 31 different paper and cardboard materials collected from the packaging sector, intended for food contact, such as tea filters, hot water filters, paper pouches and folding boxes. The results were between limit of detection 0.23 mg/kg and 40 mg kg(-1) and were evaluated according to the relevant directives. PMID:26098861

  20. Microwave-Assisted Synthesis of Nano-materials in Aqueous

    EPA Science Inventory

    Whether it is termed a revolution or simply a continuous evolution, clearly development of new materials and their understanding on smaller and smaller length scale is at the root of progress in many areas of materials science.1 This is true in developing existing bulk materials...

  1. FNAS materials processing and characterization

    NASA Technical Reports Server (NTRS)

    Golben, John P.

    1991-01-01

    Research on melt-sintered high temperature superconducting materials is presented. The vibrating sample magnetometer has become a useful characterization tool for the study of high temperature superconductors. Important information regarding the superconducting properties of a sample can be obtained without actually making contact with the sample itself. A step toward microgravity processing of high temperature superconductors was taken. In the future, the samples need to be optimized prior to this processing of the sample before the specific effects of the microgravity environment can be isolated. A series of melt-sintered samples show that bulk processing of high temperature superconductors is getting better.

  2. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  3. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  4. Materials processing in low gravity

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The final report of the Materials Processing in Low Gravity Program in which The University of Alabama in Huntsville designed, fabricated and performed various low gravity experiments in materials processing from November 7, 1989 through November 6, 1990 is presented. The facilities used in these short duration low gravity experiments include the Drop Tube and Drop Tower at Marshall Space Flight Center (MSFC), and the KC-135 aircraft at Ellington Field. During the performance of this contract, the utilization of these ground-based low gravity facilities for materials processing experiments have been instrumental in providing the opportunity to determine the feasibility of performing a number of experiments in the microgravity of Space, without the expense of a space-based experiment. Since the KC-135 was out for repairs during the latter part of the reporting period, a number of the KC-135 activities concentrated on repair and maintenance of the equipment that normally is flown on the aircraft. A number of periodic reports were given to the TCOR during the course of this contract, hence this final report is meant only to summarize the many activities performed and not redundantly cover materials already submitted.

  5. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare

    2000-06-02

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behavior of fly ash in the PEG-2000 Na{sub 2}SO{sub 4}/H{sub 2}O system was studied and the solid in each fraction was characterized by CHN analysis (carbon content), X-ray diffraction (XRD; crystal component), and inductively coupled plasma spectrophotometry (ICP; elemental composition in the ash). In the pH range from 2 to 5, the particles separated into two different layers, i.e., the polymer-rich (top) and salt-rich (bottom) layers. However, above pH 5, the particles in the polymer-rich phase split into two zones. The percent carbon content of the solids in the upper zone ({approximately}80 wt%) was higher than that in the parent sample (63.2 wt%), while the lower zone in the polymer-rich phase had the same percent ash content as the original sample. The particles in the salt-rich phase were mainly composed of ash (with < 4 wt% carbon content). However, when the solid concentration in the whole system increased from 1 wt% to 2 wt%, this 3-fraction phenomenon only occurred above pH 10. XRD results showed that the main crystal components in the ash included quartz, hematite, and mullite. The ICP results showed that Si, Al, and Fe were the major elements in the fly ash, with minor elements of Na, K, Ca, Mg, and Ba. The composition of the ash in the lower zone of the polymer-rich phase remained almost the same as that in the parent fly ash. The largest amount of product ({approximately}60% yield) with the highest carbon content ({approximately}80 wt% C) was obtained in the range pH 6-9. Based on the experimental results obtained, a flowsheet is proposed for the beneficiation of high-carbon fly ash with the aqueous biphase extraction process.

  6. Aqueous Cr (VI) removal by Friedel's salt adsorbent prepared from calcium aluminate-rich cementitious materials.

    PubMed

    Jiang, Yonghai; Yang, Yu; Qian, Guangren; Hou, Hetian; Xi, Beidou; Xu, Yunfeng

    2015-01-01

    This research paper investigated a novel absorbent of calcium aluminate-rich cementitious materials (Friedel's salt adsorbent, FA) for aqueous hexavalent chromium (VI) removal. The adsorption kinetics showed that the maximum adsorption capacities of FA were 3.36, 14.66, and 26.17 mg/g when the initial Cr(VI) concentration was 10, 50, and 100 mg/L, respectively. The adsorption fitted with the pseudo-second-order kinetic model, suggesting the important roles of intercalation in the adsorption process with increasing Cr(VI) concentrations. This Friedel's salt adsorbent is suggested as an adaptive and effective adsorbent for Cr(VI) removal in contaminated groundwater. PMID:25798557

  7. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater. PMID:26512324

  8. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    PubMed

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  9. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  10. Advanced material and approach for metal ions removal from aqueous solutions.

    PubMed

    Turhanen, Petri A; Vepsäläinen, Jouko J; Peräniemi, Sirpa

    2015-01-01

    A Novel approach to remove metals from aqueous solutions has been developed. The method is based on a resin free, solid, non-toxic, microcrystalline bisphosphonate material, which has very low solubility in water (59 mg/l to ion free Milli-Q water and 13 mg/l to 3.5% NaCl solution). The material has been produced almost quantitatively on a 1 kg scale (it has been prepared also on a pilot scale, ca. 7 kg) and tested successfully for its ability to collect metal cations from different sources, such as ground water and mining process waters. Not only was this material highly efficient at collecting several metal ions out of solution it also proved to be regenerable and reusable over a number of adsorption/desorption, which is crucial for environmental friendliness. This material has several advantages compared to the currently used approaches, such as no need for any precipitation step. PMID:25758924

  11. Advanced material and approach for metal ions removal from aqueous solutions

    PubMed Central

    Turhanen, Petri A.; Vepsäläinen, Jouko J.; Peräniemi, Sirpa

    2015-01-01

    A Novel approach to remove metals from aqueous solutions has been developed. The method is based on a resin free, solid, non-toxic, microcrystalline bisphosphonate material, which has very low solubility in water (59 mg/l to ion free Milli-Q water and 13 mg/l to 3.5% NaCl solution). The material has been produced almost quantitatively on a 1 kg scale (it has been prepared also on a pilot scale, ca. 7 kg) and tested successfully for its ability to collect metal cations from different sources, such as ground water and mining process waters. Not only was this material highly efficient at collecting several metal ions out of solution it also proved to be regenerable and reusable over a number of adsorption/desorption, which is crucial for environmental friendliness. This material has several advantages compared to the currently used approaches, such as no need for any precipitation step. PMID:25758924

  12. Process for preparing energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Swansiger, Rosalind W.; Fox, Glenn A.

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Processing material. 18.51... material. (a) General. A proprietor may produce processing material or receive processing material produced elsewhere. Fermented processing material may not be used in the manufacture of concentrate....

  14. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Processing material. 18.51... material. (a) General. A proprietor may produce processing material or receive processing material produced elsewhere. Fermented processing material may not be used in the manufacture of concentrate....

  15. Sonochemically induced decomposition of energetic materials in aqueous media.

    PubMed

    Qadir, Lala R; Osburn-Atkinson, Elizabeth J; Swider-Lyons, Karen E; Cepak, Veronica M; Rolison, Debra R

    2003-03-01

    This study demonstrates that ultrasound rapidly degrades the energetic compounds RDX (cyclo-1,3,5-trinitramine-2,4,6-trimethylene) and ADN (ammonium dinitramide) in aqueous microheterogeneous media. The conditions for effective degradation of these nitramines, as monitored by UV absorption spectroscopy, were determined by varying sonication time, the heterogeneous phase and its suspension density, and the concentration of NaOH. In the presence of 5 mg/ml of aluminum powder and at pH approximately 12 (10 mM NaOH), 74% of the RDX and 86% of the ammonium dinitramide (ADN) in near-saturated solutions decompose within the first 20 min of sonication (20 kHz; 50 W; < or =5 degrees C). Sonication without Al powder and base yields minimal degradation of either RDX and ADN (approximately 5-10%) or the nitrite/nitrate ions that are expected byproducts during RDX and ADN degradation. Sonication at high pH in the presence of dispersed aluminosilicate zeolite, alumina, or titanium dioxide also yields minimal degradation. Preliminary electrochemical studies and product analyses indicate that in situ ultrasonic generation of metallic aluminum and/or aluminum hydride drives reductive denitration of the nitramines. Sonochemical treatment in the presence of a reductant offers an effective and rapid waste remediation option for energetic waste compounds. PMID:12531718

