Science.gov

Sample records for ar structural evolution

  1. Evolution of the northern Sierra Nevada metamorphic belt: Petrological, structural, and Ar/Ar constraints

    SciTech Connect

    Hacker, B.R.

    1993-05-01

    The Sierra Nevada metamorphic belt constitutes an important record of the growth of continental crust from essentially oceanic materials. In the northern Sierra, the central part of the belt is made up of volcanoplutonic arcs and sediment-dominated units inferred to be accretionary wedges or closed ocean basins. The latter are broken formation and melange composed of radiolarian chert, lava, and volcanogenic and continental turbidites. Sedimentary detritus in the largest of these units can be plausibly linked to sources farther east in the Sierra, suggesting that deposition occurred near the eastern Sierran arc. Isoclinal folds, steeply dipping foliations, and steeply plunging down-dip lineations are characteristics structures. The westernmost unit is only feebly recrystallized, and deformation was accomplished principally by stress solution and local redeposition in veins. More easterly, inboard units are compositionally similar, but they recrystallized at pumpellyite-actinolite-and blueschist-facies conditions and deformed via solution-transfer and dislocation creep. Phengite silica contents, the degree of quartz veining, and the locations of pseudo-isograds support an eastward increase in metamorphic pressure and temperature. Metamorphic conditions during the growth of pumpellyite and actinolite ranged from {approximately}150-350 {degrees}C and 200-400 MPa, compatible with recrystallization and deformation in subduction zones or the deeper levels of magmatic arcs. Ar/Ar ages of volcanisclastic rocks and crosscutting plutons constrain the age of deformation and metamorphism in the western part of the region to 174-165 Ma. Deformation and recrystallization in more easterly units may have been coeval or begun as early as Triassic time. 58 refs., 14 figs., 4 tabs.

  2. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/ 39Ar, U-Th and field constraints

    NASA Astrophysics Data System (ADS)

    Madeira, José; Mata, João; Mourão, Cyntia; Brum da Silveira, António; Martins, Sofia; Ramalho, Ricardo; Hoffmann, Dirk L.

    2010-10-01

    Three volcano-stratigraphic units were identified at Brava Island in the Cape Verde Archipelago on the basis of field relationships, geologic mapping and 40Ar/ 39Ar and U-Th ages. The Lower Unit comprises a 2-to-3 Ma-old submarine volcanic sequence that represents the seamount stage. It is composed of nephelinitic/ankaramitic hyaloclastites and pillow lavas, which are cut by abundant co-genetic dikes. Plutonic rocks of an alkaline-carbonatite complex, which intruded the submarine sequence 1.8 to 1.3 Ma ago, constitute the Middle Unit. A major erosional surface developed between 1.3 and ~ 0.25 Ma. The post-erosional volcanism recorded in the Upper Unit started 0.25 Ma ago and is dominated by phonolitic magmatism. This phase is characterised by explosive phreato-magmatic and magmatic activity that produced block and ash flow, surge, and pyroclastic fall deposits and numerous phreato-magmatic craters. Effusive events are represented by lava domes and coulées. One peculiarity of Brava is the occurrence of carbonatites in both the plutonic complex and the post-erosional phase as extrusive volcanics. The intrusive carbonatites are younger than those occurring on Fogo, Santiago and Maio islands. Young (Upper Pleistocene to Holocene) extrusive carbonatites occurring in the late stages of volcanism are unknown in other Cape Verde islands. The occurrence of pillow lavas and hyaloclastites above the present sea level (up to 400 m) and raised Upper Pleistocene beaches indicates continuous uplift of Brava since the seamount stage. By dating raised marine markers, uplift rates were estimated at between 0.2 and 0.4 mm/a. The evolution of Brava was controlled by faults with directions similar to those described for Fogo, suggesting a common stress field. A detailed geological map (1/25,000) of Brava is presented.

  3. Evolution of surface morphology and electronic structure of few layer graphene after low energy Ar{sup +} ion irradiation

    SciTech Connect

    Al-Harthi, S. H.; Kara'a, A.; Elzain, M.; Hysen, T.; Al-Hinai, A. T.; Myint, M. T. Z.

    2012-11-19

    We report on co-existing dual anisotropy ripple formation, sp bonding transformation, and variation in the delocalized {pi} electron system in 1 keV Ar{sup +} ion irradiated few-layer graphene surfaces. Ripples in directions, perpendicular and parallel to the ion beam were found. The irradiation effect and the transition from the sp{sup 2}-bonding to sp{sup 3}-hybridized state were analyzed from the deconvolution of the C (1s) peak and from the shape of the derivative of the Auger transition spectra. The results suggest a plausible mechanism for tailoring of few-layer graphene electronic band structure with interlayer coupling tuned by the ion irradiation.

  4. Structural and temporal evolution of a reactivated brittle-ductile fault - Part II: Timing of fault initiation and reactivation by K-Ar dating of synkinematic illite/muscovite

    NASA Astrophysics Data System (ADS)

    Torgersen, E.; Viola, G.; Zwingmann, H.; Harris, C.

    2015-01-01

    Present-day exposures of ancient faults represent only the end result of the faults' often protracted and heterogeneous histories. Here we apply K-Ar dating of synkinematic illite/muscovite to constrain the timing of the complete temporal evolution of a complex, multiply-reactivated brittle-ductile fault, the Kvenklubben Fault in northern Norway. All obtained ages vary as a function of grain size. Geologically significant events are identified principally on the basis of detailed structural analysis presented in a companion paper (Torgersen and Viola, 2014). Faulting initiated at 531 ± 11Ma, but most strain was accommodated during Caledonian compression at 445 ± 9Ma. The fault was reactivated extensionally at 121 ± 5Ma. C and O isotopic composition of carbonates and silicates in the fault rocks demonstrates that mineral authigenesis was linked to wall-rock disintegration through dolomite decarbonation and metabasalt carbonation. We suggest that the commonly observed case of age decreasing with grain size in K-Ar and 40Ar/39Ar dating of brittle fault rocks can be interpreted as a consequence of mixing between two end-member illite/muscovite generations: an authigenic and a protolithic, in which the finest authigenic grains constrain the timing of the last faulting increment. Integrating detailed structural analysis with age dating is the key towards a better understanding of fault architecture development and the temporal evolution of strain localization and deformation mechanisms.

  5. Structural and temporal evolution of a reactivated brittle-ductile fault - Part II: Timing of fault initiation and reactivation by K-Ar dating of synkinematic illite/muscovite

    NASA Astrophysics Data System (ADS)

    Torgersen, E.; Viola, G.; Zwingmann, H.; Harris, C.

    2014-12-01

    Present-day exposures of ancient faults represent only the end result of the faults' often protracted and heterogeneous histories. Here we apply K-Ar dating of synkinematic illite/muscovite to constrain the timing of the complete temporal evolution of a complex, multiply-reactivated brittle-ductile fault, the Kvenklubben Fault in northern Norway. All obtained ages vary as a function of grain size. Geologically significant events are identified principally on the basis of detailed structural analysis presented in a companion paper (Torgersen and Viola, 2014). Faulting initiated at 531±11Ma, but most strain was accommodated during Caledonian compression at 445±9Ma. The fault was reactivated extensionally at 121±5Ma. C and O isotopic composition of carbonates and silicates in the fault rocks demonstrates that mineral authigenesis was linked to wall-rock disintegration through dolomite decarbonation and metabasalt carbonation. We suggest that the commonly observed case of age decreasing with grain size in K-Ar and 40Ar/39Ar dating of brittle fault rocks can be interpreted as a consequence of mixing between two end-member illite/muscovite generations: an authigenic and a protolithic, in which the finest authigenic grains constrain the timing of the last faulting increment. Integrating detailed structural analysis with age dating is the key towards a better understanding of fault architecture development and the temporal evolution of strain localization and deformation mechanisms.

  6. 2.7 MeV Ar11+ ion irradiation induced structural evolution in Lu2(Ti2-xLux)O7-x/2 pyrochlores

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Liu, C. G.; Zhang, K. Q.; Xia, Y.; Chen, L. J.; Liu, H.; Li, Y. H.

    2015-11-01

    This paper aims to study the radiation effects of nonstoichiometric pyrochlore series Lu2(Ti2-xLux)O7-x/2 (x = 0-0.667). Polycrystalline Lu2(Ti2-xLux)O7-x/2 samples were irradiated with 2.7 MeV Ar11+ ions up to a fluence of 8 × 1014 ions/cm2. The irradiated samples were characterized using grazing incidence X-ray diffraction technique. The results reveal that Lu2(Ti2-xLux)O7-x/2 samples undergo significant amorphization and lattice swelling upon irradiation. Specifically, the amorphization process is predominantly driven by ballistic nuclear energy deposition of Ar11+ ions at this energy regime, which can be well described by a direct-impact/defect-stimulated model. Both the amorphization fraction and the relative variation of lattice parameter decrease with increasing x, showing a strong dependence on the chemical composition. The results are then discussed in the framework of the structural disorder and recovery ability from damage, applying an atomic layer model.

  7. Sulfur in coal: Model studies of the role of ArS radicals in C-C and C-S bond formation and structural evolution in coal liquefaction

    SciTech Connect

    Alnajjar, M.S.; Franz, J.A.

    1987-06-01

    Experiments in this paper show the importance of thiyl radicals in sulfur containing coals during coal liquefaction processes. The presence of arylthiyl radicals enhances the cleavage of C-C, C=C, and C=C bonds in these otherwise refactory systems. Abstraction reactions, 1,2-phenyl migration from sulfur to carbon and displacement reactions at sulfur may be important mechanisms of structural evolution during liquefaction. In addition to cleavage of arylalkyl structures, the results also show that undesirable retrograde formation of inert diaryl- and triarylmethanes may be a consequence of the presence of sulfur and the attending aryl thiol structures. Thus, while a reaction medium including sulfur and hydrogen has been demonstrated to lead to the enhance cleavage of the bibenzyl model structure the present results suggest that retrograde reactions may be significant undesired pathways in coal liquefaction in the presence of sulfur. 17 refs.

  8. 40Ar/ 39Ar thermochronologic constraints on the tectonothermal evolution of the Northern East Humboldt range metamorphic core complex, Nevada

    NASA Astrophysics Data System (ADS)

    McGrew, Allen J.; Snee, Lawrence W.

    1994-11-01

    The northern East Humboldt Range (NEHR) of northeastern Nevada exposes a suite of complexly deformed migmatitic, upper amphibolite-facies rocks in the footwall of the Ruby Mountains-East Humboldt Range (RM-EHR) detachment fault. New 40Ar/ 39Ar data on hornblende, muscovite, biotite, and potassium feldspar help constrain the kinematic and thermal evolution of this terrain during Tertiary extensional exhumation. Hornblende samples from relatively high structural levels yield discordant age spectra that suggest initial cooling during early Tertiary time (63-49 Ma). When coupled with petrological constraints indicating a strongly decompressional P-T-t path above 550°C, the hornblende data suggest that exhumation of the RM-EHR may have initiated in early Tertiary time, approximately coincident with the initial phases of unroofing in the Wood Hills immediately to the east and with the end of thrusting in the late Mesozoic to early Tertiary Sevier orogenic belt of eastern Nevada and western Utah. This temporal coincidence suggests that gravitational collapse of tectonically thickened crust in the internal zone of the Sevier belt could have driven the initial phases of unroofing. Thermal history during the final stage of exhumation of the NEHR is constrained by discordant hornblende cooling ages of 36-29 Ma from deep structural levels and biotite, muscovite, and potassium feldspar cooling ages of 27-21 Ma from a range of structural levels. Comparison of muscovite, biotite, and potassium feldspar cooling ages with previously published fission-track cooling ages implies very rapid cooling rates at temperatures below the closure temperature for muscovite (270°-350°C), but time gaps of > 7 m.y. between hornblende and mica cooling ages suggest that cooling at higher temperatures was more gradual. In addition, comparison of {40Ar }/{39Ar } mica cooling ages with previously published fission-track apatite cooling ages suggests pronounced thermal gradients between the NEHR and

  9. 40Ar/39Ar thermochronologic constraints on the tectonothermal evolution of the Northern East Humboldt range metamorphic core complex, Nevada

    USGS Publications Warehouse

    McGrew, A.J.; Snee, L.W.

