Sample records for ar gas filled

  1. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin

  2. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  3. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  4. Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian

    2008-11-01

    On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).

  5. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  6. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  7. Improved Gas Filling and Sealing of an HC-PCF

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Meras, Patrick; Chang, Daniel; Spiers, Gary

    2008-01-01

    An improved packaging approach has been devised for filling a hollow-core photonic-crystal fiber (HC-PCF) with a gas, sealing the HC-PCF to retain the gas, and providing for optical connections and, optionally, a plumbing fitting for changing or augmenting the gas filling. Gas-filled HC-PCFs can be many meters long and have been found to be attractive as relatively compact, lightweight, rugged alternatives to conventional gas-filled glass cells for use as molecular-resonance frequency references for stabilization of lasers in some optical-metrology, lidar, optical-communication, and other advanced applications. Prior approaches to gas filling and sealing of HC-PCFs have involved, variously, omission of any attempt to connectorize the PCF, connectorization inside a vacuum chamber (an awkward and expensive process), or temporary exposure of one end of an HC-PCF to the atmosphere, potentially resulting in contamination of the gas filling. Prior approaches have also involved, variously, fusion splicing of HC-PCFs with other optical fibers or other termination techniques that give rise to Fresnel reflections of about 4 percent, which results in output intensity noise.

  8. Polystyrene Foam Products Equation of State as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Swift, D. C.

    2009-12-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O2-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO2 decomposes at high temperatures.

  9. Polystyrene foam products equation of state as a function of porosity and fill gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulford, Roberta N; Swift, Damian C

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{submore » 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.« less

  10. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  11. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  12. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  13. Symmetry control strategies in low gas-fill hohlraum

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N. B.; Dewald, E.; Ho, D. D.; Weber, C.; Khan, S. F.; Ma, T.; Milovich, J. L.; Moore, A. S.; Benedetti, R.; Pak, A. E.; Ross, J. S.; Nagel, S. R.; Grim, G. P.; Volegov, P.; Biener, J.; Nikroo, A.; Callahan, D. A.; Hurricane, O. A.; Hsing, W. W.; Town, R. P.; Edwards, M. J.

    2017-10-01

    The primary neutron yield record, to-date, for an ICF implosion on the NIF (1.47*1016) has been achieved using a doped HDC capsule (D =1.82 mm) in an unlined DU hohlraum (D =6.20 mm, L = 11.3 mm) filled with a low He gas-fill (0.3 mg/cc). This platform uses a new ``drooping'' pulse designed to keep high remaining mass and short coasting time. Prior to the high convergence (27x) cryogenic DT implosion, our ability to tune hot spot symmetry using this new pulse was tested at lower convergence (15x) using DD gas-filled capsules. Hot spot symmetry was tuned using beam pointing, gas-fill density, and power balance between outer and inner beams. The main metrics to assess the efficiency of each change are the implosion shape (time resolved X-ray emission of the hot spot) and DD neutron yield. In addition, we will describe the irradiation pattern obtained in each case using X-ray (soft and hard) diagnostics and the laser coupling to the hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. Development of an AMS method to study oceanic circulation characteristics using cosmogenic 39Ar

    USGS Publications Warehouse

    Collon, P.H.; Bichler, M.; Caggiano, J.; Cecil, L.D.; El, Masri Y.; Golser, R.; Jiang, C.L.; Heinz, A.; Henderson, D.; Kutschera, W.; Lehmann, B.E.; Leleux, P.; Loosli, H.H.; Pardo, R.C.; Paul, M.; Rehm, K.E.; Schlosser, P.; Scott, R.H.; Smethie, W.M.; Vondrasek, R.

    2004-01-01

    Initial experiments at the ATLAS facility [Nucl. Instr. and Meth. B 92 (1994) 241] resulted in a clear detection of cosmogenic 39Ar signal at the natural level. The present paper summarizes the recent developments of 39Ar AMS measurements at ATLAS: the use of an electron cyclotron resonance (ECR) positive ion source equipped with a special quartz liner to reduce 39K background, the development of a gas handling system for small volume argon samples, the acceleration of 39Ar8+ ions to 232 MeV, and the final separation of 39Ar from 39K in a gas-filled spectrograph. The first successful AMS measurements of 39Ar in ocean water samples from the Southern Atlantic ventilation experiment (SAVE) are reported. Published by Elsevier B.V.

  15. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China.

    PubMed

    Xiao, Kun; Zou, Changchun; Lu, Zhenquan; Deng, Juzhi

    2017-11-24

    Accurate calculation of gas hydrate saturation is an important aspect of gas hydrate resource evaluation. The effective medium theory (EMT model), the velocity model based on two-phase medium theory (TPT model), and the two component laminated media model (TCLM model), are adopted to investigate the characteristics of acoustic velocity and gas hydrate saturation of pore- and fracture-filling reservoirs in the Qilian Mountain permafrost, China. The compressional wave (P-wave) velocity simulated by the EMT model is more consistent with actual log data than the TPT model in the pore-filling reservoir. The range of the gas hydrate saturation of the typical pore-filling reservoir in hole DKXX-13 is 13.0~85.0%, and the average value of the gas hydrate saturation is 61.9%, which is in accordance with the results by the standard Archie equation and actual core test. The P-wave phase velocity simulated by the TCLM model can be transformed directly into the P-wave transverse velocity in a fracture-filling reservoir. The range of the gas hydrate saturation of the typical fracture-filling reservoir in hole DKXX-19 is 14.1~89.9%, and the average value of the gas hydrate saturation is 69.4%, which is in accordance with actual core test results.

  16. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  17. Thomson scattering diagnostics of decay processes of Ar/SF6 gas-blast arcs confined by a nozzle

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Gojima, Daisuke; Nagai, Kazuhiko; Uchino, Kiichiro; Kamimae, Ryo; Tanaka, Yasunori; Suzuki, Katsumi; Iijima, Takanori; Uchii, Toshiyuki; Shinkai, Takeshi

    2013-09-01

    Because of its instability, it is difficult to measure precisely the electron density (ne) of a long-gap decaying arc discharge in a circuit breaker. However, it is well known that it is an essential parameter for the determination of success or failure of the current interruption in a circuit breaker. In this paper, the spatiotemporal evolutions of the electron density were successfully measured in decaying SF6 gas-blast arc discharges formed with a long gap (50 mm) in a confined nozzle using laser Thomson scattering. Pure Ar gas and an 80%Ar/20%SF6 mixture gas were used as the arc quenching media at atmospheric pressure. After reducing the current to zero, both the measured ne and arc radius in the Ar/SF6 gas arc clearly decayed more rapidly than in the pure Ar gas arc.

  18. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  19. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

    NASA Astrophysics Data System (ADS)

    Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian

    2017-05-01

    A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.

  20. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  1. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Buoyancy of gas-filled bladders at great depth

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  3. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  4. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C.; Wang, Shicong

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atomsmore » that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.« less

  5. 40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.

    1991-01-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.

  6. Kinetic Modeling of RF Breakdown in High-Pressure Gas-filled Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tollestrup, A. V.; Yonehara, K.; Byrd, J. M.

    2012-05-01

    Recent studies have shown that high gradients can be achieved quickly in high-pressure gas-filled cavities without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this proj ect we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of radiofrequency and surface preparation. A series of experiments at 805 MHz using hydrogen fill pressures up to 0.01 g/cm3 of H2 have demonstrated high electric field gradientsmore » and scaling with the DC Paschen law limit, up to ~30 MV/m, depending on the choice of electrode material. For higher fi eld stresses, the breakdown characteristics deviate from the Paschen law scaling. Fully-kinetic 0D collisional particle-in-cell (PIC) simulations give breakdown characteristics in H2 and H2/SF6 mixtures in good agreement with the 805 MHz experimental resu lts below this field stress threshold. The impact of these results on gas-filled RF accelerating cavity design will be discussed.« less

  7. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearlymore » flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.« less

  8. Comparison of Two Potassium-Filled Gas-Controlled Heat Pipes

    NASA Astrophysics Data System (ADS)

    Bertiglia, F.; Iacomini, L.; Moro, F.; Merlone, A.

    2015-12-01

    Calibration by comparison of platinum resistance thermometers and thermocouples requires transfer media capable of providing very good short-term temperature uniformity and temperature stability over a wide temperature range. This paper describes and compares the performance of two potassium-filled gas-controlled heat pipes (GCHP) for operation over the range from 420° C to 900° C. One of the heat pipes has been in operation for more than 10 years having been operated at temperature for thousands of hours, while the other was commissioned in 2010 following recently developed improvements to both the design, assembly, and filling processes. It was found that the two devices, despite differences in age, structure, number of wells, and filling processes, realized the same temperatures within the measurement uncertainty. The results show that the potassium-filled GCHP provides a durable and high-quality transfer medium for performing thermometer calibrations with very low uncertainties, over the difficult high-temperature range from 420° C to 900° C.

  9. Effect of gas mixing on physical properties of warm collisional helicon plasmas

    NASA Astrophysics Data System (ADS)

    Kabir, M.; Niknam, A. R.

    2017-10-01

    The effect of inert gas mixing on the physical properties of a helicon plasma source with a Nagoya type III antenna is analytically investigated by taking into account the thermal and collisional effects. The dielectric permittivity tensor of this mixed gas plasma is obtained by using the Bhatnagar-Gross- Krook kinetic theory. Considering the dielectric tensor of mixed gas plasma and solving the electromagnetic field equations, the profiles of electromagnetic fields and plasma resistance are plotted and discussed. The results show that the plasma resistance peaks decrease with increasing Xe fraction in Ar-Xe plasma, and increase with the He fraction in Ar-He plasma. It is also shown that by increasing the xenon filling fraction, the electromagnetic field amplitudes are lowered, and by increasing the helium filling fraction, they are increased.

  10. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  11. First-principles calibration of 40Ar/39Ar mineral standards and complete extraction of 40Ar* from sanidine

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Kuiper, K.; Mark, D.; Postma, O.; Villa, I. M.; Wijbrans, J. R.

    2010-12-01

    40Ar/39Ar geochronology relies on comparing argon isotopic data for unknowns to those for knowns. Mineral standards used as neutron fluence monitors must be dated by the K-Ar method (or at least referenced to a mineral of known K-Ar age). The commonly used age of 28.02 ± 0.28 Ma for the Fish Canyon sanidine (FCs) (Renne et al., 1998) is based upon measurements of radiogenic 40Ar in GA1550 biotite (McDougall and Roksandic, 1974), but underlying full data were not published (these measurements were never intended for use as an international standard), so uncertainties are difficult to assess. Recent developments by Kuiper et al. (2008) and Renne et al. (2010) are limited by their reliance on the accuracy of other systems. Modern technology should allow for more precise and accurate calibration of primary K-Ar and 40Ar/39Ar standards. From the ideal gas law, the number of moles of 40Ar in a system can be calculated from measurements of pressure, volume, and temperature. Thus we have designed and are proceeding to build a pipette system to introduce well-determined amounts of 40Ar into noble gas extraction lines and mass spectrometers. This system relies on components with calibrations traceable to SI unit prototypes, including a diaphragm pressure gauge (MKS Instruments), thermocouples, and a “slug” of an accurately determined volume to be inserted into the reservoir for volume determinations of the reservoir and pipette. The system will be renewable, with a lifetime of ca. 1 month for gas in the reservoir, and portable, to permit interlaboratory calibrations. The quantitative extraction of 40Ar* from the mineral standard is of highest importance; for sanidine standards this is complicated by high melt viscosity during heating. Experiments adding basaltic “zero age glass” (ZAG) to decrease melt viscosity are underway. This has previously been explored by McDowell (1983) with a resistance furnace, but has not been quantitatively addressed with laser heating

  12. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.

    DOE PAGES

    Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...

    2016-10-20

    Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

  13. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    NASA Astrophysics Data System (ADS)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  14. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOEpatents

    Wilson, Robert D.

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  15. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  16. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam.

    PubMed

    McKeegan, D E F; Reimert, H G M; Hindle, V A; Boulcott, P; Sparrey, J M; Wathes, C M; Demmers, T G M; Gerritzen, M A

    2013-05-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emergency killing method. In laboratory trials, broiler chickens, adult laying hens, ducks, and turkeys were exposed to air-, N2-, or CO2-filled high expansion foam (expansion ratio 300:1) under standardized conditions. Birds were equipped with sensors to measure cardiac and brain activity, and measurements of oxygen concentration in the foam were carried out. Initial behavioral responses to foam were not pronounced but included headshakes and brief bouts of wing flapping. Both N2- and CO2-filled foam rapidly induced ataxia/loss of posture and vigorous wing flapping in all species, characteristic of anoxic death. Immersion in air-filled, high expansion foam had little effect on physiology or behavior. Physiological responses to both N2- and CO2-filled foam were characterized by a pronounced bradyarrythymia and a series of consistent changes in the appearance of the electroencephalogram. These were used to determine an unequivocal time to loss of consciousness in relation to submersion. Mean time to loss of consciousness was 30 s in hens and 18 s in broilers exposed to N2-filled foam, and 16 s in broilers, 1 s in ducks, and 15 s in turkeys exposed to CO2-filled foam. Euthanasia achieved with anoxic foam was particularly rapid, which is explained by the very low oxygen concentrations (below 1%) inside the foam. Physiological observations and postmortem examination showed that the mode of action of high expansion, gas-filled foam is anoxia, not occlusion of the airway. These trials provide proof-of-principle that submersion in gas-filled, high expansion foam provides a rapid and highly effective method of euthanasia, which may have potential to provide humane emergency killing

  17. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  18. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  19. Biological degradation of gas-filled composite materials on the base of polyethylene

    NASA Astrophysics Data System (ADS)

    Grigoreva, E. A.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2017-12-01

    Gas-filled composite materials based on polyethylene were obtained. It was assumed that introduction of porosity in polyethylene will improve the biodegradability of synthetic materials. The morphological and structural changes were estimated, physical and mechanical properties, stability in water and soil of these materials were determined. It is stated that filling the polymer matrix with pores increases the ability to degrade in nature.

  20. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  1. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  2. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui

    2017-08-01

    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  3. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE PAGES

    Stratakis, D.

    2017-09-25

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  4. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, D.

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  5. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system.

    PubMed

    Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard

    2015-11-30

    At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. © 2015. Published by The Company of Biologists Ltd.

  6. Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Mikheyev, Pavel A.; Han, Jiande; Clark, Amanda; Sanderson, Carl; Heaven, Michael C.

    2017-12-01

    Optically pumped all-rare-gas lasers (OPRGL) utilize metastable atoms of the heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012-1013 cm-3 in He buffer gas at pressures in the 400-1000 Torr range. Such metastable densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to achieve continuous production. The reason for low production efficiency in many types of continuous discharge at atmospheric pressure is the low value of the E/N parameter (<5-6 Td). In the present work, we have examined the possibility of using a dielectric barrier discharge (DBD) to provide near continuous, high densities of Ar and Xe metastables. Experiments were performed using a 20 kHz DBD in binary Ar and Xe mixtures with He, and in ternary Ar:Xe:He mixtures at pressures up to 1 atmosphere. Concentrations were measured by means of tunable diode laser absorption spectroscopy. Time-averaged [Ar(1s5)] and [Xe(1s5)] number densities on the order of 1012 cm-3 were readily achieved. The temporal behavior of [Xe(1s5)] throughout the DBD cycle was observed. The results demonstrate the feasibility of using DBDs for OPRGL development. Spectral scans over the absorption lines were also used to examine the pressure broadening coefficients for the 912.3 nm Ar line in He and the Xe 904.5 nm line in Ne and He.

  7. The Performance of Gas Filled Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Mills, G. L.; Zeller, C. M.

    2008-03-01

    The NASA Exploration Program is currently planning to use liquid oxygen, methane and hydrogen for propulsion in future spacecraft for the human exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogens. Multilayer insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. However, the size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. One approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. In this paper, we report on experimental tests and modeling that we have done on MLI used to insulate a cryogenic tank. These include measurements of the heat transfer of gas filled insulation, evacuated insulation and during the transition in between.

  8. Setup optimization toward accurate ageing studies of gas filled detectors

    NASA Astrophysics Data System (ADS)

    Abuhoza, A.; Schmidt, H. R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C. J.

    2013-08-01

    An infrastructure has been set up at the GSI detector laboratory to study the influence of construction materials on the ageing properties of gas filled detectors, such as multi-wire proportional chamber (MWPC), gas electron multiplier (GEM). Optimization of an ageing setup was performed by observing the variation of the normalized gain obtained using two identical MWPCs. An accuracy in the relative gain measurement below 1% has been achieved by monitoring environmental conditions and by systematic improvements of the measuring equipment. Ageing test of fiberglass G11 has been performed.

  9. A closer look at 40Ar/39Ar systematics of illite, recoil, retention ages, total gas ages, and a new correction method

    NASA Astrophysics Data System (ADS)

    Fitz-Diaz, E.; Hall, C. M.; van der Pluijm, B.

    2013-12-01

    One of the fundamentals of 40Ar-39Ar systematics of illite considers the effects of 39Ar recoil (ejection of 39Ar from tiny illite crystallites during the nuclear reaction 39K(n,p)39Ar), for which sample vacuum encapsulation prior to irradiation has been used since the 1990's. This technique separately measures the fraction of recoiled 39Ar and the Ar (39Ar and 40Ar) retained within illite crystals as they degas during step heating in vacuum. Total-gas ages (TGA) are calculated by using both recoiled and retained argon, while retention ages (RA) only involve retained Ar. Observations in numerous natural examples have shown that TGA fit stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10nm, and that RA better matches these constrains for larger ICTs. Illite crystals with ICT >50nm show total gas and retention ages within a few My and they are identical, within analytical error, when ICT exceeds 150nm. We propose a new age correction that takes into account the average ICT and corresponding recoil for a sample , with such corrected ages (XCA) lying between the TGA and RA end-member ages. We apply this correction to samples containing one generation of illite and it particularly affects illite populations formed in the anchizone, with typical ICT values between 10-40nm. We analyzed bentonitic samples (S1, S2 and S3) from sites in Cretaceous carbonates in the front of the Monterrey salient in northern Mexico. Four size fractions (<0.05, 0.05-0.2, 0.2-1 & 1-2 μm) were separated, analyzed with XRD and dated by Ar-Ar. XRD analysis provides mineralogic characterization, illite polytype quantification, and illite crystallite thickness (ICT) determination using half-height peak width (illite crystallinity) and the Scherrer equation. All samples contain illite as the main mineral phase, ICT values between 8-27nm, from fine to coarser grain size fractions. Ages show a range in TGA among the different size

  10. Method and apparatus for producing gas-filled hollow spheres. [target pellets for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1982-01-01

    A system for forming hollow spheres containing pressured gas is described which includes a cylinder device containing a molten solid material with a nozzle at its end. A second gas nozzle, lying slightly upstream from the tip of the first nozzle, is connected to a source that applies pressured filler gas that is to fill the hollow spheres. High pressure is applied to the molten metal, as by moving a piston within the cylinder device, to force the molten material out of the first nozzle. At the same time, pressured gas fills the center of the extruded hollow liquid pipe that breaks into hollow spheres. The environment outside the nozzles contains gas at a high pressure such as 100 atmospheres. Gas is supplied to the gas nozzle at a slightly higher pressure such as 101 atmospheres. The pressure applied to the molten material is at a still higher pressure such as 110 atmospheres.

  11. Radioactive 133-Xenon gas-filled balloon to prevent restenosis: dosimetry, efficacy, and safety considerations.

    PubMed

    Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G

    2002-08-06

    Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.

  12. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J O; Fournier, K B; May, M J

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recordedmore » with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.« less

  13. ``Smoking From The Same Pipe": Developement of an 40Ar/39Ar Datting Intercalibration PIpette System (Invited)

    NASA Astrophysics Data System (ADS)

    Turrin, B. D.; Swisher, C. C.; Deino, A.; Hemming, S. R.; Hodges, K.; Renne, P. R.

    2010-12-01

    The precision and accuracy of Ar isotope ratio measurements is one of the main limiting factors in the uncertainties of an 40Ar/39Ar age. Currently, it is relatively common to measure Ar isotopic ratios to a precision of 1-2‰ or better on an intralaboratory basis. This level of analytical precision equates to a comparable level of precision (1-3‰) in the calculated age, depending on the extent of atmospheric Ar contamination, importance of nucleogenic interference corrections, and other factors. However, it has become clear that improving the precision of mass spectrometry is not the only bottleneck towards improving the accuracy and precision of 40Ar/39Ar dating in general. Rather, the most urgent issue is interlaboratory reproducibility. This became obvious in a recent EARTHTIME initiative undertaken to intercalibrate two commonly used 40Ar/39Ar standards [the Fish Canyon sanidine (FCs) and the Alder Creek sanidine (ACs)]. This effort revealed variations amongst laboratories (at the 1-2% level), an order of magnitude greater than the internal analytical precisions. To address these issues, we have proposed (to NSF) to construct two identical pipette systems loaded to identical starting pressures and with identical isotopic compositions. One pipette system will travel between participating 40Ar/39Ar labs and the second system will not travel and serve as the “Master” system to test for any fractionation or undocumented depletion of the traveling pipette system. In order to ensure delivery of uniform amounts of homogenous gas, the pipette system will be computer-controlled with preprogrammed routines and lockouts to prevent compromising the reservoirs. The pipette systems will deliver three gas samples with different isotopic ratios at two different pressures/concentrations. One pipette bulb will be of atmospheric isotopic composition, and the other two pipette bulbs will have 40Ar*/39ArK ratios corresponding to co-irradiated ACs and FCs fixed by their

  14. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  15. Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.

  16. Direct Measurement of Recoil Effects on Ar-Ar Standards

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2011-12-01

    Advances in the precision possible with the Ar-Ar method using new techniques and equipment have led to considerable effort to improve the accuracy of the calibration of interlaboratory standards. However, ultimately the accuracy of the method relies on the measurement of 40Ar*/39ArK ratios on primary standards that have been calibrated with the K-Ar method and, in turn, on secondary standards that are calibrated against primary standards. It is usually assumed that an Ar-Ar total gas age is equivalent to a K-Ar age, but this assumes that there is zero loss of Ar due to recoil. Instead, traditional Ar-Ar total gas ages are in fact Ar retention ages [1] and not, strictly speaking, comparable to K-Ar ages. There have been efforts to estimate the importance of this effect on standards along with prescriptions for minimizing recoil effects [2,3], but these studies have relied on indirect evidence for 39Ar recoil. We report direct measurements of 39Ar recoil for a set of primary and secondary standards using the vacuum encapsulation techniques of [1] and show that significant adjustments to ages assigned to some standards may be needed. The fraction f of 39Ar lost due to recoil for primary standards MMhb-1 hornblende and GA-1550 biotite are 0.00367 and 0.00314 respectively. It is possible to modify the assumed K-Ar ages of these standards so that when using their measured Ar retention 40Ar*/39ArK ratios, one obtains a correct K-Ar age for an unknown, assuming that the unknown sample has zero loss of 39Ar due to recoil. Assuming a primary K-Ar age for MMhb-1 of 520.4 Ma, the modified age would be 522.1 Ma and assuming a primary K-Ar age for GA-1550 of 98.79 Ma [4] yields a modified effective age of 99.09 Ma. Measured f values for secondary standards FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine are 0.00932, 0.00182 and 0.00039 respectively. Using an R value for FCT-3 biotite relative to MMhb-1 [5], the K-Ar age for this standard would be 27.83 Ma and using R values

  17. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  18. Fiber optic gas detection system for health monitoring of oil-filled transformer

    NASA Astrophysics Data System (ADS)

    Ho, H. L.; Ju, J.; Jin, W.

    2009-10-01

    This paper reports the development of a fiber-optic gas detection system capable of detecting three types of dissolved fault gases in oil-filled power transformers or equipment. The system is based on absorption spectroscopy and the target gases include acetylene (C2H2), methane (CH4) and ethylene (C2H4). Low-cost multi-pass sensor heads using fiber coupled micro-optic cells are employed for which the interaction length is up to 4m. Also, reference gas cells made of photonic bandgap (PBG) fiber are implemented. The minimum detectable gas concentrations for methane, acetylene and ethylene are 5ppm, 2ppm and 50ppm respectively.

  19. Cross Sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl and 40Ar(d,p)41Ar Nuclear Reactions below 8.4 MeV

    PubMed Central

    Engle, J W; Severin, G W; Barnhart, T E; Knutson, L D; Nickles, R J

    2011-01-01

    We have measured the cross section for production of the medically interesting isotope 34mCl, along with 38Cl and 41Ar, using deuteron bombardments of 36Ar and 40Ar below 8.4 MeV. ALICE/ASH analytical codes were employed to determine the shape of nuclear excitation functions, and experiments were performed using the University of Wisconsin tandem electrostatic accelerator to irradiate thin targets of argon gas. PMID:22041299

  20. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGES

    Patel, Mogon; Bowditch, Martin; Jones, Ben; ...

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-EN TM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cmmore » -1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  1. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  2. Cross sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl, and 40Ar(d,p)41Ar nuclear reactions below 8.4 MeV.

    PubMed

    Engle, J W; Severin, G W; Barnhart, T E; Knutson, L D; Nickles, R J

    2012-02-01

    We have measured the cross section for production of the medically interesting isotope (34m)Cl, along with (38)Cl and (41)Ar, using deuteron bombardments of (36)Ar and (40)Ar below 8.4 MeV. ALICE/ASH analytical codes were employed to determine the shape of nuclear excitation functions, and experiments were performed using the University of Wisconsin tandem electrostatic accelerator to irradiate thin targets of argon gas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC

    NASA Astrophysics Data System (ADS)

    Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Molina-Bueno, L.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.

    2018-01-01

    We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39Ar and 83mKr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.

  4. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  5. A compact gas-filled avalanche counter for DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C. Y.; Chyzh, A.; Kwan, E.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  6. Extension and Density of Root Fillings and Post-operative Apical Radiolucencies in the Veterans Affairs Dental Longitudinal Study

    PubMed Central

    Zhong, Yan; Chasen, Joel; Yamanaka, Ryan; Garcia, Raul; Kaye, Elizabeth Krall; Kaufman, Jay S; Cai, Jianwen; Wilcosky, Tim; Trope, Martin; Caplan, Daniel J

    2008-01-01

    We evaluated the association between radiographically-assessed extension and density of root canal fillings and post-operative apical radiolucencies (AR) using data from 288 participants in the Veterans Affairs Dental Longitudinal Study. Study subjects were not VA patients; all received their medical and dental care in the private sector. Generalized Estimating Equations were used to account for multiple teeth within subjects and to control for covariates of interest. Defective root filling density was associated with increased odds of post-operative AR among teeth with no pre-operative AR (Odds Ratio=3.0, 95%CI=1.3–7.1), though pre-operative AR was the strongest risk factor for post-operative AR (Odds Ratio=29.2, 95%CI=13.6–63.0 among teeth with ideal density). Compared to well-extended root fillings, neither over- nor under-extended root fillings separately were related to post-operative AR, but when those two categories were collapsed into one “poorly-extended” category, poor extension was related to post-operative AR (Odds Ratio=1.8, 95%CI=1.1–3.2). PMID:18570982

  7. Computational phase diagrams of noble gas hydrates under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogenmore » hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.« less

  8. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  9. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  10. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE PAGES

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...

    2017-05-11

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  11. Ar-Ar dating techniques for terrestrial meteorite impacts

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  12. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  13. 40Ar/39Ar geochronology of terrestrial pyroxene

    NASA Astrophysics Data System (ADS)

    Ware, Bryant; Jourdan, Fred

    2018-06-01

    Geochronological techniques such as U/Pb in zircon and baddeleyite and 40Ar/39Ar on a vast range of minerals, including sanidine, plagioclase, and biotite, provide means to date an array of different geologic processes. Many of these minerals, however, are not always present in a given rock, or can be altered by secondary processes (e.g. plagioclase in mafic rocks) limiting our ability to derive an isotopic age. Pyroxene is a primary rock forming mineral for both mafic and ultramafic rocks and is resistant to alteration process but attempts to date this phase with 40Ar/39Ar has been met with little success so far. In this study, we analyzed pyroxene crystals from two different Large Igneous Provinces using a multi-collector noble gas mass spectrometer (ARGUS VI) since those machines have been shown to significantly improve analytical precision compared to the previous single-collector instruments. We obtain geologically meaningful and relatively precise 40Ar/39Ar plateau ages ranging from 184.6 ± 3.9 to 182.4 ± 0.8 Ma (2σ uncertainties of ±1.8-0.4%) and 506.3 ± 3.4 Ma for Tasmanian and Kalkarindji dolerites, respectively. Those data are indistinguishable from new and/or published U-Pb and 40Ar/39Ar plagioclase ages showing that 40Ar/39Ar dating of pyroxene is a suitable geochronological tool. Scrutinizing the analytical results of the pyroxene analyses as well as comparing them to the analytical result from plagioclase of the same samples indicate pure pyroxene was dated. Numerical models of argon diffusion in plagioclase and pyroxene support these observations. However, we found that the viability of 40Ar/39Ar dating approach of pyroxene can be affected by irradiation-induced recoil redistribution between thin pyroxene exsolution lamellae and the main pyroxene crystal, hence requiring careful petrographic observations before analysis. Finally, diffusion modeling show that 40Ar/39Ar of pyroxene can be used as a powerful tool to date the formation age of mafic

  14. 40Ar/ 39Ar dating of micas from granites of NE Kibaran Belt (Karagwe-Ankolean), NW Tanzania

    NASA Astrophysics Data System (ADS)

    Ikingura, J. R.; Reynolds, P. H.; Watkinson, D. H.; Bell, K.

    1992-11-01

    40Ar/ 39Ar total gas ages of muscovites and biotites from granites associated with NE Kibaran belt (Karagwe-Ankolean) in NW Tanzanian are in the range of about 945-700 Ma, much less than the estimated age of the granites. Age gradients in the muscovite spectra are indicative of partial gas loss as a result of thermal overprinting. Evidence for at least two tectonothermal events, at ca. 950 Ma and ca. 700 Ma, is noted. The older of these correlates with the formation of tin-bearing pegmatites and hydrothermal veins in the Kibaran belt; the younger with vein emplacements in the Burundian and/or a deformational episode. Correlation of 40Ar/ 39Ar age data with K-Ar and Rb-Sr data from other parts of the Kibaran belt in Burundi, Rwanda and Zaire indicates that the NE Kibaran belt, east of the Western Rift, experienced a tectonothermal history similar to that of the western part of the during the late-Proterozoic.

  15. Evaluation of Different Gases and Gas Combinations for On-Farm Euthanasia of Pre-Weaned Pigs.

    PubMed

    Kells, Nikki; Beausoleil, Ngaio; Johnson, Craig; Sutherland, Mhairi

    2018-03-16

    The aim of this research was to evaluate the welfare of pre-weaned piglets euthanised using three different gas treatments: 100% carbon dioxide (CO₂), 100% argon (Ar) or a mixture of 60% Ar/40% carbon dioxide (Ar/CO₂). Two studies (n = 5 piglets/treatment/study) were conducted: (1) behavioural and physiological data were collected from conscious piglets during exposure to test gases via immersion in a pre-filled chamber and (2) electrophysiological data were collected from lightly anaesthetised, intubated and mechanically ventilated piglets exposed to the same test gases. Based on the duration of escape attempts and laboured breathing, piglets exposed to 100% CO₂ experienced more stress than piglets exposed to 100% Ar prior to loss of consciousness, but there appeared to be no advantage of mixing Ar with CO₂ on indices of animal welfare. However, spectral analysis of the electroencephalogram revealed no changes consistent with nociception during exposure to any of the three gas treatments. Based on the behavioural response to gas exposure, all gases tested caused signs of stress prior to piglets losing consciousness and hence alternative methods of euthanasia need to be evaluated.

  16. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  17. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    NASA Astrophysics Data System (ADS)

    Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2014-07-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  18. AMS of 93Zr: Passive absorber versus gas-filled magnet

    NASA Astrophysics Data System (ADS)

    Hain, Karin; Deneva, Boyana; Faestermann, Thomas; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Koll, Dominik; Korschinek, Gunther; Ludwig, Peter; Sergeyeva, Victoria; Thiollay, Nicolas

    2018-05-01

    Two different isobar separation techniques were tested for the detection of the long-lived fission product 93Zr (T1/2 = 1.64 · 106 a) using Accelerator Mass Spectrometry (AMS), i.e. a passive absorber and a gas-filled magnet, respectively. Both techniques were used in combination with a Time-of-Flight path for the identification of the stable neighboring isotopes 92Zr and 94Zr. The passive absorber was represented by a stack of silicon nitride foils for high flexibility regarding the thickness for optimal isobar separation. Ion beams with a large variety of energies, between 80 and 180 MeV, were provided for this experiment by the tandem accelerator at the Maier-Leibnitz Laboratory in Garching, Germany. With these beams, the stopping powers of 93Zr and 93Nb as a function of energy were determined experimentally and compared to the results obtained with the simulation program SRIM. Considerable discrepancies regarding the energy dependence of the two stopping power curves relative to each other were found. The lowest detection limit for 93Zr achieved with the passive absorber setup was 93Zr/Zr = 1 · 10-10. In comparison, by optimizing the gas-filled magnet set-up, 93Nb was suppressed by around six orders of magnitude and a detection limit of 93Zr/Zr = 5 · 10-11 was obtained. To our knowledge, these results represent the lowest detection limit achieved for 93Zr until now.

  19. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  20. Characteristics of a high pressure gas proportional counter filled with xenon

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Ramsey, B. D.

    1991-01-01

    The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.

  1. A Business Case Analysis of the M4/AR-15 Market

    DTIC Science & Technology

    2015-09-01

    release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT This research provides a business case analysis of the M4/AR-15... research provides a business case analysis of the M4/AR-15 market. The market analysis was conducted to fill missing gaps on the M4/AR-15 market...2  B.  PROBLEM STATEMENT .............................................................................3  C.  RESEARCH OBJECTIVES

  2. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  3. The structure of the Laser Entrance Hole in NIF Ignition gas-filled hohlraums

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; Doeppner, T.; Thomas, C. A.; Widmann, K.; MacLaren, S. A.; Meezan, N. B.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Eder, D.; Hammer, J. H.; Hinkel, D. E.; Jones, O. S.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. J.; Park, H. S.; Ralph, J. E.; Regan, S. E.; Strozzi, D. J.; Town, R. P.

    2014-10-01

    At the National Ignition Facility (NIF), the energy from 192 laser beams is converted to an x-ray drive in a gas-filled hohlraum. The drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH size decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma in the laser deposition region pushing radially outward. Compared to models, the LEH size is larger than predicted. In addition, the plasma in the LEH region is hotter than predicted. Instead of being at the radiation temperature of about 300 eV, it is at an electron temperature of 1 to a few keV. The experimental measurements for this conclusion are discussed. Data on the LEH as a function of laser pulse shape, gas fill, and energy transfer are presented. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Use of 41Ar production to measure ablator areal density in NIF beryllium implosions

    DOE PAGES

    Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...

    2017-02-06

    For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less

  5. Revised error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter

    2015-12-01

    The main advantage of the 40Ar/39Ar method over conventional K-Ar dating is that it does not depend on any absolute abundance or concentration measurements, but only uses the relative ratios between five isotopes of the same element -argon- which can be measured with great precision on a noble gas mass spectrometer. The relative abundances of the argon isotopes are subject to a constant sum constraint, which imposes a covariant structure on the data: the relative amount of any of the five isotopes can always be obtained from that of the other four. Thus, the 40Ar/39Ar method is a classic example of a 'compositional data problem'. In addition to the constant sum constraint, covariances are introduced by a host of other processes, including data acquisition, blank correction, detector calibration, mass fractionation, decay correction, interference correction, atmospheric argon correction, interpolation of the irradiation parameter, and age calculation. The myriad of correlated errors arising during the data reduction are best handled by casting the 40Ar/39Ar data reduction protocol in a matrix form. The completely revised workflow presented in this paper is implemented in a new software platform, Ar-Ar_Redux, which takes raw mass spectrometer data as input and generates accurate 40Ar/39Ar ages and their (co-)variances as output. Ar-Ar_Redux accounts for all sources of analytical uncertainty, including those associated with decay constants and the air ratio. Knowing the covariance matrix of the ages removes the need to consider 'internal' and 'external' uncertainties separately when calculating (weighted) mean ages. Ar-Ar_Redux is built on the same principles as its sibling program in the U-Pb community (U-Pb_Redux), thus improving the intercomparability of the two methods with tangible benefits to the accuracy of the geologic time scale. The program can be downloaded free of charge from http://redux.london-geochron.com.

  6. Prebreakdown phenomena and formation process of the glow discharge in low-pressure Ar gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokawa, Tatsuzo; Goto, Kazuhiro; Ohuchi, Mikio

    2001-06-01

    The prebreakdown phenomena and the formation process of the glow discharge in a low-pressure Ar gas were investigated under a uniform field gap. Prebreakdown phenomena were observed for 0.5Torrcm{le}pd{le}2Torrcm (where p is pressure, d the gap distance) in Ar gas under conditions of a slowly increasing voltage. It was observed that the prebreakdown phenomena formed pulse discharges up to the transition to the glow discharge. The amplitudes of the photon and current pulses due to the pulse discharge increased with time, and then decreased as soon as the transition to a steady glow discharge occurred. When the overvoltage or externalmore » series resistance was increased, the pulse amplitudes increased with the applied voltage and decreased with the resistance. The characteristics of the prebreakdown phenomena were changed by the shape of the electrodes. The formation mechanism of the glow discharge can be qualitatively explained by that of the streamer in a high-pressure discharge. The transient glow discharge was observed, and its duration increased with an increase in resistance. The instability of the glow discharge was controlled by three factors, namely, Kaufmann{close_quote}s criterion, the Child{endash}Langmuir law, and the density balance between the production and removal rates of electrons. {copyright} 2001 American Institute of Physics.« less

  7. Smoothing single-crystalline SiC surfaces by reactive ion etching using pure NF{sub 3} and NF{sub 3}/Ar mixture gas plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasaka, Akimasa, E-mail: aki-tasaka-load@yahoo.co.jp; Kotaka, Yuki; Oda, Atsushi

    2014-09-01

    In pure NF{sub 3} plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF{sub 3} pressure of 2 Pa were the highest and it decreased with an increase in NF{sub 3} pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF{sub 3}/Ar gas pressure of 2 Pa and addition of Ar to NF{sub 3} plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the numbermore » of pillars decreased with an increase in the Ar-concentration in the NF{sub 3}/Ar mixture gas. The roughness factor (R{sub a}) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF{sub 3} gas. Both the R{sub a} values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF{sub 3}/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.« less

  8. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less

  9. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  10. Development of a low-level 39Ar calibration standard – Analysis by absolute gas counting measurements augmented with simulation

    DOE PAGES

    Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.; ...

    2017-02-17

    Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).

  11. Development of a low-level 39Ar calibration standard – Analysis by absolute gas counting measurements augmented with simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.

    Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).

  12. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.

    2018-05-01

    Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.

  13. Inter-monitor standard calibration and tests for Ar-Ar biases

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Turrin, B. D.; Swisher, C. C.; Cox, S. E.; Mesko, G. T.; Chang, S.