  16. High-efficiency aqueous-processed hybrid solar cells with an enormous Herschel infrared contribution.

    PubMed

    Jin, Gan; Wei, Hao-Tong; Na, Tian-Yi; Sun, Hai-Zhu; Zhang, Hao; Yang, Bai

    2014-06-11

    Aqueous-processed solar cells have evolved into a new generation of promising and renewable energy materials due to their excellent optical, electrical, and low-cost properties. In this work, Cd0.75Hg0.25Te colloid quantum dots (CQDs) were incorporated into a water-soluble conjugated polymer with broad absorption and high charge-carrier-mobility (5 × 10(-4) cm(2) V(-1) s(-1)) to obtain a composite with an absorption spectrum ranging from 300 to 1200 nm. The matched energy level between polymer and CQDs ensured the effective electron transfer, while the interpenetrating network structure formed via heat treatment guaranteed the quick electron transport. Moreover, the formation process of the interpenetrating network was systematically monitored by using AFM and TEM instruments and further confirmed through the measurement of charge-carrier-mobility of the active layers. In combination with the surface modification of a single Cd0.75Hg0.25Te layer, this aqueous-processed solar cell showed excellent photovoltaic response and the power conversion efficiency (PCE) reached 2.7% under AM 1.5 G illumination (100 mW cm(-2)). Especially, the contribution of the Herschel infrared region (780-1100 nm) to the photocurrent was as high as 15.04%. This device showed the highest PCE among organic-inorganic hybrid solar cells (HSCs) based on CdxHg1-xTe CQDs and the highest near infrared (NIR) contribution among aqueous-processed HSCs, indicating the enormous potential of taking advantage of NIR energy in a solar spectrum and a promising application in solar cells especially used in cloudy weather. PMID:24809792

  17. Geochemical and Mineralogical Indicators for Aqueous Processes in Gusev Crater and on Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2004-01-01

    The Athena Science Instrument Payload is providing geochemical and mineralogical information for determining the properties of rocks, soils, and outcrops at the Mars Exploration Rovers landing sites. These measurements indicate that a variety of aqueous processes as well as various degrees of alteration occurred at the two landing sites. Light-toned rocks around the Spirit landing site appear to have coatings or alteration rinds that may have resulted from limited aqueous alteration on the surfaces of basaltic rocks. Hematite and high Fe(III)lFe(total) occur at the surfaces of these rocks. High concentrations of elements highly mobile in water (i.e., S, Cl, and Br) occur in rock veins, vugs, and coatings and at the bottom of soil trenches in the "intercrater plains." One scenario for the formation of rock coatings or rinds and translocation of mobile elements is that water might have occurred briefly at the Martian surface during periods of high obliquity and thin films of water may have mobilized elements and altered the surfaces of rocks. Outcrops on the slopes of the Columbia Hills appear to be extensively altered as suggested by their relative "softness" (measured as resistance to abrasion) as compared to basalts on the adjacent plains, high Fe(III)lFe(total), iron mineralogy dominated by nanophase Fe(III) oxides and hematite, and high Br and CI concentrations beneath outcrop surfaces. These outcrops may have formed by the alteration of basaltic rocks and/or volcaniclastic materials by solutions that were rich in volatile elements (e.g., Br, CI, S). However, it is not clear whether aqueous alteration occurred at depth (e.g., metasomatism), by hydrothermal solutions (e.g., associated with volcanic or impact processes), by vapors rich in volcanic gases, or by low-temperature solutions. The occurrence of jarosite, hematite, and other sulfates (e.g., Mg sulfates) in Eagle and Endurance crater outcrops are strong indicators of aqueous processes at Meridiani Planum

  18. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  19. Unravelling the working junction of aqueous-processed polymer-nanocrystal solar cells towards improved performance.

    PubMed

    Chen, Zhaolai; Du, Xiaohang; Jin, Gan; Zeng, Qingsen; Liu, Fangyuan; Yang, Bai

    2016-06-21

    Hybrid solar cells (HSCs) based on aqueous polymers and nanocrystals are attractive due to their environmental friendliness and cost effectiveness. In this study, HSCs are fabricated from a series of water-soluble polymers with different highest occupied molecular orbital (HOMO) levels and nanocrystals with different Fermi levels. We demonstrate that the working principle of the aqueous-processed HSCs follows a p-n junction instead of a type-II heterojunction. The function of the polymer is to provide an interface dipole which can improve the build-in potential of the HSCs. Subsequently, the aqueous-processed HSCs are optimized following a p-n junction and an improved PCE of 5.41% is achieved, which is the highest for aqueous-processed HSCs. This study will provide instructive guidelines for the development of aqueous-processed HSCs. PMID:27229447

  20. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  1. Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Renewable energy technology has become one of the promising energy solutions in the future. However, limited by their cyclic behavior, large scale energy storage devices are needed to boost their adoptions in the market. The existing energy storage technologies have limitations that inhibit their adoptions for large scale applications. Our group suggests that one reasonable technology that might overcome these issues is the neutral pH aqueous electrolyte sodium-ion battery. One potential anode material is NaTi2(PO4)3, which has a relatively flexible NASICON skeleton structure and is known in general to have stable performance characteristics in extreme environments. In this work, there are four objectives to study this potential anode material: 1) Develop a rapid method to synthesize electrochemically functional NaTi2(PO4)3. In this case "Electrochemically functional" means the material can store usable capacity for practical application in a composite electrode. 2) Quantify the effect of intimate carbon on NaTi2(PO4)3 electrochemical functionality. (Electrochemical functionality regards the capacity and rate capability of electrode materials) 3) Investigate the stability of NaTi2(PO 4)3 in pH and thermal extremes and the mechanism of capacity fading under different cycling conditions. 4) Examine the performance of NaTi 2(PO4)3 in high salt concentration electrolyte and Li+ electrolyte. NaTi2(PO4)3 has been successfully synthesized via a rapid microwave method. The highest specific capacity is around 85mAh/g has been demonstrated. The effect of different carbon materials (namely graphite and carbon nanotubes) and different processes of adding them (pre and post- synthesis) on the electrochemical performance for sodium titanium phosphate has been extensively studied. Graphite coated NaTi2(PO4) 3 with carbon nanotubes composite electrode has demonstrated a specific capacity of 130mAh/g around theoretical value at 0.1C rate. The effect of the electrolyte (with

  2. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  3. The use of carbon aerogel electrodes for deionizing water and treating aqueous process wastes

    SciTech Connect

    Farmer, J.C.; Mack, G.V.; Fix, D.V.

    1996-07-01

    A wide variety of ionic contaminants can be removed from aqueous solutions by electrosorption on carbon aerogel electrodes. Carbon aerogel is an ideal electrode material because of its low electrical resistivity (< 40 m{Omega}-cm), high specific surface area (400 to 1100 m{sup 2}/g), and controllable pore size distribution (< 50 nm). This approach may avoid the generation of a substantial amount of secondary waste associated with ion exchange processing. Ion exchange resins require concentrated solutions of acid, base, or salt for regeneration, whereas carbon aerogel electrodes require only electrical discharge or reverse polarization. Aqueous solutions of NaCl, NaNO{sub 3}, NH{sub 4}ClO{sub 4}, Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} have been separated into concentrate and high-purity product streams. The deionization of a 100 {mu}S/cm NaCl solution with two parallel stacks of carbon aerogel electrodes in a potential-swing mode is discussed in detail. The selective removal of Cu, Zn, Cd, Pb, Cr, Mn, Co and U from a variety of process solutions and natural waters has also been demonstrated. Feasibility tests indicate that the remediation of Cr(VI)-contaminated ground water may be possible.

  4. Integrated lunar materials manufacturing process

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  5. Lunar materials processing system integration

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1992-02-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  6. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  7. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.

    PubMed

    Shen, Wei; Hsieh, You-Lo

    2014-02-15

    Sodium alginate (SA) hybrid fibers have been robustly fabricated by electrospinning of aqueous mixtures containing as high as 60% SA in the presence of polyvinyl alcohol (PVA). Solution viscosities of SA, PVA and their mixtures showed fiber spinning to be strongly influenced by the balance between SA-PVA and PVA-PVA intermolecular polar interaction and SA-SA repulsion. Low viscosity SAl (50 mPas at 1%) enabled higher SA loadings without significantly increasing mixture viscosities, producing more cylindrical fibers. All aqueous mixtures containing 33.3-60% SAl (5.68-7.15% total SAl-PVA) had viscosities ranging from 530 to 3600 mPas and could be electrospun continuously for at least 48 h. The SA-PVA hybrid fibers had diameters ranging from ca. 140 to 350 nm and were rendered stable in water via simultaneous ionic-crosslinking SA and crystallization of PVA (5% CaCl2 in 75% EtOH for 30 min). This aqueous electrospinning and physical crosslinking approach is a green and highly efficient alternative to create alginate hybrid fibers that are biologically compatible and ingestible for potential biomedical, food and other applications. PMID:24507361