    1994-01-01

    The northern East Humboldt Range (NEHR) of northeastern Nevada exposes a suite of complexly deformed migmatitic, upper amphibolite-facies rocks in the footwall of the Ruby Mountains-East Humboldt Range (RM-EHR) detachment fault. New 40Ar/39Ar data on hornblende, muscovite, biotite, and potassium feldspar help constrain the kinematic and thermal evolution of this terrain during Tertiary extensional exhumation. Hornblende samples from relatively high structural levels yield discordant age spectra that suggest initial cooling during early Tertiary time (63-49 Ma). When coupled with petrological constraints indicating a strongly decompressional P-T-t path above 550??C, the hornblende data suggest that exhumation of the RM-EHR may have initiated in early Tertiary time, approximately coincident with the initial phases of unroofing in the Wood Hills immediately to the east and with the end of thrusting in the late Mesozoic to early Tertiary Sevier orogenic belt of eastern Nevada and western Utah. This temporal coincidence suggests that gravitational collapse of tectonically thickened crust in the internal zone of the Sevier belt could have driven the initial phases of unroofing. Thermal history during the final stage of exhumation of the NEHR is constrained by discordant hornblende cooling ages of 36-29 Ma from deep structural levels and biotite, muscovite, and potassium feldspar cooling ages of 27-21 Ma from a range of structural levels. Comparison of muscovite, biotite, and potassium feldspar cooling ages with previously published fission-track cooling ages implies very rapid cooling rates at temperatures below the closure temperature for muscovite (270??-350??C), but time gaps of > 7 m.y. between hornblende and mica cooling ages suggest that cooling at higher temperatures was more gradual. In addition, comparison of 40Ar 39Ar mica cooling ages with previously published fission-track apatite cooling ages suggests pronounced thermal gradients between the NEHR and

  10. Structural evolution

    SciTech Connect

    Burr, M.T.

    1993-03-01

    In this special report, financial executives discuss key trends in power project finance, new funding sources and evolving project structures. Industry wide, financial firms and developers are striving to improve the cost-effectiveness and efficiency of project financing, for projects in both greenfield development and the growing secondary market.

  11. 40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal)

    NASA Astrophysics Data System (ADS)

    Larrea, Patricia; Wijbrans, Jan R.; Galé, Carlos; Ubide, Teresa; Lago, Marceliano; França, Zilda; Widom, Elisabeth

    2014-02-01

    Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K-Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes-Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes-Serra Branca-Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.

  12. The USDA-ARS Experimental Watershed Network - Evolution and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Heilman, P.; Nichols, M.; Moran, S. M.; Steiner, J. L.; Sadler, J.; Walbridge, M. R.

    2014-12-01

    The USDA - Agricultural Research Service's Experimental Watershed Network grew from dust bowl era efforts of the Soil Conservation Service in 1935 which established field scale watersheds in three states. In the mid-50's five watershed centers with intensively instrumented watersheds at the scale of 100 to 700 km2 were established. Primary network research objectives were to quantify the downstream effects of conservation practices and accumulate rainfall-runoff observations for design of water conservation structures. ARS has operated over 600 watersheds in its history and continues operate roughly 100 watersheds, many of which are nested. With passage of the Clean Water Act in 1972 research and instrumentation evolved to add a variety of observations relevant to water quality issues that varied regionally. The intensive, long-term measurements and observations have led to an extensive process-based understanding of watershed behavior encompassing a diverse range of hydrologic and ecosystem dynamics. Many of the intensively monitored ARS watersheds have, and continue to serve as validation sites for aircraft and satellite based remotely sensed instruments. Recently, many of the ARS Experimental Watershed have become part of the Long-Term Agro-ecosystem Research Network (LTAR). This presentation will review major activities and advances derived from the network in addition to lessons learned in the long-term operation of a national scale network through its evolution from analog to digital instrumentation and internet accessibility.

  13. Cadomian vs. Variscan evolution of the Ossa-Morena zone (SW Iberia): field and 40Ar/ 39Ar mineral age constraints

    NASA Astrophysics Data System (ADS)

    Dallmeyer, R. D.; Quesada, C.

    1992-12-01

    . 390-400 Ma) rejuvenation of intracrystalline argon systems which had initially recorded ages > c. 500 Ma. Muscovite was concentrated from several lithologie elements in this area, including: (1) mylonitic Monesterio Granodiorite; (2) metasedimentary rocks of the Montemolin succession (displaying high-grade, sillimanite-potassium feldspar-bearing assemblages); and (3) migmatitic schist of the Siere Negra Group. These muscovite concentrates display similarly discordant 40Ar/ 39Ar age spectra which suggest significant but incomplete Variscan rejuvenation occurred at c. 400 Ma. This appears to have affected intracrystalline argon systems which had initially cooled through appropriate closure temperatures sometime prior to c. 450 Ma following an initial high-grade (Cadomian?) metamorphism. The 40Ar/ 39Ar results clearly reflect a variable, complex, and polymetamorphic evolution for the Ossa-Morena zone. Internal consistency of data within each regional tectonic unit compared with marked contrast between the units provides evidence of the extremely heterogeneous Variscan tectonothermal overprint. The results demonstrate that the present tectonic architecture of the Ossa-Morena Zone was not solely the result of late Variscan wrench tectonics, but, instead, a consequence of processes active since at least the Lower-Middle Devonian. Juxtaposition of regional structural units with contrasting tectonothermal histories, and recording variable rates and extents of uplift are consistent with maintainence of an overall transpressional Variscan tectonic regime.

  14. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: volcano evolution

    NASA Astrophysics Data System (ADS)

    Esser, Richard P.; Kyle, Philip R.; McIntosh, William C.

    2004-12-01

    Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30 40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550 250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most

  15. Geochemical and 40Ar/39Ar constraints on the evolution of volcanism in the Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, Joseph P.

    The tectonic mechanisms producing Pliocene to active volcanism in eastern Papua New Guinea (PNG) have been debated for decades. In order to assess mechanisms that produce volcanism in the Woodlark Rift, we evaluate the evolution of volcanism in eastern PNG using 40Ar/39Ar thermochronology and whole rock geochemistry. Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington, Mt. Victory and Waiwa), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin, seafloor spreading is active and decompression melting of the upper mantle is producing basaltic magmatism. However, the cause of Pliocene and younger volcanism in the Woodlark Rift is controversial. Two hypotheses for the tectonic setting have been proposed to explain Pliocene and younger volcanism in the Woodlark Rift: (1) southward subduction of Solomon Sea lithosphere beneath eastern PNG at the Trobriand Tough and (2) decompression melting of mantle, previously modified by subduction, as the lithosphere undergoes extension associated with the opening of the Woodlark Basin. A comparison of 40Ar/39Ar ages with high field strength element (HFSE) concentrations in primary magmas indicates that HFSE concentrations correlate with age in the Woodlark rift. These data support the hypothesis that Pliocene to active volcanism in the Woodlark Rise and D'Entrecasteaux Islands results from decompression melting of a relict mantle wedge. The subduction zone geochemical signatures (negative HFSE anomalies) in Woodlark Rift lavas younger than 4 m.y. are a relict from older subduction beneath eastern Papua, likely in the middle Miocene. As the lithosphere is extended ahead of the tip of the westward propagating seafloor spreading center in the Woodlark Basin, the composition of volcanism is inherited from prior arc magmatism (via flux melting) and through time evolves toward magmatism associated with a rifting

  16. Factor Structure of CIWA-Ar in Alcohol Withdrawal.

    PubMed

    Bakhla, Ajay Kumar; Khess, Christoday R J; Verma, Vijay; Hembram, Mahesh; Praharaj, Samir Kumar; Soren, Subhas

    2014-01-01

    Objective. To identify the underlying factor structure of alcohol withdrawal syndrome, as measured with CIWA-Ar. Methods. Exploratory factor analysis was conducted on the items of CIWA-Ar. On 201 alcohol-dependent male patients seeking treatment for alcohol withdrawal at 36 hours of abstinence. Results. A three-factor solution was obtained that accounted for 68.74% of total variance. First factor had loading from four items (34.34% variance), second factor also had four items (24.25% variance), and the third had two items (10.04% variance). Conclusions. Factor analysis reveals the existence of multidimensionality of alcohol withdrawal as measured with CIWA-Ar and we found three factors that can be named as delirious, autonomic and nonspecific factors. PMID:24826372

  17. Factor Structure of CIWA-Ar in Alcohol Withdrawal

    PubMed Central

    Bakhla, Ajay Kumar; Khess, Christoday R. J.; Verma, Vijay; Hembram, Mahesh; Praharaj, Samir Kumar; Soren, Subhas

    2014-01-01

    Objective. To identify the underlying factor structure of alcohol withdrawal syndrome, as measured with CIWA-Ar. Methods. Exploratory factor analysis was conducted on the items of CIWA-Ar. On 201 alcohol-dependent male patients seeking treatment for alcohol withdrawal at 36 hours of abstinence. Results. A three-factor solution was obtained that accounted for 68.74% of total variance. First factor had loading from four items (34.34% variance), second factor also had four items (24.25% variance), and the third had two items (10.04% variance). Conclusions. Factor analysis reveals the existence of multidimensionality of alcohol withdrawal as measured with CIWA-Ar and we found three factors that can be named as delirious, autonomic and nonspecific factors. PMID:24826372

  18. Evolution of the Southwest Indian continental divergent margin: Constraints from 40Ar-39Ar dating of lateritic paleolandsurfaces

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Beauvais, Anicet; Chardon, Dominique; Arnaud, Nicolas

    2015-04-01

    The western continental passive margin of Peninsular India is marked by the Western Ghats escarpment, which separates a coastal lowland from an East-dipping highland plateau and is carved both into the 63-Ma old Deccan traps and their Archean basement. Previous studies suggested establishment of the escarpment by differential erosion across an elevated rift shoulder, and thermochronologic models predicted escarpment formation from higher denudation in the coastal lowland than on the plateau until ~ 50 Ma. We provided complementary time constraints on the evolution of the passive margin by 40Ar-39Ar dating of supergene K-Mn oxides (cryptomelane) sampled in lateritic formations exposed on paleosurfaces, which are preserved as relicts on both sides of the escarpment. Three main lateritic paleosurfaces were identified in the highland at altitude ranges of 1200-1000 m (S1), 1000-900 m (S2) and 850-600 m (S3), and a lower paleosurface in the lowland at 150-50 m (S4). All the 40Ar-39Ar ages obtained on either side of the escarpment document major weathering periods for each paleosurface: 53 to 45 Ma (S1-S4) synchronously with the bauxitic weathering, 40 to 32 Ma (S2), 30 to 23 Ma (S3), and 24 to 19 Ma (S4). These ages indicate that most of the incision and dissection of plateau landsurfaces S1, S2, and S3 must therefore have taken place after 45, 32 and 23 Ma respectively, while the coastal lowland surface S4 was incised after 19 Ma. Preservation of laterites as old as 47 Ma in the coastal lowland implies that the escarpment already existed in the Mid-Eocene while intense bauxitic weathering was taking place on both sides of the escarpment. The ages obtained in the lowland are also indicative of limited erosion (~ 4 m Ma-1) at the foot of the escarpment since 45 Ma, and particularly low incipient incision of the lowland (~ 5 m Ma-1) since 19 Ma. Ages obtained on the highland plateau indicate further Neogene denudation inland but at less than 15 m Ma-1 since 45 Ma, and

  19. Structure of the N=27 isotones derived from the {sup 44}Ar(d,p){sup 45}Ar reaction

    SciTech Connect

    Gaudefroy, L.; Beaumel, D.; Blumenfeld, Y.; Fortier, S.; Franchoo, S.; Hammache, F.; Roussel, P.; Stanoiu, M.; Tryggestad, E.; Dombradi, Z.; Sohler, D.; Grevy, S.; St Laurent, M. G.; Roussel-Chomaz, P.; Kratz, K. L.; Lukyanov, S. M.; Penionzhkevich, Yu.-E.

    2008-09-15

    The {sup 44}Ar(d,p){sup 45}Ar neutron transfer reaction was performed at 10A MeV. Measured excitation energies, deduced angular momenta, and spectroscopic factors of the states populated in {sup 45}Ar are reported. A satisfactory description of these properties is achieved in the shell model framework using a new sdpf interaction. The model analysis is extended to more exotic even-Z nuclei down to {sub 14}{sup 41}Si{sub 27} to study how collectivity impacts the low-lying structure of N=27 neutron-rich nuclei.