    2010-12-01

    Observatory (AGES) and at Rutgers University, we have begun a concerted effort to test various factors that could lead to biases. AGES uses analogue multiplier peak hopping measurements on a Micromass VG 5400 noble gas mass spectrometer. Rutgers uses ion counting on a MAP 215-50 noble gas mass spectrometer, modified to collect Ar-36 by ion counting and Ar-40 by faraday simultaneously. We will present the results of our internal inter-comparison of monitor standards from each laboratory and will compare them to published results for these standards. We will also present our results from analyzing different sized samples of Fish Canyon sanidine, Alder Creek sanidine, and McClure Mountain hornblende monitor standards.

  14. Automatic external filling for the ion source gas bottle of a Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Strivay, D.; Bastin, T.; Dehove, C.; Dumont, P. D.; Marchal, A.; Garnir, H.; Weber, G.

    1997-09-01

    We describe a fully automatic system we developed to fill, from an external gas bottle, the ion source terminal gas storage bottle of a 2 MV Van de Graaff accelerator without depressing the 25 bar insulating gas. The system is based on a programmable automate ordering electropneumatical valves. The only manual operation is the connection of the external gas cylinder. The time needed for a gas change is reduced to typically 15 min (depending on the residual pressure wished for the gas removed from the terminal bottle). To check this system we study the ionic composition of the ion beam delivered by our accelerator after different gas changes. The switching magnet of our accelerator was used to analyse the ionic composition of the accelerated beams in order to verify the degree of elimination of the previous gases in the system.

  15. Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge.

    PubMed

    Zhu, Xinbo; Zheng, Chenghang; Gao, Xiang; Shen, Xu; Wang, Zhihua; Luo, Zhongyang; Cen, Kefa

    2014-11-01

    Non-thermal plasma technology has been regarded as a promising alternative technology for NOx removal. The understanding of NO2 reduction characteristics is extremely important since NO2 reduction could lower the total NO oxidation rate in the plasma atmosphere. In this study, NO2 reduction was experimentally investigated using a non-thermal plasma reactor driven by a pulsed power supply for different simulated gas compositions and operating parameters. The NO2 reduction was promoted by increasing the specific energy density (SED), and the highest conversion rates were 33.7%, 42.1% and 25.7% for Ar, N2/Ar and O2/Ar, respectively. For a given SED, the NO2 conversion rate had the order N2/Ar>Ar>O2/Ar. The highest energy yield of 3.31g/kWh was obtained in N2/Ar plasma and decreased with increasing SED; the same trends were also found in the other two gas compositions. The conversion rate decreased with increasing initial NO2 concentration. Furthermore, the presence of N2 or O2 led to different reaction pathways for NO2 conversion due to the formation of different dominating reactive radicals. Copyright © 2014. Published by Elsevier B.V.

  16. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  17. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  18. AR-39Ar-40 dating of basalts and rock breccias from Apollo 17 and the malvern achondrite

    NASA Technical Reports Server (NTRS)

    Kirsten, T.; Horn, P.

    1977-01-01

    The principles and the potential of the Ar-39/Ar-40 dating technique are illustrated by means of results obtained for 12 Apollo 17 rocks. Emphasis is given to methodical problems and the geological interpretation of lunar rock ages. Often it is ambigious to associate a given lunar breccia with a certain formation, or a formation with a basin. In addition, large-scale events on the Moon have not necessarily reset radiometric clocks completely. One rock fragment has a well-defined plateau age of 4.28 b.y., but the ages of two Apollo 17 breccias define an upper limit for the formation age of the Serenitatis basin at 4.05 b.y. Ages derived from five mare basalts indicate cessation of mare volcanism at Taurus-Littrow approximately 3.78 b.y. ago. Ca/Ar-37 exposure ages show that Camelot Crater was formed by an impact approximately 95 m.y. ago. After a short summary of the lunar timetable as it stands at the end of the Apollo program, we report about Ar-39/Ar-40 and rare gas studies on the Malvern meteorite. This achondrite resembles lunar highland breccias in texture as well as in rare-gas patterns. It was strongly annealed at some time between 3.4 and 3.8 b.y. ago. The results indicate that very similar processes have occurred on the Moon and on achondritic parent bodies at comparable times, leading to impact breccias with strikingly similar features, including the retention of rare-gas isotopes from various sources.

  19. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    PubMed

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  20. Noble Gas Signatures in Snow: a New Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Hall, C. M.; Castro, C.

    2016-12-01

    Dissolved noble gases in groundwater (He, Ne, Ar, Kr, and Xe) have been widely used to improve our knowledge of surface and groundwater dynamics. However, a recent rainwater study [1] recorded noble gas concentration anomalies originating from conditions at high altitude. Potential anomaly sources might include fog, orographic rain, synoptic rain and snow, depending on the region considered. Here, we outline a methodology for measuring noble gases in freshly collected snow samples. Their fine-grained nature leads to significant experimental challenges. Overall, our results (Fig. 1) show that snow has elevated He concentrations with depleted concentrations of all other noble gases. Similar results have been recorded in ice [2, 3]. In addition, our results show relatively homogeneous (< 14%) He and Ne concentrations while Ar, Kr and Xe display large concentration variability (> 80%). These observations led us to investigate the structure of snow and potential host-sites (available empty space) within the crystal structure. Noble gases are chemically inert and do not form bonds that could affect the ice crystal structure. Therefore, host-sites control the solubility of each noble gas. Our results show that He and Ne, which are known to have small atomic radii, are likely dissolved into the ice/snow crystal lattice, while heavy noble gas (Ar, Kr and Xe) are likely accommodated into defects. Consequently, smaller variability recorded in light noble gases, may result from He and Ne being hosted within the crystal lattice, whereas heavy noble gases rely on the presence of defects, which may randomly appear within the structure during snow formation. These new results can be used to better constrain the source of ground ice [3], groundwater systems and to investigate the structural transition mechanisms from snow to firn and ice. Figure 1: Noble gas concentrations (C) in snow (filled circles symbols) and ice (half-filled square symbols) normalized to air saturated water

  1. Building a multi-cathode-gas-filled scintillator detector for fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahgoub, M., E-mail: mmahgoub@jazanu.edu.sa; Physics department, Technical University of Munich, D-85748 Garching

    2016-06-10

    Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultipliermore » tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.« less

  2. Re-Evaluation of Ar-39 - Ar-40 Ages for Apollo Lunar Rocks 15415 and 60015

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.

    2010-01-01

    We re-analyzed 39Ar-40Ar ages of Apollo lunar highland samples 15415 and 60015, two ferroan anorthosites analyzed previously in the 1970 s, with a more detailed approach and with revised decay constants. From these samples we carefully prepared 100-200 mesh mineral separates for analysis at the Noble Gas Laboratory at NASA-Johnson Space Center. The Ar-39-Ar-40 age spectra for 15415 yielded an age of 3851 +/- 38 Ma with 33-99% of Ar39 release, roughly in agreement with previously reported Ar-Ar ages. For 60015, we obtained an age of 3584 +/- 152 Ma in 23-98% of Ar39 release, also in agreement with previously reported Ar-Ar ages of approximately 3.5 Ga. Highland anorthosites like these are believed by many to be the original crust of the moon, formed by plagioclase floatation atop a magma ocean, however the Ar-Ar ages of 15415 and 60015 are considerably younger than lunar crust formation. By contrast, recently recovered lunar anorthosites such as Dhofar 489, Dhofar 908, and Yamato 86032 yield older Ar-Ar ages, up to 4.35 Ga, much closer to time of formation of the lunar crust. It follows that the Ar-Ar ages of the Apollo samples must have been reset by secondary heating, and that this heating affected highland anorthosites at both the Apollo 15 and Apollo 16 landing sites but did not affect lunar highland meteorites. One obvious consideration is that while the Apollo samples were collected from the near side of the moon, these lunar meteorites are thought to have originated from the lunar far side

  3. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A.; Dewald, E. L.; Landen, O. L.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are usedmore » to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.« less

  4. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristicmore » natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.« less

  5. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy.

    PubMed

    Lee, Yongeun; Kang, Seungbum; Park, Young-Hoon

    2013-02-01

    To evaluate the effect of adjunctive subtenon injection of triamcinolone acetonide (TA) in gas-filled eyes after vitrectomy for complicated proliferative diabetic retinopathy (PDR). This nonrandomized comparative study included 27 patients (27 eyes) who underwent pars plana vitrectomy and gas tamponade for treatment of PDR with tractional or combined tractional-rhegmatogenous retinal detachment and who received subtenon injection of TA (40 mg) at the end of surgery. The study group was compared with the control group (29 eyes), which was matched with the study group for preoperative and intraoperative parameters, but underwent pars plana vitrectomy and gas tamponade without a subtenon injection of TA. Retinal reattachments without reoperation were achieved in 25 eyes (92.6%) and 26 eyes (89.7%) at 6 months (p = 1.000) in the study and control groups, respectively. The study group and the control group did not differ significantly in the frequency of postoperative proliferative vitreoretinopathy, retinal redetachment rate, reoperation rate, macular pucker formation, postoperative vitreous hemorrhage, gain in visual acuity, intraocular pressure, and intraocular inflammation (p > 0.05). The clinical results of pars plana vitrectomy for complicated PDR are not improved significantly by an adjunctive subtenon TA injection in gas-filled eyes.

  6. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  7. Inerting of magnesium dust cloud with Ar, N2 and CO2.

    PubMed

    Li, G; Yuan, C M; Fu, Y; Zhong, Y P; Chen, B Z

    2009-10-15

    Experiments were conducted on the inerting of magnesium dust with N(2), CO(2), and Ar. Comparing the maximum explosion pressure, maximum rate of pressure rise, and limiting oxygen concentration with different inertants, it was determined that Ar is not the best inert gas under all conditions as commonly believed. N(2) was more effective than Ar as an inertant. CO(2) provided more inerting effect than either Ar and N(2) in low magnesium dust concentrations, although explosibility was increased at higher dust concentrations. Both N(2) and CO(2) as inerting agents showed higher LOC values than Ar. These results indicated that N(2) is a more economical inerting gas than Ar for the tested coarse magnesium dust.

  8. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  9. Adding Some Gas Can Completely Change How an Object in a Liquid-Filled Housing Responds to Vibration

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.

    2015-11-01

    Adding a little gas can completely change the motion of an object in a liquid-filled housing during vibration. A common system exhibiting this behavior is a spring-supported piston in a liquid-filled cylinder, where the gaps between them are narrow and depend on the piston position. When gas is absent, the piston's vibrational response is highly overdamped due to forcing viscous liquid through narrow gaps. When a small amount of gas is added, Bjerknes forces cause some of the gas to migrate below the piston. The resulting two gas regions form a pneumatic spring that enables the liquid to move with the piston, with the result that very little liquid is forced through the narrow gaps. This ``Couette mode'' has low damping and thus has a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston response is large, and the nonlinearity from the gap geometry produces a net force on the piston. This ``rectified'' force can be many times the piston's weight and can cause the piston to compress its supporting spring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  11. Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Stevens, Lauren; McDonough, William F.; Mukhopadhyay, Sujoy; Peterson, R. J.

    2017-01-01

    Accurate understanding of the subsurface production rate of the radionuclide 39Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, 21Ne , and 39Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, 21Ne , and 39Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of 107-1010 α particles are produced in one kilogram of rock per year (order of 1-103 kg-1 s-1); the number of produced neutrons is lower by ∼ 6 orders of magnitude, 21Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of 39Ar. Our calculation yields a nucleogenic 21Ne /4He production ratio of (4.6 ± 0.6) ×10-8 in Continental Crust and (4.2 ± 0.5) ×10-8 in Oceanic Crust and Depleted Mantle. Calculated 39Ar production rates span a great range from 29 ± 9 atoms kg-rock-1 yr-1 in the K-Th-U-enriched Upper Continental Crust to (2.6 ± 0.8) × 10-4 atoms kg-rock-1 yr-1 in Depleted Upper Mantle. Nucleogenic 39Ar production exceeds the cosmogenic production below ∼700 m depth and thus, affects radiometric ages of groundwater. The 39Ar chronometer, which fills in a gap between 3H and 14C , is particularly important given the need to tap deep reservoirs of ancient drinking water.

  12. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  13. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  14. Noble Gas Recycling: Experimental Constraints on Ar, Kr, and Xe Solubility in Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.

    2016-12-01

    To constrain the rate of noble gas (NG) recycling at subduction zones, experiments have been performed to constrain the solubility of NG in natural antigorite. Geochemical analyses of exhumed subduction zone material1, well gases2, OIB and MORB3 indicate that NG are recycled from the surface of the earth into the mantle. The mechanism by which uncharged atoms can be bound to a mineral and subsequently recycled remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for NG4. Serpentine contains such ring structures and is abundant in subducting slabs, providing significant potential for control of the recycling of NG. Developing an understanding of how NG are transported may shed light on the large scale mantle dynamics associated with subduction, convection, and mantle heterogeneity. Experiments were performed in a cold seal pressure vessel at 350°C using a mix of either equal parts He, Ne, and Ar or Ar, Kr, and Xe as the pressure medium. Pressures varied from 0.15 to 1.13 kbar total pressure and durations varied from 20 to 188 hours. Samples were analyzed by UV laser ablation, noble gas mass spectrometry at The Open University, UK. White light interferometry was used to determine the volume of laser ablation pits from which concentrations were calculated. The data indicate that solubilities of NG in serpentinite are high in antigorite, and that variations in the solubility of NG could fractionate NG during recycling. 1. Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., Nature Geoscience, 4, 807-812, 2011 2. Holland, G., and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 4. Jackson, C.R.M., Parman, S.W., Kelley, S.P., Cooper, R.F., GCA, 159, 1-15, 2015

  15. Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Azar, Amin S.; Ås, Sigmund K.; Akselsen, Odd M.

    2013-03-01

    Hyperbaric arc welding is a special application of joining the pipeline steels under seawater. In order to analyze the behavior of the arc under ambient pressure, a model is required to estimate the arc efficiency. A distributed point heat source model was employed. The simulated isotherms were calibrated iteratively to fit the actual bead cross section. Basic gas mixture rules and models were used to calculate the thermal properties of the low-temperature shielding gas under the ambient pressure of 10 bar. Nine bead-on-plate welds were deposited each of which under different Ar-He chamber gas compositions. The well-known correlation between arc efficiency (delivered heat) and the thermal conductivity was established for different gas mixtures. The arc efficiency was considered separately for the transverse and perpendicular heat sources. It was found that assigning single heat efficiency factor for the entire arc, which is usually below unity, causes a noticeable underestimation for the heat transfer in the perpendicular direction and a little overestimation in the transverse direction.

  16. Long-term deconditioning of gas-filled surge arresters

    NASA Astrophysics Data System (ADS)

    Stanković, Koviljka; Brajović, Dragan; Alimpijević, Mališa; Lončar, Boris

    2016-07-01

    The aim of this paper is to identify parameters that influence the long-term deconditioning effect of gas-filled surge arrester (GFSA) and to provide practical recommendations for mitigating this effect. Namely, after some period of time, on order of hours or days, during which there is no activation due to overvoltage, the deconditioning of GFSA occurs. This effect was observed experimentally within the paper. The observed parameters that could influence the long-term deconditioning effect were the following: shape of voltage load, gas type, gas pressure, interelectrode distance, electrode material, electrode surface topography as well as GFSA design such as two- or three-electrode configuration. According to the results obtained, it has been shown that the occurrence of long-term deconditioning in an insulating system, insulated by a noble gas at a subpressure and with small interelectrode distances, is a phenomenon that always occurs when the insulating system is at rest for about an hour. It has been found that the type of noble gas does not influence the long-term deconditioning. Analysis of such insulating systems' parameters, with a prospect of being used as GFSAs, has demonstrated that this phenomenon is less pronounced at higher pressures (for the same value of the pressure (p) and interelectrode distance (d) product) and for electrodes with microscopically embossed surfaces. According to the results that were obtained by noble gases and their mixtures, as well as the results that were obtained by mixtures of SF6 gas with noble gasses, it can be claimed with confidence that the effect of the long-term deconditioning is an electrode effect. It has also been established that the deconditioning effect does not depend on the electrode material except in the case of electrodes made out of noble metals, which reduce the effect. Based on these results, it can be recommended that the working point of GFSAs be set (according to the DC breakdown voltage value) at a

  17. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  18. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    NASA Astrophysics Data System (ADS)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  19. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  20. Reduction Kinetics of Wüstite Scale on Pure Iron and Steel Sheets in Ar and H2 Gas Mixture

    NASA Astrophysics Data System (ADS)

    Mao, Weichen; Sloof, Willem G.

    2017-10-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale, which separates the unreduced scale from the gas mixture. The reduction of Wüstite is controlled by the bulk diffusion of dissolved oxygen in the formed iron layer and follows parabolic growth rate law. The reduction kinetics of Wüstite formed on pure iron and on Mn alloyed steel are the same. The parabolic rate constant of Wüstite reduction obeys an Arrhenius relation with an activation energy of 104 kJ/mol if the formed iron layer is in the ferrite phase. However, at 1223 K (950 °C) the parabolic rate constant of Wüstite reduction drops due to the phase transformation of the iron layer from ferrite to austenite. The effect of oxygen partial pressure on the parabolic rate constant of Wüstite reduction is negligible when reducing in a gas mixture with a dew point below 283 K (10 °C). During oxidation of the Mn alloyed steel, Mn is dissolved in the Wüstite scale. Subsequently, during reduction of the Wüstite layer, Mn diffuses into the unreduced Wüstite. Ultimately, an oxide-free iron layer is obtained at the surface of the Mn alloyed steel, which is beneficial for coating application.

  1. Intraoperative assessment of intraocular pressure in vitrectomized air-filled and fluid-filled eyes.

    PubMed

    Moon, Chan Hee; Choi, Kyung Seek; Rhee, Mi Ri; Lee, Sung Jin

    2013-11-01

    To ascertain the difference of intraocular pressure (IOP) measurement between vitrectomized air-filled and fluid-filled eyes. Thirty-one eyes of 31 consecutive patients who underwent conventional vitrectomy and intraocular gas tamponade were assessed. After vitrectomy, IOP of the fluid-filled eyes was measured by Tono-Pen. Thereafter, fluid-air exchange was performed, and IOP of the air-filled eyes was measured again. The IOP within each fluid- and air-filled eye was varied by selecting settings on the vitrectomy system, from 10 to 50 mmHg with 5-mmHg increments. Postoperatively, IOP was assessed by both Tono-Pen and Goldmann applanation tonometry (GAT). Linear and nonlinear regression analyses were conducted between intraoperatively measured Tono-Pen readings and actual IOPs. Bland-Altman plot was used to assess the agreements between postoperatively measured Tono-Pen readings and GAT readings. The discrepancy between Tono-Pen readings and actual IOP in fluid-filled eyes was not significant, except for the profound high pressures over 45 mmHg. However, Tono-Pen readings in air-filled eyes were significantly lower than actual IOPs in all ranges, and Tono-Pen increasingly underestimates IOP at higher levels. Intraoperative Tono-Pen readings were correlated significantly with actual IOP and a quadratic equation evidenced the best fit (R(2) = 0.996). Postoperatively, difference of the measurements between Tono-Pen and GAT was not significant. Tono-Pen and GAT significantly underestimate actual IOP in air-filled eyes. It should be considered that actual IOP would be greater than the measured IOP in gas-filled eyes, even though the IOP is measured as normal. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  3. Microstructure Filled Hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A. S.; Thomas, C. A.; Reese, T. M.

    2017-02-24

    We propose replacing the gas fill in a hohlraum with a low average density, variable uniformity 3D printed structure. This creates a bimodal hohlraum which acts like a vacuum hohlraum initially during the picket, but could protect the capsule from glint or direct illumination, and then once expanded, homogenizes to behave like a variable z gas-fill during peak portion of the drive. This is motivated by a two main aims: 1) reduction of the Au bubble velocity to improve inner beam propagation, and 2) the introduction of a low density, high-Z, x-ray converter to improve x-ray production in the hohlraummore » and uniformity of the radiation field seen by the capsule.« less

  4. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narkis, J.; Rahman, H. U.; Ney, P.

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less

  5. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  6. Characteristics and interpretation of fracture-filled gas hydrate: an example from the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, a total of thirteen sites were selected and drilled in the East Sea of Korea in 2010. A suite of logging-while-drilling (LWD) logs was acquired at each site. LWD logs from the UBGH2-3A well indicate significant gas hydrate in clay-bearing sediments including several zones with massive gas hydrate with a bulk density less than 1.0 g/m3 for depths between 5 and 103 m below the sea floor. The UBGH2-3A well was drilled on a seismically identified chimney structure with a mound feature at the sea floor. Average gas hydrate saturations estimated from the isotropic analysis of ring resistivity and P-wave velocity logs are 80 ± 13% and 47 ± 16%, respectively, whereas they are 46 ± 17% and 45 ± 16%, respectively from the anisotropic analysis. Modeling indicates that the upper part of chimney (between 5 and 45 m below sea floor [mbsf]) is characterized by gas hydrate filling near horizontal fractures (7° dip) and the lower part of chimney (between 45 and 103 mbsf) is characterized by gas hydrate filling high angle fractures on the basis of ring resistivity and P-wave velocity. The anisotropic analysis using P40H resistivity (phase shift resistivity at 32 mHz with 40 inch spacing) and the P-wave velocity yields a gas hydrate saturation of 46 ± 15% and 46 ± 15% respectively, similar to those estimated using ring resistivity and P-wave velocity, but with quite different fracture dip angles. Differences in vertical resolution, depth of investigation, and a finite fracture dimension relative to the tool separation appear to contribute to this discrepancy. Forward modeling of anisotropic resistivity and velocity are essential to identify gas hydrate in fractures and to estimate accurate gas hydrate amounts.

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz,more » with photon energies that cover the first Brillouin zone of most materials.« less

  8. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna; Oks, Efim

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.« less

  9. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  10. Evaluation of Different Gases and Gas Combinations for On-Farm Euthanasia of Pre-Weaned Pigs

    PubMed Central

    Kells, Nikki; Beausoleil, Ngaio; Johnson, Craig

    2018-01-01

    Simple Summary There are times on a swine farm when pigs become ill or injured and must be euthanised. Blunt force trauma to the head is currently the most commonly employed method for on-farm euthanasia of pre-weaned piglets. When performed correctly, loss of consciousness is rapid, but the potential for delivery of sub-lethal blows, along with aesthetic unacceptability to many operators, has led to the need for alternative methods to be developed. The practice of using carbon dioxide (CO2) to euthanise piglets during the pre-weaning period is becoming more common on-farm in the United States; however, animals may display behavioural and/or physiological signs of stress or aversion in response to CO2 inhalation. Inducing anoxia using argon (Ar) gas may cause less aversion or stress and thus be preferable to using CO2. Therefore, the aim of this research was to evaluate the effects of 100% CO2, 100% Ar or CO2 and Ar combined (60% Ar/40% CO2) on piglet welfare during euthanasia. The results from this research suggest that using CO2, Ar or a 60% Ar/40% CO2 mixture causes stress to piglets prior to loss of consciousness and hence alternative methods of euthanasia need to be evaluated. Abstract The aim of this research was to evaluate the welfare of pre-weaned piglets euthanised using three different gas treatments: 100% carbon dioxide (CO2), 100% argon (Ar) or a mixture of 60% Ar/40% carbon dioxide (Ar/CO2). Two studies (n = 5 piglets/treatment/study) were conducted: (1) behavioural and physiological data were collected from conscious piglets during exposure to test gases via immersion in a pre-filled chamber and (2) electrophysiological data were collected from lightly anaesthetised, intubated and mechanically ventilated piglets exposed to the same test gases. Based on the duration of escape attempts and laboured breathing, piglets exposed to 100% CO2 experienced more stress than piglets exposed to 100% Ar prior to loss of consciousness, but there appeared to be no

  11. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  12. Investigation of metastable production in a closed-cell dielectric capillary variable pressure He plasma jet with Ar admixture

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa

    2011-10-01

    For plasma processing applications of streamer-like atmospheric pressure plasma jets generated in a dielectric capillary, we have demonstrated that an admixture of Ar to the He gas flow greatly increases the lifetime of energetic species in the core flow through enhanced afterglow production of Ar 1s5 metastable species. To study this effect in more detail, we have used a closed-cell plasma jet that allows control over the background gas pressure and composition. We used a 20 ns risetime positive unipolar voltage pulse for excitation. A He flow with a 0-30% Ar admixture was studied using time-resolved emission and tunable diode laser absorption spectroscopy of the Ar 1s5 and He 23S metastable states. Nitrogen was used as the background gas. In pure He and pure Ar gases the He and Ar metastables respectively are produced in the first ~100 ns only in the active discharge. With Ar added to the He gas flow, He metastables produced in the active discharge are quickly quenched via Penning ionization of Ar while Ar 1s5 is enhanced over 1-2 μs in the afterglow, increasing the number density as high as 1013/cc and extending the effective lifetime up to 10 μs. This implies that He heavy particle kinetics are a key driver of enhanced afterglow plasma chemistry in plasma jets with rare gas mixtures.

  13. Electrical system for measurement of breakdown voltage of vacuum and gas-filled tubes using a dynamic method

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Milosavljević, Čedomir S.; Pejović, Momčilo M.

    2003-06-01

    This article describes an electrical system aimed at measuring and data acquisition of breakdown voltages of vacuum and gas-filled tubes. The measurements were performed using a nitrogen-filled tube at 4 mbar pressure. Based on the measured breakdown voltage data as a function of the applied voltage increase rate, a static breakdown voltage is estimated for the applied voltage gradient ranging from 0.1 to 1 V s-1 and from 1 to 10 V s-1. The histograms of breakdown voltages versus applied voltage increase rates from 0.1 and 0.5 V s-1 are approximated by the probability density functions using a fitting procedure.

  14. Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John

    2016-10-01

    The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  15. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  16. State-specific transport properties of electronically excited Ar and C

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  17. Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, Joshua William

    While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei near N=28. The shell model suggests that these nuclei should be approximately spherical due to the shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei in this region rapidly become deformed as protons are removed from the spherical 48Ca. This makes 46Ar a particularly interesting system as it lies in a transition region between 48Ca and lighter isotones that are known to be deformed. An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure resonant proton scattering on 46Ar. The resonances observed in this reaction correspond to unbound levels in the 47K intermediate state nucleus which are isobaric analogues of states in the 47Ar nucleus. By measuring the spectroscopic factors of these states in 47Ar, we gain information about the single-particle structure of this system, which is directly related to the size of the N=28 shell gap. Four resonances were observed: one corresponding to the ground state in 47Ar, one corresponding its first excited 1/2- state, and two corresponding to 1/2+ states in either 47Ar or the intermediate state nucleus. However, only a limited amount of information about these states could be recovered due to the low experimental statistics and limited angular resolution caused by pileup rejection and the inability to accurately reconstruct the beam particle track. In addition to the nuclear physics motivations, this experiment served as the radioactive beam commissioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3 facility. Since the gas inside the detector serves as both the tracking medium and

  18. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.

    2016-12-01

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the "island of stability" of superheavy nuclei produced in complete fusion reactions of 48Ca ions and 238U-249Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112-118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.

  19. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  20. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  1. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  2. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  3. Late Paleozoic deformation and exhumation in the Sierras Pampeanas (Argentina): 40Ar/39Ar-feldspar dating constraints

    NASA Astrophysics Data System (ADS)

    Löbens, Stefan; Oriolo, Sebastián; Benowitz, Jeff; Wemmer, Klaus; Layer, Paul; Siegesmund, Siegfried

    2017-09-01

    Systematic 40Ar/39Ar feldspar data obtained from the Sierras Pampeanas are presented, filling the gap between available high- (> 300 °C) and low-temperature (< 150 °C) thermochronological data. Results show Silurian-Devonian exhumation related to the late stages of the Famatinian/Ocloyic Orogeny for the Sierra de Pocho and the Sierra de Pie de Palo regions, whereas the Sierras de San Luis and the Sierra de Comechingones regions record exhumation during the Carboniferous. Comparison between new and available data points to a Carboniferous tectonic event in the Sierras Pampeanas, which represents a key period to constrain the early evolution of the proto-Andean margin of Gondwana. This event was probably transtensional and played a major role during the evolution of the Paganzo Basin as well as during the emplacement of alkaline magmatism in the retroarc.

  4. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    NASA Astrophysics Data System (ADS)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was

  5. Organic reactions mediated by electrochemically generated ArS+.

    PubMed

    Matsumoto, Kouichi; Suga, Seiji; Yoshida, Jun-ichi

    2011-04-21

    Low-temperature electrochemical oxidation of ArSSAr was carried out to generate a pool of "ArS(+)". Spectroscopic studies ((1)H NMR and CSI-MS) of the resulting solution revealed the accumulation of ArS(ArSSAr)(+). The resulting "ArS(+)" pool reacted with alkenes and alkynes to give diarylthio-substituted products. The "ArS(+)" pool rapidly reacted with thioacetals to give the corresponding alkoxycarbenium ion pools, which reacted with various carbon nucleophiles (indirect cation pool method). The reaction of the alkoxycarbenium ion pools with stilbene derivatives in the presence of ArSSAr gave thiochroman derivatives. In addition to such stoichiometric reactions, a catalytic amount of "ArS(+)" serves as an initiator and a chain carrier of some cationic chain reactions involving intramolecular carbon-carbon bond formation. In situ generation of "ArS(+)" by electrochemical oxidation of ArSSAr with a catalytic amount of electricity in the presence of a substrate is also effective for such cationic chain reactions.

  6. Use of argon to measure gas exchange in turbulent mountain streams

    NASA Astrophysics Data System (ADS)

    Hall, Robert O., Jr.; Madinger, Hilary L.

    2018-05-01

    Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11-12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57-210 m d-1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.

  7. Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe).

    PubMed

    Jayasekharan, T; Ghanty, T K

    2008-04-14

    The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M=Be and Mg; Rg=Ar, Kr, and Xe) have been investigated using second order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7 kJ mol(-1) for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1 kJ mol(-1) for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6 kJ mol(-1) for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1 kJ mol(-1) along the series Ar--Kr--Xe, respectively. The M--Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+--Rg species ( approximately 53 and approximately 15 kJ mol(-1) for Be+--Ar and Mg+--Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results

  8. Prediction of metastable metal-rare gas fluorides: FMRgF (M =Be and Mg; Rg =Ar, Kr and Xe)

    NASA Astrophysics Data System (ADS)

    Jayasekharan, T.; Ghanty, T. K.

    2008-04-01

    The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M =Be and Mg; Rg =Ar, Kr, and Xe) have been investigated using second order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7kJmol-1 for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1kJmol-1 for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6kJmol-1 for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1kJmol-1 along the series Ar KrXe, respectively. The M Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+Rg species (˜53 and ˜15kJmol-1 for Be+Ar and Mg+Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results suggest that the species are metastable

  9. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voinov, A. A., E-mail: voinov@jinr.ru; Collaboration: JINR

    2016-12-15

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of theirmore » decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.« less

  10. Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Chung, M.; Jansson, A.

    2010-05-01

    A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on themore » resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.« less

  11. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  12. Deep inductively coupled plasma etching of ELO-GaN grown with high fill factor

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Lee, Jaesoong; Ni, Xianfeng; Leach, Jacob; Özgür, Ümit; Morkoç, Hadis

    2011-02-01

    The epitaxial lateral overgrowth (ELO) gallium nitride (GaN) was grown with high fill factor using metal organic chemical vapor deposition (MOCVD). The inductively coupled plasma (ICP) etching of ELO-GaN based on Cl2/Ar/SiCl4 gas mixture was performed. Surface properties of ELO-GaN subjected to ICP etching have been investigated and optimized etching condition in ELO-GaN with ICP etching is presented. Radiofrequency (RF) power and the flow rate of Cl2 gas were modified during the experiments. The window region, wing region and the edge region of ELO-GaN pattern present different etching characteristics. Different etching conditions were studied to get the minimized plasma-induced damage, relatively high etching rates, and excellent surface profiles. Etch depths of the etched ELO-GaN with smooth surface up to about 19 μm were achieved. The most suitable three-step etching condition is discussed with the assessment based on the morphology observation of the etched surface of ELO-GaN patterns.

  13. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  14. Preparation and characterization of gas-filled liposomes: can they improve oil recovery?

    PubMed

    Vangala, Anil; Morris, Robert; Bencsik, Martin; Perrie, Yvonne

    2007-01-01

    Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar

  15. [The teaching and practice of ars dictaminis from the 12(th) to the 14 (th) century].

    PubMed

    Grévin, Benoît

    2012-01-01

    The medieval discipline of the ars dictaminis (or dictamen), which flourished during the 12(th)-14(th) centuries, can be considered as an adaptation of classical Latin rhetoric to the communicational needs of the medieval society. Yet, although the relation between the teaching of the ars and its practice is an important one, it has rarely been addressed because of the persistence of numerous misunderstandings about the various different levels at which the ars was taught. This article offers some suggestions to fill this gap.

  16. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Backfish, M.; Moretti, A.

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  17. Plasma puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Choi, E. H.

    1990-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.

  18. Self Assembly of Hard, Space-Filling Polytopes

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin; Damasceno, Pablo; Engel, Michael; Glotzer, Sharon

    2012-02-01

    The thermodynamic behavior of systems of hard particles in the limit of infinite pressure is known to yield the densest possible packing [1,2]. Hard polytopes that tile or fill space in two or three spatial dimensions are guaranteed to obtain packing fractions of unity in the infinite pressure limit. Away from this limit, however, other structures may be possible [3]. We present the results of a simulation study of the thermodynamic self-assembly of hard, space-filling particles from disordered initial conditions. We show that for many polytopes, the infinite pressure structure readily assembles at intermediate pressures and packing fractions significantly less than one; in others, assembly of the infinite pressure structure is foiled by mesophases, jamming and phase separation. Common features of these latter systems are identified and strategies for enhancing assembly of the infinite pressure structure at intermediate pressures through building block modification are discussed.[4pt] [1] P. F. Damasceno, M. Engel, S.C. Glotzer arXiv:1109.1323v1 [cond-mat.soft][0pt] [2] A. Haji-Akbari, M. Engel, S.C. Glotzer arXiv:1106.4765v2 [cond-mat.soft][0pt] [3] U. Agarwal, F.A. Escobedo, Nature Materials 10, 230--235 (2011)

  19. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  20. Improved gas tagging and cover gas combination for nuclear reactor

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  1. Preoptimised VB: a fast method for the ground and excited states of ionic clusters II. Delocalised preoptimisation for He 2+, Ar 2+, He 3+ and Ar 3+

    NASA Astrophysics Data System (ADS)

    Archirel, Pierre

    1997-09-01

    We generalise the preoptimisation of orbitals within VB (Part I of this series) through letting the orbitals delocalise on the neighbouring fragments. The method is more accurate than the local preoptimisation. The method is tested on the rare gas clusters He 2+, Ar 2+, He 3+ and Ar 3+. The results are in good agreement with previously published data on these systems. We complete these data with higher excited states. The binding energies of (ArCO) +, (ArN 2) + and N 4+ are revisited. The simulation of the SCF method is extended to Cu +H 2O.

  2. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  3. 40Ar/39Ar Dating of Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Renne, P. R.; Watkins, J. M.

    2007-12-01

    Application of the 40Ar/39Ar method to volcanic glasses has been somewhat stigmatized following several studies demonstrating secondary mobility of K and Ar. Much of the stigma is unwarranted, however, since most studies only impugned the reliability of the K-Ar and 40Ar/39Ar techniques when applied to glass shards rather than obsidian clasts with low surface area to volume ratios. We provide further evidence for problematic K loss and/or 39Ar recoil ejection from glass shards in 40Ar/39Ar step heating results for comagmatic feldspars and shards. In an extreme case, the plateau age of the feldspars (0.17 ± 0.03 Ma at 2σ) is significantly younger than the plateau age of the glass (0.85 ± 0.05 Ma at 2σ). If the feldspar age is reasonably interpreted as the eruption age of the ash, it is likely that the glass shards experienced K and/or 39Ar loss. Electron microprobe analyses of the glass shards have low totals (~93%) and no systematic lateral variability (i.e., diffusion gradients) in K, suggesting that the lengthscale of the glass shards is smaller than the lengthscale of K diffusion. Obsidian clasts should not be as susceptible to K loss since any hydrated (K-depleted) volume represents a small fraction of the total material and can often be physically removed prior to analysis. Samples described here are detrital obsidian clasts from the Afar region of Ethiopia. Evidence from Fourier Transform Infrared Spectroscopy (FTIR), and previous work by Anovitz (1999), confirm that the scale of water and potassium mobility are often small in comparison to the size of obsidian clasts but large enough to effect the bulk composition of glass shards. This expectation is confirmed in another tuff wherein comagmatic obsidian clasts and sanidine phenocrysts yield indistinguishable 40Ar/39Ar ages of 4.4 Ma High abundances of non-radiogenic 40Ar, and kinetic fractionation of Ar isotopes during quenching and/or laboratory degassing resulting in incomplete equilibration between

  4. In-situ Ar isotope, 40Ar/39Ar analysis and mineral chemistry of nosean in the phonolite from Olbrück volcano, East Eifel volcanic field, Germany: Implication for the source of excess 40Ar

    NASA Astrophysics Data System (ADS)

    Sudo, Masafumi; Altenberger, Uwe; Günter, Christina

    2014-05-01

    Since the report by Lippolt et al. (1990), hauyne and nosean phenocrysts in certain phonolites from the northwest in the Quaternary East Eifel volcanic field in Germany were known to contain significant amounts of excess 40Ar, thus, show apparent older ages than the other minerals. However, its petrographic meaning have not been well known. Meanwhile, Sumino et al. (2008) has identified the source of the excess 40Ar in the plagioclase phenocrysts from the historic Unzen dacite lava as the melt inclusions in the zones parallely developed to the plagioclase rim by in-situ laser Ar isotope analysis. In order to obtain eruption ages of very young volcanoes as like Quaternary Eifel volcanic field by the K-Ar system, it is quite essential to know about the location of excess 40Ar in volcanic rocks. We have collected phonolites from the Olbrück volcano in East Eifel and investigated its petrography and mineral chemistry and also performed in-situ Ar isotope analyses of unirradiated rock section sample and also in-situ 40Ar/39Ar analysis of neutron irradiated section sample with the UV pulse laser (wavelength 266 nm) and 40Ar/39Ar analytical system of the University of Potsdam. Petrographically, nosean contained fine melt and/or gas inclusions of less than 5 micrometer, which mostly distribute linearly and are relatively enriched in chlorine than the areas without inclusions. Solid inclusions of similar sizes contain CaO and fluorine. In nosean, typically around 5 wt% of sulfur is contained. The 40Ar/39Ar dating was also performed to leucite, sanidine and groundmass in the same section for comparison of those ages with that of nosean. In each analysis, 200 micrometer of beam size was used for making a pit with depth of up to 300 micrometer by laser ablation. As our 40Ar/39Ar analyses were conducted one and half year after the neutron irradiation, thus, short lived 37Ar derived from Ca had decayed very much, we measured Ca and K contents in nosean by SEM-EDS then applied

  5. Computational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg = Ar, Kr, Xe, Rn)

    NASA Astrophysics Data System (ADS)

    van Hoeve, Miriam D.; Klobukowski, Mariusz

    2018-03-01

    Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.

  6. Structural, electronic, and thermal properties of indium-filled InxIr4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Wallace, M. K.; Li, Jun; Subramanian, M. A.