  8. Moessbauer Mineralogical Evidence for Aqueous Processes at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.

    2006-01-01

    The Moessbauer spectrometers on the MER rovers have measured the relative abundances of iron with respect to both oxidation state and iron-bearing phase at Gusev Crater (Spirit rover) and Meridiani Planum (Opportunity rover). The assemblage of phases indicates aqueous alteration processes at both landing sites. Although the rock and soil of the Gusev Crater plains are dominated by Fe(2+) in olivine-bearing basalt (approx.Fo60), a Fe(3+)-rich component (nanophase ferric oxide, np-Ox) has significant abundance in surface soils (13-28% of total Fe) and in the surface coatings (rinds) of certain rocks (39%) but not in rock interiors exposed by grinding (5-6%). The mode of occurrence of np-Ox implies that it is the product of oxidative alteration of Fe(2+) silicate and oxide phases in the presence of H2O. The ubiquitous presence of sulfur in soil and in rock coatings, as determined by the MER-A APXS instrument, suggests that the alteration occurred under acid-sulfate conditions, so that both hydrolytic and sulfatic reactions are viable. A possible source for the weathering agents is volcanic emanations rich in H2O and SO2. Generally, rocks in the Columbia Hills are significantly more altered than those in the Gusev plains, with a higher proportion of Fe(3+) oxide phases compared to Fe(2+) silicate phases. This mineralogical dichotomy implies a difference in the timing, rate, duration, and/or mechanism of alteration for basaltic material in the Gusev plains compared to basaltic material in the Columbia Hills. It is possible, for example, that the basaltic material in the Columbia Hills underwent aqueous alteration in a paleoclimate that favored nearly complete alteration and that the basaltic material of the Gusev plains will not achieve the degree of alteration exhibited by the Columbia Hills under current martian surface conditions.

  9. Investigation of Zerodur material processing

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry

    1993-07-01

    The Final Report of the Center for Applied Optics (CAO), of The University of Alabama (UAH) study entitled 'Investigation of Zerodur Material Processing' is presented. The objectives of the effort were to prepare glass samples by cutting, grinding, etching, and polishing block Zerodur to desired specifications using equipment located in the optical shop located in the Optical System Branch at NASA/MSFC; characterize samples for subsurface damage and surface roughness; utilize Zerodur samples for coating investigations; and perform investigations into enhanced optical fabrication and metrology techniques. The results of this investigation will be used to support the Advanced X Ray Astrophysics Facility (AXAF) program as well as other NASA/MSFC research programs. The results of the technical effort are presented and discussed.

  10. Investigation of Zerodur material processing

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Final Report of the Center for Applied Optics (CAO), of The University of Alabama (UAH) study entitled 'Investigation of Zerodur Material Processing' is presented. The objectives of the effort were to prepare glass samples by cutting, grinding, etching, and polishing block Zerodur to desired specifications using equipment located in the optical shop located in the Optical System Branch at NASA/MSFC; characterize samples for subsurface damage and surface roughness; utilize Zerodur samples for coating investigations; and perform investigations into enhanced optical fabrication and metrology techniques. The results of this investigation will be used to support the Advanced X Ray Astrophysics Facility (AXAF) program as well as other NASA/MSFC research programs. The results of the technical effort are presented and discussed.

  11. The aqueous corrosion behavior of technetium - Alloy and composite materials

    SciTech Connect

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  12. Co-processing as a tool to improve aqueous dispersibility of cellulose ethers.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-01-01

    Cellulose ethers are important materials with numerous applications in pharmaceutical industry. They are widely employed as stabilizers and viscosity enhancers for dispersed systems, binders in granulation process and as film formers for tablets. These polymers, however, exhibit challenge during preparation of their aqueous dispersions. Rapid hydration of their surfaces causes formation of a gel that prevents water from reaching the inner core of the particle. Moreover, the surfaces of these particles become sticky, thus leading to agglomeration, eventually reducing their dispersion kinetics. Numerous procedures have been tested to improve dispersibility of cellulose ethers. These include the use of cross-linking agents, alteration in the synthesis process, adjustment of water content of cellulose ether, modification by attaching hydrophobic substituents and co-processing using various excipients. Among these, co-processing has provided the most encouraging results. This review focuses on the molecular mechanisms responsible for the poor dispersibility of cellulose ethers and the role of co-processing technologies in overcoming the challenge. An attempt has been made to highlight various co-processing techniques and specific role of excipients used for co-processing. PMID:26161940

  13. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  14. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  15. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.

    PubMed

    Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J; Rhodes, Christopher; Mukherjee, Partha P

    2016-01-01

    Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring. PMID:26863503

  16. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    NASA Astrophysics Data System (ADS)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  17. Materials and processes control for space applications

    NASA Technical Reports Server (NTRS)

    Blackburn, G. A.

    1985-01-01

    Materials and processes control relative to space applications is discussed. The components of a total material and process control system are identified, contamination control issues are listed, and recommendations are made.

  18. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    1996-10-01

    Charcoal in itself is porous making it an excellent material for activated charcoal manufacture. However, few studies have been conducted in harnessing its potential for adsorption purposes, especially in water treatment. This paper describes the possibility of utilizing charcoal materials from Sugi (Cryptomeria japonica) for adsorbing heavy metals like mercury from aqueous solutions of different concentrations. The effect of soaking time, pore analyses and chemical properties on the adsorption capabilities of the carbonized materials were discussed. The pH value and chemical oxygen demand (COD) monitored during the soaking period were also described.

  19. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  20. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    SciTech Connect

    Afanasiev, Pavel

    2015-09-15

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO{sub 4} (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O{sub 4} materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO{sub 4} (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Caaqueous liquids. • Narrow size distributions explained by ionic association in non-aqueous media. • Nanoparticles of less than 10 nm size and highest ever specific surface areas were obtained. • Optical gap of scheelites changes in the series Ca

  1. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    SciTech Connect

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  2. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.

  3. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    SciTech Connect

    Navratil, J D

    1985-05-13

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs.

  4. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    PubMed Central

    Hofman, Magdalena; Pietrzak, Robert

    2012-01-01

    Carbonaceous material (brown coal) modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol) coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection. PMID:22593671

  5. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  6. Materials processing in space: Early experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Herring, H. W.

    1980-01-01

    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed.

  7. Process for the gasification of raw carboniferous materials

    SciTech Connect

    Siegfried, P.; Wenger, M.

    1985-02-19

    An increased reaction velocity is achieved when gasifying a raw carboniferous material with H/sub 2/O. The raw material is suspended or emulsified in an aqueous solution of a catalytically active salt.

  8. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et

  9. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  10. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  11. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of hematite in the dextran (Dex)/Triton X-100 (TX100) and polyethylene glycol (PEG)/dextran systems were investigated and the effects of some ionic surfactants on solid partition were studied. In both biphase systems, the particles stayed in the bottom dextran-rich phase under all pH conditions. This behavior is attributable to the fact that the hydrophilic oxide particles prefer the more hydrophilic bottom phase. Also, the strong favorable interaction between dextran and ferric oxide facilitates the dispersion of the solids in the polysaccharide-rich phase. In the Dex/TX100 system, addition of sodium dodecylsulfate (SDS) or potassium oleate had no effect on the solid partition; on the other hand, addition of dodecyltrimethylammonium bromide (DTAB) transferred the particles to the top phase or interface at high pH values. In the PEG/Dex system, the preferred location of hematite remained the bottom phase in the presence of either SDS or DTAB. The effects of anionic surfactants on the partition behavior are attributable to the fact that they are not able to replace the strongly adsorbed polysaccharide layer on the ferric oxide surface. The results with the cationic surfactant are due to electrostatic interaction between the cationic surfactant and the charged surface of the solid particles. The difference in solids partitioning in the two systems is the result of the different distribution of DTAB in these systems. In the Dex/TX100 system, DTAB prefers the top surfactant-rich phase, while it concentrates in the bottom phase in the PEG/dextran system.

  12. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation. PMID:25263253

  13. Polymers for nuclear materials processing

    SciTech Connect

    Jarvinen, G.; Benicewicz, B.; Duke, J.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The use of open-celled microcellular foams as solid sorbents for metal ions and other solutes could provide a revolutionary development in separation science. Macroreticular and gel-bead materials are the current state-of-the-art for solid sorbents to separate metal ions and other solutes from solution. The new polymer materials examined in this effort offer a number of advantages over the older materials that can have a large impact on industrial separations. The advantages include larger usable surface area in contact with the solution, faster sorption kinetics, ability to tailor the uniform cell size to a specific application, and elimination of channeling and packing instability.

  14. Process for preparing organoclays for aqueous and polar-organic systems

    DOEpatents

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  15. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the

  16. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  17. A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets

    SciTech Connect

    Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

    2013-08-01

    Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

  18. Removal of Pu-238 from aqueous process streams using a polymer filtration process

    NASA Astrophysics Data System (ADS)

    Jarvinen, Gordon D.; Purdy, Geraldine M.; Rau, Karen C.; Remeroski, M. L.; Reimus, Mary Ann H.; Ramsey, Kevin B.; Foltyn, Elizabeth M.; Smith, Barbara F.; Robison, Thomas W.