  20. The solubility of 40Ar in liquid hydrocarbons: implications for Titan's chemistry and evolution

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Beauchamp, P. M.; Choukroun, M.; Sotin, C.

    2011-12-01

    The solubility of argon in liquid methane and ethane has been experimentally determined at 94 K. The solubilities are very large: 47% in methane and 15% in ethane, making the lakes of Titan an important potential reservoir of 40Ar. The amount of argon in the Titan lakes can be several times the atmospheric amount. After describing the experimental results, we will compare them with available models for vapor-liquid equilibria in the CH4-N2-Ar system. Using the data obtained on the solubility of argon in ethane, we will also derive implications for calculating the vapor-liquid equilibria in the C2H6-N2-Ar system. We eventually discuss the reasons for such high solubilities in terms of Hildebrand solubility parameters and the implications for Titan's surface chemistry and evolution.

  1. Evolution of nanodot morphology on polycarbonate (PC) surfaces by 40 keV Ar+

    NASA Astrophysics Data System (ADS)

    Goyal, Meetika; Chawla, Mahak; Gupta, Divya; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev

    2016-05-01

    In the present paper we have discussed the effect of 40 keV Ar+ ions irradiation on nanoscale surface morphology of Polycarbonate (PC) substrate. Specimens were sputtered at off normal incidences of 30°, 40° and 50° with the fluence of 1 × 1016 Ar+cm-2. The topographical behaviour of specimens was studied by using Atomic Force Microscopy (AFM) technique. AFM study demonstrates the evolution of nano dot morphology on PC specimens on irradiating with 1 × 1016 Ar+cm-2. Average size of dots varied from 37-95 nm in this specified range of incidence while density of dots varied from 0.17-3.0 × 107 dotscm-2. Such variations in morphological features have been supported by estimation of ion range and sputtering yield through SRIM simulations.

  2. A Late Mesoproterozoic 40Ar/39Ar age for a melt breccia from the Keurusselkä impact structure, Finland

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Jourdan, Fred; Moilanen, Jarmo; Buchner, Elmar; Öhman, Teemu

    2016-02-01

    Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone-bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8-10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast-poor whole-rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; P = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south-central Finland and probably reflects the Keurusselkä impact, followed by impact-induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.

  3. Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs

    NASA Astrophysics Data System (ADS)

    Asai, Ayumi; Shibata, Kazunari; Ishii, Takako T.; Oka, Mitsuo; Kataoka, Ryuho; Fujiki, Ken'ichi; Gopalswamy, Nat

    2009-02-01

    We present a detailed examination of the features of the active region (AR) NOAA 10798. This AR generated coronal mass ejections (CMEs) that caused a large geomagnetic storm on 24 August 2005 with the minimum Dst index of -216 nT. We examined the evolution of the AR and the features on/near the solar surface and in the interplanetary space. The AR emerged in the middle of a small coronal hole, and formed a sea anemone like configuration. Hα filaments were formed in the AR, which have southward axial field. Three M class flares were generated, and the first two that occurred on 22 August 2005 were followed by Halo-type CMEs. The speeds of the CMEs were fast, and recorded about 1200 and 2400 km s-1, respectively. The second CME was especially fast, and caught up and interacted with the first (slower) CME during their travelings toward Earth. These acted synergically to generate an interplanetary disturbance with strong southward magnetic field of about -50 nT, which was followed by the large geomagnetic storm.

  4. Microstructural evolution in nickel alloy C-276 after Ar-ion irradiation at elevated temperature

    SciTech Connect

    Jin, Shuoxue; He, Xinfu; Li, Tiecheng; Ma, Shuli; Tang, Rui; Guo, Liping

    2012-10-15

    In present work, the irradiation damage in nickel-base alloy C-276 irradiated with Ar-ions was studied. Specimens of C-276 alloy were subjected to an irradiation of Ar-ions (with 120 keV) to dose levels of 6 and 10 dpa at 300 and 550 Degree-Sign C, respectively. The size distributions and densities of dislocation loops caused by irradiation were investigated with transmission electron microscopy. Irradiation hardening due to the formation of the loops was calculated using the dispersed barrier-hardening model, showing that irradiation hardening was greatest at 300 Degree-Sign C/6 dpa. The microstructure evolution induced by Ar-ion irradiation (0-10 dpa) in nickel-base alloy C-276 has been studied using a multi-scale modeling code Radieff constructed based on rate theory, and the size of dislocation loops simulated by Radieff was in good agreement with the experiment. - Highlights: Black-Right-Pointing-Pointer High density of dislocation loops appeared after Ar ions irradiation. Black-Right-Pointing-Pointer Irradiation hardening due to the formation of loops was calculated by the DBH model. Black-Right-Pointing-Pointer Size of loops simulated by Radieff was in good agreement with the experiment.

  5. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  6. The 1.4 Å crystal structure of the ArsD arsenic metallochaperone provides insights into its interaction with the ArsA ATPase†

    PubMed Central

    Ye, Jun; Ajees, A. Abdul; Yang, Jianbo; Rosen, Barry P.

    2010-01-01

    Arsenic is a carcinogen that tops the Superfund list of hazardous chemicals. Bacterial resistance to arsenic is facilitated by ArsD, which delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump. Here we report the structure of the arsenic metallochaperone ArsD at 1.4 Å, and a model for its binding of metalloid. There are two ArsD molecules in the asymmetric unit. The overall structure of the ArsD monomer has a thioredoxin fold, with a core of four β-strands flanked by four α-helices. Based on data from structural homologues, ArsD was modeled with and without bound As(III). ArsD binds one arsenic per monomer coordinated with the three sulfur atoms of Cys12, Cys13 and Cys18. Using this structural model, an algorithm was used to dock ArsD and ArsA. The resulting docking model provides testable predictions of the contact points of the two proteins and forms the basis for future experiments. PMID:20507177

  7. The 1.4 Å Crystal Structure of the ArsD Arsenic Metallochaperone Provides Insights into Its Interaction with the ArsA ATPase

    SciTech Connect

    Ye, Jun; Ajees, A. Abdul; Yang, Jianbo; Rosen, Barry P.

    2010-12-07

    Arsenic is a carcinogen that tops the Superfund list of hazardous chemicals. Bacterial resistance to arsenic is facilitated by ArsD, which delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump. Here we report the structure of the arsenic metallochaperone ArsD at 1.4 {angstrom} and a model for its binding of metalloid. There are two ArsD molecules in the asymmetric unit. The overall structure of the ArsD monomer has a thioredoxin fold, with a core of four {beta}-strands flanked by four {alpha}-helices. Based on data from structural homologues, ArsD was modeled with and without bound As(III). ArsD binds one arsenic per monomer coordinated with the three sulfur atoms of Cys12, Cys13, and Cys18. Using this structural model, an algorithm was used to dock ArsD and ArsA. The resulting docking model provides testable predictions of the contact points of the two proteins and forms the basis for future experiments.

  8. 75 FR 11936 - Unit Structures LLC, Magnolia, AR; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Unit Structures LLC, Magnolia, AR; Notice of Termination of... of workers of Unit Structures LLC, Magnolia, Arkansas. The petitioner has requested that the...

  9. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  10. The tectonic evolution of Cenozoic extensional basins, northeast Brazil: Geochronological constraints from continental basalt 40Ar/39Ar ages

    NASA Astrophysics Data System (ADS)

    de Souza, Zorano Sérgio; Vasconcelos, Paulo Marcos; Knesel, Kurt Michael; da Silveira Dias, Luiz Gustavo; Roesner, Eduardo Henrique; Cordeiro de Farias, Paulo Roberto; de Morais Neto, João Marinho

    2013-12-01

    The Boa Vista and Cubati Basins, Paraíba, Brazil, are NW-SE extension-related intracratonic basins that resulted from tectonic stresses after the opening of the South Atlantic. These basins contain lacustrine fossiliferous sediments, bentonite beds, and basalt flows that preserve Cenozoic continental records. 40Ar/39Ar ages for six whole-rocks from two distinct basaltic flows underlying the sediments in the Boa Vista basin are 27.3 ± 0.8 and 25.4 ± 1.3 Ma, while three grains from a basaltic flow overlying the sediments yield 22.0 ± 0.2 Ma. The sediments at the nearby Cubati Basin are overlain by a basalt flow with ages of ˜25.4 Ma. Three whole-rocks from an NE-SW-trending trachytic dyke cross cutting the sediments at the Boa Vista Basin yield 40Ar/39Ar ages of ˜12.45 ± 0.06, 12.59 ± 0.07, and 12.58 ± 0.07 Ma. Three whole-rocks from a nearby volcanic plug (Chupador) yield an age of 23.4 ± 0.1 Ma. The geochronological results combined with stratigraphic correlations between the two basins allow bracketing the age of the main sedimentary and bentonic units within the Boa Vista and Cubati Basins between 25.5 ± 1.3 and 24.9 ± 0.1 Ma. The ages, combined with field observations reveal that the formation of the Boa Vista and Cubati basins is associated with mantle-derived magmas channelled through reactivated Precambrian shear zones. Our geochronological results suggest that a temporal link with the Fernando de Noronha and Saint Helena hot spots can be excluded as possible sources of the Boa Vista and Cubati magmas. Rather, the extensional tectonics in the 30-20 Ma interval, long after Gondwana break-up, may be associated with the re-activation of continental-scale shear zones that channelled small batches of mantle-derived magmas.

  11. Data management and database structure at the ARS Culture Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The organization and management of collection data for the 96,000 strains held in the ARS Culture Collection has been an ongoing process. Originally, the records for the four separate collections were maintained by individual curators in notebooks and/or card files and subsequently on the National C...

  12. Ar Atmosphere: Implications for Structure and Composition of Mercury's Crust

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Morgan, T. H.

    2001-01-01

    We examine the possibilities of sustaining an argon atmosphere by diffusion from the upper 10 km of crust, and alternatively by effusion from a molten or previously molten area at great depth . Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in surface-bounded exospheres is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon, Mercury and probably Europa is representative of current effusion rather than accumulation over the lifetime of the body. Argon content will be a function of K content, temperature, grain size distribution, connected pore volume and possible seismic activity. Although Mercury and the Moon differ in many details, we can train the solutions to diffusion equations to predict the average lunar atmosphere. Then these parameters can be varied for Hermean conditions. Assuming a lunar crustal potassium abundance of 300 ppm, the observed argon atmosphere requires equilibrium between the argon production in the upper 9 Km of the moon (1.135 x 10(exp -3) cm(exp -3) s(exp -1)) and its loss. Hodges et al. conclude that this loss rate and the observed time variability requires argon release through seismic activity, tapping a deep argon source. An important observation is that the extreme surface of the Moon is enhanced in argon rather than depleted, as one would expect from outgassing of radiogenic argon. Manka and Michel concluded that ion implantation explains the surface enhancement of Ar-40. About half of the argon ions produced in the lunar atmosphere would return to the surface, where they would become embedded in the rocks. Similarly, at Mercury we expect the surface rocks to be enhanced in Ar-40 wherever

  13. Preservation of Sub-Microscopic Scale Structural Relics in Biotite: Implications for 40AR/39AR Geochronology

    NASA Astrophysics Data System (ADS)

    Beltrando, M.; Di Vincenzo, G.; Ferraris, C.

    2012-12-01

    , characterized by a concordant central segment, with an error-weighted mean age of 44.9 ± 0.3 Ma. Age profiling on separate grains from sample JT1007, analyzed perpendicularly to the cleavage plane, reveal a broad core-to-rim age variation, with a maximum apparent age of ~66 Ma in the core and a minimum age in the rim as low as ~45. Similar age gradients and concave upward spectra from relict minerals that underwent at least one re-heating event are generally ascribed to incomplete diffusive resetting of the original argon reservoir or to the influx of extraneous argon followed by partial diffusive loss. However, major element compositional variations and the preservation of sub-micron scale magmatic biotite relics within largely re-equilibrated crystals suggest that the observed age spread may be explained by the coexistence of two different argon reservoirs related to the two different microstructural sites. This study suggests that, in addition to the well documented influx of externally-derived argon, anomalously old 40Ar/39Ar ages in metamorphic biotite may also be related to the preservation of sub-microscopic scale mineral relics that escaped complete re-equilibration during the subsequent tectono-metamorphic evolution.