    2018-06-01

    The "phonon-glass/electron-crystal" approach has been implemented through incorporation of "rattlers" into skutterudite void sites to increase phonon scattering and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar. The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cubic structure (space group : Im 3 bar) with ∼8% antimony site vacancy and with indium partially occupying the 16f site. Unlike known rattler filled skutterudites, under synthetic conditions employed, indium filling in IrSb3 significantly increases the electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing the thermal conductivity by ∼30%. The resultant power factor offsets the decrease in total thermal conductivity giving rise to a substantial decrease in ZT. Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were performed to unravel the effect of spin-orbit interaction on the electronic properties. These results serve to advance the understanding of filled skutterudites, and provide additional insight on the less explored smaller "rattlers" and their influence on key thermoelectric properties.

  7. Mineralogy and Ar-39 - Ar-40 of an old pristine basalt: Thermal history of the HED parent body

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Mori, Hiroshi; Bogard, Donald D.

    1994-01-01

    Previous investigations of mineral chemistry and Rb-Sr and Sm-Nd ages indicated that clast,84 from eucrite Yamato 75011 had preserved the pristine nature of its initial crystallization during an early stage of the HED parent body. Microscale mineralogy and Ar-39-Ar-40 ages of this clast, however, revealed local disturbance of microtextures and partially reset ages. This evidence suggests that, in addition to initial crystallization and rapid cooling, the Y75011,84 clast experienced shock deformation, reheating of short duration at higher temperature, and brecciation. These characteristics suggest two or more impact events. Fe-rich olivine filling fractures in pyroxene may have been introduced during the accompanying shock fracturing. The inferred Ar-39-Ar-40 degassing ages for Y75011 matrix and clast, 84 are 3.94 +/- 0.04 Ga and 3.98 +/- 0.03 Ga, respectively. The suggested degassing age for a clast from Y790020, believed to be paired with Y75011, is approximately 4.03 Ga, but could be younger. We consider it likely that all three samples experienced a common degassing event 3.95 +/- 0.05 Ga ago, but we cannot rule out two or more events spaced over a approximately 0.1 Ga interval. Higher temperature extractions of the two clast samples show significantly older apparent ages up to approximately 4.5 Ga and suggest that the time/temperature regime of this event was not sufficient to degas Ar totally. Most likely, the K-Ar ages were reset by thermal metamorphism associated with one or more impact events associated with shock fracturing, formation of Fe-rich olivine veins, and/or meteorite brecciation. The pyroxene annealing that commonly occurs in many eucrites is likely to be a much earlier process than the impact-produced textural changes and reset K-Ar ages observed in these meteorites. The existence of mineralogical and chronological evidence for metamorphism in an otherwise pristine eucrite suggests that the HED parent body experienced an extensive degree of

  8. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  9. Measuring 36Ar without H35Cl interference

    NASA Astrophysics Data System (ADS)

    Saxton, John

    2015-04-01

    Noble gas measurements are usually made in static mode, when the mass spectrometer sensitivity is inversely proportional to volume: this makes the building of very large instruments to obtain high mass resolution impracticable. A particularly challenging interference has hitherto been H35Cl, which differs in mass from 36Ar by 1 part in 3937. We have developed a method which makes improved use of the available MRP to remove interferences, and used it to obtain HCl-free 36Ar measurements on a multicollector instrument with MRP of only ~6000 (MRP= mass resolving power = m/dm 5-95% on side of peak). By arranging that the target mass position on a minor isotope (e.g. 36Ar), from which the interference must be removed, coincides with the ~50% point on the side of a major isotope (e.g. 40Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of 40Ar is measured in a separate mass step. Two small corrections are necessary. One compensates for the residual HCl tail at the 36Ar position. The other arises because the peak is not totally flat in the region of interest: 40Ar and 36Ar+HCl are measured on the peak top, whilst 36Ar is measured at the extreme edge, with slightly lower efficiency. The required correction parameters can be obtained from a series of air calibrations with different target/interference ratios. With samples containing 4x10-15to 3x10-14moles of 40Ar, 36Ar/40Ar was measured, without HCl interference, to a 1σ precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40Ar/39Ar dating, where 36Ar is used to correct for trapped air, and may be particularly significant for smaller or younger samples.

  10. A pulsed plasma jet with the various Ar/N2 mixtures

    NASA Astrophysics Data System (ADS)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.

    2017-12-01

    In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.

  11. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  12. Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.; Greczynski, G.; Jensen, J.

    2012-07-01

    Ion mass spectrometry was used to investigate discharges formed during high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite target in Ar and Ar/N{sub 2} ambient. Ion energy distribution functions (IEDFs) were recorded in time-averaged and time-resolved mode for Ar{sup +}, C{sup +}, N{sub 2}{sup +}, N{sup +}, and C{sub x}N{sub y}{sup +} ions. An increase of N{sub 2} in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy constant) results for the HiPIMS discharge in a significant increase in C{sup +}, N{sup +}, and CN{sup +} ion energies.more » Ar{sup +}, N{sub 2}{sup +}, and C{sub 2}N{sup +} ion energies, in turn, did not considerably vary with the changes in working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly for C{sup +} ions, compared to DCMS. The time evolution of the plasma species was analyzed for HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and later during the pulse-on time molecular ions, in particular CN{sup +} and C{sub 2}N{sup +}. The formation of fullerene-like structured CN{sub x} thin films for both modes of magnetron sputtering is explained by ion mass-spectrometry results and demonstrated by transmission electron microscopy as well as diffraction.« less

  13. Ar/Ar Dating Independent of Monitor Standard Ages

    NASA Astrophysics Data System (ADS)

    Boswell, S.; Hemming, S. R.

    2015-12-01

    Because the reported age of an analyzed sample is dependent on the age of the co-irradiated monitor standard(s), Ar/Ar dating is a relative dating technique. There is disagreement at the 1% scale in the age of commonly used monitor standards, and there is a great need to improve the inter-laboratory calibrations. Additionally, new approaches and insights are needed to meet the challenge of bringing the Ar/Ar chronometer to the highest possible precision and accuracy. In this spirit, we present a conceptual framework for Ar/Ar dating that does not depend on the age of monitor standards, but only on the K content of a solid standard. The concept is demonstrated by introducing a re-expressed irradiation parameter (JK) that depends on the ratio of 39ArK to 40Ar* rather than the 40Ar*/39ArK ratio. JK is equivalent to the traditional irradiation parameter J and is defined as JK = (39Ar/40K) • (λ/λe). The ultimate precision and accuracy of the method will depend on how precisely and accurately the 39Ar and 40K can be estimated, and will require isotope dilution measurements of both from the same aliquot. We are testing the workability of our technique at the 1% level by measuring weighed and irradiated hornblende and biotite monitor standards using GLO-1 glauconite to define a calibration curve for argon signals versus abundance.

  14. 40Ar/36Ar analyses of historic lava flows

    USGS Publications Warehouse

    Dalrymple, G.B.

    1969-01-01

    The ratio 40Ar/36Ar was measured for 26 subaerial historic lava flows. Approximately one-third of the samples had 40Ar/36Ar ratios either higher or lower than the atmospheric value of 295.5 at the 95% confidence level. Excess radiogenic 40Ar in five flows ranged from about 1 ?? 10-13 to 1.5 ?? 10-12 mol/g. Possible excess 36Ar in three flows was on the order of 10-16 to 10-15 mol/g. Upper 95% confidence limits for excess 40Ar in samples with normal 40Ar/36Ar ratios are generally less than 3 ?? 10-13 mol/g. The origin of the excess 36Ar is unknown but it may be due either to the incorporation of primitive argon that has been stored in the mantle in very low potassium environments or to enrichment in 36Ar as atmospheric argon diffuses into the rocks after they cool. ?? 1969.

  15. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    NASA Astrophysics Data System (ADS)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  16. Geochemical characteristics and K-Ar ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana

    USGS Publications Warehouse

    Chalokwu, C.I.; Ghazi, M.A.; Foord, E.E.

    1997-01-01

    The pegmatite-aplite rocks at Mankwadzi (Ejisimanku Hills) in southeastern Ghana are part of the pegmatite district that extends from Cape Coast to Winneba along the Atlantic coastline. The pegmatites are associated with the Cape Coast granite complex and were intruded during the waning phase of the Eburnian Orogeny (???2.0 Ga). Three muscovite separates from pegmatite give K-Ar retention ages of 1909 ?? 13 Ma, 1965 ?? 13 Ma and 2019 ?? 14 Ma. A biotite separate from granite yields a K-Ar age of 1907 ?? 13 Ma. These ages are similar to K-Ar dates previously reported for the Cape Coast granites, indicating that the granites and pegmatites are coeval and probably genetically linked. The pegmatites are enriched in Li, Be, Nb and Sn and considerably impoverished in Rb, Th, Y and REEs. Microscopic examination of quartz from the pegmatites shows a large number of low salinity fluid inclusions that can be divided into two types: (1) one-phase liquid or gas-filled inclusions; and (2) two-phase liquid-vapour inclusions, with the vapour occupying 2-5% of the volume. The homogenisation temperature of the fluid inclusions clusters between 129 and 144??C. These homogenisation temperatures lead to an inferred entrapment temperature of ???300??C at a pressure of ???2.5 kbar, which is estimated for the metamorphism of host hornblende schists. The pegmatite fluid inclusions are interpreted as being secondary to the quartz hosts. ?? 1997 Elsevier Science Limited.

  17. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications

  18. Noble Gas-Uranium Coordination and Intersystem Crossing for the CUO(Ne)x(Ng)n (Ng = Ar, Kr, Xe) Complexes in Solid Neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Lester; Liang, Binyong; Li, Jun

    2004-02-15

    Atomic uranium excited by laser ablation reacts with CO in excess neon to produce the novel CUO molecule, which forms weak complexes CUO(Ne)m with neon and stronger complexes CUO(Ne)x(Ng)n (Ng = Ar, Kr, Xe) when the heavier noble gas atoms are present. The heavier CUO(Ne)m-1(Ng) complexes are identified through the effects of CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations on model complexes CUO(Ng) (Ng = Ne, Ar, Kr, Xe). The U-C and U-O stretching frequencies of CUO(Ne)m-1(Ng) complexes are slightly red shifted from 1047 and 872 cm-1 frequencies formore » the 1Sigma+ CUO ground state neon complex, which identifies singlet ground state CUO(Ne)m-1(Ng) complexes in solid neon. The next singlet CUO(Ne)x(Ng)2 complexes in excess neon follow in like manner. However, stretching modes and the isotopic shifts of the higher CUO(Ne)x(Ng)n complex approach those of the pure argon matrix CUO(Ar)n complex, which characterizes triple t ground state complexes by comparison to DFT frequency calculations.« less

  19. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    Due to their minute size, 40Ar/39Ar analysis of illite faces significant analytical challenges, including mineral characterization and, especially, effects of grain size and crystallography on 39Ar recoil. Quantifying the effects of 39Ar recoil requires the use of sample vacuum encapsulation during irradiation, which permits the measurement of the fraction of recoiled 39Ar as well as the 39Ar and 40Ar∗ retained within illite crystals that are released during step heating. Total-Gas Ages (TGA) are calculated by using both recoiled and retained argon, which is functionally equivalent to K-Ar ages, while Retention Ages (RA) only involve retained Ar in the crystal. Natural applications have shown that TGA fits stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10 nm, and that RA matches these constraints for ICTs larger than 50 nm. We propose a new age correction method that takes into account the average ICT and corresponding recoiled 39Ar for a sample, with X-ray Corrected Ages (XCA) lying between Total-Gas and Retention Ages depending on ICT. This correction is particularly useful in samples containing authigenic illite formed in the anchizone, with typical ICT values between 10 and 50 nm. In three samples containing authigenic illite from Cretaceous carbonates in the Monterrey Salient in northern Mexico, there is a range in TGAs among the different size-fractions of 46-49, 36-43 and 40-52 Ma, while RAs range from 54-64, 47-52 and 53-54 Ma, respectively. XCA calculations produce tighter age ranges for these samples of 52.5-56, 45.5-48.5 and 49-52.5 Ma, respectively. In an apparent age vs ICT or %2M 1illite plot, authigenic illite grains show a slope that is in general slightly positive for TGA, slightly negative for RA, but close to zero for XCA, with thinner crystallites showing more dispersion than thicker ones. In order to test if dispersion is due to a different formation history or the result

  20. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  1. Noble gases in gas shales : Implications for gas retention and circulating fluids.

    NASA Astrophysics Data System (ADS)

    Basu, Sudeshna; Jones, Adrian; Verchovsky, Alexander

    2016-04-01

    Gas shales from three cores of Haynesville-Bossier formation have been analysed simultaneously for carbon, nitrogen and noble gases (He, Ne, Ar, Xe) to constrain their source compositions and identify signatures associated with high gas retention. Ten samples from varying depths of 11785 to 12223 feet from each core, retrieved from their centres, have been combusted from 200-1200°C in incremental steps of 100°C, using 5 - 10 mg of each sample. Typically, Xe is released at 200°C and is largely adsorbed, observed in two of the three cores. The third core lacked any measureable Xe. High 40Ar/36Ar ratio up to 8000, is associated with peak release of nitrogen with distinctive isotopic signature, related to breakdown of clay minerals at 500°C. He and Ne are also mostly released at the same temperature step and predominantly hosted in the pore spaces of the organic matter associated with the clay. He may be produced from the uranium related to the organic matter. The enrichment factors of noble gases defined as (iX/36Ar)sample/(iX/36Ar)air where iX denotes any noble gas isotope, show Ne and Xe enrichment observed commonly in sedimentary rocks including shales (Podosek et al., 1980; Bernatowicz et al., 1984). This can be related to interaction of the shales with circulating fluids and diffusive separation of gases (Torgersen and Kennedy, 1999), implying the possibility of loss of gases from these shales. Interaction with circulating fluids (e.g. crustal fluids) have been further confirmed using 20Ne/N2, 36Ar/N2 and 4He/N2 ratios. Deviations of measured 4He/40Ar* (where 40Ar* represents radiogenic 40Ar after correcting for contribution from atmospheric Ar) from expected values has been used to monitor gas loss by degassing. Bernatowicz, T., Podosek, F.A., Honda, M., Kramer, F.E., 1984. The Atmospheric Inventory of Xenon and Noble Gases in Shales: The Plastic Bag Experiment. Journal of Geophysical Research 89, 4597-4611. Podosek, F.A., Honda, M., Ozima, M., 1980

  2. Biological and physical controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage

    NASA Astrophysics Data System (ADS)

    Eveleth, R.; Cassar, N.; Doney, S. C.; Munro, D. R.; Sweeney, C.

    2017-05-01

    Using simultaneous sub-kilometer resolution underway measurements of surface O2/Ar, total O2 and pCO2 from annual austral summer surveys in 2012, 2013 and 2014, we explore the impacts of biological and physical processes on the O2 and pCO2 system spatial and interannual variability at the Western Antarctic Peninsula (WAP). In the WAP, mean O2/Ar supersaturation was (7.6±9.1)% and mean pCO2 supersaturation was (-28±22)%. We see substantial spatial variability in O2 and pCO2 including sub-mesoscale/mesoscale variability with decorrelation length scales of 4.5 km, consistent with the regional Rossby radius. This variability is embedded within onshore-offshore gradients. O2 in the LTER grid region is driven primarily by biological processes as seen by the median ratio of the magnitude of biological oxygen (O2/Ar) to physical oxygen (Ar) supersaturation anomalies (%) relative to atmospheric equilibrium (2.6), however physical processes have a more pronounced influence in the southern onshore region of the grid where we see active sea-ice melting. Total O2 measurements should be interpreted with caution in regions of significant sea-ice formation and melt and glacial meltwater input. pCO2 undersaturation predominantly reflects biological processes in the LTER grid. In contrast we compare these results to the Drake Passage where gas supersaturations vary by smaller magnitudes and decorrelate at length scales of 12 km, in line with latitudinal changes in the regional Rossby radius. Here biological processes induce smaller O2/Ar supersaturations (mean (0.14±1.3)%) and pCO2 undersaturations (mean (-2.8±3.9)%) than in the WAP, and pressure changes, bubble and gas exchange fluxes drive stable Ar supersaturations.

  3. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  4. Spectroscopy Study of Ar + CO2 Plasmas in ASTRAL.

    NASA Astrophysics Data System (ADS)

    Munoz, Jorge; Boivin, Robert; Kamar, Ola; Loch, Stuart; Ballance, Connor

    2006-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source running Ar + CO2 gas mix is presented. ASTRAL produces Ar plasmas: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A spectrometer which features a 0.33 m Criss-Cross monochromator and a CCD camera is used for this study. Very different plasmas are produced following the relative importance of CO2 in the gas mixture. At low CO2 concentration, the plasmas are similar to those obtained with pure Ar with weak CO2, CO2^+, CO and CO^+ bands. The usual blue plasma core associated with intense Ar II transitions is observed with however a significant white glow coming from the outer plasma regions. At higher CO2 concentration, the plasma becomes essentially molecular and can be described as an intense white plasma column. Molecular dissociative processes associated with the production of strong C and O atomic lines are observed under specific plasma conditions. The atomic spectral lines are compared with ADAS modeling results. This study indicates the possible advantages of using a helicon source to control the CO2 plasma chemistry for industrial applications.

  5. An experimental challenge: Unraveling the dependencies of ultrasonic and electrical properties of sandy sediments with pore-filling gas hydrates

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Seyberth, Karl; Priegnitz, Mike; Schicks, Judith M.

    2016-04-01

    The accuracy of gas hydrate quantification using seismic or electric measurements fundamentally depends on the knowledge of any factor describing the dependencies of physical properties on gas hydrate saturation. Commonly, these correlations are the result of laboratory measurements on artificially produced gas hydrates of exact saturation. Thus, the production of gas hydrates and accurate determination of gas hydrate concentrations or those of a substitute are a major concern. Here we present data of both, seismic and electric measurements on accurately quantified pore-filling ice as a substitute for natural gas hydrates. The method was validated using selected gas hydrate saturations in the same experimental set-up as well as literature data from glass bead samples [Spangenberg and Kulenkampff, 2006]. The environmental parameters were chosen to fit those of a possible gas hydrate reservoir in the Danube Delta, which is in the focus of models for joint inversions of seismic and electromagnetic data in the SUGAR III project. The small effective pressures present at this site proved to be yet another challenge for the experiments. Using a more powerful pulse generator and a 4 electrode electric measurement, respectively, models for a wide range of gas hydrate saturations between 20 - 90 % vol. could be established. Spangenberg, E. and Kulenkampff, J., Influence of methane hydrate content on electrical sediment properties. Geophysical Research Letters 2006, 33, (24).

  6. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.

    PubMed

    Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten

    2017-06-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.

  7. Structural Integrity of Gas-Filled Composite Overwrapped Pressure Vessels Subjected to Orbital Debris Impact

    NASA Astrophysics Data System (ADS)

    Telichev, Igor; Cherniaev, Aleksandr

    Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.

  8. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  9. Theoretical treatment of the spin-orbit coupling in the rare gas oxides NeO, ArO, KrO, and XeO

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.

    1980-01-01

    Off-diagonal spin-orbit matrix elements are calculated as a function of internuclear distance for the rare gas oxides NeO, ArO, KrO, and XeO using the full microscopic spin-orbit Hamiltonian, including all one- and two-electron integrals, and POL-CI wave functions comparable to those of Dunning and Hay (1977). A good agreement was found when comparing these results in detail with the calculations of Cohen, Wadt and Hay (1979) that utilize an effective one-electron one-center spin-orbit operator. For the rare gas oxide molecules, it is suggested that the numerical results are a more sensitive test of the wave functions (particularly to the extent of charge transfer) than the exact evaluation of all terms in the full spin-orbit operator.

  10. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    NASA Astrophysics Data System (ADS)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  11. Molecular Dynamics Simulations of an Idealized Shock Tube: N2 in Ar Bath Driven by He

    NASA Astrophysics Data System (ADS)

    Piskulich, Ezekiel Ashe; Sewell, Thomas D.; Thompson, Donald L.

    2015-06-01

    The dynamics of 10% N2 in Ar initially at 298 K in an idealized shock tube driven by He was studied using molecular dynamics. The simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Nitrogen was modeled as a Morse oscillator and non-covalent interactions were approximated by the Buckingham exponential-6 pair potential. The initial pressures in the He driver gas and the driven N2/Ar gas were 1000 atm and 20 atm, respectively. Microcanonical trajectories were followed for 2 ns following release of the driver gas. Results for excitation and subsequent relaxation of the N2, as well as properties of the gas during the simulations, will be reported.

  12. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    2016-09-01

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  13. Noble Gas Signatures in Antrim Shale Gas in the Michigan Basin - Assessing Compositional Variability and Transport Processes

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.; Bouvier, L.

    2014-12-01

    Recent studies in the Michigan Basin looked at the atmospheric and terrigenic noble gas signatures of deep brines to place constraints on the past thermal history of the basin and to assess the extent of vertical transport processes within this sedimentary system. In this contribution, we present noble gas data of shale gas samples from the Antrim shale formation in the Michigan Basin. The Antrim shale was one of the first economic shale-gas plays in the U.S. and has been actively developed since the 1980's. This study pioneers the use of noble gases in subsurface shale gas in the Michigan Basin to clarify the nature of vertical transport processes within the sedimentary sequence and to assess potential variability of noble gas signatures in shales. Antrim Shale gas samples were analyzed for all stable noble gases (He, Ne, Ar, Kr, Xe) from samples collected at depths between 300 and 500m. Preliminary results show R/Ra values (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) varying from 0.022 to 0.21. Although most samples fall within typical crustal R/Ra range values (~0.02-0.05), a few samples point to the presence of a mantle He component with higher R/Ra ratios. Samples with higher R/Ra values also display higher 20Ne/22Ne ratios, up to 10.4, and further point to the presence of mantle 20Ne. The presence of crustally produced nucleogenic 21Ne and radiogenic 40Ar is also apparent with 21Ne/22Ne ratios up to 0.033 and 40Ar/36Ar ratios up to 312. The presence of crustally produced 4He, 21Ne and 40Ar is not spatially homogeneous within the Antrim shale. Areas of higher crustal 4He production appear distinct to those of crustally produced 21Ne and 40Ar and are possibly related the presence of different production levels within the shale with varying concentrations of parent elements.

  14. Addition of ArSSAr to dienes via intramolecular C-C bond formation initiated by a catalytic amount of ArS+.

    PubMed

    Matsumoto, Kouichi; Fujie, Shunsuke; Suga, Seiji; Nokami, Toshiki; Yoshida, Jun-ichi

    2009-09-28

    A catalytic amount of electrochemically generated "ArS+" ("ArS+" = ArS(ArSSAr)+) initiates a cation chain reaction of dienes that involves the addition of ArSSAr associated with stereoselective intramolecular carbon-carbon bond formation, and the direct (in-cell) electrolysis of a mixture of a diene and ArSSAr with a catalytic amount of electricity also effectively initiates the reaction.

  15. A complex Ar⋯Agsbnd I produced by laser ablation and characterised by rotational spectroscopy and ab initio calculations: Variation of properties along the series Ar⋯Agsbnd X (X = F, Cl, Br and I)

    NASA Astrophysics Data System (ADS)

    Medcraft, Chris; Mullaney, John C.; Walker, Nicholas R.; Legon, Anthony C.

    2017-05-01

    A complex of argon with silver iodide (Ar⋯Agsbnd I) has been formed in the gas phase by laser ablation of a silver iodide rod in the presence of a pulse of argon gas and its ground-state rotational spectrum has been detected by means of a chirped-pulse, F-T microwave instrument. Ar⋯Agsbnd I was characterised both by experimental properties determined from its rotational spectrum and by ab initio calculations carried out at the CCSD(T)(F12c)/cc-pVTZ-F12 explicitly correlated level of theory. The molecule was shown to be linear in the ground state, with atoms in the order shown. The Ar⋯Ag and Agsbnd I bond lengths r0(Ar⋯Ag) = 2.6759 Å and r0(Agsbnd I) = 2.5356 Å, the dissociation energy De = 16.7 kJ mol-1 for the process Ar⋯Agsbnd I = Ar + Agsbnd I, the intermolecular quadratic stretching force constant FAr⋯Ag = F22 = 20.2(8) N m-1 and the increase 0.033 in the ionicity ic of Agsbnd I when it enters the complex are reported. The opportunity has been taken to compare the way in which these properties vary along the series Ar⋯Agsbnd X (X = F, Cl, Br and I).

  16. Observation of interspecies ion separation in inertial-confinement-fusion implosions

    DOE PAGES

    Hsu, Scott C.; Joshi, Tirtha Raj; Hakel, Peter; ...

    2016-10-24

    Here we report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D 2/Ar gas fill (1% Ar by atom), were designed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles modelsmore » of interspecies ion diffusion. Finally, the experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock.« less

  17. Correlation of current drop, filling gas pressure, and ion beam emission in a low energy Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behbahani, R. A.; Aghamir, F. M.

    The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less

  18. Toward Generation of High Power Ultrafast White Light Laser Using Femtosecond Terawatt Laser in a Gas-Filled Hollow-Core Fiber

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid

    2015-06-01

    In this work, we could experimentally achieved the generation of white-light laser pulses of few-cycle fs pulses using a neon-filled hollow-core fiber. The observed pulses reached 6-fs at at repetition rate of 1 kHz using 2.5 mJ of 31 fs femtosecond pulses. The pulse compressing achieved by the supercontinuum produced in static neon-filled hollow fibers while the dispersion compensation is achieved by five pairs of chirped mirrors. We showed that gas pressure can be used to continuously vary the bandwidth from 350 nm to 900 nm. Furthermore, the applied technique allows for a straightforward tuning of the pulse duration via the gas pressure whilst maintaining near-transform-limited pulses with constant output energy, thereby reducing the complications introduced by chirped pulses. Through measurements of the transmission through the fiber as a function of gas pressure, a high throughput exceeding 60% was achieved. Adaptive pulse compression is achieved by using the spectral phase obtained from a spectral phase interferometry for direct electric field reconstruction (SPIDER) measurement as feedback for a liquid crystal spatial light modulator (SLM). The spectral phase of these supercontinua is found to be extremely stable over several hours. This allowed us to demonstrate successful compression to pulses as short as 5.2 fs with controlled wide spectral bandwidth, which could be used to excite different states in complicated molecules at once.

  19. Publications - AR 2011-A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-A main

  20. Publications - AR 2010-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-B main

  1. Publications - AR 2011-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-B main

  2. Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Fukuda, A.; Terasawa, D.; Fujimoto, A.; Kanai, Y.; Matsumoto, K.

    2018-03-01

    The surface of graphene is easily accessible from outside, and thus it is a suitable material to study the effects of molecular adsorption on the electric transport properties. We investigate the magnetotransport of inert-gas-adsorbed monolayer graphene at a temperature of 4.4 K under a magnetic field ranging from 0 to 7 T. We introduce 4He or Ar gas at low temperature to graphene kept inside a sample cell. The magnetoresistance change ΔRxx and Hall resistance change ΔRxy from the pristine graphene are measured as a function of gate voltage and magnetic field for one layer of adsorbates. ΔRxx and ΔRxy show oscillating patterns related to the constant filling factor lines in a Landau-fan diagram. Magnitudes of these quantities are relatively higher around a charge neutral point and may be mass-sensitive. These conditions could be optimized for development of a highly sensitive gas sensor.

  3. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Ar, Kr, Xe, Cl, Br, I, and K abundances and isotopic compositions have been measured in microscopic fluid inclusions in minerals by noble gas mass spectrometry following neutron irradiation and laser extraction. The laser microprobe noble gas mass spectrometric (LMNGMS) technique was quantified by use of microstandards, including air-filled capillary tubes, synthetic basalt glass grains, standard hornblende grains, and synthetic fluid inclusions in quartz. Common natural concentrations of halogens (Cl, Br, and I) and noble gases (Ar and Kr) in trapped groundwaters and hydrothermal fluids can be analyzed simultaneously by LMNGMS in as little as 10−11 L of inclusion fluid, with accuracy and precision to within 5–10% for element and isotope ratios. Multicomponent element and isotope correlations indicate contaminants or persistent reservoirs of excess Xe and/or unfractionated air in some synthetic and natural fluid inclusion samples. LMNGMS analyses of natural fluid inclusions using the methods and calibrations reported here may be used to obtain unique information on sources of fluids, sources of fluid salinity, mixing, boiling (or unmixing), and water-rock interactions in ancient fluid flow systems.

  4. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  5. Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s{sub 5}) production in a He-Ar plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sands, Brian L.; Huang, Shih K.; Speltz, Jared W.

    2013-04-21

    Plasma jet devices that use a helium gas flow mixed with a small percentage of argon have been shown to operate with a larger discharge current and enhanced production of the Ar(1s{sub 5}) metastable state, particularly in the discharge afterglow. In this experiment, time-resolved quantitative measurements of He(2{sup 3}S{sub 1}) and Ar(1s{sub 5}) metastable species were combined with current and spectrally resolved emission measurements to elucidate the role of Penning ionization in a helium plasma jet with a variable argon admixture. The plasma jet was enclosed in a glass chamber through which a flowing nitrogen background was maintained at 600more » Torr. At 3%-5% Ar admixture, we observed a {approx}50% increase in the peak circuit current and streamer velocity relative to a pure helium plasma jet for the same applied voltage. The streamer initiation delay also decreased by {approx}20%. Penning ionization of ground-state argon was found to be the dominant quenching pathway for He(2{sup 3}S{sub 1}) up to 2% Ar and was directly correlated with a sharp increase in both the circuit current and afterglow production of Ar(1s{sub 5}) for Ar admixtures up to 1%, but not necessarily with the streamer velocity, which increased more gradually with Ar concentration. Ar(1s{sub 5}) was produced in the afterglow through recombination of Ar{sup +} and dissociative recombination of Ar{sub 2}{sup +} as the local mean electron energy decreased in the plasma channel behind the streamer head. The discharge current and argon metastable enhancement are contingent on the rapid production of He(2{sup 3}S{sub 1}) near the streamer head, >5 Multiplication-Sign 10{sup 12} cm{sup -3} in 30 ns under the conditions of this experiment.« less

  6. The effect of SEM imaging on the Ar/Ar system in feldspars

    NASA Astrophysics Data System (ADS)

    Flude, S.; Sherlock, S.; Lee, M.; Kelley, S. P.

    2010-12-01

    Complex microtextures form in K-feldspar crystals as they cool and are affected by deuteric alteration. This complex structure is the cause of variable closure temperatures for Ar-Ar, a phenomenon which has been utilized in multi domain diffusion (MDD) modelling to recover thermal histories [1]. However, there has been substantial controversy regarding the precise interaction between feldspar microtextures and Ar-diffusion [2,3]. A number of studies have addressed this issue using coupled SEM imaging and Ar/Ar UV laser ablation microprobe (UV-LAMP) analysis on the same sample, to enable direct comparison of microtextures with Ar/Ar age data [4]. Here we have tested the idea that SEM work may affect Ar/Ar ages, leading to inaccurate results in subsequent Ar/Ar analyses. Three splits of alkali feldspar from the Dartmoor Granite in SW England were selected for Ar/Ar UV-LAMP analysis. Split 1 (“control”) was prepared as a polished thick section for Ar/Ar analysis. Split 2 (“SEM”) was prepared as a polished thick section, was chemically-mechanically polished with colloidal silica and underwent SEM imaging (uncoated) and focussed ion beam (FIB) milling (gold coated); electron beam damage in the SEM was maximised by leaving the sample at high magnification for eight minutes. Split 3 (“Etch”) is a cleavage fragment that was etched with HF vapour and underwent low to moderate magnification SEM imaging. The control split gave a range of laser-spot ages consistent with the expected cooling age of the granite and high yields of radiogenic 40Ar* (>90%). The area of the “SEM” split that experienced significant electron beam damage gave younger than expected ages and 40Ar* yields as low as 57%. These are interpreted as a combination of implantation of atmospheric Ar and local redistribution of K within the sample. The area of “SEM” that underwent FIB milling gave ages and 40Ar* yields comparable to the control split, suggesting that the Au-coat minimises FIB

  7. Characteristics of plasma-puff trigger for a inverse-pinch plasma switch

    NASA Technical Reports Server (NTRS)

    Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.

  8. High Precision 40Ar/39Ar Geochronology of Servilleta Basalts of the Rio Grande Gorge, New Mexico

    NASA Astrophysics Data System (ADS)

    Cosca, M. A.; Thompson, R. A.; Turner, K. J.

    2014-12-01

    New geologic mapping and high-precision 40Ar/39Ar geochronology within the Taos Plateau in northern New Mexico indicate a period of vigorous volcanic activity between ~5.5 and ~1 Ma. Over 50 visible volcanic centers formed during this time together with an unresolved number of vents, fissures, and volcanic centers buried by intercalated volcanic rock and sedimentary basin fill. Defining the volcanic stratigraphy is essential for models of regional groundwater flow and for understanding the geologic evolution of the Pliocene to Recent Rio Grande rift. A spectacular stratigraphic section of volcanic rock related to Rio Grande rifting is visible from the High Bridge, just a few miles outside of Taos, NM, where a 240 m canyon is incised through the basal, middle, and upper Servilleta basalt flow packages (Dungan et al., 1984). Fresh basalt from a vertical transect of the canyon near the High Bridge were analyzed by 40Ar/39Ar methods on ~3 mm3 rock fragments using an ARGUS VI mass spectrometer and the resulting 40Ar/39Ar ages define a precise emplacement chronology of the entire stratigraphic section. The basal flow package records ages of 4.78 ± 0.03 Ma (relative to FCT sanidine = 28.204 Ma; all errors 2 sigma) at river level, 4.77 ± 0.03 Ma at mid flow, and 4.50 ± 0.04 Ma at the top of the flow. The middle flow package records ages of 4.11 ± 0.03 Ma at the base of the flow, 4.08 ± 0.04 Ma mid flow, and 4.02 ± 0.06 Ma at the top of the flow. The upper basalt package records ages of 3.69 ± 0.06 Ma at the base of the flow and 3.59 ± 0.08 Ma at the top of the flow. These data support rapid effusion of voluminous lava flows on time scales of 100-200 ka. Two reddish paleosols separating the Servilleta packages each developed during a 400 ka period of volcanic quiescence. First order calculations using exposed lava thicknesses in the gorge and areal exposures suggest each flow package represents emplacement of ~200 km3 of basalt. Because no exposed vent of

  9. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  10. Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K

    NASA Technical Reports Server (NTRS)

    Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.

    1991-01-01

    Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.

  11. Selective dry etching of III-V nitrides in Cl{sub 2}/Ar, CH{sub 4}/H{sub 2}/Ar, ICi/Ar, and IBr/Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartuli, C.B.; Pearton, S.J.; MacKenzie, J.D.

    1996-10-01

    The selectivity for etching the binary (GaN, AlN, and InN) and ternary nitrides (InGaN and InAlN) relative to each other in Cl{sub 2}/Ar, CH{sub 4}/H{sub 2}/Ar, ICl/Ar, or IBr/Ar electron cyclotron resonance (ECR) plasmas, and Cl{sub 2}/Ar or CH{sub 4}/H{sub 2}/Ar reactive ion (RIE) plasmas was investigated. Cl-based etches appear to be the best choice for maximizing the selectivity of GaN over the other nitrides. GaN/AlN and GaN/InGaN etch rate ratios of {approximately} 10 were achieved at low RF power in Cl{sub 2}/Ar under ECR and RIE conditions, respectively. GaN/InN selectivity of 10 was found in ICl under ECR conditions.more » A relatively high selectivity (> 6) of InN/GaN was achieved in CH{sub 4}/H{sub 2}/Ar under ECR conditions at low RF powers (50 W). Since the high bond strengths of the nitrides require either high ion energies or densities to achieve practical etch rates it is difficult to achieve high selectivities.« less

  12. Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; van der Pluijm, Ben A.; Niemi, Nathan

    2012-09-01

    40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05-2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different

  13. Paleoclimate change in the Nakuru basin, Kenya, at 119 - 109 ka derived from δ18Odiatom and diatom assemblages and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Bergner, Andreas; Deino, Alan; Leng, Melanie; Gasse, Francoise

    2016-04-01

    A 4.5m-thick diatomite bed deposited during the cold interval of the penultimate interglacial at ~119 - 109 ka documents a period in which a deep freshwater lake filled the Nakuru basin in the Central Kenya Rift (CKR), East Africa. Palaeohydrological conditions of the basin are reconstructed for the paleolake highstand using δ18Odiatom and characterization of diatom assemblages. The age of the diatomite deposit is established by precise 40Ar/39Ar-dating of intercalated pumice tuffs. The paleolake experienced multiple hydrological fluctuations on sub-orbital (~1,500 to 2,000 years) time scales. The magnitude of the δ18Odiatom change (+/- 3‰) and significant changes in the plankton-littoral ratio of the diatom assemblage (+/- 25%) suggest that the paleolake record can be interpreted in the context of long-term climatic change in East Africa. Using 40Ar/39Ar age control and nominal diatomite-sedimentation rates we establish a simplified age model of paleohydrological vs. climatic change, from which we conclude that more humid conditions prevailed in equatorial East Africa during the late Pleistocene over a relatively long time interval of several thousands years. Then, extreme insolation at eccentricity maximum and weakened zonal air-pressure gradients in the tropics favored intensified ITCZ-like convection over East Africa and deep-freshwater lake conditions.

  14. Development of a Low-Level Ar-37 Calibration Standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Richard M.; Aalseth, Craig E.; Bowyer, Ted W.

    Argon-37 is an important environmental signature of an underground nuclear explosion. Producing and quantifying low-level 37Ar standards is an important step in the development of sensitive field measurement instruments for use during an On-Site Inspection, a key provision of the Comprehensive Nuclear-Test-Ban Treaty. This paper describes progress at Pacific Northwest National Laboratory (PNNL) in the development of a process to generate and quantify low-level 37Ar standard material, which can then be used to calibrate sensitive field systems at activities consistent with soil background levels. The 37Ar used for our work was generated using a laboratory-scale, high-energy neutron source to irradiatemore » powdered samples of calcium carbonate. Small aliquots of 37Ar were then extracted from the head space of the irradiated samples. The specific activity of the head space samples, mixed with P10 (90% stable argon:10% methane by mole fraction) count gas, is then derived using the accepted Length-Compensated Internal-Source Proportional Counting method. Due to the low activity of the samples, a set of three Ultra-Low Background Proportional-Counters designed and fabricated at PNNL from radio-pure electroformed copper was used to make the measurements in PNNL’s shallow underground counting laboratory. Very low background levels (<10 counts/day) have been observed in the spectral region near the 37Ar emission feature at 2.8 keV. Two separate samples from the same irradiation were measured. The first sample was counted for 12 days beginning 28 days after irradiation, the second sample was counted for 24 days beginning 70 days after irradiation (the half-life of 37Ar is 35.0 days). Both sets of measurements were analyzed and yielded very similar results for the starting activity (~0.1 Bq) and activity concentration (0.15 mBq/ccSTP argon) after P10 count gas was added. A detailed uncertainty model was developed based on the ISO Guide to the Expression of Uncertainty

  15. Instrumentation development for In Situ 40Ar/39Ar planetary geochronology

    USGS Publications Warehouse

    Morgan, Leah; Munk, Madicken; Davidheiser-Kroll, Brett; Warner, Nicholas H.; Gupta, Sanjeev; Slaybaugh, Rachel; Harkness, Patrick; Mark, Darren

    2017-01-01

    The chronology of the Solar System, particularly the timing of formation of extra-terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb-Sr, K-Ar), and even applied (K-Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra-terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra-terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.