    2001-02-01

    A glovebox facility is under construction at Los Alamos that will recover a significant quantity of the impure Pu-238 that exists in scrap and residues from past production operations. The general flowsheet consists of milling, acid dissolution, ion exchange, precipitation, calcination, oxygen isotope exchange, and waste treatment operations. As part of the waste treatment operations we are using polymer filtration to remove Pu-238 to meet facility discharge limits. Polymer filtration (PF) technology uses water-soluble polymers prepared with selective receptor sites to sequester metal ions, organic molecules, and other species from dilute aqueous solutions. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using ultrafiltration (UF) methods. Water and small, unbound components of the solution pass freely through the UF membrane while the polymer concentrates in the retentate. The permeate stream is ``cleaned'' of the components bound to the polymer and can be used in further processing steps or discharged. The concentrated retentate solution can be treated to give a final waste form or to release the sequestered species from the receptor sites by adjusting the conditions in the retentate solution. The PF technology is part of our work to develop a safe, reliable and cost-effective scrap recovery operation with high process efficiencies, minimal waste generation, and high product purity. .

  19. Materials processing in space bibliography

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Literature dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research is listed. Included are Government reports, contractor reports, conference proceedings, and journal articles. Subdivisions of the bibliography include the five categories: crystal growth; metals, alloys, and composites, fluids and transport; glasses and ceramics; and Ultrahigh Vacuum and Containerless Processing Technologies, in addition to a list of patents and a compilation of anonymously authored collections and reports and a cross reference index.

  20. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  1. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  2. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    NASA Astrophysics Data System (ADS)

    Afanasiev, Pavel

    2015-09-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra.

  3. Space processing of electronic materials

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1982-01-01

    The bulk growth of solid solution alloys of mercury telluride and cadmium telluride is discussed. These alloys are usually described by the formula Hg1-xCdxTe, and are useful for the construction of infrared detectors. The electronic energy band gap can be controlled between zero and 1.6 electron volts by adjusting the composition x. The most useful materials are at x approximately 20%, suitable for detection wavelengths of about 10 micrometers. The problems of growing large crystals are rooted in the wide phase diagram of the HgTe-CdTe pseudobinary system which leads to exaggerate segregation in freezing, constitutional supercooling, and other difficulties, and in the high vapor pressure of mercury at the growth temperatures, which leads to loss of stoichiometry and to the necessity of working in strong, pressure resistant sealed containers.

  4. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  5. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for

  6. Roadmap for Process Equipment Materials Technology

    SciTech Connect

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  7. Materials, Processes, and Environmental Engineering Network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.

  8. Mathematical and physical modelling of materials processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mathematical and physical modeling of turbulence phenomena in metals processing, electromagnetically driven flows in materials processing, gas-solid reactions, rapid solidification processes, the electroslag casting process, the role of cathodic depolarizers in the corrosion of aluminum in sea water, and predicting viscoelastic flows are described.

  9. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  10. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, David J.; Mensah-Biney, R.

    1995-01-01

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.

  11. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1995-05-02

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.

  12. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  13. Thermal plasma processing of materials

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1992-02-01

    Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

  14. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  15. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  16. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing.

    PubMed

    Dávila, Izaskun; Gordobil, Oihana; Labidi, Jalel; Gullón, Patricia

    2016-07-01

    Vine shoots were subjected to non-isothermal aqueous processing. A range of severities (S0) from 3.20 to 4.65 was assayed and their effects in terms of solubilization, composition, molar mass distribution, structural characterization and thermal stability of the liquors were studied using HPLC, HPSEC, TGA and FTIR. The spent solids were characterized by HPLC and FTIR. When autohydrolysis was carried out at S0=4.01, the substrate solubilization achieved a 38.7% of the raw material and 83.1% of the initial xylan was converted into xylooligosaccharides (XOS). The amount of TOS (total oligosaccharides) in the hydrolysates was 28.4g/L while the other non volatile compounds (ONVC) were 0.08g/g NVC. The spent solid from the treatment at S0=4.01 was composed about 90% of cellulose and lignin. Therefore, it can be concluded that autohydrolysis is a suitable pretreatment of vine shoots such as a first stage of a biomass refinery. PMID:27054881

  17. Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing.

    PubMed

    Li, Jianlin; Armstrong, Beth L; Kiggans, Jim; Daniel, Claus; Wood, David L

    2012-02-28

    Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO(4) is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO(4) active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO(4) and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO(4) and super P C45 suspension, respectively. LiFePO(4) cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO(4) performance. PMID:22292836

  18. Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments

    SciTech Connect

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2010-09-15

    Cement based materials permanently exposed to aggressive aqueous environments are subject to chemical changes affecting their durability. However, this holds also for tap water that is considered to be not aggressive to cementitious materials, although in that case a formation of covering layers of CaCO{sub 3} on the alkaline surfaces is commonly supposed to provide protection against reactive transport processes. Thus, investigations of the structural and chemical properties of the material/water interface were carried out in laboratory experiments and case studies to elucidate the consequences of surface reactions for the durability of cement based materials exposed to tap water. Focused Ion Beam investigations revealed that a protective effect of a CaCO{sub 3} covering layer depends on its structural properties, which are in turn affected by the hydro-chemical conditions during crystallization. Surface precipitation of CaCO{sub 3} can trigger further chemical degradation, if the required calcium is supplied by the pore solution of the material.

  19. Total Flavonoids Content in the Raw Material and Aqueous Extractives from Bauhinia monandra Kurz (Caesalpiniaceae)

    PubMed Central

    Fernandes, Ana Josane Dantas; Ferreira, Magda Rhayanny Assunção; Randau, Karina Perrelli; de Souza, Tatiane Pereira; Soares, Luiz Alberto Lira

    2012-01-01

    The aim of this work was to evaluate the spectrophotometric methodology for determining the total flavonoid content (TFC) in herbal drug and derived products from Bauhinia monandra Kurz. Several analytical parameters from this method grounded on the complex formed between flavonoids and AlCl3 were evaluated such as herbal amount (0.25 to 1.25 g); solvent composition (ethanol 40 to 80%, v/v); as well as the reaction time and AlCl3 concentration (2 to 9%, w/v). The method was adjusted to aqueous extractives and its performance studied through precision, linearity and preliminary robustness. The results showed an important dependence of the method response from reaction time, AlCl3 concentration, sample amount, and solvent mixture. After choosing the optimized condition, the method was applied for the matrixes (herbal material and extractives), showing precision lower than 5% (for both parameters repeatability and intermediate precision), coefficient of determination higher than 0.99, and no important influence could be observed for slight variations from wavelength or AlCl3 concentration. Thus, it could be concluded that the evaluated analytical procedure was suitable to quantify the total flavonoid content in raw material and aqueous extractives from leaves of B. monandra. PMID:22701375

  20. Ferragels: A new family of materials for remediation of aqueous metal ion solutions

    SciTech Connect

    Ponder, S.M.; Ford, J.R.; Darab, J.G.; Mallouk, T.E.

    1999-07-01

    A nanoscale form of zero-valent iron, dispersed on high surface area supports, is found to reduce soluble metal ions [Cr(VI), Hg(II), Pb(II), Tc(VII)], and ReO4{sup {minus}} (as a surrogate for TcO4{sup {minus}}) to insoluble forms much faster than does unsupported zero-valent iron. The supported iron materials (Ferragels) were mixed with aqueous solutions of metal salts. In the case of technetium, alkaline salts were added to the solution to simulate Hanford tank waste. The redox reaction of Fe{sup 0} and the aqueous ions continues until the metal contaminant is removed from solution as an insoluble oxide. The rate of reduction is approximately linear with the E{sub 0} of the metal ion. The initial rates increase proportionately with increasing initial concentrations, suggesting Nernstian behavior. The material used to support the nanoscale iron, while ostensibly inert to the redox reaction, has a strong effect on the rates of reaction. This effect arises from the evenness of dispersion of the iron nanoparticles on the support surface, as well as the surface roughness, which affects the specific loading of iron. The best general support tested was a commercial resin, but this resin was unstable in the (pH 14) Hanford simulants. The best support tested for TcO{sub 4}{sup {minus}} removal was a poorly crystalline ZrO{sub 2} powder.

  1. Comparative electrochemical studies of a nanostructured vanadium oxide electrode material in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Soghomonian, Victoria; Yuan, Qifan; Ren, Shaola; Zukowski, Julia

    Electrochemical energy storage plays an increasing role in energy solutions. We report on a new hydrothermally synthesized vanadium oxide nanostructured material and study its performance as electrode material for insertion of various ions from aqueous solutions. The as-synthesized product is in the form of nanosheets forming quasi-spherical 3-dimensional objects. Variable temperature resistivity measurements indicate a thermally activated behavior. Electrodes are constructed, and comparative electrochemical insertion reactions of Li, Na, K and NH4 cations, over different cycle numbers, investigated. Concomitantly, morphological and microstructural changes are characterized by scanning electron microscopy, providing physical input to the observed electrochemical behavior. Specific charge is calculated. For Li and K, the specific charge decreases as the cycle number increases, while the reverse is observed for Na and NH4 cations. The trends are correlated to the morphological changes observed. The specific charge in the case of ammonium reaches 180 mAh/g after 20 cycles and continues increasing, indicating that ammonium cations may be considered as viable charge carriers for electrical energy storage system, and moreover in an aqueous electrolyte. We acknowledge support from the National Science Foundation, Grant No. DMR-1206338.