  14. A Carnian 40Ar/39Ar age for the Paasselkä impact structure (SE Finland)—An update

    NASA Astrophysics Data System (ADS)

    Schwarz, Winfried H.; Schmieder, Martin; Buchner, Elmar; Trieloff, Mario; Moilanen, Jarmo; Öhman, Teemu

    2015-01-01

    A recrystallized band of pale feldspathic impact melt in a gneissic impact breccia from the approximately 10 km Paasselkä impact structure in southeast Finland was dated via 40Ar/39Ar step-heating. The newly obtained plateau age of 228.7 ± 1.8 (2.2) Ma (2σ) (MSWD = 0.32; p = 0.93) is equal to the previously published pseudoplateau age of 228.7 ± 3.0 (3.4) (2σ) for the impact event. According to the current international chronostratigraphic chart and using the most recent published suggestions for the K decay constants, a Carnian (Late Triassic) age for the Paasselkä impact structure of 231.0 ± 1.8 (2.2) Ma (2σ) is calculated and considered the most precise and accurate age for this impact structure. The new plateau age for Paasselkä confirms the previous dating result but is, based on its internal statistics, much more compelling.

  15. Low energy Ar{sup +} sputtering-induced GaAs quantum dot formation and evolution

    SciTech Connect

    Wang, Y.; Yoon, S. F.; Ngo, C. Y.; Tong, C. Z.; Liu, C. Y.

    2009-07-15

    GaAs quantum dots formed by Ar{sup +} bombardment under normal beam incidence are investigated in both sputtering time and energy domains. When ion energy is maintained at 1000 eV, the surface morphology is found to saturate with high dot uniformity at 3600 s sputtering time. For longer sputtering times, the surface pattern becomes significantly disordered with fluctuations of approx28 and approx24 nm in dot height and base width, respectively. The temporal evolution of dots formed at lower ion energies exhibits a similar trend, as observed at 1000 eV. However, the surface morphology develops in a smaller size scale. Based on the experimental results, we propose a power law model to interpret the correlation between sputtering time and energy as well as their impact on the evolution of lateral dot sizes. The experimental results are in good agreement with the theoretical prediction. Furthermore, photoluminescence is performed to characterize the as-grown and annealed GaAs/AlGaAs quantum dots formed by ion sputtering and molecular beam epitaxy. A significant improvement in the integrated photoluminescence signal has been obtained after thermal annealing, indicating that the potential nonradiative defects can be effectively removed by postgrowth annealing of the sputtering-induced GaAs quantum dot system.

  16. The Manson Impact Structure: 40Ar/39Ar age and its distal impact ejecta in the pierre shale in southeastern South Dakota

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Obradovich, J.D.; Kunk, M.J.

    1993-01-01

    The 40Ar/39Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 ?? 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 ?? 0.05 Ma). The MIS sanidine is 9 million years older than 40Ar/39Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the 40Ar/39Ar age of 73.8 ?? 0.3 Ma for MIS reported herein.

  17. The Manson Impact Structure: 40Ar/39Ar Age and Its Distal Impact Ejecta in the Pierre Shale in Southeastern South Dakota

    NASA Astrophysics Data System (ADS)

    Izett, G. A.; Cobban, W. A.; Obradovich, J. D.; Kunk, M. J.

    1993-10-01

    The 40Ar/39Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, lowa, impact structure (MIS) indicate that the MIS formed 73.8 ± 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 ± 0.05 Ma). The MIS sanidine is 9 million years older than 40Ar/39Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the 40Ar/39Ar age of 73.8 ± 0.3 Ma for MIS reported herein.

  18. Convergent Evolution of a New Arsenic Binding Site in the ArsR/SmtB Family of Metalloregulators

    SciTech Connect

    Qin, J.; Fu, H.-L.; Ye, J.; Bencze, K.; Stemmler, T.L.; Rawlings, D.E.; Rosen, B.P.

    2009-06-04

    Acidithiobacillus ferrooxidans has an arsenic resistance operon that is controlled by an As(III)-responsive transcriptional repressor, AfArsR, a member of the ArsR/SmtB family of metalloregulators. AfArsR lacks the As(III) binding site of the ArsRs from plasmid R773 and Escherichia coli, which have a Cys{sup 32}-Val-Cys{sup 34}-Asp-Leu-Cys{sup 37} sequence in the DNA binding site. In contrast, it has three cysteine residues, Cys{sup 95}, Cys{sup 96}, and Cys{sup 102}, that are not present in the R773 and E. coli ArsRs. The results of direct As(III) binding measurements and x-ray absorption spectroscopy show that these three cysteine residues form a 3-coordinate As(III) binding site. DNA binding studies indicate that binding of As(III) to these cysteine residues produces derepression. Homology modeling indicates that As(III) binding sites in AfArsR are located at the ends of antiparallel C-terminal helices in each monomer that form a dimerization domain. These results suggest that the As(III)-S{sub 3} binding sites in AfArsR and R773 ArsR arose independently at spatially distinct locations in their three-dimensional structures.

  19. Convergent Evolution of a New Arsenic Binding Site in the ArsR/SmtB Family of Metalloregulators*,s

    PubMed Central

    Qin, Jie; Fu, Hsueh-Liang; Ye, Jun; Bencze, Krisztina Z.; Stemmler, Timothy L.; Rawlings, Douglas E.; Rosen, Barry P.

    2010-01-01

    Acidithiobacillus ferrooxidans has an arsenic resistance operon that is controlled by an As(III)-responsive transcriptional repressor, AfArsR, a member of the ArsR/SmtB family of metalloregulators. AfArsR lacks the As(III) binding site of the ArsRs from plasmid R773 and Escherichia coli, which have a Cys32-Val-Cys34-Asp-Leu-Cys37 sequence in the DNA binding site. In contrast, it has three cysteine residues, Cys95, Cys96, and Cys102, that are not present in the R773 and E. coli ArsRs. The results of direct As(III) binding measurements and x-ray absorption spectroscopy show that these three cysteine residues form a 3-coordinate As(III) binding site. DNA binding studies indicate that binding of As(III) to these cysteine residues produces derepression. Homology modeling indicates that As(III) binding sites in AfArsR are located at the ends of antiparallel C-terminal helices in each monomer that form a dimerization domain. These results suggest that the As(III)-S3 binding sites in AfArsR and R773 ArsR arose independently at spatially distinct locations in their three-dimensional structures. PMID:17897948

  20. Low-Lying Structure of 50Ar and the N =32 Subshell Closure

    NASA Astrophysics Data System (ADS)

    Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H.; Utsuno, Y.; Baba, H.; Go, S.; Lee, J.; Matsui, K.; Michimasa, S.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Sakurai, H.; Shiga, Y.; Shimizu, N.; Söderström, P.-A.; Sumikama, T.; Taniuchi, R.; Valiente-Dobón, J. J.; Yoneda, K.

    2015-06-01

    The low-lying structure of the neutron-rich nucleus 50Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ -ray spectroscopy with 9Be (54Ca, 50Ar +γ )X , 9Be (55Sc, 50Ar +γ )X , and 9Be (56Ti, 50Ar +γ )X multinucleon removal reactions at ˜220 MeV /u . A γ -ray peak at 1178(18) keV is reported and assigned as the transition from the first 2+ state to the 0+ ground state. A weaker, tentative line at 1582(38) keV is suggested as the 41+→21+ transition. The experimental results are compared to large-scale shell-model calculations performed in the s d p f model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for 50Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N =32 subshell gap in 50Ar is similar in magnitude to those in 52Ca and 54Ti and, notably, predict an N =34 subshell closure in 52Ar that is larger than the one recently reported in 54Ca.

  1. Planetary Origin Evolution and Structure

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    2005-01-01

    This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.

  2. Evolution of surface modification by Ar+ ion implantation with incident angle into sodium potassium niobate single crystal

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-06-01

    Single crystals of sodium potassium niobate (K0.5Na0.5)NbO3 (KNN) were grown by flux method and crystals were implantation with 100 keV Ar+ ions with 1016 ions/cm2 fluencies at various incident angles. Evolution of Ar+ ion impact on surface of KNN samples has been ascertained by optical microscope and Atomic force microscope. Varying the incident angle more varied surface features are observed. The results show that the Elongated surface defects only are observed in the ion impact direction at an angle of θ = 30° and 60°.

  3. Functional evolution of nuclear structure

    PubMed Central

    Dawson, Scott C.

    2011-01-01

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis. PMID:22006947

  4. Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution

    PubMed Central

    Ye, Jun; He, Yanan; Skalicky, Jack; Rosen, Barry P.; Stemmler, Timothy L.

    2012-01-01

    ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published crystallographic structural results. PMID:21063813

  5. Mesozoic thermal history and timing of structural events for the Yukon-Tanana Upland, east-central Alaska: 40Ar/39Ar data from metamorphic and plutonic rocks

    USGS Publications Warehouse

    Dusel-Bacon, C.; Lanphere, M.A.; Sharp, W.D.; Layer, P.W.; Hansen, V.L.

    2002-01-01

    We present new 40Ar/39Ar ages for hornblende, muscovite, and biotite from metamorphic and plutonic rocks from the Yukon-Tanana Upland, Alaska. Integration of our data with published 40Ar/39Ar, kinematic, and metamorphic pressure (P) and temperature (T) data confirms and refines the complex interaction of metamorphism and tectonism proposed for the region. The oldest metamorphic episode(s) postdates Middle Permian magmatism and predates the intrusion of Late Triassic (215-212 Ma) granitoids into the Fortymile River assemblage (Taylor Mountain assemblage of previous papers). In the eastern Eagle quadrangle, rapid and widespread Early Jurassic cooling is indicated by ???188-186 Ma 40Ar/39Ar plateau ages for hornblende from plutons that intrude the Fortymile River assemblage, and for metamorphic minerals from the Fortymile River assemblage and the structurally underlying Nasina assemblage. We interpret these Early Jurassic ages to represent cooling resulting from northwest-directed contraction that emplaced the Fortymile River assemblage onto the Nasina assemblage to the north as well as the Lake George assemblage to the south. This cooling was the final stage of a continuum of subduction-related contraction that produced crustal thickening, intermediate- to high-P metamorphism within both the Fortymile River assemblage and the structurally underlying Lake George assemblage, and Late Triassic and Early Jurassic plutonism in the Fortymile River and Nasina assemblages. Although a few metamorphic samples from the Lake George assemblage yield Jurassic 40Ar/39Ar cooling ages, most yield Early Cretaceous 40Ar/39Ar ages: hornblende ???135-115 Ma, and muscovite and biotite ???110-108 Ma. We interpret the Early Cretaceous metamorphic cooling, in most areas, to have resulted from regional extension and exhumation of the lower plate, previously tectonically thickened during Early Jurassic and older convergence.

  6. Accessory mineral U-Th-Pb ages and 40Ar/39Ar eruption chronology, and their bearing on rhyolitic magma evolution in the Pleistocene Coso volcanic field, California

    USGS Publications Warehouse

    Simon, J.I.; Vazquez, J.A.; Renne, P.R.; Schmitt, A.K.; Bacon, C.R.; Reid, M.R.

    2009-01-01

    We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ??? 230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ???85 ka rhyolites yielded ages between ???100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ???200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (???10's to 100's ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies. ?? The Author(s) 2009.

  7. Long-lived structural control of Mt. Shasta's plumbing system illuminated by 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.; Christiansen, R. L.

    2013-12-01

    Mt. Shasta is the largest stratovolcano in the Cascade Arc, surpassed in volume only by the large rear-arc Medicine Lake and Newberry composite volcanoes. Including the material in the ~350 ka debris avalanche, it has produced more than 500 km3 of andesite and dacite from several superimposed central vents over its 700-850 kyr history. Earlier, between at least 970 to 1170 ka, the Rainbow Mountain volcano of similar composition and size occupied this latitude of the arc ~20 km further east. This shift of magmatic focus from within the arc axis (as defined by 6 Ma and younger calc-alkaline centers) to the arc front is poorly understood, but the current center's location appears structurally controlled. Most identifiable volcanic vents on Mt. Shasta lie within 1 km of a N-S line through the active summit cone. 40Ar/39Ar ages of map units occupying the vent alignment range from the Holocene (5×1 ka) current summit dome to at least the Middle Pleistocene (464×9 ka McKenzie Butte). The vast majority of eruptions have issued from central vents (Sargents Ridge, 300-135 ka; Misery Hill, 100-15 ka; and Hotlum, <10 ka), each 500 to 1000m north of its predecessor. A central vent for the pre-avalanche edifice is impossible to locate precisely, but was possibly on the same N-S trend and certainly no more than 4 km to the west, likely south of the Sargents Ridge central vent. ~15 of ~25 mapped flank vents lie on the alignment and the other ten lie west of the line. No identified volcanic vents lie east of the line until >12 km from Mt. Shasta (Ash Creek Butte, 227 ka; Basalt of McCloud River, 38 ka; The Whaleback, 102 ka), and monogenetic and polygenetic centers further east and northeast. From these observations we infer that: (1) magmas are localized along a ~20 km, long-lived, N-S trending structure running through the summit; (2) the upper crustal structure appears impermeable to magmas and resistant to dikes on its eastern side; (3) the western half of the area beneath

  8. Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite {40Ar }/{39Ar } age constraints on tectonic evolution of Southwestern Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Dalziel, Ian W. D.