  16. On the 40Ar/39Ar Dating of Low-Potassium Ocean Crust Basalt from IODP Expedition 349, South China Sea

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.

    2014-12-01

    Accurate age dates for the basement rocks in the South China Sea (SCS) basins were lacking before the execution of International Ocean Discovery Program (IODP) Expedition 349 in early 2014. This left a large margin of error in estimated opening ages for the SCS and rendered various hypotheses regarding its opening mechanism and history untested, hampering our understanding of East Asian tectonic and paleoenvironmental evolution. Therefore, high-precision 40Ar/39Ar age dating lies at the heart of Expedition 349, which in particular aimed to determine the timing of the start and cessation of seafloor spreading in the SCS. In addition, the recovery of a complete seamount apron section at Site U1431 allows 40Ar/39Ar dating of abundantly present plagioclase and biotite crystals to help establish a detailed chronology of the sedimentary and volcaniclastic sequences cored. Here we present the first 40Ar/39Ar incremental heating ages on the low-potassium (~0.1-0.2 wt% K2O) and the least altered (loss on ignition < 1.5%) mid-ocean ridge basalt (MORB) from the SCS. Plagioclase and groundmass samples were prepared using conventional mineral separation techniques, acid-leaching and hand-picking. Analyses were carried out using a new ARGUS-VI multi-collector noble gas mass spectrometer. Ages are expected to have precisions ranging between 0.1-0.3 Ma (2σ), which will allow us to precisely and accurately date the final emplacement of basalts at Sites U1431, U1433 and U1434 in the SCS basin, just prior to the cessation of spreading as all sites were slightly offset from the relict spreading center.

  17. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  18. Early Thermal History of Eucrites by Ar-39-Ar-40

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Garrison, D. H.

    2001-01-01

    Ar-39-Ar-40 ages for Piplia Kalan (3.58 +/- 0.02 Ga) and two other eucrites indicate later impact resetting. Older Ar-39-Ar-40 ages exist for the Moama cumulate eucrite (4.42 +/- 0.01 Ga) and the PCA82502 (4.506 +/- 0.009 Ga) and PCA91007 non-brecciated eucrites. Additional information is contained in the original extended abstract.

  19. Demonstration of a CW diode-pumped Ar metastable laser operating at 4  W.

    PubMed

    Han, J; Heaven, M C; Moran, P J; Pitz, G A; Guild, E M; Sanderson, C R; Hokr, B

    2017-11-15

    Optically pumped rare gas lasers are being investigated as potential high-energy, high beam quality systems. The lasing medium consists of rare gas atoms (Rg=Ne, Ar, Kr, or Xe) that have been electric discharge excited to the metastable np 5 (n+1)s P3 2 state. Following optical excitation, helium (He) at pressures of 200-1000 Torr is used as the energy transfer agent to create a population inversion. The primary technical difficulty for this scheme is the discharge production of sufficient Rg* metastables in the presence of >200  Torr of He. In this Letter, we describe a pulsed discharge that yields >10 13   cm -3 Ar* in the presence of He at total pressures up to 750 Torr. Using this discharge, a diode-pumped Ar* laser providing 4.1 W has been demonstrated.

  20. Synthesis and reactivity of dimeric Ar'TlTlAr' and trimeric (Ar"T1)3 (Ar', Ar" = bulky terphenyl group) thallium(I) derivatives: Tl(I)-Tl(I) bonding in species ligated by monodentate ligands.

    PubMed

    Wright, Robert J; Phillips, Andrew D; Hino, Shirley; Power, Philip P

    2005-04-06

    The synthesis and characterization of three new organothallium(I) compounds are reported. Reaction of (Ar'Li)(2) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) and Ar"Li (Ar" = C(6)H(3)-2,6-(C(6)H(3)-2,6-Me(2))(2)) with TlCl in Et(2)O afforded (Ar'Tl)(2) (1) and (Ar' 'Tl)(3) (2). The "dithallene" 1 is the heaviest group 13 dimetallene and features a planar, trans-bent structure with Ar'Tl-Tl = 119.74(14) degrees and Tl-Tl = 3.0936(8) A. Compound 2 is the first structurally characterized neutral, three-membered ring species of formula c-(MR)(3) (M = Al-Tl; R = organo group). The Tl(3) ring has Tl-Tl distances in the range ca. 3.21-3.37 A as well as pyramidal Tl geometries. The Tl-Tl bonds in 1 and 2 are outside the range (2.88-2.97 A) of Tl-Tl single bonds in R(2)TlTlR(2) compounds. The weak Tl-Tl bonding in 1 and 2 leads to their dissociation into Ar'Tl and Ar' 'Tl monomers in hexane. The Ar'Tl monomer behaves as a Lewis base and readily forms a 1:1 donor-acceptor complex with B(C(6)F(5))(3) to give Ar'TlB(C(6)F(5))(3), 3. Adduct 3 features an almost linear thallium C(ipso)-Tl-B angle of 174.358(7) degrees and a Tl-B distance of 2.311(2) A, which indicates strong association. Treatment of 1 with a variety of reagents resulted in no reactions. The lower reactivity of 1 is in accord with the reluctance of Tl(I) to undergo oxidation to Tl(III) due to the unreactive character of the 6s(2) electrons.

  1. Apparatus for determining the filling pressure of a plurality of microballoons

    DOEpatents

    Jorgensen, Betty S.

    1987-01-01

    A simple apparatus for removably holding a plurality of microballoons during filling and determination of the pressure of the gas fill. The subject apparatus permits the manipulation of substantial numbers of microballoons necessary for the rapidly growing requirements for these capsules.

  2. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  3. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Science.gov Websites

    , therefore containing less energy by volume when the fuel system reaches the rated pressure. For this reason because when gas molecules are compressed, they create heat. The faster they are compressed, the more they heat up and expand. So when the gas is compressed rapidly through a fast-fill process, the molecules

  4. OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST

    NASA Astrophysics Data System (ADS)

    Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO

    2018-04-01

    Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.

  5. The 40Ar/39Ar dating technique applied to planetary sciences

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2012-12-01

    The 40Ar/39Ar technique is a powerful geochronological method that can help to unravel the evolution of the solar system. The 40Ar/39Ar system can not only record the timing of volcanic and metamorphic processes on asteroids and planets, it finds domain of predilection in dating impact events throughout the solar system. However, the 40Ar/39Ar method is a robust analytical technique if, and only if, the events to be dated are well understood and data are not over interpreted. Yet, too many 'ages' reported in the literature are still based on over-interpretation of perturbed age spectra which tends to blur the big picture. This presentation is centred on the most recent applications of the 40Ar/39Ar technique applied to planetary material and through several examples, will attempt to demonstrate the benefit of focusing on statistically robust data. For example, 40Ar/39Ar dating of volcanic events on the Moon suggests that volcanism was mostly concentrated between ca. 3.8 and 3.1 Ga but statistical filtering of the data allow identifying a few well-defined eruptive events. The study of lunar volcanism would also benefit from dating of volcanic spherules. Rigorous filtering of the 40Ar/39Ar age database of lunar melt breccias yielded concordant and ages with high precision for two major basins (i.e. Imbrium & Serenitatis) of the Moon. 40Ar/39Ar dating of lunar impact spherules recovered from four different sites and with high- and low-K compositions shows an increase of ages younger than 400 Ma suggesting a recent increase in the impact flux. The impact history of the LL parent body (bodies?) has yet to be well constrained but may mimic the LHB observed on the Moon, which would indicate that the LL parent body was quite large. 40Ar/39Ar dating (in progress) of grains from the asteroid Itokawa recovered by the japanese Hayabusa mission have the potential to constrain the formation history and exposure age of Itokawa and will allow us to compare the results with the

  6. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    PubMed

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  7. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  8. Single Chondrule K/Ar ages of Mexican Meteorites Using ID-TIMS.

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Sole, J.

    2007-05-01

    We have determined the K/Ar ages of two H5 ordinary meteorites: Cosina and Nuevo Mercurio, neither dated until this study. We analyzed several single chondrules - weighing few milligrams - of each meteorite. Ages were obtained by using very precise K content determined by isotope dilution mass spectrometry. The K content in chondrules ranges between 650 and 1400 ppm. The 40Ar was measured by static vacuum noble gas mass spectrometry. Samples were fused with an infrared CO2 laser. Chondrule ages vary from 3.66 to 4.59 Ga for Cosina and from 4.20 to 4.87 Ga for Nuevo Mercurio. A comparison between our data and the published K/Ar ages of H and L whole rocks shows that dates obtained from single chondrules are older than those obtained from whole rocks and seem to preserve older events not evidenced in the WR ages. This implies that chondrules can preserve K/Ar ages very close to U-Pb crystallization ages.

  9. Dating of the youngest volcanoes of Ardeche (Massif Central, France) using 40Ar/39Ar and unspiked K/Ar

    NASA Astrophysics Data System (ADS)

    Nomade, Sebastien; Sasco, Romain; Guillou, Herve; Scao, Vincent; Kissel, Catherine; Genty, Dominique

    2014-05-01

    Since the first description in 1778 of the relationship between prismatic basaltic flow and volcano in the high valleys of the Ardèche (Faujas Saint-Font, 1778), "L'Ardèche", a small region at the south-west of Massif Central, became worldwide famous among volcanologists. This volcanism is found dispersed over an area of more than 20 km2 and is made of strombolian cones and prismatic flows filling NS to NW-SE valleys. This volcanism has then been considered as one of the most recent one in the entire Massif Central (40 ka to 170 ka, TL ages, Guérin et al., 2007). Unfortunately and despite several attempts over the last 25 years this volcanism has never been dated using radio-isotopic methods. The two main reasons usually advocated to explain this lack of success were the young age of the volcanism itself and the large amounts of mantle and lower crust xenoliths in the lavas (Guérin et al., 2007). In this contribution, we will present combined 40Ar/39Ar ages and unspiked K/Ar results obtained on five lava flows. The obtained ages range from 26 ± 5.5 ka to 55 ± 6.0 ka (1s, full propagated uncertainty relative to ACS-2 at 1.194Ma, Nomade et al., 2005). The ages from three of the investigated lava flows coming from distinct cones, are clustered between 26 ± 5.5 ka and 34 ± 4 ka. These cones are found stretched along a NW-SE tectonic accident. These first radio-isotopic constraints prove that the volcanic activity occurred during the last glacial period and is as young as "la chaîne de Puys" located in the northern part of the Massif Central. Incidentally, the volcanic activity is contemporaneous with the first Aurignacian occupation and related art found in the Chauvet cave (37-29 ka, Valladas et al., 2005) localized only 35 km SE. Based on both the spatial and chronological coincidences reported above we suggest that the Aurignacian population(s) that lived in this area have witnessed one or several of these eruptions.

  10. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  11. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  12. 40Ar/39Ar Ages of Carbonaceous Xenoliths in 2 HED Meteorites

    NASA Technical Reports Server (NTRS)

    Turrin, B.; Lindsay, F. N.; Park, J.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C., III; Johnson, J.; Zolensky, M.

    2016-01-01

    The generally young K/Ar and 40Ar/39Ar ages of CM chondrites made us wonder whether carbonaceous xenoliths (CMX) entombed in Howardite–Eucrite–Diogenite (HED) meteorites might retain more radiogenic 40Ar than do ‘free-range’ CM-chondrites. To find out, we selected two HED breccias with carbonaceous inclusions in order to compare the 40Ar/39Ar release patterns and ages of the inclusions with those of nearby HED material. Carbonaceous inclusions (CMXs) in two HED meteorites lost a greater fraction of radiogenic 40Ar than did surrounding host material, but a smaller fraction of it than did free-range CM-chondrites such as Murchison or more heavily altered ones. Importantly, however, the siting of the CMXs in HED matrix did not prevent the 40Ar loss of about 40 percent of the radiogenic 40Ar, even from phases that degas at high laboratory temperatures. We infer that carbonaceous asteroids with perihelia of 1 astronomical unit probably experience losses of at least this size. The usefulness of 40Ar/39Ar dating for samples returned from C-type asteroids may hinge, therefore, on identifying and analyzing separately small quantities of the most retentive phases of carbonaceous chondrites.

  13. 40Ar* loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks

    USGS Publications Warehouse

    Cosca, M.; Stunitz, H.; Bourgeix, A.-L.; Lee, J.P.

    2011-01-01

    The effects of deformation on radiogenic argon (40Ar*) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ???15mm in length and 6.25mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10kb and a temperature of 600??C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311??2Ma (2??). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar* loss of 0-35% in muscovite and 2-3% 40Ar* loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (??4-10%, 1??) of deformed muscovites range from 309??13 to 264??7Ma, consistent with 0-16% 40Ar* loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217Ma, consistent with up to 32% 40Ar* loss. No spatial correlation is observed between in situ 40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar* loss in the experimentally treated muscovite can be utilized to predict average 40Ar* diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those

  14. Book review: Advances in 40Ar/39Ar dating: From archaeology to planetary sciences

    USGS Publications Warehouse

    Cosca, Michael A.

    2015-01-01

    The recently published book Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences is a collection of 24 chapters authored by international scientists on topics ranging from decay constants to 40Ar/39Ar dating of extraterrestrial objects. As stated by the editors in their introduction, these chapters were assembled with the goal of providing technique-specific examples highlighting recent advances in the field of 40Ar/39Ar dating. As this is the first book truly dedicated to 40Ar/39Ar dating since the second edition printing of the argon geochronologist’s handbook Geochronology and Thermochronology by the 40Ar/39Ar Method (McDougall and Harrison 1999), a new collection of chapters highlighting recent advances in 40Ar/39Ar geochronology offers much to the interested reader.

  15. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less

  16. Electrical tree initiation in polyethylene absorbing Penning gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, N.; Tohyama, N.; Sato, H.

    1996-12-31

    Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less

  17. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  18. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, B.; Chung, M.; Hanlet, P. M.

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  19. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE PAGES

    Freemire, B.; Chung, M.; Hanlet, P. M.; ...

    2018-01-30

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  20. 30Ar-40Ar Ages of Silicates from IIE Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Garrison, D. H.; Bogard, D. D.

    1995-09-01

    Several IIE iron meteorites contain small silicate inclusions, dispersed within metal, which suggest formation by a common process involving different degrees of heating and silicate fractionation from a chondrite-like parent (see discussion and references in McCoy [1]). The isotope chronology of IIE meteorites addresses two major questions concerning their origin. How many formation events are required, and do the isotopic ages also represent the times of silicate differentiation in some meteorites, or do they represent later impact heating events? We have determined ^39Ar-^40Ar ages of whole silicate samples of Watson, Techado, and Miles [1]. Although each meteorite gives a complex Ar age spectrum, each spectrum gives a well-defined age plateau over a significant (55-65%) portion of the total ^39Ar release. The ^39Ar-^40Ar degassing ages derived are 3.656 +/-0.005 Ga for Watson, 4.482 +/-0.025 Ga for Techado, and 4.408 +/-0.011 Ga for Miles (one-sigma errors). Absolute ages have an additional ^-0.5% uncertainty arising from the hornblende age monitor used. None of our Ar-Ar spectra show any significant evidence for an age older than those given, and only Miles shows modest evidence for recent diffusive loss of ^40Ar (affecting ^-10% of the ^39Ar release). Previous studies of Kodaikanal gave these ages: Rb-Sr = 3.7 +/-0.1 Ga [2], Pb-Pb = 3.676 +/-0.003 Ga [3], and K-^40Ar = 3.5 Ga [4]. Netschaevo gave a ^39Ar-^40Ar age of 3.74 Ga +/-0.03 Ga [5], and Watson gave a K-^40Ar age of 3.5 Ga [6]. (Some ages have been adjusted for changes in decay and irradiation constants.) All three meteorites suggest a common formation age of ^-3.70 +/-0.05 Ga. The ^39Ar-^40Ar age for Techado is identical to a ^39Ar-^40Ar age of 4.49 +/-0.03 Ga reported for Weekeroo Station [5] and to a Rb-Sr age of 4.51 Ga for Colomera [7]. These ages resemble ^39Ar-^40Ar ages of unshocked ordinary chondrites, and suggest that metal-silicate mixing and cooling to closure for Ar diffusion occurred

  1. 40Ar ∗ loss in experimentally deformed muscovite and biotite with implications for 40Ar/ 39Ar geochronology of naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Cosca, Michael; Stunitz, Holger; Bourgeix, Anne-Lise; Lee, John P.

    2011-12-01

    The effects of deformation on radiogenic argon ( 40Ar ∗) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ˜15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas. Infrared (IR) laser (CO 2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/ 39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar ∗ loss of 0-35% in muscovite and 2-3% 40Ar ∗ loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/ 39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar ∗ loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/ 39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar ∗ loss. No spatial correlation is observed between in situ40Ar/ 39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar ∗ loss in the experimentally treated muscovite can be utilized to predict average 40Ar ∗ diffusion dimensions. Maximum 40Ar/ 39Ar ages

  2. Ar-40/Ar-39 age determinations for the Rotoiti eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Flude, S.; Storey, M.

    2013-12-01

    The contemporaneous Rotoiti and Earthquake Flat ignimbrites, erupted from the Taupo Volcanic zone, New Zealand, form a distinctive tephrostratigraphic horizon in the Southern Pacific. Radioisotopic dating results for these eruptions remain controversial, with published ages ranging from 35.1 × 2.8 ka [1] to 71 × 6 ka [2], with 61.0 × 1.5 ka [3] often being cited as the most widely accepted age. These eruptions are difficult to date as their age is near the limit for various radiometric dating techniques, which are complicated by a large proportion of inherited material (xenocrysts) and a lack of phases suitable for dating. Glass-bearing plutonic blocks erupted with the Rotoiti and Earthquake Flat ignimbrites have previously been interpreted as deriving from a slowly cooled and incompletely solidified magma body that was sampled by the eruptions. They contain large vugs lined with euhedral quartz, sanidine and biotite crystals, indicating that these crystals grew in a gas or aqueous fluid rich environment and are interpreted to have formed shortly before or during eruption. Here we will present Ar-40/Ar-39 ages for sanidines and biotites extracted from vugs in lithic blocks erupted as part of the Earthquake Flat ignimbrite. We show that, even for vug-lining material, inherited ages remain a problem and are the likely source of the wide variation in published radiometric ages. Nevertheless, many of the Ar-40/Ar-39 ages are much younger than the 61 ka age [3] and are more consistent with the recent stratigraphic, C-14 and U-238/Th-230+(U-Th)/He ages that have been suggested (e.g. [4,5]). 1. Whitehead, N. & Ditchburn, R. New Zealand Journal of Geology and Geophysics 37, 381-383 (1994). 2. Ota, Y., Omura, A. & Iwata, H. New Zealand Journal of Geology and Geophysics 32, 327-331 (1989). 3. Wilson, C. J. N. et al. Quaternary Science Reviews 26, 1861-1870 (2007). 4. Molloy, C., Shane, P. & Augustinus, P. Geological Society of America Bulletin 121, 1666-1677 (2009). 5

  3. AR-39-AR-40 "Age" of Basaltic Shergottite NWA-3171

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2007-01-01

    North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.

  4. Ar-40/Ar-39 Ages of Maskelynite Grains from ALHA 77005

    NASA Technical Reports Server (NTRS)

    Turrin, B.; Park, J.; Herzog, G. F.; Lindsay, F. N.; Delaney, J. S.; Nyquist, L. E.; Swisher, C., III

    2013-01-01

    We present Ar-40/Ar-39 measurements for twelve small (20-60 micro-g) maskelynite samples from the heavily shocked martian meteorite ALHA 77005. The reported modal composition for ALHA 77005 is 50-60% olivine (Fa28), 30-40% pyroxene (Wo5Fs23En72), approx.8% maskelynite (An53), and approx.2% opaques by volume [1]). The meteorite is usually classified as a lherzolite. Previous Studies - Ar-40/Ar-39 results from previous work display disturbed release spectra [2,3]. In study [2], Ar-40/Ar-39 measurements on a 52-mg whole-rock sample produced an extremely disturbed release spec-trum, with all calculated apparent ages > 1 Ga, (Fig. 1). In a subsequent study [3], a light and a dark phase were analyzed. A 2.3-mg sample of the light, relatively low-K phase produced a disturbed release spectrum. For the first 20% of the Ar-39(sub K), most of the apparent ages exceeded >1 Ga; the remaining 80% yielded ages between 0.3-0.5 Ga. The integrated age for this phase is 0.9 Ga.

  5. Investigation of Deep Ocean Circulation and Mixing Using Ar-39 (Invited)

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Schlosser, P.

    2013-12-01

    Ar-39 is a radioactive noble gas that forms in the atmosphere by cosmic ray interaction with Ar-40. It has a half-life of 269 years and its production rate in the atmosphere has varied no more than 7% during the past 1000 years. It enters the surface ocean with an average equilibration time of about one month and thus the entire surface ocean, except for ice covered regions at high latitudes, is in quasi-equilibrium with the atmospheric Ar-39:Ar ratio. The well known input to the ocean, radioactive decay constant and chemical inertness make Ar-39 an ideal tracer of circulation and mixing in the deep ocean, where anthropogenic transient tracers such as CFCs and tritium have not yet penetrated. However, due to the difficult measurement, only about 125 oceanic Ar-39 samples have been measured to date. This was done by counting the decays of Ar-39 atoms and required a half liter of argon gas per sample, extracted from about 1500 liters of water. The 125 samples that have been measured provide a glimpse of the information that can be gained from Ar-39 observations. In the Pacific Ocean three vertical profiles show a decrease in Ar-39 from the surface mixed layer through the thermocline to a minimum at intermediate depths and an increase from there to the bottom. This reflects formation of bottom water around the Antarctic continent, spreading of this water northward and upwelling and mixing into intermediate depths. The lowest concentration was 6×4% modern which is equivalent to a 900-1600 year isolation time from the surface. In the Atlantic Ocean newly formed North Atlantic Deep Water has an Ar-39 concentration of about 85% modern compared to 55% modern for newly formed Antarctic Bottom Water and reach values as low as about 40% modern in the interior reflecting the more rapid ventilation of the deep Atlantic Ocean relative to the deep Pacific Ocean. In the Arctic Ocean the mean residence time of deep water in the Nansen, Amundsen and Makarov Basins based on Ar-39

  6. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling1

    PubMed Central

    Yang, Jianchang; Zhang, Jianhua; Wang, Zhiqing; Zhu, Qingsen; Wang, Wei

    2001-01-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed 14CO2 into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA1 + GA4) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed 14C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate. PMID:11553759

  7. Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.

    2014-06-01

    ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.

  8. [sup 40]Ar/[sup 39]Ar mineral ages from southwestern Penobscot Bay, Maine: Evidence for Silurian metamorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, D.P. Jr.; Guidotti, C.V.; Lux, D.R.

    1992-01-01

    The nature and timing of metamorphic events in the Coastal Lithotectonic Block of Maine remain poorly understood. Immediately west and southwest of Penobscot Bay the rocks are polymetamorphic showing evidence for at least two episodes of amphibolite facies metamorphism and later, perhaps regionally extensive, retrograde events. Hornblende mineral separates from two amphibolites din the Port Clyde area have identical Ar-40/Ar-39 plateau ages of 414.0 [+-] 3.3 and 414.0 [+-] 3.9 Ma. These ages are interpreted to reflect the time of cooling following the last significant thermal event in this area. Biotite from an amphibolite in the Port Clyde area givesmore » a total gas age of 346.5 [+-] 3.2 Ma. Hornblende from an amphibolite 7 km to the west near Friendship gives a nearly concordant release spectrum with a plateau age of 369.0 [+-] 3.7 Ma. Coexisting biotite from this amphibolite gives a total gas age of 289.2 [+-] 2.7 Ma. Muscovite from the Waldoboro pluton has a nearly concordant release spectrum with a plateau age of 306.3 [+-] 2.2 Ma. Biotite from this sample gives a total gas age of 288.9 [+-] 2.2 Ma. The 414.0 Ma hornblende cooling ages from the Port Clyde area reflect cooling following a significant high grade Silurian thermal event. This Silurian metamorphism is the same age as tectonothermal events in the Nashoba Terrane in eastern Massachusetts, the Kingston Complex in southern New Brunswick, the Aspy Terrane in Cape Breton island, Nova Scotia, and the Hermitage Flexure in southern Newfoundland.d Thus a distinctive Silurian tectonothermal province located along the western edge of the Avalon Zone appears to extend discontinuously from Massachusetts to Newfoundland.« less

  9. Optical graphene quantum dots gas sensors: Theoretical study

    NASA Astrophysics Data System (ADS)

    Raeyani, D.; Shojaei, S.; Ahmadi-Kandjani, S.

    2018-02-01

    In this work, we theoretically studied the changes of graphene quantum dots (GQD) absorption spectra under the influence of different gases to indicate optical gas sensing features of GQDs. The adsorption of gas molecules such as CO2, N2 and Ar on GQDs have been theoretically investigated through time-dependent density functional theory (TDDFT) calculations. Our study revealed that UV-Vis absorption spectrum of GQDs in the presence of CO2 undergoes considerable changes than that of N2 and Ar. The shift of maximum absorption wavelength for adsorption of CO2, N2 and Ar in same distance from GQD in addition to density of state (DOS) and orbital analyses have been obtained. To verify our theoretical results, comparison with experimental study has been done and good agreement has been observed. Comparing with electrical property of GQD, optical properties showed an efficient tool to be implemented in gas adsorption and paves the way towards GQD optical gas sensors.

  10. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  11. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    PubMed

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C 12 H 26 . All results were obtained by performing molecular dynamics simulations of liquid C 12 H 26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  12. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  13. Photo-detachment of negative ions in Ar-CO2 dc discharge employing Langmuir probe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jannet; Yousif, Farook Bashir; Fuentes, Beatriz E.; Vázquez, Federico; Rivera, Marco; López-Patiño, J.; Figueroa, Aldo; Martínez, Horacio

    2018-05-01

    The electronegativity of the A r - C O 2 gas mixture was investigated, and the total relative negative oxygen ion density O2- + O- in the bulk of a dc discharge has been determined employing Langmuir probe assisted laser photo-detachment. The relative electron density and absolute temperature were obtained for the mixture at discharge powers between 200 and 3000 mW and pressures between 0.2 and 0.6 mbar, employing the collisional radiative model for several Ar gas mixtures. The absolute metastable number density for 1s3 and 1s5 levels was measured, and both showed an increasing trend as a function of pressure and power. The absolute number density of the 1s5 level was found to be higher than that of the 1s3 level. Electronegativity was found to decrease as a function of power and as a function of the increasing Ar percentage in the gas mixture.

  14. Atmospheric-pressure diffuse dielectric barrier discharges in Ar/O2 gas mixture using 200 kHz/13.56 MHz dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Starostin, S. A.; Peeters, F. J. J.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-03-01

    Atmospheric-pressure diffuse dielectric barrier discharges (DBDs) were obtained in Ar/O2 gas mixture using dual-frequency (DF) excitation at 200 kHz low frequency (LF) and 13.56 MHz radio frequency (RF). The excitation dynamics and the plasma generation mechanism were studied by means of electrical characterization and phase resolved optical emission spectroscopy (PROES). The DF excitation results in a time-varying electric field which is determined by the total LF and RF gas voltage and the spatial ion distribution which only responds to the LF component. By tuning the amplitude ratio of the superimposed LF and RF signals, the effect of each frequency component on the DF discharge mechanism was analysed. The LF excitation results in a transient plasma with the formation of an electrode sheath and therefore a pronounced excitation near the substrate. The RF oscillation allows the electron trapping in the gas gap and helps to improve the plasma uniformity by contributing to the pre-ionization and by controlling the discharge development. The possibility of temporally modifying the electric field and thus the plasma generation mechanism in the DF discharge exhibits potential applications in plasma-assisted surface processing and plasma-assisted gas phase chemical conversion.

  15. 40Ar/39Ar and K-Ar data bearing on the metamorphic and tectonic history of western New England.

    USGS Publications Warehouse

    Sutter, J.F.; Ratcliffe, N.M.; Mukasa, S.B.

    1985-01-01

    40Ar/39Ar ages of coexisting biotite and hornblende from Proterozoic Y gneisses of the Berkshire and Green Mt massifs, as well as 40Ar/39Ar and K/Ar mineral and whole-rock ages from Palaeozoic metamorphic rocks, suggest that the thermal peaks for the dominant metamorphic recrystallization in western New England occurred 465 + or - 5 m.y. (Taconian). 40Ar/39Ar age data from a poorly-defined terrain along the eastern strip of the area suggests that the area has been retrograded during a metamorphism that peaked at least 376 + or - 5 m.y. (Acadian). Available age and petrological data from western New England indicate the presence of at least three separate metamorphic-structure domains of Taconic age: 1) a small area of relict high-P and low-T metamorphism, 2) a broad area of normal Barrovian metamorphism from chlorite to garnet grade characterized by a gentle metamorphic gradient and, 3) a rather narrow belt of steep-gradient, Barrovian series metamorphic rocks. Areas of maximum metamorphic intensity within the last domain coincide with areas of maximum crustal thickening in the later stage of Taconic orogeny. -L.di H

  16. Ar-Ar Impact Heating Ages of Eucrites and Timing of the LHB

    NASA Technical Reports Server (NTRS)

    Bogard, Donald; Garrison, Daniel

    2009-01-01

    Eucrites and howardites, more than most meteorite types, show extensive impact resetting of their Ar-39-Ar-40 (K-Ar) ages approximately equal to 3.4-4.1 Ga ago, and many specimens show some disturbance of other radiometry chronometers as well. Bogard (1995) argued that this age resetting occurred on Vesta and was produced by the same general population of objects that produced many of the lunar impact basins. The exact nature of the lunar late heavy bombardment (LHB or 'cataclysm') remains controversial, but the timing is similar to the reset ages of eucrites. Neither the beginning nor ending time of the lunar LHB is well constrained. Comparison of Ar-Ar ages of brecciated eucrites with data for the lunar LHB can resolve both the origin of these impactors and the time period over which they were delivered to the inner solar system. This abstract reports some new Ar-Ar age data for eucrites, obtained since the authors' 1995 and 2003 papers.

  17. ARS racks

    NASA Image and Video Library

    2009-09-22

    ISS020-E-041651 (22 Sept. 2009) --- NASA astronaut Michael Barratt works with the Atmosphere Revitalization System (ARS) rack in the Destiny laboratory of the International Space Station. Barratt, Canadian Space Agency astronaut Robert Thirsk (out of frame) and European Space Agency astronaut Frank De Winne (out of frame), all Expedition 20 flight engineers, spent several hours with the extensive dual-rack swap/install activity, to move Destiny?s ARS rack to the Kibo laboratory and install in Destiny in its place the newly-delivered ARS rack for Node-3.

  18. ARS racks

    NASA Image and Video Library

    2009-09-22

    ISS020-E-041647 (22 Sept. 2009) --- NASA astronaut Michael Barratt works with the Atmosphere Revitalization System (ARS) rack in the Destiny laboratory of the International Space Station. Barratt, Canadian Space Agency astronaut Robert Thirsk (out of frame) and European Space Agency astronaut Frank De Winne (out of frame), all Expedition 20 flight engineers, spent several hours with the extensive dual-rack swap/install activity, to move Destiny?s ARS rack to the Kibo laboratory and install in Destiny in its place the newly-delivered ARS rack for Node-3.

  19. Ar-40/Ar-39 Studies of Martian Meteorite RBT 04262 and Terrestrial Standards

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Turrin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Nagao, K.; Nyquist, L. E.

    2014-01-01

    Park et al. recently presented an Ar-40/Ar-39 dating study of maskelynite separated from the Martian meteorite RBT 04262. Here we report an additional study of Ar-40/Ar-39 patterns for smaller samples, each consisting of only a few maskelynite grains. Considered as a material for Ar-40/Ar-39 dating, the shock-produced glass maskelynite has both an important strength (relatively high K concentration compared to other mineral phases) and some potentially problematic weaknesses. At Rutgers, we have been analyzing small grains consisting of a single phase to explore local effects that might be averaged and remain hidden in larger samples. Thus, to assess the homogeneity of the RBT maskelynite and for comparison with the results of, we analyzed six approx. 30 microgram samples of the same maskelynite separate they studied. Furthermore, because most Ar-40/Ar-39 are calculated relative to the age of a standard, we present new Ar-40/Ar-39 age data for six standards. Among the most widely used standards are sanidine from Fish Canyon (FCs) and various hornblendes (hb3gr, MMhb-1, NL- 25), which are taken as primary standards because their ages have been determined by independent, direct measurements of K and A-40.

  20. 40Ar/39Ar and unspiked 40K-40Ar dating of upper Pleistocene volcanic activity in the Bas-Vivarais (Ardèche, France)

    NASA Astrophysics Data System (ADS)

    Sasco, Romain; Guillou, Hervé; Nomade, Sébastien; Scao, Vincent; Maury, René C.; Kissel, Catherine; Wandres, Camille

    2017-07-01

    Fifteen basanitic and tephritic flows from Bas-Vivarais, the youngest volcanic field in the French Massif Central together with the Chaîne des Puys, were dated by 40Ar/39Ar and 40K-40Ar on separated groundmass, and studied for paleomagnetism. An almost systematic discrepancy between the two types of ages is observed, the 40K-40Ar method providing ages up to 8.5 times the 40Ar/39Ar ones. Microscopic observations and geochemical analyses lead us to conclude that most of the K-Ar ages measured on Bas-Vivarais samples are in error due to extraneous argon originating from contamination by xenocrysts from disintegrated crustal and mantle xenoliths. However, 40Ar/39Ar experiments do not evidence any excess argon, suggesting two possibilities: 1, the extraneous argon contribution was eliminated during the pre-degassing of the samples at 600 °C prior to the step heating experiments, 2 - K-Ar ages may be older because larger quantities of xenocrysts, potential carriers of extraneous argon were involved in the K-Ar experiments than in the 40Ar/39Ar ones. 40Ar/39Ar ages are thus little or not affected by contamination and provide reliable ages for the studied volcanoes. Combined 40Ar/39Ar datings and magnetic directions for each flow point out to three successive stages in the volcanic evolution of Bas-Vivarais. Stage 1, limited to the northern part of the field, has a mean age of 187.3 ± 19.0 ka. In its southern part, Stages 2 and 3 emplaced magmas at 31.1 ± 3.9 ka and 23.9 ± 8.1 ka, respectively. These two last stages are consistent with available 14C dates but not with previous thermoluminescence data.

  1. Ar-Ar and I-Xe Ages and the Thermal History of IAB Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi

    2005-01-01

    Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material, enriched in Si, Na, Al and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New Ar-39- Ar-40 ages for silicate from three different Caddo samples are consistent with a common age of 4.50-4.51 Gyr ago. Less well defined Ar-Ar degassing ages for inclusions from two other IABs, EET8333 and Udei Station, are approx.4.32 Gyr, whereas the age for Campo del Cielo varies considerably over approx.3.23-4.56 Gyr. New I-129-Xe-129 ages for Caddo County and EET8333 are 4557.9+/-0.1 Myr and 4557-4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar-Ar degassing ages for IABs and related winonaites, the range is approx.4.32-4.53 Gyr, but several IABs give similar Ar ages of 4.50-4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body, and the younger ages to represent later 40Ar diffusion loss. The older Ar-Ar ages for IABs are similar to Sm-Nd and Rb-Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar-Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al., 1994) are consistent if the time of the post-assembly metamorphism was as late as approx.4.53 Gyr ago. However, I-Xe ages reported for some IABs define much older ages of approx.4558-4566 Myr, which cannot easily be reconciled with the much younger Ar-Ar and Sm-Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I-Xe ages have very

  2. Ar-Ar Thermochronlogy of Apollo 12 Impact-Melt Breccia 12033,638-1

    NASA Technical Reports Server (NTRS)

    Crow, C. A.; Cassata, W. S.; Jolliff, B. L.; Ziegler, R. A.; Borg, L. E.; Shearer, C. K.

    2017-01-01

    We have undertaken an Ar-Ar thermochronology investigation as part of a coordinated multichronometer analysis of a single Apollo 12 impact- melt breccia to demonstrate the wide range of information that can be obtained for a single complex rock. This has implications for the age of formation, component makeup, and subsequent impact/shock and exposure history of the sample. This study also serves as a capabilities demonstration for the proposed MoonRise Mission [1]. The goal of this investigation is to elucidate the history of this sample through coordinated 40Ar*/39Ar, Sm-Nd, Rb-Sr and zircon 207Pb-206Pb ages along with geochemical and petrographic context on a relatively small (approximately 450 mg) sample. Here, we report preliminary results of the Ar-Ar thermochronology.

  3. Ar-40/Ar-39 ages and cosmic ray exposure ages of Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Turner, G.; Huneke, J. C.; Podosek, F. A.; Wasserburg, G. J.

    1971-01-01

    We have used the Ar-40/Ar-39 dating technique on eight samples of Apollo 14 rocks (14053, 14310), breccia fragments (14321), and soil fragments (14001, 14167). The large basalt fragments give reasonable Ar-40/Ar-39 release patterns and yield well defined crystallization ages of 3.89-3.95 aeons. Correlation of the Ar-40/Ar-39 release patterns with Ar-39/Ar-37 patterns showed that the low temperature fractions with high radiogenic argon loss came from K-rich phases. A highly shocked sample and fragments included in the breccia yield complex release patterns with a low temperature peak. The total argon age of these fragments is 3.95 aeons. Cosmic ray exposure ages on these samples are obtained from the ratio of spallogenic Ar-38 to reactor induced Ar-37 and show a distinct grouping of low exposure ages of 26 m.y. correlated with Cone crater. Other samples have exposure ages of more than 260 m.y. and identify material with a more complex integrated cosmic age exposure history.

  4. Crossover between collective and independent-particle excitations in quasi-2D electron gas with one filled subband

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.

    2018-05-01

    While it has been recently demonstrated that, for quasi-two-dimensional electron gas (Q2DEG) with one filled subband, the dynamic exchange f x and Hartree f H kernels cancel each other in the low-density regime r s → ∞ (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn-Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.

  5. High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron Mark

    Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such

  6. Identification of hydrophilic group formation on polymer surface during Ar{sup +} ion irradiation in O{sub 2} environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, J.S.; Choi, W.K.; Jung, H.J.