  2. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  3. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  4. Fluid bed technology in materials processing

    SciTech Connect

    Gupta, C.K.; Sathiyamoorthy, D.

    1999-01-01

    The author explores the various aspects of fluidization engineering and examines its applications in a multitude of materials processing techniques. Topics include process metallurgy, fluidization in nuclear engineering, and the pros and cons of various fluidization equipment. Gupta emphasizes fluidization engineering in high temperature processing, and high temperature fluidized bed furnaces.

  5. Planning for Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.

  6. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  7. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia

    PubMed Central

    2013-01-01

    Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value was found to be 0.9607 and the coefficient of variance was 6.77. The optimal pretreatment conditions were a temperature of 42.75°C, an aqueous ammonia concentration of 20.93%, and a reaction time of 48 h. The optimal enzyme concentration for saccharification was 30 filter paper units. The crystallinity index was approximately 60.23% and the Fourier transform infrared results showed the distinct peaks of glucan. Ethanol production using Saccharomyces cerevisiae K35 was performed to verify whether the glucose saccharified from rice straw was fermentable. Conclusions The combined pretreatment using dilute sulfuric acid and aqueous ammonia on rice straw efficiently yielded fermentable sugar and achieved almost the same crystallinity index as that of α-cellulose. PMID:23898802

  8. Separation processes for recovering alloy steels from grinding sludge: Supercritical carbon dioxide extraction and aqueous cleaning

    SciTech Connect

    Fu, H.; Matthews, M.A.

    1999-04-01

    Two separation processes have been developed to remove contaminants (cutting oil with trace phosphorus additive) from high-speed steel grinding sludge. One process uses an aqueous surfactant washing technique, and the second process uses supercritical carbon dioxide (SCCO{sub 2}) extraction. Bench-scale aqueous washings have shown that the required phosphorus removal is easily obtained, but a sufficient oil removal is more difficult. The experimental results also indicate a strong dependence of the aqueous washing efficiency on the choice of a suitable surfactant. A mass transfer model is used to simulate a semi-continuous washing process. SCCO{sub 2} extraction at 80 C and 340 atm shows that approximately 80% of the oil can be removed from the sludge during a 60-minute process to produce a batch of recyclable steel, and that the phosphorus removal also reaches the required level. A linear desorption model is used to describe the irreversible desorption of oil from the solid phase into the CO{sub 2} phase, and the simulated results agree very well with the experimental data.

  9. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  10. ATMOSPHERIC PROCESSES AND EFFECTS ON MATERIALS

    EPA Science Inventory

    These two chapters summarize the effects expected from the depletion of stratospheric ozone by the presence of CFCs. he two areas considered by these two reports are materials damage and atmospheric processes. ncreased UV can affect materials in the following ways: (1) corrosion ...

  11. The processing of materials in outer space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Colling, E. W.

    1977-01-01

    Zero-gravity environment may lead to fabrication of new and improved materials. According to comprehensive study of application of this promising technology to superconducting and electrical contact materials, outer space processing could improve microstructure and homogeneity of many single and multicomponent systems formed from solidification of fluid phases. New structures that are impossible to form terrestrially may also be accessible in space environment.

  12. Material removal processes: Engineering mechanics consideration

    SciTech Connect

    Anderson, C.A.

    1993-01-01

    In the material removal process called machining, a layer of material of constant thickness is removed from the workpiece by a wedge-shaped tool that travels parallel to the workpiece at a preselected depth. Even though the speed of relative movement between workpiece and tool is low (typical 1--10 M/S), the strain-rates in the workpiece near the tool can be high, on the order of 10[sup 4]-10[sup 5] s[sup [minus]1]. When machining brittle materials or unlubricated ductile materials at low speed, the removed metal (or chip) will be discontinuous and made up of small fractured segments. On the other hand, when machining ductile material under lubricated conditions, the removed material forms a continuous coil. In this case, we can represent the material removal process as a steady-state process. In this presentation, we will restrict ourselves to orthogonal machining where the cutting edge is perpendicular to the relative motion-a situation also approximated by other material removal processes such as planing and broaching, and turning on a lathe.

  13. Material removal processes: Engineering mechanics consideration

    SciTech Connect

    Anderson, C.A.

    1993-04-01

    In the material removal process called machining, a layer of material of constant thickness is removed from the workpiece by a wedge-shaped tool that travels parallel to the workpiece at a preselected depth. Even though the speed of relative movement between workpiece and tool is low (typical 1--10 M/S), the strain-rates in the workpiece near the tool can be high, on the order of 10{sup 4}-10{sup 5} s{sup {minus}1}. When machining brittle materials or unlubricated ductile materials at low speed, the removed metal (or chip) will be discontinuous and made up of small fractured segments. On the other hand, when machining ductile material under lubricated conditions, the removed material forms a continuous coil. In this case, we can represent the material removal process as a steady-state process. In this presentation, we will restrict ourselves to orthogonal machining where the cutting edge is perpendicular to the relative motion-a situation also approximated by other material removal processes such as planing and broaching, and turning on a lathe.

  14. Heat and mass transfer in materials processing

    NASA Astrophysics Data System (ADS)

    Tanasawa, Ichiro; Lior, Noam

    Various papers on heat and mass transfer in materials processing are presented. The topics addressed include: heat transfer in plasma spraying, structure of ultrashort pulse plasma for CVD processing, heat flow and thermal contraction during plasma spray deposition, metal melting process by laser heating, improved electron beam weld design and control with beam current profile measurements, transport phenomena in laser materials processing, perspectives on integrated modeling of transport processes in semiconductor crystal growth, numerical simulation of natural convection in crystal growth in space and on the earth, conjugate heat transfer in crystal growth, effects of convection on the solidification of binary mixtures. Also discussed are: heat transfer in in-rotating-liquid-spinning process, thermal oscillations in materials processing, modeling and simulation of manufacturing processes of advanced composite materials, reaction engineering principles of combustion synthesis of advanced materials, numerical evaluation of the physical properties of magnetic fluids suitable for heat transfer control, and measurement techniques of thermophysical properties of high temperature melts. (For individual items see A93-10827 to A93-10843)

  15. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  16. Electronic materials processing and the microgravity environment

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1988-01-01

    The nature and origin of deficiencies in bulk electronic materials for device fabrication are analyzed. It is found that gravity generated perturbations during their formation account largely for the introduction of critical chemical and crystalline defects and, moreover, are responsible for the still existing gap between theory and experiment and thus for excessive reliance on proprietary empiricism in processing technology. Exploration of the potential of reduced gravity environment for electronic materials processing is found to be not only desirable but mandatory.

  17. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  18. Surface tension depression by low-solubility organic material in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Schwier, Allison; Mitroo, Dhruv; McNeill, V. Faye

    2012-07-01

    Surface-active material, including long-chain fatty acids (LCFAs), comprises a significant fraction of organic aerosol mass. Surface-active species are thought to form a film at the gas-aerosol interface, with implications for aerosol heterogeneous chemistry and cloud formation. However, LCFA phase behavior and surface-bulk partitioning has not been characterized under most conditions typical of tropospheric aerosol water (i.e. acidic, high ionic content), making it challenging to predict surface film formation in aerosols. In this study, we present measurements of the surface tension of aqueous solutions containing the slightly soluble LCFAs oleic and stearic acid. The effect of varying pH, organic concentration, and inorganic salt content was tested for each system. We observe surface tension depression compared to water of up to ˜30 and 45% for aqueous solutions containing stearic or oleic acid at pH 0-8 and high inorganic salt concentrations (NaCl and (NH4)2SO4). This suggests that surface film formation is favorable for these species in atmospheric aerosols.

  19. Removal of strontium from aqueous solutions using two unconventional biomass materials

    SciTech Connect

    Moloukhia, H.; Abdel Raouf, M.W.; El Khalafawy, A.