    1996-11-01

    Zircon U-Pb and muscovite {40Ar }/{39Ar } isotopic ages have been determined on rocks from the southernmost Andes and South Georgia Island, North Scotia Ridge, to provide absolute time constraints on the kinematic evolution of southwestern Gondwanaland, until now known mainly from stratigraphic relations. The U-Pb systematics of four zircon fractions from one sample show that proto-marginal basin magmatism in the northern Scotia arc, creating the peraluminous Darwin granite suite and submarine rhyolite sequences of the Tobifera Formation, had begun by the Middle Jurassic (164.1 ± 1.7 Ma). Seven zircon fractions from two other Darwin granites are discordant with non-linear patterns, suggesting a complex history of inheritances and Pb loss. Reference lines drawn through these points on concordia diagrams give upper intercept ages of ca. 1500 Ma, interpreted as a minimum age for the inherited zircon component. This component is believed to have been derived from sedimentary rocks in the Gondwanaland margin accretionary wedge that forms the basement of the region, or else directly from the cratonic "back stop" of that wedge. Ophiolitic remnants of the Rocas Verdes marginal basin preserved in the Larsen Harbour complex on South Georgia yield the first clear evidence that Gondwanaland fragmentation had resulted in the formation of oceanic crust in the Weddell Sea region by the Late Jurassic (150 ± 1 Ma). The geographic pattern in the observed age range of 8 to 13 million years in these ophiolitic materials, while not definitive, is in keeping with propagation of the marginal basin floor northwestward from South Georgia Island to the Sarmiento Complex in southern Chile. Rocks of the Beagle granite suite, emplaced post-tectonically within the uplifted marginal basin floor, have complex zircon U-Pb systematics with gross discordances dominated by inheritances in some samples and Pb loss in others. Of eleven samples processed, only two had sufficient amounts of zircon for

  9. Time constraints on post-rift evolution of the Southwest Indian passive margin from ^{40}Ar-^{39Ar dating of supergene K-Mn oxides

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Arnaud, Nicolas; Beauvais, Anicet; Chardon, Dominique

    2013-04-01

    The high-elevation passive margin of Southwest India is marked by the Western Ghats escarpment, which separates the coastal domain from the low-relief East-dipping Mysore plateau. The escarpment has evolved from the Seychelles rifting at ~ 63 Ma following the Deccan traps volcanic event at ~ 65-63 Ma. This escarpment results from differential erosion processes across the passive margin, the rate and timing of which depend upon whether the margin has evolved according to a model of downwarped or rising flank topography. We explore the post-rift evolution of the South Indian passive margin through the characterisation of stepped relicts of lateritic paleosurfaces across that margin, and notably by 40Ar-39Ar dating of in-situ formed K-Mn oxides in supergene Mn-ore deposits carried by these paleosurfaces. The genesis and maturation of Mn-ore deposits are generally linked to progressive weathering processes of the paleosurfaces, which expose them. Dating of K-Mn oxides thus document the timing of these processes [1], and potentially the ages of the altered paleosurface. Moreover, the elevation differences between successive lateritic paleosurfaces of different ages may provide denudation rates for the considered time spans. Previous work (e.g., [2]) and our own field investigations, allow identifying three main lateritic paleosurfaces on the plateau at altitude ranges of 1000-900 m (S2), 900-800 m (S3) and 800-700 m (S3d), and a lower paleosurface in the coastal domain at 150-50 m (S4). K-Mn oxides (cryptomelane) were sampled in Mn ore deposits from different paleosurfaces, particularly in the coastal area around Goa on S4 and in Sandur and Shimoga Mn-ore deposits exposed on S2 and S3. The 40Ar-39Ar ages obtained from carefully characterised mineralogical assemblages range from ~ 26 to ~ 36 Ma in the Sandur Mn-ore deposit indicating intense lateritic weathering processes at the Eocene-Oligocene transition underneath paleosurface S2. Similar ages of ~ 24 and ~ 32 Ma are

  10. A structural perspective of compensatory evolution

    PubMed Central

    Ivankov, Dmitry N; Finkelstein, Alexei V; Kondrashov, Fyodor A

    2014-01-01

    The study of molecular evolution is important because it reveals how protein functions emerge and evolve. Recently, several types of studies indicated that substitutions in molecular evolution occur in a compensatory manner, whereby the occurrence of a substitution depends on the amino acid residues at other sites. However, a molecular or structural basis behind the compensation often remains obscure. Here, we review studies on the interface of structural biology and molecular evolution that revealed novel aspects of compensatory evolution. In many cases structural studies benefit from evolutionary data while structural data often add a functional dimension to the study of molecular evolution. PMID:24981969

  11. Substorm evolution of auroral structures

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Juusola, L.; Whiter, D.; Kauristie, K.

    2015-07-01

    Auroral arcs are often associated with magnetically quiet time and substorm growth phases. We have studied the evolution of auroral structures during global and local magnetic activity to investigate the occurrence rate of auroral arcs during different levels of magnetic activity. The ground-magnetic and auroral conditions are described by the magnetometer and auroral camera data from five Magnetometers — Ionospheric radars — All-sky cameras Large Experiment stations in Finnish and Swedish Lapland. We identified substorm growth, expansion, and recovery phases from the local electrojet index (IL) in 1996-2007 and analyzed the auroral structures during the different phases. Auroral structures were also analyzed during different global magnetic activity levels, as described by the planetary Kp index. The distribution of auroral structures for all substorm phases and Kp levels is of similar shape. About one third of all detected structures are auroral arcs. This suggests that auroral arcs occur in all conditions as the main element of the aurora. The most arc-dominated substorm phases occur in the premidnight sector, while the least arc-dominated substorm phases take place in the dawn sector. Arc event lifetimes and expectation times calculated for different substorm phases show that the longest arc-dominated periods are found during growth phases, while the longest arc waiting times occur during expansion phases. Most of the arc events end when arcs evolve to more complex structures. This is true for all substorm phases. Based on the number of images of auroral arcs and the durations of substorm phases, we conclude that a randomly selected auroral arc most likely belongs to a substorm expansion phase. A small time delay, of the order of a minute, is observed between the magnetic signature of the substorm onset (i.e., the beginning of the negative bay) and the auroral breakup (i.e., the growth phase arc changing into a dynamic display). The magnetic onset was

  12. Time Evolution of the Electron and Ar* Metastable Atom Densities in Pulsed Plasmas

    SciTech Connect

    Sikimic, Brankica; Stefanovic, Ilija; Winter, Joerg; Denysenko, Igor; Sadeghic, Nader

    2011-11-29

    Metastable and electron densities of pulsed argon plasma containing nano-sized particles were measured by the means of Laser Absorption Spectroscopy and Microwave Interferometry, respectively. Laser Induced Fluorescence was probing the Ar* metastable axial distribution during one dust growing cycle. The experimental results of the dust-free and dusty plasma afterglow were compared to the results obtained by a global model.

  13. Revised age for the Gosses Bluff impact structure, Northern Territory, Australia, based on Ar-40Ar-39 dating

    NASA Astrophysics Data System (ADS)

    Milton, Daniel J.; Sutter, John F.

    1987-09-01

    Ar-40Ar-39 dating of a pumiceous suevite clast from the melt breccia at Gosses Bluff consisting largely of extremely fine-grained sanidine yields a discordant age spectrum, probably reflecting some diffusional loss of argon. High-temperature increments that together yield a near-plateau age of 142.5 Ma are apparently not affected by argon loss and offer the best estimate of the date of the Gosses Bluff event. The event may fall in the latest Jurassic Period, but more likely falls in the earliest Cretaceous, probably in one of the reverse-polarity magnetochrons M16, M17, or M18.

  14. The Magnetic Evolution of AR 6555 which led to Two Impulsive, Relatively Compact, X-Type Flares

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Ambastha, A.; Kalman, B.; Csepura, Gy.

    1995-01-01

    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 1991 March 23-26. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity and have very similar characteristics (soft X-ray light curves, energies, etc,). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares: (1) The flares occurred near regions of large magnetic 'shear' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenia and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available

  15. The magnetic evolution of AR 6555 which lead to two impulsive, readily compact, X-type flares

    NASA Technical Reports Server (NTRS)

    Ambastha, A.; Fontenla, J. M.; Kalman, B.; Csepura, GY.

    1995-01-01

    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 23-26 Mar. 1991. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first, but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity, and have very similar characteristics (soft X-ray light curves, energies, etc.). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares. (1) The flares occurred near regions of large magnetic 'shear,' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares, and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenla and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the

  16. Structural evolution of proteinlike heteropolymers

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2014-12-01

    The biological function of a protein often depends on the formation of an ordered structure in order to support a smaller, chemically active configuration of amino acids against thermal fluctuations. Here we explore the development of proteins evolving to satisfy this requirement using an off-lattice polymer model in which monomers interact as low resolution amino acids. To evolve the model, we construct a Markov process in which sequences are subjected to random replacements, insertions, and deletions and are selected to recover a predefined minimum number of solid-ordered monomers using the Lindemann melting criterion. We show that polymers generated by this process consistently fold into soluble, ordered globules of similar length and complexity to small protein motifs. To compare the evolution of the globules with proteins, we analyze the statistics of amino acid replacements, the dependence of site mutation rates on solvent exposure, and the dependence of structural distance on sequence distance for homologous alignments. Despite the simplicity of the model, the results display a surprisingly close correspondence with protein data.

  17. Metamorphic evolution of the Rechnitz metamorphic core complex in relation to the Neogene Pannonian basin, Eastern Alps: Constraints from Ar-Ar white mica ages

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Genser, Johann; Bernroider, Manfred; Friedl, Gertrude

    2015-04-01

    The exhumation of Cordilleran-type metamorphic core complexes (MCC) is generally related to largely contemporaneous collapse-type sedimentary basins (mainly halfgrabens). Here, we investigate the example of the Rechnitz MCC, which formed by Miocene orogen-parallel extension within the Neogene Pannonian basin. The Rechnitz MCC is located on the South Burgenland basement High within the western part of the Neogene Pannonian basin, with the Styrian basin in the west and the Danube basin in the east. The Rechnitz MCC is metamorphosed within greenschist facies conditions (maximum temperature of 430 °C) ideal for Ar-Ar white mica dating. For the first time, we undertook an extensive survey of 40Ar/39Ar white mica dating combined with microfabrics and electron microprobe compositional data and we compare the new data with major evolutionary stages of adjacent sedimentary basins, mainly based on re-evaluation of existing reflection seismic lines. The internal structure of the Rechnitz window is characterized by two tectonic cover nappes, a lower nappe with distal continental affinity, and an upper nappe representing the infilling of an oceanic basin. Both within greenschist facies metamorphic conditions and few blueschists were found in the northwestern part of the upper nappe. We found a number of distinct white mica age spectra: (1) A sample from the northwesternmost upper nappe yield a staircase pattern ranging from 14.8 ± 0.9 Ma to 41.5 ± 1.0 Ma. We interpret the older age is minimum age of high-pressure metamorphism and the younger age as age of overprint during extensional exhumation. (2) A number of samples from the western part, independent from positions within the nappes yield plateau ages between 20 and maximum 23 Ma and are variably affected by a younger thermal overprint between 13 and 15 Ma. (3) The eastern and lower units show plateau-like patterns with plateau ages of 17 - 19 Ma with a majority at ca. 18 Ma and a single younger outlier at ca. 16 Ma. Some

  18. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  19. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  20. The sup 40 Ar/ sup 39 Ar thermochronology of the eastern Mojave Desert, California, and adjacent western Arizona with implications for the evolution of metamorphic core complexes