    1997-12-01

    Ar{sup +} ion irradiation on low density polyethylene (LDPE), and polystyrene (PS) was performed in an O{sub 2} environment in order to improve wettability of polymers to water and to identify the formation of hydrophilic groups originated from chemical reactions on the surface of polymers. Doses of a broad Ar{sup +} ion beam of 1 keV energy were changed from 5 {times} 10{sup 15} to 1 {times} 10{sup 17}/cm{sup 2} and the rate of oxygen gas flowing near the sample surface was varied from 0 to 7 ml/min. The contact angle of polymers was not reduced much by Ar{sup +}more » ion irradiation without oxygen gas. However, it dropped largely to a minimum of 35{degree} and 26{degree} for Ar{sup +} ion irradiation in the presence of flowing oxygen gas on LDPE and PS, respectively. From x-ray photoelectron spectroscopy analysis, it was observed that hydrophilic groups were formed on the surface of polymers through an ion-assisted chemical reaction between the ion-induced unstable chains and oxygen. The newly formed hydrophilic group was identified as {single_bond}(C{double_bond}){single_bond} bond and {single_bond}(C{double_bond}O){single_bond}O{single_bond} bond. The contact angle of polymer was greatly dependent on the hydrophilic group formed on the surface.« less

  7. Ar-39-Ar-40 Ages of Two Nakhlites, MIL03346 and Y000593: A Detailed Analysis

    NASA Technical Reports Server (NTRS)

    Park, Jisun; Garrison, Daniel; Bogard, Donald

    2007-01-01

    Radiometric dating of martian nakhlites by several techniques have given similar ages of approx.1.2-1.4 Ga [e.g. 1, 2]. Unlike the case with shergottites, where the presence of martian atmosphere and inherited radiogenic Ar-40 produce apparent Ar-39-Ar-40 ages older than other radiometric ages, Ar-Ar ages of nakhlites are similar to ages derived by other techniques. However, even in some nakhlites the presence of trapped martian Ar produces some uncertainty in the Ar-Ar age. We present here an analysis of such Ar-Ar ages from the MIL03346 and Y000593 nakhlites.

  8. Gas-Induced Rectified Motion of a Solid Object in a Liquid-Filled Housing during Vibration: Analysis and Experiments

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.; Koehler, T. P.

    2017-11-01

    The motion of a solid object (a piston) that fits closely within a housing filled with viscous liquid is studied. If a small amount of gas is introduced and the system is subjected to axial vibration, then the piston exhibits rectified motion when the drag on the piston depends on its position within the housing. An idealized system, in which the piston is suspended freely between two springs and the gas is replaced with two compressible bellows, is analyzed theoretically and studied experimentally. For a given vibration amplitude or frequency, the piston either remains near its original position (``up'') or moves to a different position (``down''), where its spring suspension is compressed. Analytical and experimental regime maps of the amplitudes and frequencies at which the piston is up or down are in good agreement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  9. Effect of glow DBD modulation on gas and thin film chemical composition: case of Ar/SiH4/NH3 mixture

    NASA Astrophysics Data System (ADS)

    Vallade, Julien; Bazinette, Remy; Gaudy, Laura; Massines, Françoise

    2014-06-01

    In recent years, atmospheric pressure plasma-enhanced chemical vapour deposition has been identified as a convenient way to deposit good quality thin films. With this type of process, where the gas mixture is injected on one side of the electrodes, the chemical composition of the gas evolves with the gas residence time in the plasma. The consequence is a possible gradient in the chemical composition over the thickness of in-line coatings. The present work shows that the modulation of the plasma with a square signal significantly reduces this gradient while the drawback of low growth rate is avoided by increasing the discharge power. This study deals with plane/plane glow dielectric barrier discharges (DBDs) in an Ar/NH3/SiH4 gas mixture to make thin films. The 50 kHz discharge power of the glow DBD was varied by increasing voltage and modulating excitation. The impact on (i) the plasma development was observed through emission spectroscopy and (ii) the thin film coating through Fourier transform infrared measurements. It is shown that the modulation significantly decreases the time and the energy needed to achieve stable chemistry, enhances secondary chemistry and limits disturbance induced by impurities because of a slower decrease of SiH4 concentration and thus a higher ratio of SiH4/impurities, all very important points for in-line AP-PECVD development. When the growth rate is limited by diffusion, coating growth continues when the discharge is off, so long as there is a precursor gradient between the surface and the gas bulk. A higher discharge power steepens this gradient, which enhances diffusion from the bulk and thus growth rate.

  10. AR copy number and AR signaling-directed therapies in castration-resistant prostate cancer.

    PubMed

    Salvi, Samanta; Conteduca, Vincenza; Lolli, Cristian; Testoni, Sara; Casadio, Valentina; Zaccheroni, Andrea; Rossi, Lorena; Burgio, Salvatore Luca; Menna, Cecilia; Schepisi, Giuseppe; De Giorgi, Ugo

    2017-11-22

    Adaptive upregulation of androgen receptor (AR) is the most common event involved in the progression from hormone sensitive to castration-resistant prostate cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR copy number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Outcomes of CRPC patients are reported to be highly variable as consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  12. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    PubMed

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  13. Comparative simulation analysis on the ignition threshold of atmospheric He and Ar dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Yao, Congwei; Chang, Zhengshi; Chen, Sile; Ma, Hengchi; Mu, Haibao; Zhang, Guan-Jun

    2017-09-01

    Dielectric barrier discharge (DBD) is widely applied in many fields, and the discharge characteristics of insert gas have been the research focus for years. In this paper, fluid models of atmospheric Ar and He DBDs driven by 22 kHz sinusoidal voltage are built to analyze their ignition processes. The contributions of different electron sources in ignition process are analyzed, including the direct ionization of ground state atom, stepwise ionization of metastable particles, and secondary electron emission from dielectric wall, and they play different roles in different discharge stages. The Townsend direct ionization coefficient of He is higher than Ar with the same electrical field intensity, which is the direct reason for the different ignition thresholds between He and Ar. Further, the electron energy loss per free electron produced in Ar and He DBDs is discussed. It is found that the total electron energy loss rate of Ar is higher than He when the same electrical field is applied. The excitation reaction of Ar consumes the major electron energy but cannot produce free electrons effectively, which is the essential reason for the higher ignition threshold of Ar. The computation results of He and Ar extinction voltages can be explained in the view of electron energy loss, as well as the experimental results of different extinction voltages between Ar/NH3 and He DBDs.

  14. The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Sharp, W.D.; Turrin, B.D.; Renne, P.R.; Lanphere, M.A.

    1996-01-01

    Mauna Kea lava flows cored in the HilIo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ?? 40 and 400 ?? 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has an mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ?? 23, 241 ?? 5, 232 ?? 4, and 199 ?? 9 ka for depths of -415.7 m to -299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at -280 m must be older than the plateau age of 132 ?? 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.

  15. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  16. 40Ar/39Ar Temporal Constraints on Eocene Uplift, Subsidence, and Paleohydrology in the Laramide Foreland, Western U. S.

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Carroll, A. R.; Singer, B. S.

    2004-12-01

    Due to their sensitivity to relatively subtle changes in regional drainage patterns, Eocene lake deposits of the Green River Formation offer a unique and richly detailed record of landscape modification caused by orogenic processes in the broken foreland of the western U. S. Recently obtained 40Ar/39Ar age determinations for 22 interbedded tephras provide excellent temporal resolution of this record, and enable inter-basin correlations at an unprecedented level of precision (approaching 2σ uncertainties of ± k.y.). Green River Formation strata span an interval of ~8 m.y., beginning and ending with freshwater fluvial-lacustrine deposits. Two episodes of regional basin closure and evaporite deposition, each lasting ˜1-2 m.y., coincide with evidence for active Laramide faulting at basin margins and increased rates of sediment accumulation. Evaporite deposition therefore appears to have been principally caused by enhanced uplift of basin sills rather than increased aridity. Regional stratigraphic relations, facies types, and 40Ar/39Ar geochronology permit deduction of the following paleodrainage history: 1) > ˜51.3 Ma: Fluvial-lacustrine deposition occurred in greater Green River, Piceance Creek and Uinta basins. The onset of lacustrine deposition is not well-dated due to a paucity of tephras. 2) ˜51.3-49.7 Ma: The greater Green River and Piceance Creek basins both became terminal sinks that received overflow from neighboring freshwater basins. Coarse clastic basin-marginal alluvial strata, cross-cutting fault relations, and pronounced differential subsidence in both basins indicate active uplift of the Uinta Mountains and surrounding ranges. 3) ˜49.7-49.1 Ma: Lake Gosiute expanded in extent, coincident with an influx of water and sediment derived from volcanic centers to the north. Episodic overflow over the eastern Uinta uplift flushed dissolved solutes southward, freshening Lake Gosiute while evaporite deposition continued in Lake Uinta. 4) ˜49.1-48.4 Ma

  17. Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.

    2015-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.

  18. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    DOE PAGES

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; ...

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less

  19. Ar-39-Ar-40 Evidence for Early Impact Events on the LL Parent Body

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Bogard, D. D.; Garrison, D. H.; Rubin, A. E.

    2006-01-01

    We determined Ar-39-Ar-40 ages of eight LL chondrites, and one igneous inclusion from an LL chondrite, with the object of understanding the thermal history of the LL-chondrite parent body. The meteorites in this study have a range of petrographic types from LL3.3 to LL6, and shock stages from S1 to S4. These meteorites reveal a range of K-Ar ages from 23.66 to 24.50 Ga, and peak ages from 23.74 to 24.55 Ga. Significantly, three of the eight chondrites (LL4, 5, 6) have K-Ar ages of -4.27 Ga. One of these (MIL99301) preserves an Ar-39-Ar-40 age of 4.23 +/- 0.03 Ga from low-temperature extractions, and an older age of 4.52 +/- 0.08 Ga from the highest temperature extractions. In addition, an igneous-textured impact melt DOM85505,22 has a peak Ar-39-Ar-40 age of >= 4.27 Ga. We interpret these results as evidence for impact events that occurred at about 4.27 Ga on the LL parent body that produced local impact melts, reset the Ar-39-Ar-40 ages of some meteorites, and exhumed (or interred) others, resulting in a range of cooling ages. The somewhat younger peak age of 3.74 Ga from GR095658 (LL3.3) suggests an additional impact event close to timing of impact-reset ages of some other ordinary chondrites between 3.6-3.8 Ga. The results from MIL99301 suggest that some apparently unshocked (Sl) chondrites may have substantially reset Ar-39-Ar-40 ages. A previous petrographic investigation of MIL99301 suggested that reheating to temperatures less than or equal to type 4 petrographic conditions (600C) caused fractures in olivine to anneal, resulting in a low apparent shock stage of S1 (unshocked). The Ar-39-Ar-40 age spectrum of MIL99301 is consistent with this interpretation. Older ages from high-T extractions may date an earlier impact event at 4.52 +/- 0.08 Ga, whereas younger ages from lower-T extractions date a later impact event at 4.23 Ar-39-Ar-40 0.03 Ga that may have caused annealing of feldspar and olivine

  20. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    PubMed Central

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163

  1. Feldspar 40Ar/39Ar dating of ICDP PALEOVAN cores

    NASA Astrophysics Data System (ADS)

    Engelhardt, Jonathan Franz; Sudo, Masafumi; Stockhecke, Mona; Oberhänsli, Roland

    2017-11-01

    Volcaniclastic fall deposits in ICDP drilling cores from Lake Van, Turkey, contain sodium-rich sanidine and calcium-rich anorthoclase, which both comprise a variety of textural zoning and inclusions. An age model records the lake's history and is based on climate-stratigraphic correlations, tephrostratigraphy, paleomagnetics, and earlier 40Ar/39Ar analyses (Stockhecke et al., 2014b). Results from total fusion and stepwise heating 40Ar/39Ar analyses presented in this study allow for the comparison of radiometric constraints from texturally diversified feldspar and the multi-proxy lacustrine age model and vice versa. This study has investigated several grain-size fractions of feldspar from 13 volcaniclastic units. The feldspars show textural features that are visible in cathodoluminescence (CL) or back-scattered electron (BSE) images and can be subdivided into three dominant zoning-types: (1) compositional zoning, (2) round pseudo-oscillatory zoning and (3) resorbed and patchy zoning (Ginibre et al., 2004). Round pseudo-oscillatory zoning records a sensitive alternation of Fe and Ca that also reflects resorption processes. This is only visible in CL images. Compositional zoning reflects anticorrelated anorthite and orthoclase contents and is visible in BSE. Eleven inverse isochron ages from total fusion and three from stepwise heating analyses fit the age model. Four experiments resulted in older inverse isochron ages that do not concur with the model within 2σ uncertainties and that deviate from 1 ka to 17 ka minimum. C- and R-type zoning are interpreted as representing growth in magma chamber cupolas, as wall mushes, or in narrow conduits. Persistent compositions of PO-type crystals and abundant surfaces recording dissolution features correspond to formation within a magma chamber. C-type zoning and R-type zoning have revealed an irregular incorporation of melt and fluid inclusions. These two types of zoning in feldspar are interpreted as preferentially

  2. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Dalrymple, G.B.; Obradovich, J.D.

    1998-01-01

    A set of 34 laser total-fusion 40Ar/39Ar analyses of sanidine from a melt layer in crater-fill deposits of the Manson impact structure in Iowa has a weighted-mean age of 74.1 ?? 0.1 Ma. This age is about 9.0 m.y. older than 40Ar/39Ar ages of shocked microcline from the Manson impact structure reported previously by others. The 74.1 Ma age of the sanidine, which is a melt product of Precambrian microcline clasts, indicates that the Manson impact structure played no part in the Cretaceous-Tertiary (K-T) mass extinction at 64.5 Ma. Moreover, incremental-heating 40Ar/39Ar ages of the sanidine show that it is essentially free of excess 40Ar and has not been influenced by postcrystallization heating or alteration. An age spectrum of the matrix of the melt layer shows effects of 39Ar recoil, including older ages in the low-temperature increments and younger ages in the high-temperature increments. At 17 places in eastern South Dakota and Nebraska, shocked quartz and feldspar grains are concentrated in the lower part of the Crow Creek Member of the Pierre Shale (Upper Cretaceous). The grains are largest (3.2 mm) in southeastern South Dakota and decrease in size (0.45 mm) to the northwest, consistent with the idea that the Manson impact structure was their source. The ubiquitous presence of shocked grains concentrated in a thin calcarenite at the base of the Crow Creek Member suggests it is an event bed recording an instant of geologic time. Ammonites below and above the Crow Creek Member limit its age to the zone of Didymoceras nebrascense of earliest late Campanian age. Plagioclase from a bentonite bed in this zone in Colorado has a 40Ar/39Ar age of 74.1 ?? 0.1 Ma commensurate with our sanidine age of 74.1 Ma for the Manson impact structure. 40Ar/39Ar ages of bentonite beds below and above the Crow Creek are consistent with our 74.1 ?? 0.1 Ma age for the Manson impact structure and limit its age to the interval ?? 74.5 0.1 to 73.8 ?? 0.1 Ma. Recently, two origins for the

  3. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  4. Detector Calibration to Spontaneous Fission for the Study of Superheavy Elements Using Gas-Filled Recoil Ion Separator

    NASA Astrophysics Data System (ADS)

    Takeyama, Mirei; Kaji, Daiya; Morimoto, Kouji; Wakabayashi, Yasuo; Tokanai, Fuyuki; Morita, Kosuke

    Detector response to spontaneous fission (SF) of heavy nuclides produced in the 206Pb(48Ca,2n)252No reaction was investigated using a gas-filled recoil ion separator (GARIS). Kinetic energy distributions of the SF originating from 252No were observed by tuning implantation depth of evaporation residue (ER) to the detector. The focal plane detector used in the GARIS experiments was well calibrated by comparing with the known total kinetic energy (TKE) of SF due to 252No. The correction value for the TKE calculation was deduced as a function of the implantation depth of 252No to the detector. Furthermore, we have investigated the results by comparing with those obtained by a computer simulation using the particle and heavy ion transport code system (PHITS).

  5. 40Ar/39Ar technique of KAr dating: a comparison with the conventional technique

    USGS Publications Warehouse

    Brent, Dalrymple G.; Lanphere, M.A.

    1971-01-01

    K-Ar ages have been determined by the 40Ar/39Ar total fusion technique on 19 terrestrial samples whose conventional K-Ar ages range from 3.4 my to nearly 1700 my. Sample materials included biotite, muscovite, sanidine, adularia, plagioclase, hornblende, actinolite, alunite, dacite, and basalt. For 18 samples there are no significant differences at the 95% confidence level between the KAr ages obtained by these two techniques; for one sample the difference is 4.3% and is statistically significant. For the neutron doses used in these experiments (???4 ?? 1018 nvt) it appears that corrections for interfering Ca- and K-derived Ar isotopes can be made without significant loss of precision for samples with K/Ca > 1 as young as about 5 ?? 105 yr, and for samples with K/Ca < 1 as young as about 107 yr. For younger samples the combination of large atmospheric Ar corrections and large corrections for Ca- and K-derived Ar may make the precision of the 40Ar/39Ar technique less than that of the conventional technique unless the irradiation parameters are adjusted to minimize these corrections. ?? 1971.

  6. Melt-inclusion-hosted excess 40Ar in quartz crystals of the Bishop and Bandelier magma systems

    USGS Publications Warehouse

    Winick, J.A.; McIntosh, W.C.; Dunbar, N.W.

    2001-01-01

    40Ar/39Ar experiments on melt-inclusion-bearing quartz (MIBQ) from the Bishop and Bandelier Tuff Plinian deposits indicate high concentrations of excess 40Ar in melt inclusions. Two rhyolite glass melt inclusion populations are present in quartz; exposed melt inclusions and trapped melt inclusions. Air-abrasion mill grinding and hydrofluoric acid treatments progressively remove exposed melt inclusions while leaving trapped melt inclusions unaffected. Laser step-heating of MIBQ yields increasing apparent ages as a function of exposed melt inclusion removal, reflecting the higher nonatmospheric 40Ar concentrations hosted in trapped melt inclusions. Exposed melt inclusion-free MIBQ from the Bishop, Upper Bandelier, and Lower Bandelier Tufts yield total-gas ages of 3.70 ?? 1.00 Ma, 11.54 ?? 0.87 Ma, and 14.60 ?? 1.50 Ma, respectively. We interpret these old apparent ages as compelling evidence for the presence of excess 40Ar in MIBQ. Trapped melt inclusions in sanidine phenocrysts may contain excess 40Ar concentrations similar to those in MIBQ. This excess 40Ar has the potential to increase single-crystal laser-fusion ages of sanidine by tens of thousands of years, relative to the actual eruption age.

  7. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  8. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  9. Spectroscopic Characteristic and Analytical Capability of Ar-N₂ Inductively Coupled Plasma in Axially Viewing Optical Emission Spectrometry.

    PubMed

    Ohata, Masaki

    2016-01-01

    The spectroscopic characteristics and analytical capability of argon-nitrogen (Ar-N2) inductively coupled plasma (ICP) in axially viewing optical emission spectrometry (OES) were examined and figures of merit were determined in the present study. The spectroscopic characteristics such as the emission intensity profile and the excitation temperature observed from the analytical zone of Ar-N2 ICP in axially viewing ICPOES, in order to elucidate the enhancement of the emission intensity of elements obtained in our previous study, were evaluated and compared to those of the standard ICP. The background and emission intensities of elements as well as their excitation behavior for both atom and ion lines were also examined. As results, a narrower emission intensity profile and an increased excitation temperature as well as enhancements for both background and emission intensities of elements, which could be due to the ICP shrunken as well as the enhancement of the interaction between the central channel of the ICP and samples introduced, were observed for Ar-N2 ICP in axially viewing OES. In addition, the elements with relatively higher excitation and ionization energies such as As, Bi, Cd, Ni, P, and Zn revealed larger enhancements of the emission intensities as well as improved limits of detection (LODs), which were also attributed to the enhanced interaction between Ar-N2 ICP and the samples. Since the Ar-N2 ICP could be obtained easily only by the addition of a small amount of N2 gas to the Ar plasma gas of the standard ICP and no optimization on the alignment between Ar-N2 ICP and the spectrometer in commercially available ICPOES instruments was needed, it could be utilized as simple and optional excitation and ionization sources in axially viewing ICPOES.

  10. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  11. Legacy K/Ar and 40Ar/39Ar geochronologic data from the Alaska-Aleutian Range batholith of south-central Alaska

    USGS Publications Warehouse

    Koeneman, Lisa L.; Wilson, Frederic H.

    2018-04-06

    Sample descriptions and analytical data for more than 200 K/Ar and 40Ar/39Ar analyses from rocks of the Alaska-Aleutian Range batholith of south-central Alaska are reported here. Samples were collected over a period of 20 years by Bruce R. Reed and Marvin A. Lanphere (both U.S. Geological Survey) as part of their studies of the batholith.

  12. 40Ar/36Ar geochronology on a quadrupole mass spectrometer: Where are we going?

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Wijbrans, J. R.; Kuiper, K. F.; Fenton, C. R.; Williams, A. J.

    2009-04-01

    40Ar/39Ar analysis has passed many milestones since its first application (Wänke & König, 1959). From the early all-glass Reynolds-type vacuum system to today's high quality, bakeable all-metal piping and valve systems, the evolution of ultra high vacuum systems has been considerable. Extraction systems have faced similar changes over time. Early furnaces made partially of glass were later replaced by full metal constructs containing a high temperature resistant molybdenum alloy tube and heating mechanism, sometimes contained within an insulating secondary vacuum chamber. Laser extraction techniques further refined the approach allowing very small samples or sample parts to be analyzed. The principal type of mass spectrometer used for 40Ar/36Ar geochronology is the magnetic sector instrument, which has the resolution and sensitivity necessary for measuring argon isotopes and achieving high precision over a large age range. We present 40Ar/39Ar data from basalt samples collected from a number of different locations, all obtained using the Hiden HAL Series 1000 quadrupole mass spectrometer at Vrije University, Amsterdam. We show that quadrupole technology is not only a viable option in K-Ar geochronology (Rouchon et al., 2008) but also in 40Ar/39Ar geochronology. The data was obtained from groundmass hand-picked from 200-500 um size fractions. Sample amounts of 200 to 500 mg were used for incremental heating experiments. The quality of the data is demonstrated by convergence of plateau and isochron ages, replicate analyses and by comparison to results of independent studies. Sample ages range from 40 ka to 400 ka, demonstrating the potential of quadrupole instruments for dating even very young rocks using the 40Ar/39Ar incremental heating technique. Rouchon, V., Lefevre, J.-C., Quidelleur, X., Guerin, G., Gillot, P.-Y. (2008): Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: A potential for K-Ar geochronology. International Journal of

  13. Ar-39-Ar-40 Ages of Euerites and the Thermal History of Asteroid 4-Vesta

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.

    2002-01-01

    Eucrite meteorites are igneous rocks that derive from a large asteroid, probably 4 Vesta. Prior studies have shown that after eucrites formed, most were subsequently metamorphosed to temperatures up to equal to or greater than 800 C, and much later many were brecciated and heated by large impacts into the parent body surface. The uncommon basaltic, unbrecciated eucrites also formed near the surface but presumably escaped later brecciation, whereas the cumulate eucrites formed at depth where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new Ar-39-Ar-40 ages for nine eucrites classified as basaltic but unbrecciated, six eucrites classified as cumulate, and several basaltic-brecciated eucrites. Relatively precise Ar-Ar ages of two cumulate eucrites (Moama and EET87520) and four unbrecciated eucrites give a tight cluster at 4.48 +/1 0.01 Gyr. Ar-Ar ages of six additional unbrecciated eucrites are consistent with this age, within their larger age uncertainties. In contrast, available literature data on Pb-Pb isochron ages of four cumulate eucrites and one unbrecciated eucrite vary over 4.4-4.515 Gyr, and Sm-147 - Nd-143 isochron ages of four cumulate and three unbrecciated eucrites vary over 4.41-4.55 Gyr. Similar Ar-Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as previously proposed. Rather, we suggest that these cumulate and unbrecciated eucrites resided at depth where parent body temperatures were sufficiently high to cause the K-Ar and some other chronometers to remain open diffusion systems. From the strong clustering of Ar-Ar ages at approximately 4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event approximately 4.48 Gyr ago, which quickly cooled the samples and started the K-Ar chronometer. A large (approximately 460 km) crater

  14. Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma

    NASA Astrophysics Data System (ADS)

    Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu

    2006-09-01

    We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.

  15. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  16. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma fish canyon tuff reference standard

    USGS Publications Warehouse

    Lanphere, M.A.; Baadsgaard, H.

    2001-01-01

    The accuracy of ages measured using the 40Ar/39Ar technique is affected by uncertainties in the age of radiation fluence-monitor minerals. At present, there is lack of agreement about the ages of certain minerals used as fluence monitors. The accuracy of the age of a standard may be improved if the age can be measured using different decay schemes. This has been done by measuring ages on minerals from the Oligocene Fish Canyon Tuff (FCT) using the K-Ar, 40Ar/39Ar. Rb-Sr and U/Pb methods. K-Ar and 40Ar/39Ar total fusion ages of sanidine, biotite and hornblende yielded a mean age of 27.57 ?? 0.36 Ma. The weighted mean 40Ar/39Ar plateau age of sanidine and biotite is 27.57 ?? 0.18 Ma. A biotite-feldspar Rb-Sr isochron yielded an age of 27.44 ?? 0.16 Ma. The U-Pb data for zircon are complex because of the presence of Precambrian zircons and inheritance of radiogenic Pb. Zircons with 207Pb/235U < 0.4 yielded a discordia line with a lower concordia intercept of 27.52 ?? 0.09 Ma. Evaluation of the combined data suggests that the best age for FCT is 27.51 Ma. Published by Elsevier Science B.V.

  17. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  18. Experimental study of 38Ar+α reaction cross sections relevant to the 41Ca abundance in the solar system

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Bojazi, M. J.; Mohr, P.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Harker, J.; Hoffman, C. R.; Jiang, C. L.; Kuvin, S. A.; Meyer, B. S.; Rehm, K. E.; Santiago-Gonzalez, D.; Sethi, J.; Ugalde, C.; Winkelbauer, J. R.

    2018-05-01

    In massive stars, the 41Ca(n ,α )38Ar and 41K(p ,α )38Ar reactions have been identified as the key reactions governing the abundance of 41Ca, which is considered as a potential chronometer for solar system formation. So far, due to experimental limitations, the 41Ca(n ,α )38Ar reaction rate is solely based on statistical model calculations. In the present study, we have measured the time-inverse 38Ar(α ,n )41Ca and 38Ar(α ,p )41K reactions using an active target detector. The reactions were studied in inverse kinematics using a 133-MeV 38Ar beam and 4He as the active-gas target. Both excitation functions were measured simultaneously in the energy range of 6.8 ≤Ec .m .≤9.3 MeV. Using detailed balance the 41Ca(n ,α )38Ar and 41K(p ,α )38Ar reaction rates were determined, which suggested a 20% increase in the 41Ca yield from massive stars.

  19. Reconstructing western Grand Canyon's lava dams and their failure mechanisms: new insights from geochemical correlation and 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Crow, R.; Karlstrom, K. E.; McIntosh, W. C.; Peters, L.; Dunbar, N. W.

    2010-12-01

    New geochemical analyzes and 40Ar/39Ar dating of lava dam remnants allows for the more accurate reconstruction of the timing, extent, and structure of western Grand Canyon’s lava dams. Whole-rock major, trace, and rare-earth element (REE) analyzes on over 60 basaltic lava dam remnants, cascades, plugs, and basaltic alluvium, show compositional variation from basanites to alkali basalts to tholeiites. Whitmore Canyon flows, for example, are some of the only tholeiitic flows and have a distinguishable trace and REE composition, which allows for correlation of dam remnants. Over 30 new high-precision 40Ar/39Ar dates also aid in remnant correlation and establish a better-constrained sequence of intra-canyon lava dams. Reliable 40Ar/39Ar dates on western Grand Canyon’s intra-canyon basalts range from ca. 100 ka to 840 ka (new date). The best understood lava dam formed from tholeiitic flows that erupted on the north rim, flowed down Whitmore side canyon and blocked a 6-km-long reach of the Grand Canyon. The youngest of these flows is unique because we know its age (200ka), its composition (tholeiitic), and the exact area where it entered Grand Canyon. The highest flow in the resulting dam, Whitmore Cascade, is capped with very coarse basaltic alluvium that previous workers have attributed to an upstream catastrophic dam failure event at about 200 ka. However, strong similarities between the geochemistry and age of the alluvium with the underlying Whitmore Cascade flow suggest that the alluvial deposit is related to failure of the 200 ka Whitmore Cascade dam itself. Similarly the 100 ka Upper Gray Ledge flow is commonly overlain by a balsaltic alluvium that is indistinguishable in terms of age and geochemistry from the underlying Upper Gray Ledge flow. These observations lead to a new model for Grand Canyon lava dams by which lava dams undergo multi-staged failure where the upstream parts of dams fail quickly (sometimes catastrophically) but downstream parts are

  20. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powersmore » yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.« less

  1. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Dan

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydratesmore » and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.« less

  2. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.

    2013-06-01

    The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.

  3. Modular data acquisition system and its use in gas-filled detector readout at ESRF

    NASA Astrophysics Data System (ADS)

    Sever, F.; Epaud, F.; Poncet, F.; Grave, M.; Rey-Bakaikoa, V.

    1996-09-01

    Since 1992, 18 ESRF beamlines are open to users. Although the data acquisition requirements vary a lot from one beamline to another, we are trying to implement a modular data acquisition system architecture that would fit with the maximum number of acquisition projects at ESRF. Common to all of these systems are large acquisition memories and the requirement to visualize the data during an acquisition run and to transfer them quickly after the run to safe storage. We developed a general memory API handling the acquisition memory and its organization and another library that provides calls for transferring the data over TCP/IP sockets. Interesting utility programs using these libraries are the `online display' program and the `data transfer' program. The data transfer program as well as an acquisition control program rely on our well-established `device server model', which was originally designed for the machine control system and then successfully reused in beamline control systems. In the second half of this paper, the acquisition system for a 2D gas-filled detector is presented, which is one of the first concrete examples using the proposed modular data acquisition architecture.

  4. Oldest human footprints dated by Ar/Ar

    NASA Astrophysics Data System (ADS)

    Scaillet, Stéphane; Vita-Scaillet, Grazia; Guillou, Hervé

    2008-11-01

    Fossilized human trackways are extremely rare in the geologic record. These bear indirect but invaluable testimony of human/hominid locomotion in open air settings and can provide critical information on biomechanical changes relating to bipedalism evolution throughout the primitive human lineage. Among these, the "Devil's footsteps" represent one of the best preserved human footprints suite recovered so far in a Pleistocene volcanic ash of the Roccamonfina volcano (southern Italy). Until recently, the age of these footprints remained speculative and indirectly correlated with a loosely dated caldera-forming eruption that produced the Brown Leucitic Tuff. Despite extensive hydrothermal alteration of the pyroclastic deposit and variable contamination with excess 40Ar, detailed and selective 40Ar/ 39Ar laser probe analysis of single leucite crystals recovered from the ash deposit shows that the pyroclastic layer and the footprints are 345 ± 6 kyr old (1 σ), confirming for the first time that these are the oldest human trackways ever dated, and that they were presumably left by the modern human predecessor, Homo heidelbergensis, close to Climatic Termination IV.

  5. Radioactive rare gases and tritium in the sample return container, and the $sup 37$Ar and $sup 39$Ar depth profile in the Apollo 16 drill stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoenner, R.W.; Davis, R. Jr.; Bauer, M.

    1973-01-01

    The gas was extracted from the sample return container from the Apollo 16 and 17 missions by adsorption on charcoal and activated vanadium metal. The hydrogen, argon, and radon were separated and counted to give the tritium, /sup 37/Ar, /suyp 39/Ar, and /sup 222 /Rn activities. The tritium and argon activities observed could be explained by diffusive losses of these gases from the fine material in the container. There was no excess tritium present in the Apollo 17 containers that could be attributed to solar tritons remaining from the intense flare of August 4, 1972. The /sup 222/Rn observed inmore » the sample return container was interpreted as an emanation product from lunar fines and an emanation yield of 1 x 10/sup -4/ was calculated. This yield is consistent with the low radon content observed in the lunar atmosphere. The tritium, sup 37/Ar, / sup 39/Ar, and /sup 222/Rn activities and the K, Ca, Ti, Fe, and Mn contents were measured on a set of samples from the Apollo 16 deep drill stem at depths from 83 to 343 g/cm/sup 2/. The /sup 37/Ar and /sup 39/Ar activities combined with similar measurements at more shallow depth by Fireman and associates (SAO) give the complete activity proflle in the lunar regolith. Since /sup 37/Ar is produced mainly by the /sup 40/Ca(n, alpha )/su p 37/Ar reaction it is possible to determine the neutron production rate in the regolith as a function of the depth. The /sup 222/Rn extracted from the samples by vacuum melting was found to be lower than expected in some samples based upon their uranium contents. The hydrogen and helium contents of the drill stem samples were measured and found to be relatively uniform with depth in contrast to similar measurements on Apollo 15 and 17 drill stems. The H/He atom ratio was higher than the accepted solar-wind value by a factor of two, possibly due to water contamination. (auth)« less

  6. AR Signaling in Breast Cancer.

    PubMed

    Rahim, Bilal; O'Regan, Ruth

    2017-02-24

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.

  7. AR Signaling in Breast Cancer

    PubMed Central

    Rahim, Bilal; O’Regan, Ruth

    2017-01-01

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies. PMID:28245550

  8. Working Gas Selection of the Honeycomb Converter-Based Neutron Detector

    NASA Astrophysics Data System (ADS)

    Fang, Zhujun; Yang, Yigang; Li, Yulan; Wang, Xuewu

    2017-07-01

    To reduce the manufacturing difficulty and improve the robustness of traditional boron-lined detectors that may replace the 3He counter, the honeycomb neutron converter-based gaseous neutron detector has been proposed. A drift electric field is applied to drive electrons ionized by α or 7Li after the 10B(n, α)7Li reaction from their origination positions to the incident surface of the gas electron multiplier (GEM), which multiplies electrons and forms the neutron signal. As the working gas affects the energy deposition of α or 7Li, the transverse diffusion of electrons in the migration process, as well as the multiplication of electrons in the GEM detector, the working gas selection of the honeycomb converter-based detector would be very important. Fourteen different working gases are investigated in detail through simulation research. Four working gases, Ar:iC4H10:CF4 = 90:7:3, Ar:CO2 = 95:5, Ar:CH4 = 90:10, and Ar:DME = 95:5, are experimentally tested. Both the simulation and experimental results demonstrate that working gases of Ar:iC4H10:CF4 = 90:7:3, Ar:CO2 = 95:5, and Ar:DME = 95:5 show good performances benefitting from both the large stopping powers of α or 7Li and the small transverse diffusion coefficients of electrons. The simulation results indicate that the detection efficiency with one of the three gases is 1.33 to 1.48 times the Ar:CH4 = 90:10, while the experimental results demonstrate that there is 1.34-1.49 times of the detection efficiency. The research in this paper helps improve the performance of the honeycomb converter-based neutron detector.

  9. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy

    USGS Publications Warehouse

    Lanphere, Marvin A.; Champion, Duane E.; Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Tedesco, Dario; Calvert, Andrew T.

    2007-01-01

    The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925±66 years in 2004 (1σ uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes.

  10. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    NASA Astrophysics Data System (ADS)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  11. Ar-Ar Dating of Martian Meteorite, Dhofar 378: An Early Shock Event?

    NASA Technical Reports Server (NTRS)

    Park, J.; Bogard, D. D.

    2006-01-01

    Martian meteorite, Dhofar 378 (Dho378) is a basaltic shergottite from Oman, weighing 15 g, and possessing a black fusion crust. Chemical similarities between Dho378 and the Los Angeles 001 shergottite suggests that they might have derived from the same Mars locale. The plagioclase in other shergottites has been converted to maskelenite by shock, but Dho378 apparently experienced even more intense shock heating, estimated at 55-75 GPa. Dho378 feldspar (approximately 43 modal %) melted, partially flowed and vesiculated, and then partially recrystallized. Areas of feldspathic glass are appreciably enriched in K, whereas individual plagioclases show a range in the Or/An ratio of approximately 0.18-0.017. Radiometric dating of martian shergottites indicate variable formation times of 160-475 Myr, whereas cosmic ray exposure (CRE) ages of shergottites indicate most were ejected from Mars within the past few Myr. Most determined Ar-39-Ar-40 ages of shergottites appear older than other radiometric ages because of the presence of large amounts of martian atmosphere or interior Ar-40. Among all types of meteorites and returned lunar rocks, the impact event that initiated the CRE age very rarely reset the Ar-Ar age. This is because a minimum time and temperature is required to facilitate Ar diffusion loss. It is generally assumed that the shock-texture characteristics in martian meteorites were produced by the impact events that ejected the rocks from Mars, although the time of these shock events (as opposed to CRE ages) are not directly dated. Here we report Ar-39-Ar-40 dating of Dho378 plagioclase. We suggest that the determined age dates the intense shock heating event this meteorite experienced, but that it was not the impact that initiated the CRE age.

  12. Empirical test of an illite/muscovite 40Ar/39Ar thermochronometer

    NASA Astrophysics Data System (ADS)

    Verdel, C.; van der Pluijm, B. A.; Niemi, N. A.; Hall, C. M.

    2010-12-01

    Minerals which both preserve age information and indicate metamorphic conditions are particularly useful in thermochronology. Variations in sub-greenschist facies metamorphism have traditionally been quantified in terms of the illite to muscovite transition, a transformation which involves the growth of crystallites of increasing thickness at higher metamorphic temperatures. Thickness variations may influence Ar retention within these K-rich minerals, both in nature and during neutron irradiation. Along a transect in the southwestern US from the Grand Canyon to Death Valley, metamorphic conditions of a stratigraphic interval (the Middle Cambrian Bright Angel Shale and laterally equivalent Carrara Fm.) range from zeolite facies in the east to greenschist facies in the west, as determined by estimating illite crystallite thickness with X-ray diffraction. 40Ar/39Ar step-heating experiments were conducted on illite/muscovite-rich, micron to submicron grain sizes of these shales that were encapsulated in quartz tubes prior to irradiation. The proportion of 39Ar expelled during irradiation decreases in these samples as both crystallite thickness and grain size increases. Spectra from the least metamorphosed samples (diagenetic zone) are staircase-shaped and reach maximum ages that appear to reflect the age of detrital muscovite. Spectra from the highest grade samples (epizone) display partial plateaus and yield much younger maximum ages. Based on these findings we conclude that Ar can escape from illite via two processes: loss from low retention sites on crystallite edges and c-axis perpendicular volume diffusion. Based on our empirical data, the closure temperature of illite appears to lie at or near the anchizone-epizone bounday, or roughly 200-300 °C. Illite/muscovite thickness and 40Ar/39Ar data may therefore be useful for studies of detrital muscovite geochronology in very low grade shales and as a thermochronometer for higher grade pelites.

  13. 78 FR 58604 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... questions the condition of all of the cylinders owned and filled by Komer Carbonic Corp. in the past 5 years... through a visual inspection and a pressure test at least once every 5 years. Cylinders that are not...

  14. Alternatives to argon for gas stopping volumes in the B194 neutron imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleuel, D. L.; Anderson, S.; Caggiano, J. A.

    2017-05-17

    In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.