    2007-07-01

    It has been shown that two unconventional biomass sorbent materials, namely Bulinus truncatus and shrimp (prawn) shell particles, after ashing at 700 deg. C for 6 hours, can be used for the removal of strontium ions from aqueous solutions. Experimental work was carried out to evaluate and optimize the parameters affecting sorption (i.e. equilibration time, initial contamination concentration, sorbent weight, temperature, hydrogen ion concentration, and the addition of ethylene diamine tetra acetic acid (EDTA) as a complexing agent. Adsorption isotherms have shown that the adsorption data fit with the Freundlich model. Kinetic studies showed that the Lagergren equation is applicable. The results obtained revealed that the presence of a complexing agent, such as (EDTA) suppresses the sorption of strontium at all pH values. The suggested mechanism of strontium removal by the two sorbents used was mainly 'ion exchange', and at higher temperatures a specific interaction mechanism was operated with ion exchange. The kinetic studies showed low desorption values for strontium release from the leachant used. The investigated sorbents were of low cost and efficient in the removal of strontium from aqueous wastes. (authors)

  20. Final report on CCQM-K79: Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous matrix

    NASA Astrophysics Data System (ADS)

    Hein, Sebastian; Philipp, Rosemarie; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    The 2010 CCQM-K79 'Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous media' is the second key comparison directly testing the chemical measurement services provided to customers by National Metrology Institutes (NMIs) and Designated Institutes (DIs). CCQM-K79 compared the assigned ethanol values of proficiency test (PT) and certified reference materials (CRMs) using measurements made on these materials under repeatability conditions. Nine NMIs submitted 27 CRM or value-assigned PT materials for evaluation. These materials represent many of the higher-order reference materials then available for this commercially and forensically important measurand. The assigned ethanol mass fraction in the materials ranged from 0.1 mg/kg to 334 mg/kg. All materials were stored and prepared according the specifications provided by each NMI. Samples were processed and analyzed under repeatability conditions by one analytical team using a gas chromatography with flame ionization detection (GC-FID) method of demonstrated trueness and precision. Given the number of materials and the time required for each analysis, the majority of the measurements were made in two measurement campaigns ('runs'). Due to a shipping delay from one NMI, an unanticipated third campaign was required. In all three campaigns, replicate analyses (three injections of one preparation separated in time) were made for one randomly selected unit of each of the 27 materials. Nine of the 27 materials were gravimetrically diluted before measurement to provide solutions with ethanol mass fraction in the established linear range of the GC-FID method. The repeatability measurement value for each analyzed solution was estimated as the mean of all replicate values. The within- and between-campaign variance components were estimated using one-way ANOVA. Markov Chain Monte Carlo Bayesian analysis was used to estimate 95% level-of-confidence coverage intervals for the mean values. Uncertainty

  1. Aircraft gas turbine materials and processes.

    PubMed

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware. PMID:17772808

  2. Materials Processing in Space (MPS) program description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

  3. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    PubMed

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity. PMID:26114268

  4. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE PAGESBeta

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; Yang, Zhenzhong; Yu, Xiqian; Gu, Lin; Hu, Yong -Sheng; Li, Hong; Yang, Xiao -Qing; Chen, Liquan; et al

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS.more » When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  5. Commercial use of materials processing in space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.; Brown, R. L.

    1979-01-01

    The paper examines the scientific and commercial aspects of Materials Processing in the Space program. The elimination of gravity driven convection in molten materials can preclude undesirable stirring and mixing during crystal growth, and improve the casting of alloys and composites, chemical reactions, and the separation of biological materials. The elimination of hydrostatic pressure will allow alloy heat-treatment without distortion and growth of heavy crystals, such as thorium oxide, and containerless processing of liquids and molten materials. On the other hand, more sophisticated process control and diagnostic methods in sample preparation and temperature control must be developed, concluding that space made products of commercial interest are likely to be low volume, high value items.

  6. Microwave processing of radioactive materials-I

    SciTech Connect

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs.

  7. High concentration aqueous sodium fluoride certified reference materials for forensic use certified by complexometric titration.

    PubMed

    Archer, Marcellé; Brits, Martin; Prevoo-Franzsen, Désirée; Quinn, Laura

    2015-04-01

    Sodium fluoride in concentrations of 1 to 2 % is used to prevent the formation of ethanol in blood and urine samples that are to be analysed for ethanol content. The majority of such samples form part of forensic investigations into alleged drunken driving. In South Africa, the laboratory performing the tests is required to prove that the sodium fluoride concentration in the blood samples is above 1 g/100 ml on receipt. This is done by using a fluoride ion-selective electrode calibrated with external aqueous solutions of sodium fluoride. The National Metrology Institute of South Africa (NMISA) prepares sodium fluoride solutions in concentrations from 0.3 to 3.0 g/100 ml. No other certified sodium fluoride reference solutions in these concentrations are available commercially. The sodium fluoride is certified by precipitation of the fluoride as lead chlorofluoride (PbClF) through the addition of a known excess of lead nitrate. The excess lead is back-titrated with ethylenediamine tetraacetic acid (EDTA) using a photometric electrode to detect the endpoint. Aqueous sodium fluoride solutions are prepared and the concentrations verified by the precipitation/back-titration method. This paper shows the application of a classical complexometric method to the certification of reference materials and describes the procedures for the preparation of the sodium fluoride solutions, verification of the concentrations, homogeneity and stability by primary titrimetry. It also briefly covers the calculation of uncertainty, the establishment of traceability and the quality control measures applied to ensure the quality of the certified reference materials (CRMs). PMID:25326884

  8. An Aqueous Single Reactor Arc Discharge Process for the Synthesis of Graphene Nanospheres.

    PubMed

    Kim, Sejung; Song, Youngjun; Takahashi, Tsukasa; Oh, Taeseok; Heller, Michael J

    2015-10-01

    Using an aqueous single reactor arc discharge process with oil-in-water emulsions allows production of 2D multilayered graphenes (MLGs and 3D graphene-based crumpled/sphere-like particles with low levels of defects). The confinement forces to create 3D particles from 2D MLGs are estimated to be 2.5 μN for crumpled particles and 70 μN for spherical hollow particles. PMID:26222211

  9. Space Environmental Effects on Materials and Processes

    NASA Technical Reports Server (NTRS)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  10. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  11. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  12. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    SciTech Connect

    Vaudey, Claire-Emilie; Renou, Sebastien; Porco, Julien; Kelley, Dennis; Cochaud, Chantal

    2013-07-01

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g{sup -1}. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  13. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials

    SciTech Connect

    Bischoff, W.D.; Mackenzie, F.T.; Bishop, F.C.

    1987-06-01

    Free-drift dissolution data and inverse time plots were used to evaluate the stabilities of synthetic and biogenic magnesian calcites in aqueous solutions at 25/sup 0/C and 1 atm total pressure. Synthetic phases with MgCO/sub 3/ concentrations below 6 mole percent have stoichiometric ion activity products that are less than the value for calcite, whereas the values for phases with higher concentrations are greater than that of calcite. For synthetic phases, stability is a smooth function of composition, and all phases have values of ion activity products less than that for aragonite. Average sea water at 25/sup 0/ and 1 atm total pressure is supersaturated with respect to all synthetic phases in the compositional range studied. The difference in stability between biogenic materials and synthetic phases is due to greater variation in chemical and physical heterogeneities found for the biogenic samples. If it is assumed that the results of the dissolution experiments reflect only differences in Gibbs free energies of formation between synthetic phases and biogenic materials of similar Mg concentration, the biogenic materials are 200-850 j/mol less stable than the synthetic phases. Only the results of synthetic dissolution experiments should be used to model the thermodynamic behavior of the magnesian calcite solid solution. The results for the synthetic phases, however, may not be appropriate to use for interpreting diagenetic reaction pathways for magnesian calcites in modern sediments, except as a basis of comparison with the behavior of natural minerals.

  14. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.

    PubMed

    Yao, Shiyu; Chen, Zhaolai; Li, Fenghong; Xu, Bin; Song, Jiaxing; Yan, Lulin; Jin, Gan; Wen, Shanpeng; Wang, Chen; Yang, Bai; Tian, Wenjing

    2015-04-01

    Without using any environmentally hazardous organic solution, we fabricated hybrid solar cells (HSCs) based on the aqueous-solution-processed poly(3-hexylthiophene) (P3HT) dots and CdTe nanocrystals (NCs). As a novel aqueous donor material, the P3HT dots are prepared through a reprecipitation method and present an average diameter of 2.09 nm. When the P3HT dots are mixed with the aqueous CdTe NCs, the dependence of the device performance on the donor-acceptor ratio shows that the optimized ratio is 1:24. Specifically, the dependence of the device performance on the active-layer thermal annealing conditions is investigated. As a result, the optimized annealing temperature is 265 °C, and the incorporation of P3HT dots as donor materials successfully reduced the annealing time from 1 h to 10 min. In addition, the transmission electron microscopy and atomic force microscopy measurements demonstrate that the size of the CdTe NCs increased as the annealing time increased, and the annealing process facilitates the formation of a smoother interpenetrating network in the active layer. Therefore, charge separation and transport in the P3HT dots:CdTe NCs layer are more efficient. Eventually, the P3HT dots:CdTe NCs solar cells achieved 4.32% power conversion efficiency. The polymer dots and CdTe NCs based aqueous-solution-processed HSCs provide an effective way to avoid a long-time thermal annealing process of the P3HT dots:CdTe NCs layer and largely broaden the donor materials for aqueous HSCs. PMID:25781480

  15. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. PMID:26761603

  16. Improved Process Used to Treat Aqueous Mixed Waste Results in Cost Savings and Improved Worker Safety

    SciTech Connect

    Hodge, D.S.; Preuss, D.E.; Belcher, K.J.; Rock, C.M.; Bray, W.S.; Herman, J.P.