    SciTech Connect

    Foster, D.A.; Harrison, T.M. ); Miller, C.F. ); Howard, K.A. )

    1990-11-10

    The application of {sup 40}Ar/{sup 39}Ar thermochronology provides information about the timing and nature of thrusting, plutonism, metamorphism, denudation, and detachment faulting. The {sup 40}Ar/{sup 39}Ar ages of 175 to 125 Ma from the Clipper, Piute, Turtle, Mohave, Bill Williams, and Hualapai Mountains are interpreted to be the result of a middle Mesozoic thermal event(s) caused by crustal thickening. The {sup 40}Ar/{sup 39}Ar data from the Clipper and Piute Mountains suggest that this thermal event was followed by a period of cooling at rates of 1-5C/m.y. Orogenesis culminated during the Late Cretaceous when rocks exposed in the Old Woman-Piute, Chemehuevi, and Sacramento Mountains attained temperatures >500C which reset the K-Ar systems of minerals from Proterozoic rocks. High-grade metamorphism in the Old Woman Mountains area was caused by the intrusion of the Old Woman-Piute batholith at 73 {plus minus} 1 Ma. Cooling rates following batholith emplacement in the Old Woman Mountains were {approximately}100C/m.y. between 73 and 70 Ma and 5-10C/m.y. from 70 to {approximately}30 Ma. By 30 Ma, rocks exposed in the Old Woman-Piute, Marble, Ship, Clipper, and Turtle Mountains were below {approximately}100C. The {sup 49}Ar/{sup 39}Ar ages from the Sacramento Mountains suggest that mylonization caused by the onset of regional extension occurred at 23 {plus minus} 1 Ma. When extension started in the Chemehuevi Mountains, rocks exposed in the southwestern and northeastern portions of footwall to the Chemehuevi detachment fault were at {approximately}180C and {approximately}350C, respectively. Unroofing of the footwalls to detachment faults in the Sacramento and Chemehuevi Mountains resulted in average cooling rates of 10-50C/m.y. between 22 and 15 Ma.

  1. Late-stage volcano geomorphic evolution of the Pleistocene San Francisco Mountain, Arizona (USA), based on high-resolution DEM analysis and 40Ar/39Ar chronology

    NASA Astrophysics Data System (ADS)

    Karátson, Dávid; Telbisz, Tamás; Singer, Brad S.

    2010-09-01

    The cone-building volcanic activity and subsequent erosion of San Francisco Mountain, AZ, USA, were studied by using high-resolution digital elevation model (DEM) analysis and new 40Ar/39Ar dating. By defining remnants or planèzes of the volcano flanks in DEM-derived images, the original edifice can be reconstructed. We propose a two-cone model with adjacent summit vents which were active in different times. The reconstructed cones were 4,460 and 4,350 m high a.s.l., corresponding to ˜2,160 and 2,050 m relative height, respectively. New 40Ar/39Ar data allow us to decipher the chronological details of the cone-building activity. We dated the Older and Younger Andesites of the volcano that, according to previous mapping, built the stage 2 and stage 3 stratocones, respectively. The new 40Ar/39Ar plateau ages yielded 589-556 ka for the Older and 514-505 ka for the Younger Andesites, supporting their distinct nature with a possible dormant period between. The obtained ages imply an intense final (≤100 ka long) cone-building activity, terminating ˜100 ka earlier than indicated by previous K-Ar ages. Moreover, 40Ar/39Ar dating constrains the formation of the Inner Basin, an elliptical depression in the center of the volcano initially created by flank collapse. A 530 ka age (with a ±58.4 ka 2σ error) for a post-depression dacite suggests that the collapse event is geochronologically indistinguishable from the termination of the andesitic cone-building activity. According to our DEM analysis, the original cone of San Francisco Mountain had a volume of about 80 km3. Of this volume, ˜7.5 km3 was removed by the flank collapse and subsequent glacial erosion, creating the present-day enlarged Inner Basin, and ˜2 km3 was removed from the outer valleys by erosion. Based on volumetric analysis and previous and new radiometric ages, the average long-term eruption rate of San Francisco Mountain was ˜0.2 km3/ka, which is a medium rate for long-lived stratovolcanoes. However

  2. Structural and Temporal Requirements for Geomagnetic Field Reversal Deduced From 40Ar/39Ar Dated Lava Flows

    NASA Astrophysics Data System (ADS)

    Singer, B. S.; Hoffman, K. A.; Coe, R. S.; Brown, L. L.; Jicha, B. R.; Pringle, M. S.; Chauvin, A.

    2004-12-01

    40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the Matuyama-Bruhnes (M-B) reversa1, gives an age of 795+/- 7 ka, indistinguishable from that of transitional lavas in Chile and La Palma, but older than the accepted age for the reversal. Only the transitional lavas on Maui and one from La Palma (dated at 776 +/- 2 ka), agree with the astronomical age for the M-B reversal. Virtual geomagnetic poles (VGPs) associated with the Tahitian and Chilean lavas cluster near Australia, as do VGPs recorded on Tahiti during the Big Lost and Punaruu events, two apparently unsuccessful reversals. These findings, suggestive of a recurring, mantle-held flux pattern at the outer core surface during reversal attempts, are also theoretically equivalent to the situation that would arise today if the axial dipole were to continue to weaken and vanish. Hence, we propose that the 795 ka lavas record the onset of a dynamo process--one which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began 18 kyrs prior to the actual polarity switch. These data may provide the first observational support to the claim that complete reversals require a significant interval of time for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  3. Relationship between magnetic field evolution and flaring sites in AR 6659 in June 1991

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Hagyard, M. J.; Guoxiang, AI; Hongqi, Zhang; Kalman, B.; Gyori, L.; Rompolt, B.; Demoulin, P.; Machado, M. E.

    1994-01-01

    During the international campaign of June 1991, the active region AR 6659 produced six very large, long-duration flares (X10/12) during its passage across the solar disk. We present the characteristics of four of them (June 4, 6, 9, 15). Precise measurements of the spot motions from Debrecen and Tokyo white-light pictures are used to understand the fragmentation of the main sunspot group with time. This fragmentation leads to a continuous restructuring of the magnetic field pattern while rapid changes are evidenced due to fast new flux emergence (magnetograms of Marshall Space Flight Center (MSFC), Huairou). The first process leads to a shearing of the field lines along which there is energy storage; the second one is the trigger which causes the release of energy by creating a complex topology. We conjecture that these two processes with different time scales are relevant to the production of flares.

  4. Phylogeny and evolution of RNA structure.

    PubMed

    Gesell, Tanja; Schuster, Peter

    2014-01-01

    Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution. PMID:24639167

  5. Laser probe 40Ar/39Ar dating of pseudotachylyte from the Sudbury Structure: evidence for post-impact thermal overprinting in the North Range

    NASA Astrophysics Data System (ADS)

    Thompson, Lucy M.; Spray, John G.; Kelley, Simon P.

    1998-11-01

    Ten pseudotachylyte samples from the North Range of the 1850 Ma Sudbury impact structure have been analyzed by the 40Ar/39Ar laser spot fusion method. Field and petrological evidence indicate that the pseudotachylytes were formed at 1850 Ma by comminution and frictional melting due to impact-induced faulting. The cryptocrystalline to microcrystalline grain size (<30 _?m) of the pseudotachylyte matrices, and the predominance of orthoclase as the main K-bearing phase, have rendered the rocks particularly susceptible to argon loss. The age determinations range from ?1850 Ma to ?1000 Ma, with some samples yielding multiple ages that cannot be correlated with known geological events in the area. However, if the finite-difference algorithm of Wheeler (1996) is used to calculate combined argon loss and the accumulation of radiogenic argon for the K-bearing phases, it is possible to reproduce the range of observed ages. The model infers that the long-term volume diffusion of Ar has occurred and that, as a result, the Ar system cannot be treated with a conventional closure temperature approach. The algorithm requires burial of the impact structure to 5-6 km depth and 160-180 deg C at 1850 Ma, followed by exhumation at ?1000 Ma. These ages may be equated with two events: Penokean thin-skinned overthrusting in the North Range, immediately following impact, and exhumation ?850 Ma later, coincident with the Grenville orogeny to the southeast. The results suggest that, contrary to previously accepted paradigms, the North Range has been affected by a protracted period of post-impact, low-grade thermal metamorphism. If this event also involved tectonic shortening within the North Range, as has been documented for the South Range, then the original size of the Sudbury impact structure has been underestimated.

  6. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    USGS Publications Warehouse

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  7. Titanium embedded cage structure formation in Al{sub n}Ti{sup +} clusters and their interaction with Ar

    SciTech Connect

    Torres, M. B.; Vega, A.; Balbás, L. C.; Aguilera-Granja, F.

    2014-05-07

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support

  8. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities.

    PubMed

    Nasir, Nazia; Anant, Avishek; Vyas, Rajan; Biswal, Bichitra Kumar

    2016-01-01

    Aminotransferases of subfamily Iβ, which include histidinol phosphate aminotransferases (HspATs) and aromatic amino acid aminotransferases (ArATs), are structurally similar but possess distinct substrate specificities. This study, encompassing structural and biochemical characterisation of HspAT and ArAT from Mycobacterium tuberculosis demonstrates that the residues lining the substrate binding pocket and N-terminal lid are the primary determinants of their substrate specificities. In mHspAT, hydrophilic residues in the substrate binding pocket and N-terminal lid allow the entry and binding of its preferential substrate, Hsp. On the other hand, the hydrophobic nature of both the substrate binding pocket and the N-terminal lid of mArAT is responsible for the discrimination of a polar substrate such as Hsp, while facilitating the binding of Phe and other aromatic residues such as Tyr and Trp. In addition, the present study delineates the ligand induced conformational rearrangements, providing insights into the plasticity of aminotransferases. Furthermore, the study also demonstrates that the adventitiously bound ligand 2-(N-morpholino)ethanesulfonic acid (MES) is indeed a specific inhibitor of HspAT. These results suggest that previously untapped morpholine-ring scaffold compounds could be explored for the design of new anti-TB agents. PMID:26738801

  9. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities

    PubMed Central

    Nasir, Nazia; Anant, Avishek; Vyas, Rajan; Biswal, Bichitra Kumar

    2016-01-01

    Aminotransferases of subfamily Iβ, which include histidinol phosphate aminotransferases (HspATs) and aromatic amino acid aminotransferases (ArATs), are structurally similar but possess distinct substrate specificities. This study, encompassing structural and biochemical characterisation of HspAT and ArAT from Mycobacterium tuberculosis demonstrates that the residues lining the substrate binding pocket and N-terminal lid are the primary determinants of their substrate specificities. In mHspAT, hydrophilic residues in the substrate binding pocket and N-terminal lid allow the entry and binding of its preferential substrate, Hsp. On the other hand, the hydrophobic nature of both the substrate binding pocket and the N-terminal lid of mArAT is responsible for the discrimination of a polar substrate such as Hsp, while facilitating the binding of Phe and other aromatic residues such as Tyr and Trp. In addition, the present study delineates the ligand induced conformational rearrangements, providing insights into the plasticity of aminotransferases. Furthermore, the study also demonstrates that the adventitiously bound ligand 2-(N-morpholino)ethanesulfonic acid (MES) is indeed a specific inhibitor of HspAT. These results suggest that previously untapped morpholine-ring scaffold compounds could be explored for the design of new anti-TB agents. PMID:26738801

  10. Evolution of dinosaur epidermal structures.

    PubMed

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. PMID:26041865

  11. Evolution of dinosaur epidermal structures

    PubMed Central

    Barrett, Paul M.; Evans, David C.; Campione, Nicolás E.

    2015-01-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. PMID:26041865

  12. The effects of polymer side-chain structure on roughness formation of ArF photoresist in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Uesugi, Takuji; Okada, Takeru; Wada, Akira; Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi; Samukawa, Seiji

    2012-02-01

    Low etching resistance and roughness formation of ArF photoresist during plasma etching are serious problems. We have previously found that decisive factors affecting the plasma resistance and roughness formation in an ArF photoresist are determined by ultraviolet/vacuum ultraviolet radiation and roughness formation is dominated by chemical reactions. In this paper, on the basis of our previous findings on the interaction between radiation species from plasma and ArF photoresist polymers, we investigated the polymer structural dependence for the degradation mechanism of ArF photoresist in the plasma etching processes. The etching resistance of ArF photoresist was improved by controlling the elemental ratio of oxygen atoms and ring structures in photoresist polymer. Furthermore, lactone C=O bond is found to be a key factor for roughness formation during the etching process. We have revealed the importance of the molecular structure of ArF photoresist for improving the surface roughness and etching resistance during the plasma etching process.