  15. Experimental investigations of electron density and ion energy distributions in dual-frequency capacitively coupled plasmas for Ar/CF{sub 4} and Ar/O{sub 2}/CF{sub 4} discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Gao, Fei

    2014-01-07

    The electron density and ion energy distribution (IED) are investigated in low-pressure dual-frequency capacitively coupled Ar/CF{sub 4} (90%/10%) and Ar/O{sub 2}/CF{sub 4} (80%/10%/10%) plasmas. The relations between controllable parameters, such as high-frequency (HF) power, low-frequency (LF) power and gas pressure, and plasma parameters, such as electron density and IEDs, are studied in detail by utilizing a floating hairpin probe and an energy resolved quadrupole mass spectrometer, respectively. In our experiment, the electron density is mainly determined by the HF power and slightly influenced by the LF power. With increasing gas pressure, the electron density first goes up rapidly to amore » maximum value and then decreases at various HF and LF powers. The HF power also plays a considerable role in affecting the IEDs under certain conditions and the ion energy independently controlled by the LF source is discussed here. For clarity, some numerical results obtained from a two-dimensional fluid model are presented.« less

  16. Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods

    DTIC Science & Technology

    2007-01-01

    memory is represented by higher values of d. 4.1. ARIMA and EMD We applied an ARIMA (0,d,0) model to predict the behaviour of the final section of the...to a simplified ARIMA (0,d,0) model , which performed better than the linear interpolant but less effectively than the KL algorithm, disregarding edge...ar X iv :p hy si cs /0 70 12 38 v1 22 J an 2 00 7 Turbulence Time Series Data Hole Filling using Karhunen-Loève and ARIMA methods M P J L

  17. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells

    PubMed Central

    Bolton, Eric C.

    2015-01-01

    The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation. PMID:26372468

  18. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  19. Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Müller, P.

    2008-10-01

    Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.

  20. An alternative hypothesis for high-T 40Ar/39Ar age spectrum discordance in polyphase extraterrestrial materials

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Shuster, D. L.; Renne, P. R.; Weiss, B. P.

    2009-12-01

    A common feature observed in 40Ar/39Ar age spectra of extraterrestrial (ET) rocks is a conspicuous decrease in the ages of high temperature extractions relative to lower temperature steps and a correlated increase in Ca/K, often succeeded by a monotonic increase in ages. This feature is routinely attributed to recoil-implanted 39Ar from a potassium (K)-rich donor phase into a K-poor receptor phase (e.g., 1,2). While 39Ar recoil redistribution is undoubtedly manifested in many terrestrial and ET 40Ar/39Ar whole-rock age spectra, it cannot easily explain the magnitude of high release temperature 40Ar*/39ArK anomalies observed in Martian meteorites ALH 84001 and Nakhla, as well as other course-grained meteorites and lunar rocks. Depending on the aliquot and sample, 50 - 100% of the pyroxene release spectra in ALH 84001 and Nakhla appear strongly perturbed to lower ages. As the mean recoil distance of 39Ar ~0.1 µm, the recoil hypothesis demands that a high-K phase be ubiquitously distributed amongst sub-micron to micron sized pyroxene crystals to account for the observed pyroxene age spectra. However, in both Nakhla and ALH 84001, pyroxene is often completely isolated from high-K phases and individual grains commonly exceed 100 µm in diameter. 40Ar/39Ar analyses of pyroxene-bearing terrestrial basalts, wherein fine-grained pyroxene and plagioclase are intimately adjoined, show that recoil-implanted 39Ar into pyroxene produces much less precipitous anomalies in 40Ar*/39ArK, as predicted by the recoil lengthscale. An alternative hypothesis is that whole-rock age spectra of ET samples with anomalously low ages at high temperatures may reflect diffusive 40Ar distributions within considerably degassed pyroxene grains. Owing to apparent differences in activation energies between glass and/or plagioclase and pyroxene, 40Ar may diffuse more rapidly from pyroxene under certain high-temperature conditions (i.e., above the temperature at which the extrapolated Ar Arrhenius

  1. The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.

    2017-10-01

    The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.

  2. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  3. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Lanphere, Marvin; Champion, Duane; Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Tedesco, Dario; Calvert, Andrew

    2007-01-01

    The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925±66 years in 2004 (1σ uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes.

  4. Experimental Constraints on He, Ne, Ar Behavior at Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Kelley, S. P.; Parman, S. W.; Cooper, R. F.

    2010-12-01

    We have experimentally constrained He, Ne and Ar mineral-melt partitioning for olivine, enstatite and spinel under mantle P-T conditions. The experiments were run in a piston cylinder apparatus. Run products were analyzed by UV laser ablation microprobe (UVLAMP). Our data (Ol, Opx, Sp), along with literature data (Cpx), suggest He, Ne and Ar are incompatible during mantle melting. Gem quality crystals of En100, Sp and Fo90 were polished using colloidal silica and loaded along with a MgO rich, synthetic MORB powder into a graphite inner and Pt outer capsule. Within the inner capsule, crystals were faced against graphite, an identical crystal or polished glassy carbon. Equal pressures (40-60 total bars) of He, Ne and Ar were loaded into the outer capsule before it was welded closed. The run conditions were 1450C and 1-2 GPa for 10 hrs (Brown University). Depth profiles of the mineral faces were obtained using a 193 nm excimer laser (Open University). The large crystal area and short wavelength laser allows for measurements with high depth resolution and concentration precision: a 400 um aperture with 150 nm ablation depth can provide a detection limit (3 sigma > blank) of ~500 ppb He, ~1 ppm Ne and ~500 ppb Ar. Three mineral ablation pits were imaged using a white light interferometer at Tufts University and indicate an ablation rate of ~25 nm/pulse. Glass ablation rates are estimated using previous measurements. The melts were generally understaturated with respect to He, Ne and Ar (1-10, 3-200 and 4-1000 PPM, respectively). Concentrations in the minerals were mostly below detection limits. Where detectable, near surface gas concentrations visually correlate with the amount of adhering graphite. This could be due to trapped/adsorbed gas in the graphite or to surface deformation produced by the graphite. The surface with the least adhering graphite and smoothest surface (faced against glassy carbon) shows no observable near surface enrichment of He, Ne or Ar. Given

  5. Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber.

    PubMed

    Bauerschmidt, S T; Novoa, D; Russell, P St J

    2015-12-11

    In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.

  6. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, Dariush K.

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  7. Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 38Ar and radiogenic 40Ar

    DOE PAGES

    Shuster, David L.; Cassata, William S.

    2015-02-10

    The simultaneous diffusion of both cosmogenic 38Ar and radiogenic 40Ar from solid phases is controlled by the thermal conditions of rocks while residing near planetary surfaces. Combined observations of 38Ar/ 37Ar and 40Ar/ 39Ar ratios during stepwise degassing analyses of neutron-irradiated Apollo samples can distinguish between diffusive loss of Ar due to solar heating of the rocks and that associated with elevated temperatures during or following impact events; the data provide quantitative constraints on the durations and temperatures of each process. From sequentially degassed 38Ar/ 37Ar ratios can be calculated a spectrum of apparent 38Ar exposure ages versus the cumulativemore » release fraction of 37Ar, which is particularly sensitive to conditions at the lunar surface typically over ~106–108 year timescales. Due to variable proportions of K- and Ca-bearing glass, plagioclase and pyroxene, with variability in the grain sizes of these phases, each sample will have distinct sensitivity to, and therefore different resolving power on, past near-surface thermal conditions. Furthermore, we present the underlying assumptions, and the analytical and numerical methods used to quantify the Ar diffusion kinetics in multi-phase whole-rock analyses that provide these constraints.« less

  8. Study on optical emission analysis of AC air water discharges under He, Ar and N2 environments

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Kostyuk, P. V.; Han, S. B.; Kim, J. S.; Vu, C. N.; Lee, H. W.

    2006-09-01

    In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen evolution. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates and point-to-plane electrode gap distance. The experiments were primarily focused on the optical emission of the near UV range, providing a sufficient energy threshold for water dissociation and excitation. The OH(A 2Σ+ → X 2Π, Δν = 0) band optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. Despite the fact that energy input was high, the OH(A-X) optical emission was found to be negligible at the zero gap distance between the tip of the metal rod and water surface. In the gas atmosphere saturated with water vapour the OH(A-X) intensity was relatively high compared with the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. The gas phase was found to be more favourable because of less energy consumption in the cases of He and Ar carrier gases, and quenching mechanisms of oxygen in the N2 carrier gas atmosphere, preventing hydrogen from recombining with oxygen. In the gas phase the discharge was at a steady state, in contrast to the other phases, in which bubbles interrupted propagation of the plasma channel. Optical emission intensity of OH(A-X) band increased according to the flow rate or residence time of the He feeding gas. Nevertheless, a reciprocal tendency was acquired for N2 and Ar carrier gases. The peak value of OH(A-X) band optical emission intensity was observed near the water surface; however in the cases of Ar and N2 with a 0.5 SLM flow rate, it was shifted below the water surface. Rotational temperature was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which is sufficient for hydrogen production.

  9. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  10. Ar-39-Ar-40 Age Dating Of Two Angrites and Two Brachinites

    NASA Technical Reports Server (NTRS)

    Garrison, Daniel; Bogard, Donald

    2003-01-01

    Angrites are a rare group (approximately 7 known) of igneous meteorites with basalt-like composition, which probably derive from a relatively small parent body that differs from those of other igneous meteorites. Angrites show evidence for extinct Mn-53, Sm-146, and Pu-244, and precise U-Pb, and Pb-Pb ages of 4.558 Gyr for two angrites define the time of early parent body differentiation. The Sm-147-Nd-143 ages of two angrites range between 4.53 +/- 0.04 and 4.56 +/- 0.04 Gyr, but no Ar-39-Ar-40 or Rb-Sr ages have been reported. Most angrites show no evidence for either shock brecciation or metamorphism. Brachinites are another very rare group' of differentiated meteorites consisting primarily of olivine, with minor augite, chromite, Fe-sulfides, and sometimes plagioclase and opx. Presence of excess Xe-129 and excess Cr53 from decay of Mn-53 in some brachinites indicate that they also formed very early. Brachinite petrogenesis is poorly defined. They may be igneous cumulates or metamorphic products of chondritic-like starting material. If after their formation, angrites and brachinites cooled quickly with minimal subsequent heating, then one might expect them to show uniquely old K-Ar ages, at least in comparison to other differentiated meteorites such as eucrites and mesosiderites. Most angrites and brachinites contain very little, if any K-feldspar, which has deterred measurements of their Ar-Ar ages. We made Ar-39-Ar-40 analyses on two angrites, LEW86010 (metamorphosed) and D'Orbigny, and on two brachinites, EET99402 and Brachina. All are finds. Any feldspar in angrites is highly calcic, with expected K concentrations of <100 ppm. We selected LEW86010 and D'Orbigny because they have been the objects of several other studies and because chemical analyses suggested [K] was approximately 70 ppm in both meteorites. Brachina contains approximately 9.9% plagioclase of higher K-content than angrites, and EET99402 is estimated to contain approximately 5% K

  11. Noble gas cluster ions

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10-31, 3.58 × 10-31, 0.23 × 10-31cm6/s, respectively for Neon, Argon, Xenon cluster ions.

  12. Etching Characteristics of VO2 Thin Films Using Inductively Coupled Cl2/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Ham, Yong-Hyun; Efremov, Alexander; Min, Nam-Ki; Lee, Hyun Woo; Yun, Sun Jin; Kwon, Kwang-Ho

    2009-08-01

    A study on both etching characteristics and mechanism of VO2 thin films in the Cl2/Ar inductively coupled plasma was carried. The variable parameters were gas pressure (4-10 mTorr) and input power (400-700 W) at fixed bias power of 150 W and initial mixture composition of 25% Cl2 + 75% Ar. It was found that an increase in both gas pressure and input power results in increasing VO2 etch rate while the etch selectivity over photoresist keeps a near to constant values. Plasma diagnostics by Langmuir probes and zero-dimensional plasma model provided the data on plasma parameters, steady-state densities and fluxes of active species on the etched surface. The model-based analysis of the etch mechanism showed that, for the given ranges of operating conditions, the VO2 etch kinetics corresponds to the transitional regime of ion-assisted chemical reaction and is influenced by both neutral and ion fluxes with a higher sensitivity to the neutral flux.

  13. Possible health effects of liquefied petroleum gas on workers at filling and distribution stations of Gaza governorates.

    PubMed

    Sirdah, M M; Al Laham, N A; El Madhoun, R A

    2013-03-01

    Liquefied petroleum gas (LPG) is widely used in the Gaza Strip for domestic purposes, in agriculture and industry and, illegally, in cars. This study aimed to identify possible health effects on workers exposed to LPG in Gaza governorates. Data were collected by a questionnaire interview, and haematological and biochemical analyses of venous blood samples were made from 30 workers at filling and distribution stations and 30 apparently healthy controls. Statistically significant differences were found in all self-reported health-related complaints among LPG workers versus controls. LPG workers had significantly higher values of red blood cell counts, haemoglobin, haematocrit mean corpuscular haemoglobin and platelet counts. They also had significantly higher values of kidney function tests (urea, creatinine and uric acid) and liver function enzyme activities (aspartate aminotransferase and alanine aminotransferase). LPG workers at Gaza Strip petroleum stations are at higher risk for health-related symptoms and clinical abnormalities.

  14. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity.

    PubMed

    Hornig, N C; Ukat, M; Schweikert, H U; Hiort, O; Werner, R; Drop, S L S; Cools, M; Hughes, I A; Audi, L; Ahmed, S F; Demiri, J; Rodens, P; Worch, L; Wehner, G; Kulle, A E; Dunstheimer, D; Müller-Roßberg, E; Reinehr, T; Hadidi, A T; Eckstein, A K; van der Horst, C; Seif, C; Siebert, R; Ammerpohl, O; Holterhus, P-M

    2016-11-01

    Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. The study was conducted at a university hospital endocrine research laboratory. GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). There were no interventions. DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high clinical relevance.

  15. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity

    PubMed Central

    Ukat, M.; Schweikert, H. U.; Hiort, O.; Werner, R.; Drop, S. L. S.; Cools, M.; Hughes, I. A.; Audi, L.; Ahmed, S. F.; Demiri, J.; Rodens, P.; Worch, L.; Wehner, G.; Kulle, A. E.; Dunstheimer, D.; Müller-Roßberg, E.; Reinehr, T.; Hadidi, A. T.; Eckstein, A. K.; van der Horst, C.; Seif, C.; Siebert, R.; Ammerpohl, O.; Holterhus, P.-M.

    2016-01-01

    Context: Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. Objective: The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Design: Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. Setting: The study was conducted at a university hospital endocrine research laboratory. Patients: GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). Intervention(s): There were no interventions. Main Outcome Measure(s): DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. Results: The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. Conclusions: AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high

  16. Timing of Hydrocarbon Fluid Emplacement in Sandstone Reservoirs in Neogene in Huizhou Sag, Southern China Sea, by Authigenic Illite 40Ar- 39Ar Laser Stepwise Heating

    NASA Astrophysics Data System (ADS)

    Hesheng, Shi; Junzhang, Zhu; Huaning, Qiu; yu, Shu; Jianyao, Wu; Zulie, Long

    Timing of oil or gas emplacements is a new subject in isotopic geochronology and petroleum geology. Hamilton et al. expounded the principle of the illite K-Ar age: Illite is often the last or one of the latest mineral cements to form prior to hydrocarbon accumulation. Since the displacement of formation water by hydrocarbons will cause silicate diagenesis to cease, K-Ar ages for illite will constrain the timing of this event, and also constrain the maximum age of formation of the trap structure. In this study, the possibility of authigenic illites 40Ar- 39Ar dating has been investigated. The illite samples were separated from the Tertiary sandstones in three rich oil reservoir belts within the Huizhou sag by cleaning, fracturing by cycled cooling-heating, soxhlet-extraction with solvents of benzene and methanol and separating with centrifugal machine. If oil is present in the separated samples, ionized organic fragments with m/e ratios of 36 to 40 covering the argon isotopes will be yielded by the ion source of a mass spectrometer, resulting in wrong argon isotopic analyses and wrong 40Ar- 39Ar ages. The preliminary experiments of illite by heating did show the presence of ionized organic fragments with m/e ratios of 36 to 44. In order to clean up the organic gases completely and obtain reliable analysis results, a special purification apparatus has been established by Qiu et al. and proved valid by the sequent illite analyses. All the illite samples by 40Ar- 39Ar IR-laser stepwise heating yield stair-up age spectra in lower laser steps and plateaux in higher laser steps. The youngest apparent ages corresponding to the beginning steps are reasonable to be interpreted for the hydrocarbon accumulation ages. The weighted mean ages of the illites from the Zhuhai and Zhujiang Formations are (12.1 ± 1.1) Ma and (9.9 ± 1.2) Ma, respectively. Therefore, the critical emplacement of petroleum accumulation in Zhujiang Formation in Huizhou sag took place in ca 10 Ma. Late

  17. LaRC results on nuclear pumped noble gas lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1979-01-01

    The recent experiment and theoretical results obtained for noble gas nuclear laser systems are presented. It is shown that the noble gas lasers are among the easiest systems to pump by nuclear excitation and as a result, all of the noble gases except He have lased under nuclear excitation. The noble gas systems are not ideal for high-power applications but they do give valuable insight into the operation and pumping mechanisms associated with nuclear lasers. At present, the Ar-Xe system is the best noble gas candidate for (U-235)F6 pumping. It appears that the quenching of Ar-Xe lasing is a result of the fluorine and not the uranium or fission fragments themselves. Thus, to achieve lasing with UF6, a fluorine compatible system must be found.

  18. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  19. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions.

    PubMed

    Abdulrahman, Basant A; Abdelaziz, Dalia; Thapa, Simrika; Lu, Li; Jain, Shubha; Gilch, Sabine; Proniuk, Stefan; Zukiwski, Alexander; Schatzl, Hermann M

    2017-12-14

    Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrP C ) into the pathologic isoform PrP Sc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrP Sc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrP Sc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.

  20. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  1. Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Day, Anthony R.; Haas, Derek A.

    On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,α)37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

  2. Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer

    PubMed Central

    Guedes, Liana B.; Morais, Carlos L.; Almutairi, Fawaz; Haffner, Michael C.; Zheng, Qizhi; Isaacs, John T.; Antonarakis, Emmanuel S.; Lu, Changxue; Tsai, Harrison; Luo, Jun; De Marzo, Angelo M.; Lotan, Tamara L.

    2016-01-01

    Purpose RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors. Experimental Design We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR. Results The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression. Conclusions RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts. PMID:27166397

  3. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  4. 76 FR 27077 - Agency Information Collection Activities: Form AR-11 and Form AR-11SR, Extension of an Existing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Collection Activities: Form AR-11 and Form AR- 11SR, Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection under Review: Form AR- 11 and Form AR-11SR, Alien... evaluating whether to revise the Form AR-11 and Form AR-11SR (Forms AR-11). Should USCIS decide to revise...

  5. Twenty years of experience in monitoring 41Ar in a research reactor and decrease of its discharge into the environment.

    PubMed

    Fukui, M

    2004-04-01

    The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.

  6. Investigation of Flash Fill{reg_sign} as a thermal backfill material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, P.H.; Charlton, C.B.; Frishette, C.W.

    1995-09-01

    Flash Fill{reg_sign} was created as a fast-setting, flowable backfill material made entirely from coal combustion by-products and water. Its quick-setting, self-leveling, self-compacting characteristics makes trench road repairs faster, easier, and more economical. Other uses include building foundations, fill around pipes, gas lines, and manholes, and replacement of weak subgrade beneath rooters. Flash Fill can be hand-excavated without the use of power assisted tools or machinery. To enhance thermal resistivity, the original Flash Fill mix was modified to include concrete sand. This resulted in a new Flash Fill, designated FSAND, with all of the aforementioned desirable characteristics of Flash Fill andmore » a thermal resistivity of approximately 50{degree} C-cm/watt. Thermal resistivity tests using conventional laboratory thermal probes, high-current thermal tests, and moisture migration tests have been performed to determine the properties of FSAND. As a result of these tests, FSAND has been approved for use as power cable thermal backfill on all AEP System distribution projects.« less

  7. Cooperatively enhanced ionic hydrogen bonds in Cl-(CH3OH)(1-3)Ar clusters.

    PubMed

    Beck, Jordan P; Lisy, James M

    2010-09-23

    Infrared predissociation (IRPD) spectra of Cl−(CH3OH)1-3Ar and Cl-(CH3OD)1-3Ar were obtained in the OH and CH stretching regions. The use of methanol-d1 was necessary to distinguish between CH stretches and hydrogen-bonded OH features. The spectra of Cl-(CH3OH)2-3Ar show intense features at frequencies lower than the CH stretches, indicating structures with very strong hydrogen bonds. These strong hydrogen bonds arise from structures in which a Cl-···methanol ionic hydrogen bond is cooperatively enhanced by the presence of a second shell and, in the case of Cl-(CH3OH)3Ar, a third shell methanol. The strongest hydrogen bond is observed in the Cl-(CH3OH)3Ar spectrum at 2733 cm-1, shifted a remarkable -948 cm-1 from the neutral, gas-phase methanol value. Harmonic, ab initio frequency calculations are not adequate in describing these strong hydrogen bonds. Therefore, we describe a simple computational approach to better approximate the hydrogen bond frequencies. Overall, the results of this study indicate that high-energy isomers are very efficiently trapped using our experimental method of introducing Cl- into neutral, cold methanol-argon clusters.

  8. Effect of the gas flow rate on the spatiotemporal distribution of Ar(1s5) absolute densities in a ns pulsed plasma jet impinging on a glass surface

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Bauville, G.; Fleury, M.; Jeanney, P.; Neveu, O.; Pasquiers, S.; Santos Sousa, J.

    2018-06-01

    This work presents spatial (axial-z and transversal-y) and temporal distributions of Ar(1s5) metastable absolute densities in an atmospheric pressure argon micro-plasma jet impinging on an ungrounded glass surface. Guided streamers are generated with a DBD device driven by pulsed positive high voltages of 6 kV in amplitude, 224 +/- 3 ns in FWHM and 20 kHz in frequency. The argon flow rate is varied between 200 and 600 sccm. The glass plate is placed at 5 mm away from the reactor’s nozzle and perpendicular to the streamers propagation. At these conditions, a diffuse stable discharge is established after the passage of the streamers allowing the quantification of the Ar(1s5) absolute density by means of a conventional TDLAS technique coupled with emission spectroscopy and ICCD imaging. The good reproducibility of the absorption signals is demonstrated. The experiments show the strong dependence of the maximum density ({0.5-4}× {10}13 {{{cm}}}-3) on the gas flow rate and the axial and transversal position. At 200 sccm, high maximum densities (> 2.4× {10}13 {{{cm}}}-3) are obtained in a small area close to the plasma source, while with increasing flow rate this area expands towards the glass plate. In the transversal direction, density maxima are obtained in a small zone around the propagation axis of the streamers. Finally, a noticeable increase is measured on the Ar(1s5) effective lifetime close to the glass surface by varying the flow rate from 200 to 600 sccm. In overall, the effective lifetime varies between ∼25 and ∼550 ns, depending on the gas flow rate and the values of z and y coordinates. The results obtained suggest that the present system can be implemented in various applications and particularly in what concerns the detection of weakly volatile organic compounds present in trace amounts on different surfaces.

  9. Plasma chemistry of NO in complex gas mixtures excited with a surfatron launcher.

    PubMed

    Hueso, J L; González-Elipe, A R; Cotrino, J; Caballero, A

    2005-06-09

    The plasma chemistry of NO has been investigated in gas mixtures with oxygen and/or hydrocarbon and Ar as carrier gas. Surface wave discharges operating at microwave frequencies have been used for this study. The different plasma reactions have been analyzed for a pressure range between 30 and 75 Torr. Differences in product concentration and/or reaction yields smaller than 10% were found as a function of this parameter. The following gas mixtures have been considered for investigation: Ar/NO, Ar/NO/O2, Ar/NO/CH4, Ar/CH4/O2, Ar/NO/CH4/O2. It is found that NO decomposes into N2 and O2, whereas other products such as CO, H2, and H2O are also formed when CH4 and O2 are present in the reaction mixture. Depending on the working conditions, other minority products such as HCN, CO2, and C2 or higher hydrocarbons have been also detected. The reaction of an Ar/NO plasma with deposits of solid carbon has also been studied. The experiments have provided useful information with respect to the possible removal of soot particles by this type of plasma. It has been shown that carbon deposits are progressively burned off by interaction with the plasma, and practically 100% decomposition of NO was found. Plasma intermediate species have been studied by optical emission spectroscopy (OES). Bands and/or peaks due to N2*, NO*, OH*, C2*, CN*, CH*, or H* were detected with different relative intensities depending on the gas mixture. From the analysis of both the reaction products and efficiency and the type of intermediate species detected by OES, different plasma reactions and processes are proposed to describe the plasma chemistry of NO in each particular mixture of gases. The results obtained provide interesting insights about the plasma removal of NO in real gas exhausts.

  10. Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling

    PubMed Central

    Baldwin, Suzanne L.; Das, J. P.

    2015-01-01

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An 40Ar/39Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that 40Ar/39Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric 38Ar/36Ar and 20Ne/22Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  11. The Answer to Rising Gas Prices...Nitrogen?

    ERIC Educational Resources Information Center

    Lee, Frank; Batelaan, Herman

    2010-01-01

    It is claimed by the company NitroFill and the GetNitrogen Institute that filling car tires with nitrogen improves gas mileage considerably. The reason given is that oxygen leaks out of tires so that the increased rolling friction causes a reduced gas mileage. Because it is hard to do an actual road test, we report on a simple visual test of…

  12. Membrane lipid composition of pancreatic AR42J cells: modification by exposure to different fatty acids.

    PubMed

    Audi, Nama'a; Mesa, María D; Martínez, María A; Martínez-Victoria, Emilio; Mañas, Mariano; Yago, María D

    2007-04-01

    Dietary fat type influences fatty acids in rat pancreatic membranes, in association with modulation of secretory activity and cell signalling in viable acini. We aimed to confirm whether AR42J cells are a valid model to study the interactions between lipids and pancreatic acinar cell function. For this purpose we have (i) compared the baseline fatty acid composition of AR42J cells with that of pancreatic membranes from rats fed a standard chow; (ii) investigated if fatty acids in AR42J membranes can be modified in culture; and (iii) studied if similar compositional variations that can be evoked in rats when dietary fat type is altered occur in AR42J cells. Weaning Wistar rats were fed for 8 weeks either a commercial chow (C) or semi-purified diets containing virgin olive oil (VOO) or sunflower oil (SO) as fat source. AR42J cells were incubated for 72 hrs in medium containing unmodified fetal calf serum (FCS, AR42J-C cells), FCS enriched with 18:1 n-9 (AR42J-O cells), or FCS enriched with 18:2 n-6 (AR42J-L cells). Fatty acids in crude membranes from rat pancreas and AR42J cells were determined by gas-liquid chromatography. Differences in membrane fatty acids between C rats and AR42J-C cells can be explained in part by variations in the amount of fatty acids in the extracellular environment. Supplementation of FCS with 18:1 n-9 or 18:2 n-6 changed the fatty acid spectrum of AR42J cells in a manner that resembles the pattern found, respectively, in VOO and SO rats, although AR42J-L cells were unable to accumulate 20:4 n-6. The AR42J cell line can be a useful tool to assess the effect of membrane compositional changes on acinar cell function. However, differences in baseline characteristics, and perhaps fatty acid metabolism, indicate that results obtained in AR42J cells should be confirmed with experiments in the whole animal.

  13. On studies of 3He and isobutane mixture as neutron proportional counter gas

    NASA Astrophysics Data System (ADS)

    Desai, S. S.; Shaikh, A. M.

    2006-02-01

    The performance of neutron detectors filled with 3He+iC 4H 10 (isobutane) gas mixtures has been studied and compared with the performance of detectors filled with 3He+Kr gas mixtures. The investigations are made to determine suitable concentration of isobutane in the gas mixture to design neutron proportional counters and linear position sensitive neutron detectors (1-D PSDs). Energy resolution, range of proportionality, plateau and gas gain characteristics are studied for various gas mixtures of 3He and isobutane. The values for various gas constants are determined by fitting the gas gains to Diethorn and Bateman's equations and their variation with isobutane concentration in the fill gas mixture is studied.

  14. Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Phillips, D.; Matchan, E. L.; Honda, M.; Kuiper, K. F.

    2017-01-01

    The new generation of multi-collector mass spectrometers (e.g. ARGUSVI) permit ultra-high precision (<0.1%) 40Ar/39Ar geochronology of rocks and minerals. At the same time, the 40Ar/39Ar method is limited by relatively large uncertainties (>1%) in 40K decay constants and the ages of natural reference minerals that form the basis of the technique. For example, reported ages for widely used 40Ar/39Ar reference materials, such as the ca. 28 Ma Fish Canyon Tuff sanidine (FCTs) and the ca. 1.2 Ma Alder Creek Rhyolite sanidine (ACRs), vary by >1%. Recent attempts to independently calibrate these reference minerals have focused on K-Ar analyses of the same minerals and inter-comparisons with astronomically tuned tephras in sedimentary sequences and U-Pb zircon ages from volcanic rocks. Most of these studies used older generation (effectively single-collector) mass spectrometers that employed peak-jumping analytical methods to acquire 40Ar/39Ar data. In this study, we reassess the inter-calibration and ages of commonly used 40Ar/39Ar reference minerals Fish Canyon Tuff sanidine (FCTs), Alder Creek Rhyolite sanidine (ACRs) and Mount Dromedary biotite (MD2b; equivalent to GA-1550 biotite), relative to the astronomically tuned age of A1 Tephra sanidine (A1Ts), Faneromeni section, Crete (Rivera et al., 2011), using a multi-collector ARGUSVI mass spectrometer. These analyses confirm the exceptional precision capability (<0.1%) of this system, compared to most previous studies. All sanidine samples (FCTs, ACRs and A1Ts) exhibit discordant 40Ar/39Ar step-heating spectra, with generally monotonically increasing ages (∼1% gradients). The similarity in these patterns, mass-dependent fractionation modeling, and results from step-crushing experiments on FCTs, which yield younger apparent ages, suggest that the discordance may be due to a combination of recoil loss and redistribution of 39ArK and isotope mass fractionation. In contrast to our previous inferences, these results imply

  15. Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas: comparison of Ar, H 2 and CF 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruneau, Bastien; Lafleur, T.; Gans, T.

    2015-12-01

    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H 2, and CF 4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegativemore » gas such as CF 4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry.« less

  16. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  17. Rare Gases Inserted into Biological Building Blocks: A Theoretical Study of Glycine - Rg Compounds (Rg-Xe, Kr, Ar)

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2005-01-01

    Compounds formed by insertion of rare-gas atoms (Xe, Kr, and Ar) into glycine molecule are investigated using accurate ab initio computational methods. Identification of such insertion compounds may open new frontiers in the field of rare-gas chemistry, such as possible existence of biological molecules that include chemically bound rare gas atoms. The most stable glycine-Rg configuration is found to correspond to insertion of Rg atoms into the 0-H bond of glycine. These NH2CH2COORgH compounds are metastable , but separated by sizable potential barriers from the Rg + glycine dissociation products. Preliminary calculations show that NH2CH2COOXeH compound is energetically stable with respect to another (3-body) dissociation channel (NH2CH2COO + Rg + H), while the corresponding Ar species is not stable in this respect. The compound with the inserted Kr is a borderline case, with the 3-body dissociation products being close in energy to the NH2CH2COOKrH minimum.

  18. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    NASA Astrophysics Data System (ADS)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  19. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  20. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  1. Single and double capture in F9+ + Ar collisions: Comparison of total capture with capture occurring from the Ar K shell

    NASA Astrophysics Data System (ADS)

    La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John

    2016-05-01

    Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.

  2. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia

    PubMed Central

    Larick, Roy; Ciochon, Russell L.; Zaim, Yahdi; Sudijono; Suminto; Rizal, Yan; Aziz, Fachroel; Reagan, Mark; Heizler, Matthew

    2001-01-01

    The Sangiran dome is the primary stratigraphic window for the Plio-Pleistocene deposits of the Solo basin of Central Jawa. The dome has yielded nearly 80 Homo erectus fossils, around 50 of which have known findspots. With a hornblende 40Ar/39Ar plateau age of 1.66 ± 0.04 mega-annum (Ma) reportedly associated with two fossils [Swisher, C.C., III, Curtis, G. H., Jacob, T., Getty, A. G., Suprijo, A. & Widiasmoro (1994) Science 263, 1118–1121), the dome offers evidence that early Homo dispersed to East Asia during the earliest Pleistocene. Unfortunately, the hornblende pumice was sampled at Jokotingkir Hill, a central locality with complex lithostratigraphic deformation and dubious specimen provenance. To address the antiquity of Sangiran H. erectus more systematically, we investigate the sedimentary framework and hornblende 40Ar/39Ar age for volcanic deposits in the southeast quadrant of the dome. In this sector, Bapang (Kabuh) sediments have their largest exposure, least deformation, and most complete tephrostratigraphy. At five locations, we identify a sequence of sedimentary cycles in which H. erectus fossils are associated with epiclastic pumice. From sampled pumice, eight hornblende separates produced 40Ar/39Ar plateau ages ranging from 1.51 ± 0.08 Ma at the Bapang/Sangiran Formation contact, to 1.02 ± 0.06 Ma, at a point above the hominin-bearing sequence. The chronological sequence of 40Ar/39Ar ages follows stratigraphic order across the southeast quadrant. An intermediate level yielding four nearly complete crania has an age of about 1.25 Ma. PMID:11309488

  3. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia.

    PubMed

    Larick, R; Ciochon, R L; Zaim, Y; Sudijono; Suminto; Rizal, Y; Aziz, F; Reagan, M; Heizler, M

    2001-04-24

    The Sangiran dome is the primary stratigraphic window for the Plio-Pleistocene deposits of the Solo basin of Central Jawa. The dome has yielded nearly 80 Homo erectus fossils, around 50 of which have known findspots. With a hornblende (40)Ar/(39)Ar plateau age of 1.66 +/- 0.04 mega-annum (Ma) reportedly associated with two fossils [Swisher, C.C., III, Curtis, G. H., Jacob, T., Getty, A. G., Suprijo, A. & Widiasmoro (1994) Science 263, 1118-1121), the dome offers evidence that early Homo dispersed to East Asia during the earliest Pleistocene. Unfortunately, the hornblende pumice was sampled at Jokotingkir Hill, a central locality with complex lithostratigraphic deformation and dubious specimen provenance. To address the antiquity of Sangiran H. erectus more systematically, we investigate the sedimentary framework and hornblende (40)Ar/(39)Ar age for volcanic deposits in the southeast quadrant of the dome. In this sector, Bapang (Kabuh) sediments have their largest exposure, least deformation, and most complete tephrostratigraphy. At five locations, we identify a sequence of sedimentary cycles in which H. erectus fossils are associated with epiclastic pumice. From sampled pumice, eight hornblende separates produced (40)Ar/(39)Ar plateau ages ranging from 1.51 +/- 0.08 Ma at the Bapang/Sangiran Formation contact, to 1.02 +/- 0.06 Ma, at a point above the hominin-bearing sequence. The chronological sequence of (40)Ar/(39)Ar ages follows stratigraphic order across the southeast quadrant. An intermediate level yielding four nearly complete crania has an age of about 1.25 Ma.

  4. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; ...

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  5. Xenocrysts and antecrysts and their effect on the precision of 40Ar/39Ar dates of explosive volcanic eruption

    NASA Astrophysics Data System (ADS)

    Smith, V.; Mark, D.; Blockley, S.; Weh, A.

    2010-12-01

    precise age on a relatively young eruption (~11 ka) we carried out >70 40Ar/39Ar dates of crystals. The sanidines were extracted from individual large pumices that were fragmented using selFrag so that the crystals remained intact. The crystals were then split into different size ranges prior to analysis on a high-sensitivity multicollector noble gas mass spectrometer (ARGUS). This approach allows us to assess how the incorporation of antecrysts and xenocrysts effect 40Ar/39Ar dates. Here we present the age ranges and discuss the results. *Research being carried out by members of the NERC funded Suigetsu 2006 Project led by Takeshi Nakagawa, Newcastle University, UK (http://www.suigetsu.org/)

  6. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, Banat, E-mail: banatgul@gmail.com; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Aman-ur-Rehman, E-mail: amansadiq@gmail.com

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBrmore » by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.« less

  7. An inner warp in the DoAr 44 T Tauri transition disk

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-04-01

    Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  8. ACTH Action on StAR Biology

    PubMed Central

    Clark, Barbara J.

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies. PMID:27999527

  9. ACTH Action on StAR Biology.

    PubMed

    Clark, Barbara J

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies.

  10. Ar-Ar and I-XE Ages and the Thermal History of IAB Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi

    2006-01-01

    Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material, enriched in Si, Na, Al and Ca which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New Ar-39- Ar-40 ages for silicate from three different Caddo samples are consistent with a common age of 4.50- 4.51 Gyr ago. Less well defined Ar-Ar degassing ages for inclusions from two other IABs, EET8333 and Udei Station, are approx. 4.32 Gyr, whereas the age for Campo del Cielo varies considerably over approx. 3.23-4.56 Gyr. New I-129-Xe-129 ges for Caddo County and EET8333 are 4561.9 plus or minus 0.1 Myr and 4560-4563 Myr, respectively, relative to an age of 4566 Myr for Shallowater. Considering all reported Ar-Ar ages for IABs and related winonaites, the range is approx. 4.32-4.53 Gyr, but several IABs give similar Ar ages of 4.50-4.52 Gyr. We interpret these older ages to represent cooling after the time of last significant metamorphism on the parent body, and the younger ages to represent later 40Ar diffusion loss. These older Ar-Ar ages are similar to Sm-Nd and Rb-Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the time of the postassembly metamorphism may have been as late as approx. 4.53 Gyr ago. However, precise I-Xe ages reported for some IABs define a range of ages of approx. 4560 to approx. 4576 Myr. The older I-Xe ages exceed the oldest precise radiometric ages of meteorites, appear unrealistic, and suggest a bias in the calibration of all I-Xe ages. But even with such a bias, the I-Xe ages of IABs cannot easily be reconciled with the much younger Ar-Ar and Sm-Nd ages and with cooling rates deduced from Ni

  11. Long pulse gas-filled halfraums on OMEGA for high growth-factor ablative Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Huser, G.; Villette, B.; Vandenboomgaerde, M.; Galmiche, D.; Liberatore, S.; Philippe, F.; Masse, L.

    2007-11-01

    Mitigation of Rayleigh-Taylor instabilities growth is crucial to enhance the performance of LMJ and NIF ignition targets. We recently develop on OMEGA a long-pulse platform in order to experimentally prove two mechanisms invoked for RTI stabilization, i.e the graded-doped ablator [1] and the new laminated ablator concept [2]. We used gas-filled halfraums (1 atm neopentane) and stack up to 20 drive beams along 3 cones to create a 7 ns long radiation drive. The new E-IDI-300 phase plates were associated with 1D SSD and halfraum energetics was validated along P5/P8 axis for backscattering measurements along 2 cones. We will also present the first face-on radiographies for modulated CH(Ge) samples and compare them with FCI2 hydrocodes simulations. Foil thickness optimization based on these simulations allows us to anticipate growth factors up to 500 in optical depth and the experimental emulator designs for [1,2] will be presented. [1] S.W. Haan et al., Phys. Plasmas 12, 056316 (2005). [2] L. Masse., Phys. Rev. Lett. 98, 245001 (2007). DPP07 invited talk.

  12. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2012-01-01

    High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of MexicoGasHydrateJointIndustryProjectLegII in the spring of 2009. Well logs obtained in one of the wells, the GreenCanyon Block 955Hwell (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gashydrate within sand with average gashydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gashydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gashydrate saturations of about 20% from the resistivity log (locally 50-60%) and negligible amounts of gashydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gashydrate occurrences. In the case of the shallow clay-rich interval, gashydrate fills vertical (or high angle) fractures in rather than fillingpore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gashydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-Hwell.