    2006-07-01

    This paper describes an improved process implemented at Argonne National Laboratory (ANL) to treat aqueous mixed waste. This waste is comprised of radioactively-contaminated corrosive liquids with heavy metals. The Aqueous Mixed Waste Treatment System (AMWTS) system components include a reaction tank and a post-treatment holding tank with ancillary piping and pumps; and a control panel with pumping/mixing controls; tank level, temperature and pH/Oxidation Reduction Potential (ORP) indicators. The process includes a neutralization step to remove the corrosive characteristic, a chromium reduction step to reduce hexavalent chromium to trivalent chromium, and a precipitation step to convert the toxic metals into an insoluble form. Once the toxic metals have precipitated, the resultant sludge is amenable to stabilization and can be reclassified as a low-level waste if the quantity of leachable toxic metals, as determined by the TCLP, is below Universal Treatment Standards (UTS). To date, six batches in eight have passed the UTS. The AMWTS is RCRA permitted and allows for the compliant treatment of mixed waste prior to final disposal at a Department of Energy (DOE) or commercial radioactive waste disposal facility. Mixed wastes eligible for treatment include corrosive liquids (pH <2 or >12.5) containing EPA-regulated toxic metals (As, Ba, Pb, Cd, Cr, Ag, Se, Hg) at concentrations greater than the RCRA Toxicity Characteristic Leaching Procedure (TCLP) limit. The system has also been used to treat corrosive wastes with small quantities of fissionable materials. The AMWTS is a significant engineered solution with many improvements over the more labor intensive on-site treatment method being performed within a ventilation hood used previously. The previously used treatment system allowed for batch sizes of only 15-20 gallons whereas the new AMWTS allows for the treatment of batches up to 75 gallons; thereby reducing batch labor and supply costs by 40-60% and reducing

  17. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    PubMed

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  18. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  19. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T.; Oyenekan, Babatunde A.

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  20. Advances in Processing of Bulk Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  1. Simulation of materials processing: Fantasy or reality?

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Bright, Victor M.

    1994-01-01

    This experiment introduces students to the application of computer-aided design (CAD) and analysis of materials processing in the context of integrated circuit (IC) fabrication. The fabrication of modern IC's is a complex process which consists of several sequential steps. These steps involve the precise control of processing variables such as temperature, humidity, and ambient gas composition. In essence, the particular process employed during the fabrication becomes a 'recipe'. Due to economic and other considerations, CAD is becoming an indispensable part of the development of new recipes for IC fabrication. In particular, this experiment permits the students to explore the CAD of the thermal oxidation of silicon.

  2. Coprecal: materials accounting in the modified process

    SciTech Connect

    Dayem, H.A.; Kern, E.A.; Shipley, J.P.

    1980-05-01

    This report presents the design and evaluation of an advanced materials accounting system for a uranium-plutonium nitrate-to-oxide coconversion facility based on the General Electric Coprecal process as modified by Savannah River Laboratory and Plant and DuPont Engineering. The modifications include adding small aliquot tanks to feed the process and reconfiguring the calciner filter systems. Diversion detection sensitivities for the modified Coprecal process are somewhat better than the original Coprecal design, but they are still significantly worse than a same-sized conversion facility based on the oxalate (III) precipitation process.

  3. Robot development for nuclear material processing

    SciTech Connect

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  4. Behaviour of Silica and Florisil as Solid Supports in the Removal Process of As(V) from Aqueous Solutions

    PubMed Central

    Gabor, Andreea; Davidescu, Corneliu Mircea; Negrea, Adina; Ciopec, Mihaela; Lupa, Lavinia

    2015-01-01

    In this study two solid supports, silica and florisil, were impregnated with crown ether (dibenzo-18-crown-6) and Fe(III) ions and their efficiency was compared in the adsorption process of As(V) from aqueous solutions. The solid supports were impregnated with crown ether due to their ability to build complexes with positives ions. Fe(III) was used because of As(V) affinity for it. The impregnated solid supports were characterized by energy dispersive X-ray analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and the specific surface area. The influence of the solid : liquid ratio on the adsorption process, kinetic studies for the pseudo-first-order and pseudo-second-order, and activation energy were studied. Thermodynamic studies as well as equilibrium studies were carried out. The obtained results showed that, from the two considered materials, impregnated silica presents a higher efficiency with a good selectivity, able to remove As(V) from aqueous solutions containing trace concentrations. PMID:25821633

  5. High-performance magnetic carbon materials in dye removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Zhang, Yu; Dai, Yuan; Fu, Feng

    2016-07-01

    To obtain a novel adsorbent with excellent adsorption capacity and convenient magnetic separation property, magnetic activated semi-coke was prepared by KOH activation method and further modified by FeCl3. The surface morphology, physical structure, chemical properties and textural characteristics of unmodified semi-coke, KOH-modified semi-coke and magnetic activated semi-coke were characterized by scanning electron microscopy, X-ray powder diffraction, N2 adsorption-desorption measurement, and electronic differential system. The adsorption characteristics of the magnetic activated semi-coke were explored for the removal of methyl orang (MO), methylene blue (MB), congo red (CR), acid fuchsin (AF), and rhodamine B (RB) from aqueous solution. The effects of adsorption parameters, including adsorbent dosage, pH and contact time, were investigated by comparing the adsorption properties of the magnetic activated semi-coke to RB. The result showed that the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. The adsorption experiment data indicated that the pseudosecond order model and the Langmuir model could well explain the adsorption processes of RB on the magnetic activated semi-coke, and the maximum adsorption capacity (qm) was 526.32 mg/g. The values of thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that the adsorption process depended on the temperature of the aqueous phase, and it was spontaneous and exothermic in nature. As the addition of the magnetic activated semi-coke, the color of the solution significantly faded. Subsequently, fast aggregation of the magnetic activated semi-coke from their homogeneous dispersion in the presence of an external magnetic field could be happened. So, the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity.

  6. Selective removal of copper from multication dilute aqueous solutions using the membrane-electrode process

    SciTech Connect

    Gopal, V.; April, G.C.; Schrodt, V.N.

    1998-03-01

    The presence of metallic contaminants (in the form of cations) in wastewater streams has long been a source of concern to process industries. Conventional methods of removal of metallic components from wastewater result in products which have little or no further use and are subsequently landfilled. This research involves developing a method, i.e., the membrane-electrode (M-E) process, to selectively recover heavy metals from dilute aqueous waste streams (cation concentrations less than 1000 ppm) in forms that can be recycled. Preliminary results for copper-nickel systems are presented to demonstrate the selectivity of this new treatment method.

  7. Laser materials processing at Sandia National Laboratories

    SciTech Connect

    Jellison, J.L.; Cieslak, M.J.

    1994-11-01

    The interest in laser processing has been driven by Sandia`s responsibility to design, prototype, manufacture, and steward high reliability defense hardware for the Department of Energy. The system requirements for the hardware generally necessitate hermetic sealing for ensured long life operation. With the advent of miniaturized electronic devices, traditional welding processes were no longer practical choices because of their limited ability to make very small weld closures without heat damage to the hardware. Gas and solid state lasers offered the opportunity to make hermetic closure welds in small, heat sensitive hardware. In order to consistently produce quality product, the Sandia laser materials processing team performed research aimed at identifying those critical parameters which controlled the laser welding process. This has been directed towards both the development of quantitative engineering data needed in product design and process control, and research to achieve fundamental process understanding. In addition, they have developed novel diagnostic systems to measure these important parameters, pioneered the use of calorimetric techniques to measure energy transfer efficiencies, and correlated the occurrence of welding defects with alloy compositions and type of laser welding process. Today, Sandia`s laser materials processing team continues to advance the state of laser processing technology in many areas, including aluminum laser welding, the design of novel optics for specific laser processing needs, laser micromachining of silicon and diamond for microelectronics applications, and fluxless laser soldering. This paper will serve to highlight some examples of where Sandia has made contributions to the field of laser materials processing and will indicate the directions where they expect to focus their future efforts.

  8. Applications of membrane processes for in-process materials recycling

    SciTech Connect

    Kim, B.M.; Thornton, R.F.; Shapiro, A.P.; Freshour, A.R.; El-Shoubary, Y.