  13. 40Ar/39Ar and (U-Th)/He - 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn Peak, Western Australia

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Paulo M.; Heim, Jonathan A.; Farley, Kenneth A.; Monteiro, Hevelyn; Waltenberg, Kathryn

    2013-09-01

    (U-Th)/He geochronology of authigenic goethite cements from the Lynn Peak channel iron deposit (CID), Hamersley Province, Western Australia, reveals a history of mineral precipitation ranging from ca. 33 to 14 Ma. Massive goethites from nearby weathering profiles at Roy Hill North, a possible source of detrital material during the aggradation of the Lynn Peak channels, yield (U-Th)/He results as old as ca. 64 Ma. The combination of (U-Th)/He geochronology with incremental outgassing 4He/3He studies on proton-irradiated samples reveals that Lynn Peak goethites host radiogenic 4He in low retentivity (LRD) and high retentivity (HRD) domains and that the HRDs account for most of the sample mass and have lost very little of their original 4He over geologic time. Such high retentivity is especially notable given the goethites were collected from the surface, where they were subject to significant heating by solar irradiation. Minor contamination by detrital fragments of potentially 4He-rich primary phases (e.g., rutile, ilmenite, zircon) occurs in some samples. Fortunately, the 4He/3He method permits characterization of this extraneous 4He component, which is small (<10 wt.% of the total 4He in the goethite) and can be corrected out in estimating the goethite formation age. These results indicate that the Lynn Peak channel was already aggraded and undergoing goethite cementation by ca. 33 Ma. The history of aggradation and channel cementation independently measured through 40Ar/39Ar geochronology is consistent with that obtained from the (U-Th)/He and 4He/3He record. Laser incremental-heating 40Ar/39Ar geochronology of detrital and authigenic Mn oxides, primarily cryptomelane (KMn8O16·xH2O), from the same locality in the Lynn Peak channel reveals that detrital oxides are older than ca. 44 Ma (and as old as ca. 65 Ma) and authigenic oxides are younger than ca. 35 Ma and as young as ca. 16 Ma. Authigenic cryptomelane precipitation and channel cementation occurred

  14. Evolution of avian eggshell structure.

    PubMed

    Osterström, Ola; Lilja, Clas

    2012-03-01

    Data are presented suggesting that birds have evolved eggs with shells containing different structures (numbers of mammillae per unit of inner eggshell surface area, i.e., mammillary densities) to cope up with different calcium requirements imposed by different growth rates and modes of development. Precocial bird species grow slowly, but have high mammillary density, while altricial bird species grow rapidly, but have low mammillary density. These results suggest an adaptation associated with growth rate and mode of development and show, moreover, that the mammillary layer is indicative of the breeding biology of the bird. PMID:21987469

  15. Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy

    NASA Astrophysics Data System (ADS)

    Guillou, Hervé; Carracedo, Juan Carlos; Paris, Raphael; Pérèz Torrado, Francisco José

    2004-05-01

    The combined use of field geology, radioisotopic dating and magnetic stratigraphy applied to the old shield volcanoes of Tenerife provides a reliable time framework for the early, shield-stage evolution of the island. The greater part of this new set of ages, obtained from sequences of lava flows is in agreement with the astronomical polarity time scale. This approach illustrates that previous K-Ar data collected without a comprehensive stratigraphy should be viewed with caution, and in some cases discarded altogether. The shield volcanoes of Tenerife encompass a relatively small number of magnetozones, an observation consistent with the relatively short periods of growth shown by the new ages (1-2 my). The island was constructed by the aggregation of three successive shields: the Roque del Conde (Central shield), between about 11.9 and 8.9 Ma, and the Teno (6.2-5.6 Ma) and Anaga (4.9-3.9 Ma) volcanoes. This new oldest subaerial age of Tenerife fits with the others obtained in the Canaries in a clear west to east monotonous age progression, one of the main restrictions for hotspot-related island chains.

  16. Evolution of the Himalayan structures

    SciTech Connect

    Bhatt, K. )

    1990-05-01

    Sedimentologically, the Himalayan sediments were deposited in the Tethyan Sea and represent rocks from the Paleozoic to the Holocene. During the early Paleozoic, localized movements divided the Tethyan Sea into two geosynclines separated by a geoanticline of Precambrian central crystallines. The northern deep basin which contains euogeosynclinal sediments, is known as the Tethyan zone, and the southern shallow basin which has miogeosynclinal sediments, represents the rocks of the Himalayan zone. Structurally, three major zones of tectonic movement have been recognized, all of which show similar structural trend: (1) along the Indus suture zone (ISZ), (2) along the Main Central thrust (MCT), and (3) along the Main Boundary thrust (MBT). The ISZ represents the subduction zone between the Indian and Asian plate. The origin of the MCT is related to initial subduction along the trench area and may have been formed during the Late Cretaceous-early Paleocene due to offscrapping of sediments in the subduction zone. Further compression between the two plates caused southward migration of the subduction zone and formed the MBT, during or after the Pliocene, which brought old Paleozoic rocks of lesser Himalaya in contact with younger Tertiary rocks (Siwaliks) of Sub-Himalaya. Both the MCT and MBT are parts of an imbricated system formed in the subduction zone representing different geological time periods. The present position of the subduction zone indicates that future subduction of Indian plate into the Asian plate and will cause tectonic activation of the MBT and movement along the MCT will diminish.

  17. 40Ar-39Ar dating of the Manson impact structure: A cretaceous-tertiary boundary crater candidate

    USGS Publications Warehouse

    Kunk, M.J.; Izett, G.A.; Haugerud, R.A.; Sutter, J.F.

    1989-01-01

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 ?? 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.

  18. Ar-40 - Ar-39 dating of the Manson impact structure - A Cretaceous-Tertiary boundary crater candidate

    NASA Astrophysics Data System (ADS)

    Kunk, M. J.; Sutter, J. F.; Izett, G. A.; Haugerud, R. A.

    1989-06-01

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 + or - 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.

  19. sup 40 Ar- sup 39 Ar dating of the manson impact structure: A cretaceous-tertiary boundary crater candidate

    SciTech Connect

    Kunk, M.J.; Sutter, J.F. ); Izett, G.A. ); Haugerud, R.A. )

    1989-06-30

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 {plus minus} 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision. 36 refs., 2 figs., 1 tab.

  20. Structural evolution of the Brazilian airport network

    NASA Astrophysics Data System (ADS)

    da Rocha, Luis E. C.

    2009-04-01

    The aviation sector is profitable, but sensitive to economic fluctuations, geopolitical constraints and governmental regulations. As for other means of transportation, the relation between origin and destination results in a complex map of routes, which can be complemented with information associated with the routes themselves, for instance, frequency, traffic load and distance. The theory of networks provides a natural framework for investigating the dynamics on the resulting structure. Here, we investigate the structure and evolution of the Brazilian airport network (BAN) as regards several quantities: routes, connections, passengers and cargo. Some structural features are in accordance with previous results for other airport networks. The analysis of the evolution of the BAN shows that its structure is dynamic, with changes in the relative relevance of some airports and routes. The results indicate that the connections converge to specific routes. The network shrinks at the route level but grows in number of passengers and amount of cargo, which more than doubled during the period studied.

  1. Cosmic evolution of Quasar radio structure

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1991-01-01

    We discuss the results of a survey of Quasar radio structures over redshifts from 0.6 to 3.7. There are clear evolutionary trends in size and luminosity, which suggest that the duty cycle of individual Quasars has increased over cosmic time. This affects source count statistics and gives clues on the evolution of Quasar environments.

  2. Cross-linked structure of network evolution

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  3. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  4. Object Recognition and Random Image Structure Evolution

    ERIC Educational Resources Information Center

    Sadr, Jvid; Sinha, Pawan

    2004-01-01

    We present a technique called Random Image Structure Evolution (RISE) for use in experimental investigations of high-level visual perception. Potential applications of RISE include the quantitative measurement of perceptual hysteresis and priming, the study of the neural substrates of object perception, and the assessment and detection of subtle…

  5. Shaping galaxy evolution with galaxy structure

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z˜0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0.2

  6. Learning Protein Structure with Peers in an AR-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Chen, Yu-Chien

    2013-01-01

    Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…

  7. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska

    USGS Publications Warehouse

    Izett, G.A.; Cobban, W.A.; Dalrymple, G.B.; Obradovich, J.D.

    1998-01-01

    A set of 34 laser total-fusion 40Ar/39Ar analyses of sanidine from a melt layer in crater-fill deposits of the Manson impact structure in Iowa has a weighted-mean age of 74.1 ?? 0.1 Ma. This age is about 9.0 m.y. older than 40Ar/39Ar ages of shocked microcline from the Manson impact structure reported previously by others. The 74.1 Ma age of the sanidine, which is a melt product of Precambrian microcline clasts, indicates that the Manson impact structure played no part in the Cretaceous-Tertiary (K-T) mass extinction at 64.5 Ma. Moreover, incremental-heating 40Ar/39Ar ages of the sanidine show that it is essentially free of excess 40Ar and has not been influenced by postcrystallization heating or alteration. An age spectrum of the matrix of the melt layer shows effects of 39Ar recoil, including older ages in the low-temperature increments and younger ages in the high-temperature increments. At 17 places in eastern South Dakota and Nebraska, shocked quartz and feldspar grains are concentrated in the lower part of the Crow Creek Member of the Pierre Shale (Upper Cretaceous). The grains are largest (3.2 mm) in southeastern South Dakota and decrease in size (0.45 mm) to the northwest, consistent with the idea that the Manson impact structure was their source. The ubiquitous presence of shocked grains concentrated in a thin calcarenite at the base of the Crow Creek Member suggests it is an event bed recording an instant of geologic time. Ammonites below and above the Crow Creek Member limit its age to the zone of Didymoceras nebrascense of earliest late Campanian age. Plagioclase from a bentonite bed in this zone in Colorado has a 40Ar/39Ar age of 74.1 ?? 0.1 Ma commensurate with our sanidine age of 74.1 Ma for the Manson impact structure. 40Ar/39Ar ages of bentonite beds below and above the Crow Creek are consistent with our 74.1 ?? 0.1 Ma age for the Manson impact structure and limit its age to the interval ?? 74.5 0.1 to 73.8 ?? 0.1 Ma. Recently, two origins for the

  8. Evolution on folding landscapes in combinatorial structures

    SciTech Connect

    Fraser, S.M.; Reidys, C.M.

    1997-11-01

    In this paper the authors investigate the evolution of molecular structures by random point mutations. They will consider two types of molecular structures: (a) (RNA) secondary structures, and (b) random structures. In both cases structure consists of: (1) a contact graph, and (2) a family of relations imposed on its adjacent vertices. The vertex set of the contact graph is simply the set of all indices of a sequence, and its edges are the bonds. The corresponding relations associated with the edges are viewed as secondary base pairing rules and tertiary interaction rules respectively. Mapping of sequences into secondary and random structures are modeled and analyzed. Here, the set of all sequences that map into a particular structure is modeled as a random graph in the sequence space, the so called neutral network and they study how neutral networks are embedded in sequence space. A basic replication of deletion experiment reveals how effective secondary and random structures can be searched by random point mutations and to what extent the structure effects the dynamics of this optimization process. In particular the authors can report a nonlinear relation between the fraction of tertiary interactions in random structures, and the times taken for a population of sequences to find a high fitness target random structure.

  9. Evolution of structure during phase transitions

    SciTech Connect

    Martin, J.E.; Wilcoxon, J.P.; Anderson, R.A.

    1996-03-01

    Nanostructured materials can be synthesized by utilizing the domain growth that accompanies first-order phase separation. Structural control can be achieved by appropriately selecting the quench depth and the quench time, but in order to do this in a mindful fashion one must understand the kinetics of domain growth. The authors have completed detailed light scattering studies of the evolution of structure in both temperature- and field-quenched phase transitions in two and three dimensional systems. They have studied these systems in the quiescent state and in shear and have developed theoretical models that account for the experimental results.