  13. Toward a high-resolution 40Ar/39Ar geochronology of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Song, S.; Chang, S.; Hemming, S. R.; Turrin, B. D.

    2010-12-01

    Creek sanidine monitor standard, with an assumed age of 1.193±.001Ma (Nomade et al., 2005, Chemical Geology). Multiple-grain step-heating analyses using 3 to 5 steps were executed on several aliquots of the samples using a VG5400 noble gas mass spectrometer equipped with a 30W CO2 laser. Ages were calculated using the isochron method on all the steps run for each sample in order to avoid the necessity of assuming an initial composition and so all of the data points from a single irradiation could be plotted together. The results have yielded ages far younger than previously reported in all of the TVG, with very unradiogenic Ar and with 40Ar/36Ar intercepts that are mostly higher than the atmospheric ratio of 298.56±0.31 (Lee et al., 2006, Geochimica et Cosmochimica Acta). The second eruptive stage (using eruptive stages mapped by Lai et al., 2010, TAO) yielded ages in different locations of .053±.012Ma and .052±.014Ma. A third sample that was previously mapped in this stage yielded an age of .17±.03Ma. We have not yet been successful at obtaining reliable results on the stratigraphically youngest sample.

  14. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells.

    PubMed

    Fan, Lingling; Zhang, Fengbo; Xu, Songhui; Cui, Xiaolu; Hussain, Arif; Fazli, Ladan; Gleave, Martin; Dong, Xuesen; Qi, Jianfei

    2018-05-15

    Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.

  15. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze themore » main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.« less

  16. Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance.

    PubMed

    Kohli, Manish; Ho, Yeung; Hillman, David W; Van Etten, Jamie L; Henzler, Christine; Yang, Rendong; Sperger, Jamie M; Li, Yingming; Tseng, Elizabeth; Hon, Ting; Clark, Tyson; Tan, Winston; Carlson, Rachel E; Wang, Liguo; Sicotte, Hugues; Thai, Ho; Jimenez, Rafael; Huang, Haojie; Vedell, Peter T; Eckloff, Bruce W; Quevedo, Jorge F; Pitot, Henry C; Costello, Brian A; Jen, Jin; Wieben, Eric D; Silverstein, Kevin A T; Lang, Joshua M; Wang, Liewei; Dehm, Scott M

    2017-08-15

    Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02). Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Single-crystal 40Ar/39Ar incremental heating reveals bimodal sanidine ages in the Bishop Tuff

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Jicha, B. R.; Singer, B. S.

    2015-12-01

    The 650 km3 Bishop Tuff (BT) is among the most studied volcanic deposits because it is an extensive marker bed deposited just after the Matuyama-Brunhes boundary. Reconstructions of the vast BT magma reservoir from which high-silica rhyolite erupted have long influenced thinking about how large silicic magma systems are assembled, crystallized, and mixed. Yet, the longevity of the high silica rhyolitic melt and exact timing of the eruption remain controversial due to recent conflicting 40Ar/39Ar sanidine vs. SIMS and ID-TIMS U-Pb zircon dates. We have undertaken 21 40Ar/39Ar incremental heating ages on 2 mm BT sanidine crystals from pumice in 3 widely separated outcrops of early-erupted fall and flow units. Plateau ages yield a bimodal distribution: a younger group has a mean of 766 ka and an older group gives a range between 772 and 782 ka. The younger population is concordant with the youngest ID-TIMS and SIMS U-Pb zircon ages recently published, as well as the astronomical age of BT in marine sediment. Of 21 crystals, 17 yield older, non-plateau, steps likely affected by excess Ar that would bias traditional 40Ar/39Ar total crystal fusion ages. The small spread in older sanidine ages, together with 25+ kyr of pre-eruptive zircon growth, suggest that the older sanidines are not partially outgassed xenocrysts. A bimodal 40Ar/39Ar age distribution implies that some fraction of rhyolitic melt cooled below the Ar closure temperature at least 10 ky prior to eruption. We propose that rapid "thawing" of a crystalline mush layer released older crystals into rhyolitic melt from which sanidine also nucleated and grew immediately prior to the eruption. High precision 40Ar/39Ar dating can thus provide essential information on thermo-physical processes at the millenial time scale that are critical to interpreting U-Pb zircon age distributions that are complicated by large uncertainties associated with zircon-melt U-Th systematics.

  18. K/Ar dating of lunar soils. II

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.; Bates, A.; Coscio, M. R., Jr.; Dragon, J. C.; Murthy, V. R.; Pepin, R. O.; Venkatesan, T. R.

    1976-01-01

    An attempt is made to identify those K/Ar techniques which extract the most reliable chronological information from lunar soils and to define the situations in which the best data are obtainable. Results are presented for determinations of the exposure and K/Ar ages of five lunar soil samples, which were performed by applying correlation techniques for a two-component argon structure to stepwise-heated and neutron-irradiated aliquots of grain-sized separates. It is found that ages deduced from Ar-40/surface-correlated Ar-36 vs K-40/surface-correlated Ar-36 and analogous plots of data from grain-sized separates appear to be the best available K/Ar ages of submature to mature lunar soils, that ages deduced from Ar-40 vs Ar-36 and analogous plots which assume a uniform K content can be significantly in error, and that stepwise-heating (Ar-40)-(Ar-39) experiments yield useful information only for simple immature soils where the K-Ar systematics are dominated by a single component.

  19. Investigating Liquid Leak from Pre-Filled Syringes upon Needle Shield Removal: Effect of Air Bubble Pressure.

    PubMed

    Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C

    2011-01-01

    This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of

  20. Mantle rare gas relative abundances in a steady-state mass transport model

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Wasserburg, G. J.

    1994-01-01

    A model for He and Xe was presented previously which incorporates mass transfer of rare gases from an undegassed lower mantle (P) and the atmosphere into a degassed upper mantle (D). We extend the model to include Ne and Ar. Model constraints on rare gas relative abundances within P are derived. Discussions of terrestrial volatile acquisition have focused on the rare gas abundance pattern of the atmosphere relative to meteoritic components, and the pattern of rare gases still trapped in the Ear,th is important in identifying volatile capture and loss processes operating during Earth formation. The assumptions and principles of the model are discussed in Wasserburg and Porcelli (this volume). For P, the concentrations in P of the decay/nuclear products 4 He, 21 Ne, 40 Ar, and 136 Xe can be calculated from the concentrations of the parent elements U, Th, K, and Pu. The total concentration of the daughter element in P is proportional to the isotopic shifts in P. For Ar, ((40)Ar/(36)Ar)p - ((40)Ar/(36)Ar)o =Delta (exp 40) p= 40 Cp/(exp 36)C where(i)C(sub j) the concentration of isotope i in j. In D, isotope compositions are the result of mixing rare gases from P, decay/nuclear products generated in the upper mantle, and subducted rare gases (for Ar and Xe).

  1. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, Brian R.; Rhodes, J. Michael; Singer, Brad S.; Garcia, Michael O.

    2012-09-01

    New geochronologic constraints refine the growth history of Mauna Loa volcano and enhance interpretations of the petrologic, geochemical, and isotopic evolution of Hawaiian magmatism. We report results of 40Ar/39Ar incremental heating experiments on low-K, tholeiitic lavas from the 1.6 km high Kahuku landslide scarp cutting Mauna Loa's submarine southwest rift zone, and from lavas in a deeper section of the rift. Obtaining precise40Ar/39Ar ages from young, tholeiitic lavas containing only 0.2-0.3 wt.% K2O is challenging due to their extremely low radiogenic 40Ar contents. Analyses of groundmass from 45 lavas yield 14 new age determinations (31% success rate) with plateau and isochron ages that agree with stratigraphic constraints. Lavas collected from a 1250 m thick section in the landslide scarp headwall were all erupted around 470 ± 10 ka, implying an extraordinary period of accumulation of ˜25 mm/yr, possibly correlating with the peak of the shield-building stage. This rate is three times higher than the estimated vertical lava accumulation rate for shield-building at Mauna Kea (8.6 ± 3.1 mm/yr) based on results from the Hawaii Scientific Drilling Project. Between ˜470 and 273 ka, the lava accumulation rate along the southwest rift zone decreased dramatically to ˜1 mm/yr. We propose that the marked reduction in lava accumulation rate does not mark the onset of post-shield volcanism as previously suggested, but rather indicates the upward migration of the magma system as Mauna Loa evolved from a submarine stage of growth to one that is predominantly subaerial, thereby cutting off supply to the distal rift zone. Prior to ˜250 ka, lavas with Loihi-like isotopic signatures were erupted along with lavas having typical Mauna Loa values, implying greater heterogeneity in the plume source earlier in Mauna Loa's growth. In addition to refining accumulation rates and the isotopic evolution of the lavas erupted along the southwest rift zone, our new40Ar/39Ar results

  2. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fittingmore » the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.« less

  3. Understanding the amorphous-to-microcrystalline silicon transition in SiF{sub 4}/H{sub 2}/Ar gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornstetter, Jean-Christophe; LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau; Bruneau, Bastien

    2014-06-21

    We report on the growth of microcrystalline silicon films from the dissociation of SiF{sub 4}/H{sub 2}/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF{sub 4} dissociation, and this removal is promoted by the addition of H{sub 2} which strongly reacts with F to form HF molecules. At low H{sub 2} flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding tomore » the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF{sub 4}/H{sub 2} plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H{sub 2} flow rate.« less

  4. Androgen Receptor (AR) in Cardiovascular Diseases

    PubMed Central

    Huang, Chiung-Kuei; Lee, Soo Ok; Chang, Eugene; Pang, Haiyan; Chang, Chawnshang

    2016-01-01

    Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize androgen/AR effects on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors, but generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis, but targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy as compared to age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome. PMID:26769913

  5. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  6. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, B.; Rhodes, J. M.; Singer, B. S.; Vollinger, M. J.; Garcia, M. O.

    2009-12-01

    A major impediment to our understanding of the nature and structure of the Hawaiian plume, and evaluating the competing plume models has been a lack of thick stratigraphic sections from which to obtain long temporal records of magmatic history. The Hawaii Scientific Drilling Project (HSDP) made a significant advance towards solving this problem by documenting the long-term magmatic evolution of Mauna Kea volcano on the Kea side of the plume. To evaluate comparable long-term magmatic history on the Loa side of the plume we collected a stratigraphically controlled sample suite using Jason and Pisces dives from three vertical transects of the 1.6 km high Kae Lae landslide scarp cut into Mauna Loa’s submarine southwest rift zone (SWR). We have undertaken an 40Ar/39Ar investigation of Mauna Loa’s growth history to integrate new geochronologic constraints with geochemical, and isotopic data, illuminating temporal trends within the Hawaiian plume. Obtaining precise 40Ar/39Ar ages from tholeiitic lavas younger than 500 ka containing only 0.2-0.6 wt.% K2O is challenging due to the extremely low radiogenic 40Ar contents. Furnace incremental heating experiments of groundmass separated from 15 submarine lavas have yielded four new age determinations (a 27% success rate). These four lavas give concordant age spectra with plateau and isochron ages that agree with stratigraphy. We also analyzed two previously-dated subaerial Mauna Kea tholeiites from the HSDP-2 drill core, to assess inter-laboratory reproducibility and calibrate our results to those obtained for the core. Two experiments on sample SR413-4.0 and one experiment from SR781-21.2 gave weighted mean plateau ages of 364 ± 95 ka and 473 ± 109, respectively, which are indistinguishable from the published 40Ar/39Ar ages of 390 ± 70 ka and 482 ± 67. Although Sharp and Renne (2005) preferred isochron ages for the submarine Mauna Kea tholeiites recovered from HSDP, we find that submarine Mauna Loa lavas contain

  7. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    PubMed Central

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  8. Characterizing the Noble Gas Isotopic Composition of the Barnett Shale and Strawn Group and Constraining the Source of Stray Gas in the Trinity Aquifer, North-Central Texas.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Pinti, Daniele L; Mickler, Patrick; Darvari, Roxana; Larson, Toti

    2017-06-06

    This study presents the complete set of stable noble gases for Barnett Shale and Strawn Group production gas together with stray flowing gas in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like stray gas, Strawn gas is significantly more enriched in crustal 4 He*, 21 Ne*, and 40 Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22 Ne/ 36 Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  9. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    PubMed

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Reactive ion etching of GaN using BCl 3, BCl 3/Ar and BCl 3/ N 2 gas plasmas

    NASA Astrophysics Data System (ADS)

    Basak, D.; Nakanishi, T.; Sakai, S.

    2000-04-01

    Reactive ion etching (RIE) of GaN has been performed using BCl 3 and additives, Ar and N 2, to BCl 3 plasma. The etch rate, surface roughness and the etch profile have been investigated. The etch rate of GaN is found to be 104 nm/min at rf power of 200 W, pressure of 2 Pa, with 9.5 sccm flow rate of BCl 3. The addition of 5 sccm of Ar to 9.5 sccm of BCl 3 reduces the etch rate of GaN while the addition of N 2 does not influence the etch rate significantly. The RIE of GaN layer with BCl 3/Ar and BCl 3/N 2 results in a smoother surface compared to surfaces etched with BCl 3 only. The etched side-wall in BCl 3 plasma makes an angle of 60° with the normal surface, and the angle of inclination is more in cases of BCl 3/Ar and BCl 3/N 2 plasmas. The RIE induced damage to the surface is measured qualitatively by PL measurements. It is observed that the damage to the etched surfaces is similar for all the plasmas.

  11. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (<0.6 microm) fraction; analysis indicated that Cr(VI) is primarily associated with particles <0.6 microm. The conclusion of the study is that Cr(VI) concentrations vary significantly with welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active

  12. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  13. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver; Siemon, John

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pourmore » tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O 2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.« less

  14. 40Ar/ 39Ar ages and paleomagnetism of São Miguel lavas, Azores

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Wijbrans, Jan R.; Constable, Catherine G.; Gee, Jeff; Staudigel, Hubert; Tauxe, Lisa; Forjaz, Victor-H.; Salgueiro, Mário

    1998-08-01

    We present new 40Ar/ 39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/ 39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/ 39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.

  15. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector

    NASA Astrophysics Data System (ADS)

    Tohjima, Yasunori

    2000-06-01

    We present a method for measuring changes in the atmospheric O2/N2 ratio based on data from a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD). In this method, O2 and N2 in an air sample are separated on a column filled with molecular sieve 5A with H2 carrier gas. Since the separated O2 includes Ar, which has a retention time similar to that of O2, the (O2+Ar)/N2 ratio is actually measured. The change in the measured (O2+Ar)/N2 ratio can be easily converted to that in the O2/N2 ratio with a very small error based on the fact that the atmospheric Ar/N2 ratio is almost constant. The improvements to achieve the high-precision measurement include stabilization of the pressure at the GC column head and at the outlets of the TCD and the sample loop. Additionally, the precision is improved statistically by repeating alternate analyses of sample and a reference gas. The standard deviation of the replicate cycles of reference and sample analyses is about 18 per meg (corresponding to 3.8 parts per million (ppm) O2 in air). This means that the standard error is about 7 per meg (1.5 ppm O2 in air) for seven cycles of alternate analyses, which takes about 70 min. The response of this method is likely to have a 2% nonlinearity. Ambient air samples are collected under pressure in glass flasks equipped with two stopcocks sealed by Viton O-rings at both ends. Pressure depletion in the flask during the O2/N2 measurement does not cause any detectable change in the O2/N2 ratio, but the O2/N2 ratio in the flask was found to gradually decrease during the storage period. We also present preliminary results from air samples collected at Hateruma Island (latitude 24°03'N, longitude 123°49') from July 1997 through March 1999. The observed O2/N2 ratios clearly show a seasonal variation, increasing in spring and summer and decreasing in autumn and winter.

  16. Design and Lithographic Characteristics of Alicyclic Fluoropolymer for ArF Chemically Amplified Resists

    NASA Astrophysics Data System (ADS)

    Maeda, Katsumi; Nakano, Kaichiro; Shirai, Masamitsu

    2006-12-01

    We designed a novel alicyclic fluoropolymer, poly[3-hydroxy-4-(hexafluoro-2-hydroxyisopropyl)tricyclodecene], as an ArF (193 nm) chemically amplified resist. This fluoropolymer has a hexafluoroisopropanol group as an alkaline soluble unit and a hydroxyl group for improving adhesion. This polymer also exhibited a high transparency of 93%/150 nm at 193 nm, high thermal stability (355 °C), and a good adhesion to a Si substrate compared with a poly(norbornene) with a hexafluoroisopropanol group. The etching rate of our developed fluoropolymer for CF4 gas was 1.29 times that of the KrF resist. Moreover, a chemically amplified positive resist comprising an ethoxymethyl-protected polymer and a photoacid generator achieved a 110 nm line-and-space pattern with an ArF exposure.

  17. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  18. ARS-Media for excel instruction manual

    USDA-ARS?s Scientific Manuscript database

    ARS-Media for Excel Instruction Manual is the instruction manual that explains how to use the Excel spreadsheet ARS-Media for Excel application. ARS-Media for Excel Instruction Manual is provided as a pdf file....

  19. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  20. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  1. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least formore » the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.« less

  2. Study electron transport coefficients for Ar, O2 and their mixtures by using EEDF program

    NASA Astrophysics Data System (ADS)

    Majeed, D. S. Abdul; Hussein, B. J.; Jassim, M. K.

    2018-05-01

    We calculated the electron transport coefficient in Ar, O2 and their mixtures for ratio of E/N where E denotes the electric field and N the density of gas atoms from 5 – 600 Td 1Td = 10-17 V.cm2. The result and parameters mean energy mobility drift velocity and others are calculated by solving Boltzmann equation. We study these gases because of its importance in thermal plasma such as shielding gas for arc welding of metals and alloys. These results are useful to find best gas mixtures to reach appropriate transport parameter and to derive the same relevant cross section data.

  3. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are highermore » than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.« less

  4. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  5. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  6. Bubble composition of natural gas seeps discovered along the Cascadia Continental Margin

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Merle, S. G.; Embley, R. W.; Seabrook, S.; Raineault, N.; Lilley, M. D.; Evans, L. J.; Walker, S. L.; Lupton, J. E.

    2016-12-01

    Gas hydrates and gas-filled pockets present in sedimentary deposits have been recognized as large reservoirs for reduced carbon in the Earth's crust. This is particularly relevant in geological settings with high carbon input, such as continental margins. During expedition NA072 on the E/V Nautilus (operated by the Ocean Exploration Trust Inc.) in June 2016, the U.S. Cascadia Continental Margin (Washington, Oregon and northern California) was explored for gas seepage from sediments. During this expedition, over 400 bubble plumes at water depths ranging from 125 and 1640 m were newly discovered, and five of them were sampled for gas bubble composition using specially designed gas tight fluid samplers mounted on the Hercules remotely operated vehicle (ROV). These gas bubble samples were collected at four different depths, 494 m (rim of Astoria Canyon), 615 and 620 m (SW Coquille Bank), 849 m (floor of Astoria Canyon) and 1227 m (Heceta SW). At the two deeper sites, exposed hydrate was present in the same area where bubbles were seeping out from the seafloor. Other than the escaping gas bubbles, no other fluid flow was visible. However, the presence of bacterial mats point to diffuse fluid flow present in the affected area. In this study we present the results of the currently ongoing geochemical analysis of the gas bubbles released at the different sites and depths. Noble gas analysis, namely helium and neon, will give information about the source of the helium as well as about potential fractionation between helium and neon associated with gas hydrates. The characterization of these gas samples will also include total gas (CO2, H2, N2, O2, Ar, CH4 and other hydrocarbons) and stable isotope analysis (C and H). This dataset will reveal the chemical composition of the seeping bubbles as well as give information about the possible sources of the carbon contained in the seeping gas.

  7. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  8. Accurate Laboratory Measurements of Vibration-Rotation Transitions of 36ArH^+ and 38ArH+

    NASA Astrophysics Data System (ADS)

    Cueto, Maite; Cernicharo, Jose; Herrero, Victor Jose; Tanarro, Isabel; Domenech, Jose Luis

    2014-06-01

    The protonated Ar ion 36ArH^+ has recently been identified in space, in the Crab Nebula, from Herschel spectra. Its R(0) and R(1) transitions lie at 617.5 and 1234.6 GHz, respectively, where atmospheric transmission is rather poor, even for a site as good as that of ALMA. As an alternative, especially after the end of the Herschel mission, rovibrational transitions of ArH^+ could be observed in absorption against bright background sources such as the galactic center, or other objects. We report on accurate laboratory wavenumber measurements of 19 lines of the v=1-0 band of 36ArH^+ and 38ArH^+, using a hollow cathode discharge cell, a difference frequency laser spectrometer and Ar with natural isotopic composition. Of those lines, only eight had been reported before and with much less accuracy. The data have also been used in a Dunham-type global fit of all published laboratory data (IR and sub-mm) of all isotopologues. Barlow et al., Science, 342, 1343 (2013) R.R. Filgueira and C.E. Blom, J. Mol. Spectrosc., 127, 279 (1988) M. Cueto et al, Astrophys. J. Lett, 783, L5 (2014)

  9. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    NASA Astrophysics Data System (ADS)

    Amaro, F. D.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Antognini, A.

    2017-02-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters.

  10. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  11. Gas-partitioning tracer test to qualify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  12. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  13. ECO fill: automated fill modification to support late-stage design changes

    NASA Astrophysics Data System (ADS)

    Davis, Greg; Wilson, Jeff; Yu, J. J.; Chiu, Anderson; Chuang, Yao-Jen; Yang, Ricky

    2014-03-01

    One of the most critical factors in achieving a positive return for a design is ensuring the design not only meets performance specifications, but also produces sufficient yield to meet the market demand. The goal of design for manufacturability (DFM) technology is to enable designers to address manufacturing requirements during the design process. While new cell-based, DP-aware, and net-aware fill technologies have emerged to provide the designer with automated fill engines that support these new fill requirements, design changes that arrive late in the tapeout process (as engineering change orders, or ECOs) can have a disproportionate effect on tapeout schedules, due to the complexity of replacing fill. If not handled effectively, the impacts on file size, run time, and timing closure can significantly extend the tapeout process. In this paper, the authors examine changes to design flow methodology, supported by new fill technology, that enable efficient, fast, and accurate adjustments to metal fill late in the design process. We present an ECO fill methodology coupled with the support of advanced fill tools that can quickly locate the portion of the design affected by the change, remove and replace only the fill in that area, while maintaining the fill hierarchy. This new fill approach effectively reduces run time, contains fill file size, minimizes timing impact, and minimizes mask costs due to ECO-driven fill changes, all of which are critical factors to ensuring time-to-market schedules are maintained.

  14. Significance of the cosmogenic argon correction in deciphering the 40Ar/39Ar ages of the Nakhlite (Martian) meteorites

    NASA Astrophysics Data System (ADS)

    Cohen, B. E.; Cassata, W.; Mark, D. F.; Tomkinson, T.; Lee, M. R.; Smith, C. L.

    2015-12-01

    All meteorites contain variable amounts of cosmogenic 38Ar and 36Ar produced during extraterrestrial exposure, and in order to calculate reliable 40Ar/39Ar ages this cosmogenic Ar must be removed from the total Ar budget. The amount of cosmogenic Ar has usually been calculated from the step-wise 38Ar/36Ar, minimum 36Ar/37Ar, or average 38Arcosmogenic/37Ar from the irradiated meteorite fragment. However, if Cl is present in the meteorite, then these values will be disturbed by Ar produced during laboratory neutron irradiation of Cl. Chlorine is likely to be a particular issue for the Nakhlite group of Martian meteorites, which can contain over 1000 ppm Cl [1]. An alternative method for the cosmogenic Ar correction uses the meteorite's exposure age as calculated from an un-irradiated fragment and step-wise production rates based on the measured Ca/K [2]. This calculation is independent of the Cl concentration. We applied this correction method to seven Nakhlites, analyzed in duplicate or triplicate. Selected samples were analyzed at both Lawrence Livermore National Laboratory and SUERC to ensure inter-laboratory reproducibility. We find that the cosmogenic argon correction of [2] has a significant influence on the ages calculated for individual steps, particularly for those at lower temperatures (i.e., differences of several tens of million years for some steps). The lower-temperature steps are more influenced by the alternate cosmogenic correction method of [2], as these analyses yielded higher concentrations of Cl-derived 38Ar. As a result, the Nakhlite data corrected using [2] yields step-heating spectra that are flat or nearly so across >70% of the release spectra (in contrast to downward-stepping spectra often reported for Nakhlite samples), allowing for the calculation of precise emplacement ages for these meteorites. [1] Cartwright J. A. et al. (2013) GCA, 105, 255-293. [2] Cassata W. S., and Borg L. E. (2015) 46th LPSC, Abstract #2742.

  15. An inner warp in the DoAr 44 T Tauri transition disc

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-07-01

    Optical/IR images of transition discs (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453 that can be interpreted as shadowing from sharply tilted inner discs, such that the outer discs are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of T Tauri DoAr 44. With a fairly axially symmetric ring in the sub-mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88 per cent), compared to the shallow drops at 336 GHz (˜24 per cent). Radiative transfer predictions with an inner disc tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  16. Call for Development of New Mineral Standards for 40Ar/39Ar Dating

    NASA Astrophysics Data System (ADS)

    Deino, A. L.; Turrin, B. D.; Renne, P. R.; Hemming, S. R.

    2015-12-01

    Age determination via the 40Ar/39Ar dating method relies on the intercomparison of measured 40Ar*/39ArK ratios of geological unknowns with those of co-irradiated mineral standards. Good analytical procedure dictates that these ratios (and the evolution of the Ar ion beams underpinning them) be as similar as practical for the greatest accuracy. Unfortunately, throughout several intervals of the geological time scale this 'best practice' cannot be achieved with existing widely used standards. Only two internationally utilized sanidine standards are available for the middle to late Cenozoic: the Alder Creek Rhyolite sanidine (ACs), at ~1.2 Ma (Turrin et al., 1994; Nomade et al., 2005), and the Fish Canyon Tuff sanidine (FCs) at ~28.2 Ma (e.g., Kuiper et al., 2008; Renne et al, 2011). The situation is even worse throughout much of the rest of the Phanerozoic, as the next oldest standard in common use is the Hb3gr hornblende standard with an age of ~1.1 Ga (Turner, 1971; Jourdan et al., 2006). We propose, as a community effort, the development a set of standards covering the entire target range of high-precision 40Ar/39Ar dating, i.e. the Phanerozoic. Their ages would be stepped in a regular fashion with no more than approximately a factor of 3 between standards, such that in the worse case the 40Ar*/39Ar ratios of standards and unknown need differ by no more than a factor of two. While somewhat arbitrary, an approximately 3 X age progression allows the entire time scale to be covered by a manageable number of standards. Anchoring the progression in the widely used ACs, FCs, and Hb3gr (in bold, below) yields the following set of suggested standard ages: 0.4, 1.2, 3.3, 9.4, 28.2, 95, 320, and 1100 Ma. A suitable standard should be highly reproducible in age at the grain-to-grain and sub-grain levels, and highly radiogenic. The mineral should be abundant and easily separated from the host rock. These criteria may be most easily achieved by focusing on sanidine phenocrysts

  17. Discordant K-Ar and Young Exposure Dates for the Windjana Sandstone, Kimberley, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Vasconcelos, P. M.; Farley, K. A.; Malespin, C. A.; Mahaffy, P.; Ming, D.; McLennan, S. M.; Hurowitz, J. A.; Rice, Melissa S.

    2016-01-01

    K-Ar and noble gas surface exposure age measurements were carried out on the Windjana sandstone, Kimberley region, Gale Crater, Mars, by using the Sample Analysis at Mars instrument on the Curiosity rover. The sandstone is unusually rich in sanidine, as determined by CheMin X-ray diffraction, contributing to the high K2O concentration of 3.09 +/- 0.20 wt % measured by Alpha-Particle X-ray Spectrometer analysis. A sandstone aliquot heated to approximately 915 C yielded a K-Ar age of 627 +/- 50 Ma. Reheating this aliquot yielded no additional Ar. A second aliquot heated in the same way yielded a much higher K-Ar age of 1710 +/- 110 Ma. These data suggest incomplete Ar extraction from a rock with a K-Ar age older than 1710 Ma. Incomplete extraction at approximately 900 C is not surprising for a rock with a large fraction of K carried by Ar-retentive K-feldspar. Likely, variability in the exact temperature achieved by the sample from run to run, uncertainties in sample mass estimation, and possible mineral fractionation during transport and storage prior to analysis may contribute to these discrepant data. Cosmic ray exposure ages from He-3 and Ne-21 in the two aliquots are minimum values given the possibility of incomplete extraction. However, the general similarity between the He-3 (57 +/- 49 and 18 +/- 32 Ma, mean 30 Ma) and Ne-21 (2 +/- 32 and 83 +/- 24 Ma, mean 54 Ma) exposure ages provides no evidence for underextraction. The implied erosion rate at the Kimberley location is similar to that reported at the nearby Yellowknife Bay outcrop.

  18. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    NASA Astrophysics Data System (ADS)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  19. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Inert-gas thruster technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Trock, D. C.

    1981-01-01

    Attention is given to recent advances in component technology for inert-gas thrusters. It is noted that the maximum electron emission of a hollow cathode with Ar can be increased 60-70% by using an enclosed keeper configuration. Operation with Ar but without emissive oxide has also been attained. A 30-cm thruster operated with Ar at moderate discharge voltages is found to give double-ion measurements consistent with a double-ion correlation developed earlier on the basis of 15-cm thruster data. An attempt is made to reduce discharge losses by biasing anodes positive of the discharge plasma. The performance of a single-grid ion-optics configuration is assessed. The ion impingement on the single-grid accelerator is found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator is 2-3 times the aperture diameter.

  1. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  2. EPR investigation of electronic excitations in rare gas solids (Review Article)

    NASA Astrophysics Data System (ADS)

    Zhitnikov, R. A.; Dmitriev, Yu. A.

    1998-10-01

    The methods are described for producing unstable paramagnetic excited states in rare gas cryocrystals Ne, Ar, Kr, and Xe through the trapping, in the cryocrystals growing from the gas phase, the products of the gas discharge taking place in the same or other rare gas. The paper presents a technique and results of an observation and investigation of excited states in rare gas cryocrystals with electron paramagnetic resonance (EPR). The discovered unstable paramagnetic centers are interpreted as being local metastable excited np5(n+1)s atomic-type states in rare gas cryocrystals which are subject to the action of the anisotropic electric field resulted from the crystal surroundings distorted by the center. An account is given of the mechanisms for formation of observed paramagnetic excited states in cryocrystals which arise owing to the excitation energy of the metastable 3P2 atoms of Ne, Ar, Kr, Xe and He 23S1 and 21S0 atoms that form in the discharge in an appropriate gas and trap in the growing cryocrystal.

  3. (Ar-39)-(Ar-40) dating of mesosiderites - Evidence for major parent body disruption less than 4 Ga ago

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Jordan, J. L.; Garrison, D. H.; Mittlefehldt, D.

    1990-01-01

    The (Ar-39) (Ar-40) chronologies were determined for 14 different mesosiderites representing the full range of classification according to recrystallization, and these chronologies were compared with analogous data for other meteorite types and for lunar highland rocks. Results of Ar-Ar chronologies indicate the history of a degassing of Ar due to a major thermal event that occurred less than 3.9 Ga ago; this event is not the metal-silicate mixing event, which is known to have occurred earlier than 4.4 Ga ago. It is suggested that a major collisional disruption-reassembly event less than 3.9 Ga ago took place, leaving the metal-silicate breccias buried under tens of kilometers of rubble, where they cooled slowly through the Ar closure temperatures.

  4. Hg-Xe exciplex formation in mixed Xe/Ar matrices: molecular dynamics and luminescence study.

    PubMed

    Lozada-García, Rolando; Rojas-Lorenzo, Germán; Crépin, Claudine; Ryan, Maryanne; McCaffrey, John G

    2015-03-19

    Luminescence of Hg((3)P1) atoms trapped in mixed Ar/Xe matrices containing a small amount of Xe is reported. Broad emission bands, strongly red-shifted from absorption are recorded which are assigned to strong complexes formed between the excited mercury Hg* and xenon atoms. Molecular dynamics calculations are performed on simulated Xe/Ar samples doped with Hg to follow the behavior of Hg* in the mixed rare gas matrices leading to exciplex formation. The role of Xe atoms in the first solvation shell (SS1) around Hg was investigated in detail, revealing the formation of two kinds of triatomic exciplexes; namely, Xe-Hg*-Xe and Ar-Hg*-Xe. The first species exists only when two xenon atoms are present in SS1 with specific geometries allowing the formation of a linear or quasi-linear exciplex. In the other geometries, or in the presence of only one Xe in SS1, a linear Ar-Hg*-Xe exciplex is formed. The two kinds of exciplexes have different emission bands, the most red-shifted being that involving two Xe atoms, whose emission is very close to that observed in pure Xe matrices. Simulations give a direct access to the analysis of the experimental absorption, emission, and excitation spectra, together with the dynamics of exciplexes formation.

  5. Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/ 39Ar thermochronometry of Martian meteorites

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Shuster, David L.; Renne, Paul R.; Weiss, Benjamin P.

    2010-12-01

    The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/ 39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/ 39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb ( Bouvier et al., 2009a) and Lu-Hf ages ( Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/ 36Ar component in maskelynite in ALH 84001 ( 40Ar/ 36Ar = 632 ± 90). The maskelynite 40Ar/ 39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/ 39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/ 39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/ 39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ˜4.1 Ga. The data also place conservative upper bounds on the long-duration residence

  6. A natural laboratory for 40Ar/39Ar geochronology: ICDP cores from Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Engelhardt, Jonathan; Sudo, Masafumi; Oberhänsli, Roland

    2015-04-01

    Pore water samples from ICDP Paleovan cores indicate a limited pore water exchange within Quaternary lake sediments. The core's volcaniclastic sections bear unaltered K-rich ternary feldspar and fresh to altered glass shards of predominantly rhyolitic composition. Whereas applying the 40Ar/39Ar method on feldspars resulted in ages timing a late-stage crystallization, glass shards had the potential to date the eruption. Volcanic glass is prone to modifications such as hydrous alteration (palagonitization) and devitrification (Cerling et al., 1985). These modifications affect the glass' chemistry and challenge the application of the 40Ar/39Ar method. Gaining precise radiometric ages from two phases has the potential to strengthen a climate-stratigraphic age-model (Stockhecke et al., 2014), and to significantly increase the temporal resolution on the deposition of the lake sediments. Vice versa the core's previous age model has the ability to question the reliability of 40Ar/39Ar eruption ages derived from ternary feldspars and glass shards. Multi- and single-grain total fusion on alkali feldspars from six volcaniclastic deposits resulted in Pleistocene ages that are in good agreement with the predicted age model. Feldspar phenocrysts from three ashes in the core's youngest section yielded consistent isochron ages that are significantly older than the model's prediction. Several distinct stratigraphic and paleomagnetic time markers of similar stratigraphic positions contradict to the older radiometric dates (Stockhecke et al., 2014). Partial resorption features of inherited feldspar domains and the involvement of excess 40Ar indicate incomplete degassing of older domains. To evaluate the magmatic history of the different domains EMPA mappings of trace elements that could be interpreted as Ar diffusion couples are currently conducted. Geochronology on Paleovan cores offers unique opportunities to monitor the effect of alteration on the Ar-systematics of volcanic glass

  7. Origin of planetary primordial rare gas - The possible role of adsorption.

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Cannon, W. A.

    1972-01-01

    The degree of physical adsorption of Ne, Ar, Kr, and Xe on pulverized samples of the Allende meteorite at 113 K has been measured. The observed pattern of equilibrium enrichment of heavy rare gases over light on the pulverized meteorite surfaces relative to the gas phase is similar to the enrichment pattern exhibited by planetary primordial rare gas when compared with the composition of solar rare gas. Results indicate that, at 113 K, a total nebular pressure of from .01 to .001 atm would be required to explain the Ar, Kr, and Xe abundances in carbonaceous chondrites with an adsorption mechanism. This pressure estimate is compatible with the range of possible nebular pressures suggested by astrophysical arguments. However, the subsequent mechanism by which initially adsorbed gas might have been transferred into the interiors of grains cannot be identified at present.

  8. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  9. Direct 40Ar/39Ar age determination of fluid inclusions using in-vacuo¬ stepwise crushing - Example of garnet from the Cycladic Blueschist Unit on Syros

    NASA Astrophysics Data System (ADS)

    Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje

    2017-04-01

    Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons

  10. Fourier-transform MW spectroscopy of the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiyoshi, Yoshihiro; Endo, Yasuki; Ohshima, Yasuhiro

    1996-12-31

    The authors have studied the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes with FTMW spectroscopy. The complexes were produced in a supersonic free jet by a pulsed discharge of H{sub 2}S or D{sub 2}S, which was diluted to 0.35% in Ar with a stagnation pressure of 2 atm. R-branch transitions in the lower spin-orbit component ({Omega}=3/2) for the linear {sup 2}{Pi}{sub i} radicals were observed for J{double_prime} = 3/2 to J{double_prime} = 15/2 in the 8-26 GHz region. The transitions were split into two parity components owing to the parity doubling. Each parity component was split further due to themore » magnetic hyperfine interaction associated with the H/D nucleus. Rotational constants for SH-Ar and SD-Ar were determined to be 1569.656(2) and 1567.707(2)MHz respectively. The value for SH-Ar agrees well with that of a previous LIF study. From the SH/SD data, it was confirmed that the argon atom is located at the hydrogen side of the SH radical. With an assumption that the S-H bond length is equal to that in the monomer, the H-Ar distance is calculated to be 2.900 {Angstrom}, which is about 0.1 {Angstrom} longer than that in OH-Ar. The effective D{sub J} constants of SH-Ar and SD-Ar were found to have negative values of -58.4(7) and -50.7(6), kHz respectively.« less

  11. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    USGS Publications Warehouse

    Cosca, M.A.; Essene, E.J.; Kunk, Michael J.; Sutter, J.F.

    1992-01-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ??? 1000 and ??? 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ??? 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ??? 600 Ma as required by the deposition of overlying

  12. Planar defects as Ar traps in trioctahedral micas: A mechanism for increased Ar retentivity in phlogopite

    NASA Astrophysics Data System (ADS)

    Camacho, A.; Lee, J. K. W.; Fitz Gerald, J. D.; Zhao, J.; Abdu, Y. A.; Jenkins, D. M.; Hawthorne, F. C.; Kyser, T. K.; Creaser, R. A.; Armstrong, R.; Heaman, L. W.