    1996-12-31

    Zero discharge of wastes should be the ultimate goal of manufacturers. Waste reduction lowers costs and lessens liability associated with plant effluents. One approach toward this goal is elimination or minimization of wastes by in-process recycling of waste materials. We have examined opportunities for waste minimization for many equipment manufacturing plants and have evaluated membrane processes for in-process recycling. Membrane processes evaluated include vibrating membranes for suspended solid removal, ion exchange membranes for acid recovery, reverse osmosis and electrodialysis for dissolved salt removal, microporous membranes for recycling of machining coolants, oil emulsions, alkaline cleaners and others. This paper presents several examples of evaluations of membrane processes for materials recycling in manufacturing plants. 5 figs., 1 tab.

  9. Materials evaluation for a transuranic processing facility

    SciTech Connect

    Barker, S.A., Schwenk, E.B. ); Divine, J.R. )

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO{sub 3}, some of the process streams that are high in F{sup {minus}} and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60{degrees}C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs.

  10. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  11. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    DOEpatents

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  12. Facile Cucurbit[8]uril-Based Supramolecular Approach To Fabricate Tunable Luminescent Materials in Aqueous Solution.

    PubMed

    Ni, Xin-Long; Chen, Shiyan; Yang, Yaping; Tao, Zhu

    2016-05-18

    Light-emitting materials with tunable properties may offer fascinating applications in optoelectronic devices, fluorescent sensors, and imaging agents. Herein, a new supramolecular approach based on host-guest interactions that greatly decreases the number of required synthetic steps and produces a system with tunable and dynamical photophysical properties was developed. Because of the novel electronic distributions of the chromophore guest within the rigid hydrophobic cavity of the cucurbit[8]uril host in this system, color tuning of emissions such as cyan, yellow, green, and white light with efficiency increased fluorescence lifetime, and quantum yield was easily achieved by simple addition of the host in aqueous solution. Stimulus-responsive tuning of color has long been an important area of research into light emissions. The current study distinguishes itself by its combination of simple steps using a single synthetic receptor and a single organic fluorophore guest in a single solution. Our results may provide a promising advancement of the fabrication of smart and tunable luminescent materials. PMID:27123563

  13. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    PubMed

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS. PMID:25114355

  14. Alternative starting materials for industrial processes.

    PubMed Central

    Mitchell, J W

    1992-01-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology. Images PMID:11607260

  15. Plasma characterization studies for materials processing

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  16. Microwave processing of lunar materials: potential applications

    SciTech Connect

    Meek, T.T.; Cocks, F.H.; Vaniman, D.T.; Wright, R.A.

    1984-01-01

    The microwave processing of lunar materials holds promise for the production of either water, oxygen, primary metals, or ceramic materials. Extra high frequency microwave (EHF) at between 100 and 500 gigahertz have the potential for selective coupling to specific atomic species and a concomitant low energy requirement for the extraction of specific materials, such as oxygen, from lunar ores. The coupling of ultra high frequency (UHF) (e.g., 2.45 gigahertz) microwave frequencies to hydrogen-oxygen bonds might enable the preferential and low energy cost removal (as H/sub 2/O) of implanted protons from the sun or of adosrbed water which might be found in lunar dust in permanently shadowed polar areas. Microwave melting and selective phase melting of lunar materials could also be used either in the preparation of simplified ceramic geometries (e.g., bricks) with custom-tailored microstructures, or for the direct preparation of hermetic walls in underground structures. Speculatively, the preparation of photovoltaic devices based on lunar materials, especially ilmenite, may be a potential use of microwave processing on the moon. Preliminary experiments on UHF melting of terrestrial basalt, basalt/ilmenite and mixtures show that microwave processing is feasible.

  17. AQUEOUS ENZYMATIC OIL EXTRACTION: A "GREEN" BIOPROCESS TO OBTAIN OIL FROM CORN GERM AND OTHER OIL-RICH PLANT MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several methods have been developed to obtain oil from corn germ and other oil-rich plant materials using aqueous enzymatic methods. Unlike traditional oil extraction methods, these new bioprocesses are performed without the use of presses and without organic solvents. Beginning with olive oil in ...

  18. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research studied the characteristics of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as a novel adsorbent material for removal of pesticide paraquat, from aqueous solution, with potential applications in curbing environmental risk from such herbicides. PAAm-MC hydrogels with differe...

  19. Modelling the multiphase chemical processing of Monoethanolamine from industrial CCS processes in tropospheric aqueous particles and clouds

    NASA Astrophysics Data System (ADS)

    Tilgner, Andreas; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2013-04-01

    Using amine based solvent technology is an option to realise CO2 capture from the exhaust of power plants. Amines such as Monoethanolamine (MEA) may potentially be released in trace amounts during the carbon capture and storage (CCS) process. In order to investigate the tropospheric chemical fate of MEA from CO2 capturing processes and their oxidation products, multiphase modelling was performed and a reduced mechanism for future 3D model applications was developed in the present study. Based on former laboratory investigations and mechanism developments, an up-to-date multiphase mechanism describing the gas and aqueous phase chemistry of MEA has been developed in the present study. The developed multiphase phase oxidation scheme of MEA and its oxidation products, incl. nitrosamines, nitramines and amides, was coupled to the existing multiphase chemistry mechanism (RACM-MIM2ext-CAPRAM3.0i-red, Deguillaume et al. 2010) and the CAPRAM Halogen Module 2.0. Overall, the multiphase mechanism comprises 1276 chemical processes including 668 gas and 518 aqueous phase reactions as well as 90 phase transfers. The multiphase amine module contains in total 138 processes. The final mechanism was used in the Lagrangian parcel model SPACCIM (Wolke et al., 2005) to investigate e.g. the main oxidation pathways, the formation of hazardous oxidation products and seasonal differences. Simulations were performed using a meteorological scenario with non-permanent clouds, different environmental trajectories and seasonal conditions. The simulations revealed the importance of both cloud droplets and deliquescent particles to be an important compartment for the multiphase processing of MEA and its products. Due to the shifted partitioning of MEA towards the aqueous phase, the model investigations implicated that aqueous phase oxidation by OH radicals represents the main sink for MEA under daytime cloud summer conditions. Reaction flux analyses have shown that under deliquescent particle

  20. Food Processing Curriculum Material and Resource Guide.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    Intended for secondary vocational agriculture teachers, this curriculum guide contains a course outline and a resource manual for a seven-unit food processing course on meats. Within the course outline, units are divided into separate lessons. Materials provided for each lesson include preparation for instruction (student objectives, review of…

  1. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1980-01-01

    The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.

  2. ENVIRONMENTAL TOOLS FOR MATERIAL AND PROCESS SELECTION

    EPA Science Inventory

    A number of tools are being used within the Sustainable Technology Division of the U.S. Environmental Protection Agency to provide decision-makers with information on environmentally favorable materials and processes. These tools include LCA (Life Cycle Assessment), GREENSCOPE (...

  3. Materials processing in space program support

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James M.

    1987-01-01

    Activities in support of NASA's Materials Processing in Space (MPS) program are reported. The overall task of the MPS project support contract was to provide the organization and administration of colloquiums, science reviews, workshops, technical meetings, bibliographic services, and visiting scientist programs. The research objectives and accomplishments of the University Space Research Association visiting scientist team are also summarized.

  4. PREFACE: Processing, Microstructure and Performance of Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  5. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    PubMed

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  6. Processing of Silicon Nitride Ceramics from Concentrated Aqueous Suspensions by Robocasting

    SciTech Connect

    HE,GUOPING; HIRSCHFELD,DEIDRE A.; CESARANO III,JOSEPH; STUECKER,JOHN N.

    2000-08-14

    The optimization of concentrated AlliedSignal GS-44 silicon nitride aqueous slurries for robocasting was investigated. The dispersion mechanisms of GS-44 Si{sub 3}N{sub 4} aqueous suspensions with and without polyacrylate were analyzed. The zero point of charge (ZPC) was at about pH 6. Well-dispersed GS-44 suspensions were obtained in the pH range from 7 to 11 by the addition of Darvan 821A. The influence of pH, amount of Darvan 821A and solids loading on the theological behavior of GS-44 aqueous suspensions was determined. A coagulant, aluminum nitrate, was used to control the yield stress and shear thinning behavior of highly loaded Si{sub 3}N{sub 4} slurries. Homogeneous and stable suspensions of 52 vol% GS-44 Si{sub 3}N{sub 4} were robocast successfully at pH 7.8 to pH 8.5. The sintering process, mechanical properties and microstructural characteristics of robocast GS-44 bars were determined.

  7. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material.

    PubMed

    Quiroz, Marco A; Sánchez-Salas, José L; Reyna, Silvia; Bandala, Erick R; Peralta-Hernández, Juan M; Martínez-Huitle, Carlos A

    2014-03-15

    Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation. PMID:24462986

  8. Characterization of DuPont 9015, aqueous processable dry film photoresist for printed wiring boards. Topical report

    SciTech Connect

    Goldammer, S.

    1995-04-01

    This report describes the evaluation of DuPont`s Riston 9015, fully aqueous processable dry film photoresist as a mask for gold plating, tin/lead plating, and print and etch patterning for printed circuit board products.

  9. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  10. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.