    2012-08-01

    The effects of planar defects and composition on Ar mobility in trioctahedral micas have been investigated in samples from a small marble outcrop (∼500 m2) in the Frontenac Terrane, Grenville Province, Ontario. These micas crystallized during amphibolite-facies metamorphism at ∼1170 Ma and experienced a thermal pulse ∼100 Ma later at shallow crustal levels associated with the emplacement of plutons. 87Rb/86Sr ages of the phlogopites range from ∼950 to ∼1050 Ma, consistent with resetting during the later thermal event. The same phlogopites however, give 40Ar/39Ar ages between ∼950 and 1160 Ma, spanning the age range of the two thermal events. This result is intriguing because these micas have undergone the same thermal history and were not deformed after peak metamorphic conditions. In order to understand this phenomenon, the chemical, crystallographical, and microstructural nature of four mica samples has been characterized in detail using a wide range of analytical techniques. The scanning electron microscope (SEM), electron microprobe (EMP), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data show that the micas are chemically homogeneous (with the exception of Ba) and similar in composition. The Fourier transform infrared spectroscopy and Mossbauer results show that the M sites for three of the micas are dominated by divalent cations and the Fe3+/(Fe2++Fe3+) ratio for all four phlogopites ranges from 0.10 to 0.25. The stable-isotopic data for calcite indicate that this outcrop was not affected by hydrothermal fluids after peak metamorphism. No correlation between chemical composition and 87Rb/86Sr and 40Ar/39Ar age or between crystal size and 40Ar/39Ar age is observed. The only major difference among all of the micas was revealed through transmitted electron microscope (TEM), which shows that the older 1M micas contain significantly more layer stacking defects, associated with crystallization, than the younger micas. We

  13. Demonstration of a Groundwater Age Determination Using 39Ar in Support of a Multi-Tracer Groundwater Analysis of Wells in Fresno, CA

    NASA Astrophysics Data System (ADS)

    Wurstner White, S.; Brandenberger, J. M.; Kulongoski, J. T.; Aalseth, C.; Williams, R. M.; Mace, E. K.; Humble, P.; Seifert, A.; Cloutier, J. M.

    2015-12-01

    Argon-39 has a half-life of 269 years, making it an ideal tracer for groundwater dating in the age range of 50-1000 years. In September 2014, two production wells within the San Joaquin Valley Aquifer System, located in Fresno, CA were sampled and analyzed for a suite of inorganic and organic contaminants and isotopic constituents. The radiotracers 3H (< 50 years) and 14C (> 1000 years) are routinely measured as part of the U. S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Enhanced Trends Network project. Adding 39Ar to the suite of tracers provides age data in the intermediate range to refine the groundwater age distribution of mixed waters and establishes groundwater residence times and flow rates. Characterizing the groundwater recharge and flow rate is of particular interest at these wells for determining the sources and movement of contaminants in groundwater, particularly nitrate, DBCP, and perchlorate. The sampled wells were pumped and purged. The sample collection for the 39Ar measurements required extracting the dissolved gases from 3000-5000 L of groundwater using a membrane degasification system with a maximum flow rate of 50 gpm (11.4 m^3/hr). The membranes are plastic hollow fibers that are hydrophobic. The gas was collected in duplicate large aluminum coated plastic sample bags. The gas was purified and then counted via direct beta counting using ultra-low background proportional counters loaded with a mixture of geologic Ar and methane to enhance the sensitivity for Ar measurements. The activity of 39Ar is 1.01 Bq/kg Ar, corresponding to an abundance of 0.808 ppq. The estimated absolute ages of the samples from the two groundwater wells were 23.3 and 27.0 percent of modern Ar. The comparison of the groundwater residence times determined using the suite of radiotracers (3H, 39Ar, and 14C) highlighted the value of knowing the intermediate age of groundwater when determining contaminant fate and transport pathways.

  14. Influence of laser wavelength and pulse duration on gas bubble formation in blood filled glass capillaries.

    PubMed

    Kimel, Sol; Choi, Bernard; Svaasand, Lars O; Lotfi, Justin; Viator, John A; Nelson, J Stuart

    2005-04-01

    Hypervascular skin lesions (HVSL) are treated with medical lasers characterized by a variety of parameters such as wavelength lambda, pulse duration t(p), and radiant exposure E that can be adjusted for different pathology and blood vessel size. Treatment parameters have been optimized assuming constant optical properties of blood during laser photocoagulation. However, recent studies suggest that this assumption may not always be true. Our objective was to quantify thermally induced changes in blood that occur during irradiation using standard laser parameters. Glass capillary tubes (diameter D = 100, 200, and 337 microm) filled with fresh or hemolyzed rabbit blood were irradiated once at lambda = 585, 595, or 600 nm, t(p) = 1.5 milliseconds; and also at lambda = 585 nm, t(p) = 0.45 milliseconds. E was increased until blood ablation caused formation of permanent gas bubbles. In a corroborative study, human blood was heated at 50 degrees C and absorbance spectra were measured as a function of time. Threshold radiant exposure, E(thresh), for gas bubble formation was found not to depend on lambda, which might be surprising in view of the 10-fold lower absorption coefficient at 600 nm as compared to 585 nm. The spectroscopic study revealed heat-induced changes in blood constituent composition of hemoglobins (Hb) from initially 100% oxyhemoglobin (HbO2) to deoxyhemoglobin (HHb) and, ultimately, methemoglobin (metHb) as the major constituent. Model calculations of E(thresh)(lambda,D) based on changing constituent blood composition during heating with milliseconds lasers were found to correlate with experimental results. For laser treatment of HVSL it appears that lambda is of secondary importance and that the choice of t(p) is a more important factor. Copyright 2005 Wiley-Liss, Inc.

  15. Expression of alpha-AR subtypes in T lymphocytes and role of the alpha-ARs in mediating modulation of T cell function.

    PubMed

    Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua

    2007-01-01

    Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express

  16. Results from the MARBLE Campaign on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Devolder, B. G.; Fincke, J. R.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y. H.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2016-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first uses partially deuterated foam and hydrogen gas fill to understand the burn in the foam. The second uses undeuterated foam and deuterium gas fill to understand the dynamics of the gas. Experiments using deuterated foam and tritium gas are planned. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  17. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    PubMed Central

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  18. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Shih, C.-Y.; Turin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Agee, C.

    2013-01-01

    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data.

  20. arXiv.org and Physics Education

    ERIC Educational Resources Information Center

    Ramlo, Susan

    2007-01-01

    The website arXiv.org (pronounced "archive") is a free online resource for full-text articles in the fields of physics, mathematics, computer science, nonlinear science, and quantitative biology that has existed for about 15 years. Available directly at http://www.arXiv.org, this e-print archive is searchable. As of Jan. 3, 2007, arXiv had open…

  1. Characterization of the cod (Gadus morhua) steroidogenic acute regulatory protein (StAR) sheds light on StAR gene structure in fish.

    PubMed

    Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B

    2004-03-01

    The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.

  2. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  3. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells

    PubMed Central

    Shafi, Ayesha A.; Putluri, Vasanta; Arnold, James M.; Tsouko, Efrosini; Maity, Suman; Roberts, Justin M.; Coarfa, Cristian; Frigo, Daniel E.; Putluri, Nagireddy; Sreekumar, Arun; Weigel, Nancy L.

    2015-01-01

    Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets. PMID:26378018

  4. Barnett Shale or Strawn Group: Identifying the Source of Stray Gas through Noble Gases in the Trinity Aquifer, North-Central Texas

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Pinti, D. L.; Mickler, P. J.; Darvari, R.; Larson, T. E.

    2017-12-01

    The complete set of stable noble gases (He, Ne, Ar, Kr, Xe) is presented for Barnett Shale and Strawn Group production gas together with that of stray flowing gas present in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like Trinity Aquifer stray gas, Strawn gas is significantly more enriched in crustal 4He*, 21Ne*, and 40Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22Ne/36Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  5. Spin exchange optical pumping based polarized 3He filling station for the Hybrid Spectrometer at the Spallation Neutron Source.

    PubMed

    Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B

    2013-06-01

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  6. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  7. Order-of-magnitude differences in retention of low-energy Ar implanted in Si and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmaack, Klaus, E-mail: wittmaack@helmholtz-muenchen.de; Giordani, Andrew; Umbel, Rachel

    The retention of 1 and 5 keV Ar implanted at 45° in Si and 4.3 nm SiO{sub 2} on Si was studied at fluences between 3 × 10{sup 14} and 1.5 × 10{sup 16} cm{sup −2}. X-ray photoelectron spectroscopy (XPS) served to monitor the accumulation of Ar as well as the removal of SiO{sub 2}. Bombardment induced changes in oxygen chemistry caused the O 1s peak position to move toward lower binding energies by as much as 2.2 eV. Plotted versus depth of erosion, the fluence dependent changes in oxygen content, and peak position were similar at 1 and 5 keV. The Ar content of Si increased with increasingmore » exposure, saturating at fluences of ∼2 × 10{sup 15} cm{sup −2} (1 keV) and ∼6 × 10{sup 15} cm{sup −2} (5 keV). Much less Ar was retained in the SiO{sub 2}/Si sample, notably at 1 keV, in which case the low-fluence Ar signal amounted to only 8% of the Si reference. The results imply that essentially no Ar was trapped in undamaged SiO{sub 2}, i.e., the Ar atoms initially observed by XPS were located underneath the oxide. At the lowest fluence of 5 keV Ar, the retention ratio was much higher (43%) because the oxide was already highly damaged, with an associated loss of oxygen. The interpretation was assisted by TRIM(SRIM) calculations of damage production. Partial maloperation of the ion beam raster unit, identified only at a late stage of this work, enforced a study on the uniformity of bombardment. The desired information could be obtained by determining x,y line scan profiles of O 1s across partially eroded SiO{sub 2}/Si samples. Fluence dependent Ar retention in Si was described using an extended version of the rapid relocation model which takes into account that insoluble implanted rare-gas atoms tend to migrate to the surface readily under ongoing bombardment. The range parameters required for the modeling were determined using TRIM(SRIM); sputtering yields were derived from the literature. The other three parameters

  8. Controllable Change of Photoluminescence Spectra of Silicone Rubber Modified by 193 nm ArF Excimer Laser

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi

    2009-12-01

    Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.

  9. Correlation diagrams in 40 Ar/39Ar dating: is there a correct choice?

    USGS Publications Warehouse

    Dalrymple, G.B.; Lanphere, M.A.; Pringle, M.S.

    1988-01-01

    Contrary to published assertions, the 2 types of correlation diagrams used in the interpretation of 40Ar/39Ar incremental-heating data yield the same information provided the correct mathematics are used for estimating correlation coefficients and for the least squares fit. The choice is simply between 2 illustrative, graphical displays, neither of which is fundamentally superior to the other. -Authors

  10. Ar-39 - Ar-40 Evidence for an Approximately 4.26 Ga Impact Heating Event on the LL Parent Body

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Bogard, D. D.; Rubin, A. E.

    2003-01-01

    Miller Range 99301 is a type 6, unbrecciated LL chondrite. MIL 99301 is of interest because some compositional and petrographic features suggest it experienced rather high shock grades, whereas other features suggest it is relatively unshocked. Inconsistent shock indicators could be explained if MIL 99301 was shocked but then partly annealed by heat produced by impacts on the parent body. The hypothesis that MIL 99301 experienced high temperature metamorphism (type 6) followed by a later shock event that heated, but did not melt, the constituent feldspar can be evaluated using (39)Ar-(40)Ar chronology. This is because (39)Ar-(40)Ar ages of shocked ordinary chondrites are generally <4.2 Ga, whereas (39)Ar-(40)Ar ages of unshocked meteorites are generally older, and between 4.52 - 4.38 Ga.

  11. Xe-129 - Xe-128 and Ar-40 - Ar-39 chronology of two Antarctic enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Honda, M.; Bernatowicz, T. J.; Podosek, F. A.

    1983-01-01

    Xe-129 - Xe-128 and Ar-40 - Ar-39 analyses has been performed on two Antarctic enstatite meteorites, the chondrite Y-691 and the aubrite (enstatite achondrite) ALH-78113. Both meteorites have complex Ar-40 - Ar-39 release patterns to which no unambiguous age assignment is possible. Both give apparently satisfactory Xe-129 - Xe-128 correlations corresponding to unusual ages. The I-Xe age of the chondrite Y-691 is 16 Ma after Bjurbole, not unusual for chondrites in general but 10 Ma later than previously known ages for enstatite chondrites. The I-Xe age of the aubrite ALH-78113 is 210 Ma after Bjurbole, the latest age (rather than a limit) so far observed by the I-Xe technique, but this age assignment must be considered tentative because of the possibility that it is significantly influenced by terrestrial I contamination.

  12. Trapping Ne, Ar, Kr, and Xe in Si2O3 smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Donn, Bertram; Olinger, Chad; Garrison, Dan; Hohenberg, Charles

    1988-01-01

    Simple Si2O3 smokes have been condensed at both low (less than 750 K) and high (greater than 1000 K) temperature at 35 torr H2 pressure in the presence of 0, 10, 100, and 1000 microns of a noble gas mixture containing Ne, Ar, Kr, and Xe. In general, both Ne and Ar are quite loosely bound in the smokes (6.0 x 10 to the -8th and 2.6 x 10 to the -4th ccSTP/g, respectively), and are degassed at temperatures below 1200 K. Both Kr and Xe are somewhat more strongly bound at concentrations of 1.0 x 10 to the -7th and 8.2 x 10 to the -8th ccSTP/g, respectively, and in addition show a double release with a second component at a temperature of about 1875 K. With the exception that Si2O3 smokes appear to show a particular affinity for argon, possibly due to an anomalous absorption of atmospheric argon, none of the other noble gases are found in sufficient concentration to explain the gases observed in meteorites as primary circumstellar condensates. However, this data in conjunction with observations of Honda et al. (1979) do seem to show a degree of dependence between noble gas retention and chemical composition.

  13. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation

    NASA Astrophysics Data System (ADS)

    Geohegan, David B.; Puretzky, Alex A.; Duscher, Gerd; Pennycook, Stephen J.

    1998-06-01

    The dynamics of nanoparticle formation, transport, and deposition by pulsed laser ablation of c-Si into 1-10 Torr He and Ar gases are revealed by imaging laser-induced photoluminescence and Rayleigh-scattered light from gas-suspended 1-10 nm SiOx particles. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles, while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. Nanoparticles unambiguously formed in the gas phase were collected on transmission electron microscope grids for Z-contrast imaging and electron energy loss spectroscopy analysis. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described.

  14. Recalibration of the Palaeocene-Eocene boundary (P-E) using high precision U-Pb and Ar-Ar isotopic dating

    NASA Astrophysics Data System (ADS)

    Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.

    2003-04-01

    In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but

  15. Gas-Recovery System

    DOEpatents

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  16. Gas-recovery system

    DOEpatents

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  17. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  18. Petro-elastic modelling and characterization of solid-filled reservoirs: Comparative analysis on a Triassic North Sea reservoir

    NASA Astrophysics Data System (ADS)

    Auduson, Aaron E.

    2018-07-01

    One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.

  19. Cosmic Ray Exposure Ages, Ar-Ar Ages, and the Origin and History of Eucrites

    NASA Technical Reports Server (NTRS)

    Wakefield, Kelli; Bogard, Donald; Garrison, Daniel

    2004-01-01

    HED meteorites likely formed at different depths on the large asteroid 4-Vesta, but passed through Vesta-derived, km-sized intermediary bodies (Vestoids), before arriving at Earth. Most eucrites and diogenites (and all howardites) are brecciated, and impact heating disturbed or reset the K-Ar ages (and some Rb-Sr ages) of most eucrites in the time period of approx. 3.4 - 4.1 Gyr ago. Some basaltic eucrites and most cumulate eucrites, however, are not brecciated. We recently showed that the Ar-39 - Ar-40 ages for several of these eucrites tightly cluster about a value of 4.48 +/- 0.02 Gyr, and we argue that this time likely represents a single large impact event on Vesta, which ejected these objects from depth and quenched their temperatures. A different parent body has been suggested for cumulate eucrites, although the Ar-Ar ages argue for a common parent. Similarities in the cosmic-ray (space) exposure ages for basaltic eucrites and diogenites also have been used to infer a common parent body for some HEDs. Here we present CRE ages of several cumulate and unbrecciated basaltic (UB) eucrites and compare these with CRE ages of other HEDs. This comparison also has some interesting implications for the relative locations of various HED types on Vesta and/or the Vestoids.

  20. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  1. A new approach to cosmogenic corrections in 40Ar/ 39Ar chronometry: Implications for the ages of Martian meteorites

    DOE PAGES

    Cassata, W. S.; Borg, L. E.

    2016-05-04

    Anomalously old 40Ar/ 39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wisemore » production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188 ± 17 and 184 ± 17 Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. In conclusion, the trapped 40Ar/ 36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the Martian atmospheric value, and may represent upper mantle or crustal components.« less

  2. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  3. Ion Energy and Ion Flux Distributions of CF4/Ar/O2 Inductively Coupled Plasmas in a GEC Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Knowledge of ion kinetics in plasma processing gas mixtures, such as CF4:Ar:O2, is important for understanding plasma assisted etching and deposition of materials. Ion energies and ion fluxes were measured in this mixture for 80:10:10, 60:20:20, and 40:30:30 mixture ratios in the pressure range of 10-50 mTorr, and at 200 and 300 W of RF power. Ions from plasma, sampled through a 10 micron orifice in the center of the lower plane electrode, were energy and mass analyzed by a combination of electrostatic energy and quadrupole mass filters. CFx(+) (x = 1 - 3), F2(+), F(+), C(+) from CF4, Ar(+) from Ar, and O2(+) and O(+) from O2, and by-product ions SiFx(+)(x = 1 - 3) from etching of quartz coupling window, COFx(+)(x = 1 - 3), CO(+), CO2(+), and OF(+) were detected. In all conditions ion flux decreases with increase of pressure but increase with increase of RF power. Ar(+) signal decreases with increase of pressure while CF3(+), which is the dominant ion at all conditions, increases with increase in pressure. The loss mechanism for Ar(+) and increase of CF3(+) is due to large cross section for Ar(+) + CF4 yields Ar + CF3(+) + F. Ion energies, which range from 15-25 eV depending on plasma operating conditions, are nearly Gaussian. By-product ion signals are higher at lower pressures indicating stronger plasma interaction with quartz window.

  4. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    PubMed

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  5. Characterization of Ar/N2/H2 middle-pressure RF discharge and application of the afterglow region for nitridation of GaAs

    NASA Astrophysics Data System (ADS)

    Raud, J.; Jõgi, I.; Matisen, L.; Navrátil, Z.; Talviste, R.; Trunec, D.; Aarik, J.

    2017-12-01

    This work characterizes the production and destruction of nitrogen and hydrogen atoms in RF capacitively coupled middle-pressure discharge in argon/nitrogen/hydrogen mixtures. Input power, electron concentration, electric field strength and mean electron energy were determined on the basis of electrical measurements. Gas temperature and concentration of Ar atoms in 1s states were determined from spectral measurements. On the basis of experimentally determined plasma characteristics, main production and loss mechanisms of H and N atoms were discussed. The plasma produced radicals were applied for the nitridation and oxide reduction of gallium arsenide in the afterglow region of discharge. After plasma treatment the GaAs samples were analyzed using x-ray photoelectron spectroscopy (XPS) technique. Successful nitridation of GaAs sample was obtained in the case of Ar/5% N2 discharge. In this gas mixture the N atoms were generated via dissociative recombination of N2+ created by charge transfer from Ar+. The treatment in Ar/5% N2/1% H2 mixture resulted in the reduction of oxide signals in the XPS spectra. Negligible formation of GaN in the latter mixture was connected with reduced concentration of N atoms, which was, in turn, due to less efficient mechanism of N atom production (electron impact dissociation of N2 molecules) and additional loss channel in reaction with H2.

  6. Interface properties of SiO2/GaN structures formed by chemical vapor deposition with remote oxygen plasma mixed with Ar or He

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The impacts of noble gas species (Ar and He) on the formation of a SiO2/GaN structure formed by a remote oxygen plasma-enhanced chemical vapor deposition (ROPE-CVD) method were systematically investigated. Atomic force microscopy revealed that ROPE-CVD with He leads to a smooth SiO2 surface compared with the case of Ar. We found that no obvious oxidations of the GaN surfaces after the SiO2 depositions with the both Ar and He cases were observed. The capacitance–voltage (C–V) curves of the GaN MOS capacitors formed by ROPE-CVD with the Ar and He dilutions show good interface properties with no hysteresis and good agreement with the ideal C–V curves even after post deposition annealing at 800 °C. Besides, we found that the current density–oxide electric field characteristics shows a gate leakage current for the Ar case lower than the He case.

  7. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.

    2008-03-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.

  8. Can soil denitrification models be validated with the N2/Ar-method? Results from a comparison between DENUZ and the N2/Ar-method in Lower Saxony (Germany)

    NASA Astrophysics Data System (ADS)

    Eschenbach, Wolfram; Elbracht, Jörg; Höper, Heinrich; Kunkel, Ralf; Well, Reinhard; Wendland, Frank

    2014-05-01

    Diffuse NO3- emissions derived from agricultural N surpluses are the main cause of NO3- pollution of aquifers and open water bodies. Denitrification is the key process for the attenuation of these anthropogenic NO3- concentrations in soils and groundwater. Since the greenhouse gas N2O is an obligate intermediate of denitrification this process is also a major regulator of N2O emissions from soils and indirect N2O fluxes from aquifers and open water bodies which result from NO3--leaching. To predict NO3- leaching from the agricultural field and asses the maximal permissible agricultural N surplus to guarantee a mean long-term nitrate concentration in percolation water below 50 mg NO3-/l validated, soil denitrification models are needed. Validation of models predicting denitrification and NO3- leaching is difficult due to lack of suitable data sets and the complexity of denitrification. Moreover, existing groundwater well networks can currently not be used to check the modelled NO3- leaching because NO3- itself might be already partly or totally reduced in the groundwater below soils. In this study we assessed the possibility of validating the soil denitrification model DENUZ (Wendland et al., 2009) with calculated initial NO3- concentrations in the groundwater at the time of groundwater recharge (NO3-t0). NO3-t0 values can be derived from groundwater samples of normal groundwater monitoring wells using the N2/Ar-method (Weymann et al., 2008). Therefore we compare NO3- emission concentrations (pot-NO3-) obtained by groundwater modelled using DENUZ with NO3-t0 values, calculated from measured dissolved gas concentrations (N2, N2O, Ar) and measured NO3- in groundwater samples. We analysed groundwater samples from 484 groundwater monitoring wells throughout Lower-Saxony (Germany). Median NO3- and NO3-t0 concentrations were 0.3 and 30 mg NO3- l-1 respectively, showing that a considerable proportion of the anthropogenic N-surplus is denitrified within the saturated zone

  9. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  10. ARS turns fifteen: la quinceañera bonita.

    PubMed

    Sen, Chandan K

    2013-01-01

    ARS was aimed at advancing the erstwhile niche field of redox biology to a more central position in research. Currently, ARS ranks first (impact factor: 8.456) in the field of redox biology. Of 8336 journals listed in Journal Citation Reports, ARS ranks 205th. The next journal in redox biology ranks 449th. ARS ranks 169th of 8336 in immediacy index. The next journal in redox biology ranks 923rd. Thus, ARS is the primary source of hot papers in redox sciences and healthcare. To grow footprint and overall impact, ARS has nearly doubled the annual publication volume from roughly 200 to 400 in one year. Because the manuscript volume represents the denominator of the impact factor calculation, such a sharp increase in volume would be predicted to a proportionally lower impact factor. Because of the robust current upward momentum, ARS will be affected less than that predicted by simple arithmetic and will maintain its top position even after such aggressive volume expansion. As another year passes, the additional manuscripts will get more time to be cited, and therefore the impact factor is expected to bounce back resulting in a much stronger journal with a substantially enhanced overall presence. ARS currently publishes 36 issues annually as two series: ARS-Discoveries, and ARS-Therapeutics. Redox biology does have the potential of major health impact. ARS-Therapeutics is the first and only forum dedicated to highlight that strength. I am grateful to the global redox village for their unreserved support to raise ARS and this fascinating field of redox research and healthcare. Antioxid. Redox Signal. 18, 1-4.

  11. THE INERT GAS PURIFIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Rapacki, H.; Slapa, M.

    1961-01-01

    A device used for purmfication of inert gases used nkn nuclear detectors such as grid ionization chambers, proportional, and gas scintillation counters is described. Gas to be purifnked cireulates in a svstem containing a column consisting of trays with Ca and Mg shavings, horizontal pipes, valves, and a detector to be filled with a pure gas. The device is designed to work at up to 10 atm. The apparatus ts out-gassed very carefully. lt is filled with argon, which ps cnkrculated for 5 hours and then pumped out. Operation is based on the thermal circulation principle. The process depends onmore » the filter temperature and purification time, which in turn, are function of the gas pressure and the chemical composition of the filter. The best resolution obtained for alpha particles from natural uranium at 4.20 and 4.76 Mev was 6%. Commercial argon at 6 atm was used. Curves obtained show that the filter temperature cannot be lower than 210 deg C and that the one containing calcium mixed with magnesium gives better results than that containing pure calcium only. (L.N.N.)« less

  12. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  13. A gas circulation and purification system for gas-cell-based low-energy RI-beam production.

    PubMed

    Sonoda, T; Tsubota, T; Wada, M; Katayama, I; Kojima, T M; Reponen, M

    2016-06-01

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  14. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, T.; Wada, M.; Katayama, I.

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part permore » billion is achieved with this method.« less

  15. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  16. A study of nonflammable ArCO 2-hydrocarbon gas mixtures for limited streamer tubes

    NASA Astrophysics Data System (ADS)

    Cartwright, S.; Schneekloth, U.; Alpat, B.; Artemi, C.; Battiston, R.; Bilei, G.; Italiani, M.; Pauluzzi, M.; Servoli, L.; Messner, R.; Wyss, J.; Zdarko, R.; Johnson, J.

    1989-04-01

    The gas mixtures generally used until now in limited streamer tube detectors (Ar+C 4H 10 or Ar+CO 2+C 5H 12) are very flammable when leaked into air. The safety issues are therefore very relevant for large-volume underground experiments. We have found a set of completely safe (i.e. nonflammable) ternary mixtures of the kind Ar + hydrocarbon + CO 2 containing less than ˜ 5% of Ar and less than ˜ 10% of hydrocarbon. We tested C 4H 10, C 5H 12 and C 6H 14 as quenching agents. The main characteristics of the various mixtures have been measured: singles (untriggered) counting rate versus high voltage and with different dead times, and average charge. The stability of these mixtures is good, and their spurious streamer activity is compared with the standard binary or ternary mixture. We studied in particular the combination Ar(2.5%) + C 4H 10(9.5%) + CO 2(88%). All the data suggest that this or a similar gas mixture can successfully replace standard flammable mixtures both in tracking devices and hadron calorimeters.

  17. The ArDM experiment

    DOE PAGES

    Harańczyk, M.; Amsler, C.; Badertscher, A.; ...

    2010-08-24

    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.

  18. Electronic structure and optical properties of N vacancy and O filling on n-GaN (0001) surface

    NASA Astrophysics Data System (ADS)

    Lu, Feifei; Liu, Lei; Xia, Sihao; Diao, Yu; Feng, Shu

    2018-06-01

    In the X-ray photoelectron spectroscopy experiment, we observed that the valence band spectrum of the n-GaN (0001) surface appeared a bump near 1.9 eV after Ar etching and the N/Ga ratio became smaller, while the bump disappeared upon exposure to air. In order to analyze this phenomenon theoretically, we mainly study the electronic structure and optical properties of n-GaN (0001) surface with N vacancy and filled with O atom based on the first principles of density functional theory. The results suggest that the n-GaN (0001) surface exhibits semi-metallic property. The introduction of N vacancy reduces the n-type conductivity, whereas the filling of O atom enhances conductivity. The density of state near -1.9eV shows a good agreement between the clean n-type surface and the O-atom-filled surface, while the N vacancy surface has a higher density of states, which is similar to the experimentally observed phenomenon. It is also found that the existence of N vacancy reduces the photoemission properties of the n-GaN (0001) surface and the filling of O atom alleviates the defect caused by vacancy. This study shows that N vacancy increases the doping difficulty of n-type GaN films, however, the filling of O atom may compensate for the diminished photoelectric properties induced by N vacancy and be conducive to prepare high-performance optoelectronic devices with the contact of n-GaN and metal.

  19. Androgen receptor (AR) cistrome in prostate differentiation and cancer progression.

    PubMed

    Wang, Fengtian; Koul, Hari K

    2017-01-01

    Despite the progress in development of better AR-targeted therapies for prostate cancer (PCa), there is no curative therapy for castration-resistant prostate cancer (CRPC). Therapeutic resistance in PCa can be characterized in two broad categories of AR therapy resistance: the first and most prevalent one involves restoration of AR activity despite AR targeted therapy, and the second one involves tumor progression despite blockade of AR activity. As such AR remains the most attractive drug target for CRPC. Despite its oncogenic role, AR signaling also contributes to the maturation and differentiation of prostate luminal cells during development. Recent evidence suggests that AR cistrome is altered in advanced PCa. Alteration in AR may result from AR amplification, alternative splicing, mutations, post-translational modification of AR, and altered expression of AR co-factors. We reasoned that such alterations would result in the transcription of disparate AR target genes and as such may contribute to the emergence of castration-resistance. In the present study, we evaluated the expression of genes associated with canonical or non-canonical AR cistrome in relationship with PCa progression and prostate development by analyzing publicly available datasets. We discovered a transcription switch from canonical AR cistrome target genes to the non-canonical AR cistrome target genes during PCa progression. Using Gene Set Enrichment Analysis (GSEA), we discovered that canonical AR cistrome target genes are enriched in indolent PCa patients and the loss of canonical AR cistrome is associated with tumor metastasis and poor clinical outcome. Analysis of the datasets involving prostate development, revealed that canonical AR cistrome target genes are significantly enriched in prostate luminal cells and can distinguish luminal cells from basal cells, suggesting a pivotal role for canonical AR cistrome driven genes in prostate development. These data suggest that the expression of

  20. The potential of AR-V7 as a therapeutic target.

    PubMed

    Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C

    2018-03-01

    The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.

  1. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  2. Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.

  3. Effect of layer thickness on the elution of bulk-fill composite components.

    PubMed

    Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof

    2017-01-01

    An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    DOE PAGES

    Xi, Lili; Qiu, Yuting; Shi, Xun; ...

    2015-05-14

    Here, we report the design of novel filled CoSb 3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  5. An Approximately 4.35 Ga Ar-Ar Age for GRA 8 and the Complex Chronology of its Parent Body

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, Laurence E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    GRA06128 and GRA06129 (hereafter GRA 8 and GRA 9) are partial melts of a parent body of approximately chondritic composition. We reported a conventional Sm-147-Nd-143 isochron age of 4.559+/-0.096 Ga and a 146 Sm-142Nd model age of 4.549+/-0.036 for combined data for the two rocks. Plagioclase plus whole rock and leachate (approx.phosphate) samples gave a secondary Sm-147-Nd-143 age of 3.4+/-0.4 Ga. An Ar-39-Ar-40 age of 4.460+/-0.028 Ga was interpreted as dating metamorphism in GRA 9. We report Ar-39-Ar-40 ages in the range approx.4344-4366 Ma for GRA 8, establishing similar but different Ar-39-Ar-40 ages for the two rocks, consistent with their different Sr-isotopic systematics, and discuss these ages in the context of the complex sequence of events that affected these samples.

  6. An Approximately 4.35 Ga Ar-Ar Age for GRA 8 and the Complex Chronology of its Parent Body

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    GRA06128 and GRA06129 (hereafter GRA 8 and GRA 9) are partial melts of a parent body of approximately chondritic composition. We reported a conventional SM-147Sm-ND_143 isochron age of 4.559 +/-.096 Ga and a SM-146-142Nd model age of 4.549 +/- 0.036 for combined data for the two rocks. Plagioclase plus whole rock and leachate (approximately phosphate) samples gave a secondary SM-147-ND-143 age of 3.4 +/-0.4 Ga. An Ar-39-Ar-40 age of 4.460+/-0.028 Ga was interpreted by as dating metamorphism in GRA 9. We report Ar-39-Ar-40 ages in the range approximately 4344-4366 Ma for GRA 8, establishing similar but different Ar-39-Ar-40 ages for the two rocks, consistent with their different Sr-istopic systematics, and discuss these ages in the context of the complex sequence of events that affected these samples

  7. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  8. Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas-A Heavy Noble Gas Analysis.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana

    2016-11-01

    This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.

  9. AR Sco observing campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-08-01

    Dr. Thomas Marsh (University of Warwick) and colleagues have requested AAVSO coverage of the intriguing binary AR Sco in support of upcoming Newton-XMM observations scheduled for 2016 September 10 15:41 - September 11 02:26 UT. This fascinating binary system is the subject of an exciting paper in the July 2016 issue of Nature (Marsh et al., 2016Natur.537..374M; pre-print version at arXiv (http://arxiv.org/abs/1607.08265). Marsh writes of their research on AR Sco: "...it was down to [the amateurs [who are co-authors] on the paper that we got onto it in the first place. Coverage immediately before, after and (especially) during [the XMM observations] would be great. The most challenging aspect is the time resolution: ideally one wants a cadence < 29 seconds because of the strong harmonic of the basic 2 minute period, and the faster the better. Observers should use whatever filter (including clear/white light) is needed to allow them to match this constraint. Accurate timing is also essential - the centres of the exposures need to be known to better than ± 2 seconds, and preferably better." A page of materials on AR Sco related to the Nature paper may be found at http://deneb.astro.warwick.ac.uk/phsaap/arsco-info/ . Item #9 on that page is a YouTube video of a fascinating movie Dr. Marsh made of AR Sco from their data (https://www.youtube.com/watch?v=QJGAv2jCF4s&feature=youtu.be). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  10. Ar-40/Ar-39 Ages for Maskelynites and K-Rich Melt from Olivine-Rich Lithology in (Kanagawa) Zagami

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Lindsay, F.; Turrin, B.; Swisher, C. C., III; Delaney, J. S.; Shih, C.-Y.; Niihara, T.; Misawa, K.

    2013-01-01

    We report Ar/Ar release patterns for small maskelynite grains and samples of a K-rich phase separated from the basaltic shergottite Zagami. The purpose of the work is to investigate the well-known discrepancy between published Ar/Ar ages of Zagami, >200 Ma, and its age of approx. 170 Ma as determined by other methods [1-6]. Niihara et al. [7] divide less abundant darker material present in Zagami into an olivine-rich lithology (ORL), from which most of our samples came, and a pyroxene-rich one (Dark Mottled-Lithology: DML) [8, 9]. ORL consists of vermicular fayalitic olivine, coarse-grained pyroxene, maskelynite, and a glassy phase exceptionally rich in K (up to 8.5 wt%), Al, and Si, but poor in Fe and Mg. The elemental composition suggests a late-stage melt, i.e., residual material that solidified late in a fractional crystallization sequence. Below we refer to it as "K-rich melt." The K-rich melt contains laths of captured olivine, Ca-rich pyroxene, plagioclase, and opaques. It seemed to offer an especially promising target for Ar-40/Ar-39 dating.

  11. Dynamics of a grain-filled ball on a vibrating plate.

    PubMed

    Pacheco-Vázquez, F; Ludewig, F; Dorbolo, S

    2014-09-12

    We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.

  12. Dynamics of a Grain-Filled Ball on a Vibrating Plate

    NASA Astrophysics Data System (ADS)

    Pacheco-Vázquez, F.; Ludewig, F.; Dorbolo, S.

    2014-09-01

    We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.

  13. Intermittent surface water connectivity: Fill and spill vs. fill and merge dynamics

    USGS Publications Warehouse

    Leibowitz, Scott G.; Mushet, David M.; Newton, Wesley E.

    2016-01-01

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining differences in response was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes.

  14. MEIS1 functions as a potential AR negative regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Liang; Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing 100123; Li, Mingyang

    2014-10-15

    The androgen receptor (AR) plays critical roles in human prostate carcinoma progression and transformation. However, the activation of AR is regulated by co-regulators. MEIS1 protein, the homeodomain transcription factor, exhibited a decreased level in poor-prognosis prostate tumors. In this study, we investigated a potential interaction between MEIS1 and AR. We found that overexpression of MEIS1 inhibited the AR transcriptional activity and reduced the expression of AR target gene. A potential protein–protein interaction between AR and MEIS1 was identified by the immunoprecipitation and GST pull-down assays. Furthermore, MEIS1 modulated AR cytoplasm/nucleus translocation and the recruitment to androgen response element in prostatemore » specific antigen (PSA) gene promoter sequences. In addition, MEIS1 promoted the recruitment of NCoR and SMRT in the presence of R1881. Finally, MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells. Taken together, our data suggests that MEIS1 functions as a novel AR co-repressor. - Highlights: • A potential interaction was identified between MEIS1 and AR signaling. • Overexpression of MEIS1 reduced the expression of AR target gene. • MEIS1 modulated AR cytoplasm/nucleus translocation. • MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells.« less

  15. USDA/ARS Organic Production Research

    USDA-ARS?s Scientific Manuscript database

    For much of its history, USDA/ARS had little to do with research on organic agriculture, however research in organic systems has made considerable gains at the agency over the past decade. In the 1980's and 1990's, as the organic food industry was taking off, ARS researchers who wanted to serve orga...

  16. Mineralogy and Ar-Ar Age of the Tarahumara IIE Iron, with Reference to the Origin of Alkali-Rich Materials

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Bogard, Donald D.; Otsuki, Mayumi; Ishii, Teruaki

    2003-01-01

    Silicate inclusions in nine known IIE irons show diversity in mineralogy, and Colomera, Kodaikanal, Elga and Miles contain alkali-rich silicate inclusions. Bogard et al. showed evidence of a complex parent body evolution for IIE irons based on Ar-39-Ar-40 ages. Colomera contained a sanidine-rich surface inclusion and the K-enrichment trends in the Na-rich inclusions are different from those of other IIEs. To elucidate the origin of K-rich materials, we studied the mineralogy and Ar-Ar age of silicate inclusions from the Tarahumara IIE iron meteorite.

  17. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder

    PubMed Central

    Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M.; Ayyaswamy, Portonovo S.

    2009-01-01

    The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* = H/d0, R* = R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02 < ReT < 70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H* = 8 and R* ≥ 3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results

  18. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  19. A reconnaissance 40Ar/39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia

    USGS Publications Warehouse

    Dalrymple, G.B.; Czamanske, G.K.; Fedorenko, V.A.; Simonov, O.N.; Lanphere, M.A.; Likhachev, A.P.

    1995-01-01

    40Ar/39Ar age spectra of biotite from a mineralized vein in the ore-bearing, Noril'sk I intrusion and from picritic-like gabbrodolerite from the weakly mineralized, Lower Talnakh intrusion show that these bodies were emplaced at 249 ?? 2 Ma, which is not significantly different from the age of the Permian-Triassic boundary. The ore-bearing intrusions postdate the lower third of the flood-basalt sequence in the Noril'sk area and, on the basis of geochemistry, can best be correlated with lavas slightly younger than those which they cut. Thus, flood basalt was erupted at the time of the Permian-Triassic mass extinction event, although its role in this event is, as yet, ill defined. Additional new 40Ar/39Ar age data for a group of intrusive and extrusive rocks on the western margin of the Siberian craton are discussed. -from Authors

  20. An improved external recycle reactor for determining gas-solid reaction kinetics

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Hoyt, Ronald F.

    1987-01-01

    These improvements in the recycle system effectively eliminate initial concentration variation by two modifications: (1) a vacuum line connection to the recycle loop which permits this loop to be evacuated and then filled with the test gas mixture to slightly above atmospheric pressure; and (2) a bypass line across the reactor which permits the reactor to be held under vacuum while the rest of the recycle loop is filled with test gas. A three-step procedure for bringing the feed gas mixture into contact with the catalyst at time zero is described.