  10. Geometry and evolution of structural traps formed by inversion structures

    SciTech Connect

    Mitra, S. )

    1994-07-01

    Inversion structures form by compressional reactivation of preexisting extensional structures. Experimental models and observations of natural structures are used to develop quantitative models for the geometry and kinematic evolution of inversion structures. Two main mechanisms of formation of inversion structures are analyzed: (1) fault-propagation folding on planar faults, and (2) fault-bend folding on listric faults. Inversion structures formed by fault-propagation folding are characterized by the upward termination of a basement fault into a tight fold and thickening of synextensional units into the basin. Inversion structures formed by fault-bend folding are characterized by open-fold geometries and thickening of synextensional units into the fault zone. Characteristic variations in fold geometry and bed thickness provide predictive models for interpreting the subsurface geometries of these two classes of inversion structures in areas with poor seismic data. Examples of both types of structures are described from the Taranaki basin, the southern North Sea, and the Kangean Basin.

  11. Scaling behavior studies of Ar{sup +} ion irradiated ripple structured mica surfaces

    SciTech Connect

    Metya, Amaresh Ghose, Debabrata

    2014-04-24

    We have studied scaling behavior of ripple structured mica surfaces. Clean mica (001) surface is sputtered by 500 eV Ar{sup +} ion beam at 40° incidence angle for different time ranging from 28 minutes to 245 minutes to form ripples on it. The scaling of roughness of sputtered surface characterized by AFM is observed into two regime here; one is super roughening which is for above the crossover bombardment time (i.e, t{sub x} ≥ 105 min) with the scaling exponents α = α{sub s} = 1.45 ± 0.03, α{sub local} = 0.87 ± 0.03, β = 1.81 ± 0.01, β{sub local} = 1.67 ± 0.07 and another is a new type of scaling dynamics for t{sub x} ≤ 105 min with the scaling exponents α = 0.95 (calculated), α{sub s} = 1.45 ± 0.03, α{sub local} = 0.87 ± 0.03, β = 1.81 ± 0.01, β{sub local} = 1.67 ± 0.07. In the super roughening scaling dynamics, two types of power law dependency is observed on spatial frequency of morphology (k): for higher k values PSD ∼ k{sup −4} describing diffusion controlled smoothening and for lower k values PSD ∼ k{sup −2} reflecting kinetic roughening.

  12. Macrodomains: Structure, Function, Evolution, and Catalytic Activities.

    PubMed

    Rack, Johannes Gregor Matthias; Perina, Dragutin; Ahel, Ivan

    2016-06-01

    Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets. PMID:26844395

  13. Evolution of sensory structures in basal metazoa.

    PubMed

    Jacobs, Dave K; Nakanishi, Nagayasu; Yuan, David; Camara, Anthony; Nichols, Scott A; Hartenstein, Volker

    2007-11-01

    Cnidaria have traditionally been viewed as the most basal animals with complex, organ-like multicellular structures dedicated to sensory perception. However, sponges also have a surprising range of the genes required for sensory and neural functions in Bilateria. Here, we: (1) discuss "sense organ" regulatory genes, including; sine oculis, Brain 3, and eyes absent, that are expressed in cnidarian sense organs; (2) assess the sensory features of the planula, polyp, and medusa life-history stages of Cnidaria; and (3) discuss physiological and molecular data that suggest sensory and "neural" processes in sponges. We then develop arguments explaining the shared aspects of developmental regulation across sense organs and between sense organs and other structures. We focus on explanations involving divergent evolution from a common ancestral condition. In Bilateria, distinct sense-organ types share components of developmental-gene regulation. These regulators are also present in basal metazoans, suggesting evolution of multiple bilaterian organs from fewer antecedent sensory structures in a metazoan ancestor. More broadly, we hypothesize that developmental genetic similarities between sense organs and appendages may reflect descent from closely associated structures, or a composite organ, in the common ancestor of Cnidaria and Bilateria, and we argue that such similarities between bilaterian sense organs and kidneys may derive from a multifunctional aggregations of choanocyte-like cells in a metazoan ancestor. We hope these speculative arguments presented here will stimulate further discussion of these and related questions. PMID:21669752

  14. 40Ar-39Ar Ages of the Large Impact Structures Kara and Manicouagan and their Relevance to the Cretaceous-Tertiary and the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Jessberger, E. K.

    1992-07-01

    Since the discovery of the iridium enrichment in Cretaceous- Tertiary boundary clays by Alvarez et al. (1980) the search for the crater of the K/T impactor is in progress. Petrographic evidence at the K/T boundary material points towards an impact into an ocean as well as onto the continental crust, multiple K/T impacts are now being considered (Alvarez and Asaro, 1990). One candidate is the Kara crater in northern Siberia of which Kolesnikov et al. (1988) determined a K-Ar isochrone age of 65.6 +- 0.5 Ma, regarding this as indicating that the Kara bolide is at least one of the K/T impactors. Koeberl et al. (1990) determined ^40Ar-^39Ar ages of six impact melts ranging from 70 to 82 Ma and suggested rather an association to the Campanian- Maastrichtian boundary, another important extinction horizon 73 Ma ago (Harland et al., 1982). We dated with the ^40Ar-^39Ar technique four impact melts, KA2- 306, KA2-305, SA1-302 and AN9-182. The spectra have rather well- defined plateaus, shown with highly extended age scales (Fig. 1). The plateau ages range from 69.3 to 71.7 Ma. Our data do not support an association either with the Cretaceous-Tertiary or with the Campanian-Maastrichtian boundary. We deduce an age of 69-71 Ma for the Kara impact structure. Nazarov et al. (1991) have demonstrated by isotopic hydrogen studies that the Kara bolide impacted on dry land, while the last regression at the target area before the end of the Cretaceous occurred 69-70 Ma ago. Our data are consistent with an impact shortly after the regression. We further dated impact metamorphic anorthosite samples (10BD5 and 10BD3C) of the Manicouagan crater, Canada, which may be related to the Triassic-Jurassic boundary (McLaren and Goodfellow, 1990). The samples consist of two different phases, one degassing at low temperatures yielding a plateau age of 212 Ma and another phase which was degassed during the cratering event to varying degrees with apparent ages increasing up to 950 Ma, the age of the

  15. Structural Evolution of Carbon During Oxidation

    SciTech Connect

    Adel F. Sarofim; Angelo Kandas

    1998-10-28

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and C02 surface areas, fractal analysis and TEM studies has confined that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering,. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  16. Crystallography, Evolution, and the Structure of Viruses

    PubMed Central

    Rossmann, Michael G.

    2012-01-01

    My undergraduate education in mathematics and physics was a good grounding for graduate studies in crystallographic studies of small organic molecules. As a postdoctoral fellow in Minnesota, I learned how to program an early electronic computer for crystallographic calculations. I then joined Max Perutz, excited to use my skills in the determination of the first protein structures. The results were even more fascinating than the development of techniques and provided inspiration for starting my own laboratory at Purdue University. My first studies on dehydrogenases established the conservation of nucleotide-binding structures. Having thus established myself as an independent scientist, I could start on my most cherished ambition of studying the structure of viruses. About a decade later, my laboratory had produced the structure of a small RNA plant virus and then, in another six years, the first structure of a human common cold virus. Many more virus structures followed, but soon it became essential to supplement crystallography with electron microscopy to investigate viral assembly, viral infection of cells, and neutralization of viruses by antibodies. A major guide in all these studies was the discovery of evolution at the molecular level. The conservation of three-dimensional structure has been a recurring theme, from my experiences with Max Perutz in the study of hemoglobin to the recognition of the conserved nucleotide-binding fold and to the recognition of the jelly roll fold in the capsid protein of a large variety of viruses. PMID:22318719

  17. Structure and evolution of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1986-01-01

    It is noted that many Voyager observations on the structure and evolution of Saturn's rings remain largely unexplained. The variation of ring thickness and particle size with composition may be partly explained by the input of density waves in the 'heating' of such rings as the outer A ring; in addition, the particles appear to resemble Weidenschilling et al.'s (1984) 'ephemeral bodies' rather than chunks of ice. It is suggested that many current difficulties may be resolved by positing that at least ring A is young, having been created by the destruction of one of the ring moons.

  18. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Feng, Huile; Shi, Wenbei; Zhang, Weibin; Wu, Lin; Yang, Liekun; Wang, Yinzhi; Zhang, Zhigang; Zhu, Rixiang

    2016-04-01

    How does the rising Tibetan Plateau affect its peripheral region? The current understanding of the mechanism of orogenic plateau development is incomplete and thus no consensus yet exists in this regard. However, our new 40Ar/39Ar and (U-Th)/He dataset presented in this study may shed some light on this issue. 40Ar/39Ar dating, on two vertical transects from the massif between Nuomuhong and Golmud, indicates that the Eastern Kunlun Range was built-up and exhumated during the later Triassic initially, and a minimum overburden of ~ 11.7-14.0 km has been eroded since ~ 220 Ma. (U-Th)/He age-elevation relationships (AERs) indicate a rapid exhumation event at ~ 40 Ma following a long period of slow exhumation phase from late Mesozoic to early Eocene time. In this study, two scenarios - one assuming a single stage and the other assuming multiple stages of evolution history - are modeled. Modeling of a multiple stage scenario is reasonable and is able to reflect the "actual" situation, which reveals the entire denudation and relief history of the northern Tibet from late Mesozoic to the present time. After prolonged denudation before 50 Ma, a low topography (~ 0.17 times the relief of the present) developed by 50 Ma with an erosion rate of 0.013-0.013+ 0.025 mm/yr. The highest relief (~ 1.82 times the relief of the present) of the Cenozoic time came into being at 40 Ma with an erosion rate of 0.052 ± 0.025 mm/yr, which was possibly a result of the collision between India and Eurasia. Subsequently, the relief steadily decreased to the present level due to continued denudation. This suggests that deformation propagation from the continued convergence boundary between India and Eurasia was insignificant after the construction of the highest relief. This observation is broadly consistent with published accounts on the stratigraphic, cooling, and faulting histories of the northern Tibet margin.

  19. Geometry and kinematic evolution of inversion structures

    SciTech Connect

    Mitra, S. )

    1993-07-01

    Positive inversion structures form by the compressional reactivation of preexisting extensional structures. Experimental models and observations of natural structures are used to develop quantitative models for the geometry and kinematic evolution of inversion structures. In this paper, I analyze two main formation mechanisms of inversion structures: (1) fault-propagation folding on planar faults, and (2) fault-bend folding on listric faults. Inversion structures formed by fault-propagation folding occur in the southern North Sea, the Central Montana platform, and the Kangean Basin. During extension, a broad fault-propagation (or drape) fold develops above the master fault, with the fault subsequently breaking through the fold. Synextensional growth units deposited in the hanging wall typically thicken into the basin. Compressional reactivation results in slip reversal on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Inversion structures formed by fault-bend folding on listric faults occur in the Taranaki Basin, and possibly in the southern North Sea. Rollover folding in the hanging wall occurs during extension, possibly accompanied by a small component of fault-propagation folding in the vicinity of the fault tip. Deformation is primarily along a system of antithetic faults. Synextensional growth sediments typically thicken into the fault, but also show thinning in the immediate vicinity of the fault. During compression, the extensional fold is first unfolded and then folded into a compressional fault-bend fold. The characteristic variations in bed geometry and thickness provide predictive models for interpreting the subsurface geometries of these two classes of inversion structures in areas with poor seismic data. These models are particularly useful in exploring for structural traps in the complex and relatively unexplored synextensional growth units. 31 refs., 29 figs.

  20. The structure and evolution of story networks

    PubMed Central

    Karsdorp, Folgert; van den Bosch, Antal

    2016-01-01

    With this study, we advance the understanding about the processes through which stories are retold. A collection of story retellings can be considered as a network of stories, in which links between stories represent pre-textual (or ancestral) relationships. This study provides a mechanistic understanding of the structure and evolution of such story networks: we construct a story network for a large diachronic collection of Dutch literary retellings of Red Riding Hood, and compare this network to one derived from a corpus of paper chain letters. In the analysis, we first provide empirical evidence that the formation of these story networks is subject to age-dependent selection processes with a strong lopsidedness towards shorter time-spans between stories and their pre-texts (i.e. ‘young’ story versions are preferred in producing new versions). Subsequently, we systematically compare these findings with and among predictions of various formal models of network growth to determine more precisely which kinds of attractiveness are also at play or might even be preferred as explicatory models. By carefully studying the structure and evolution of the two story networks, then, we show that existing stories are differentially preferred to function as a new version's pre-text given three types of attractiveness: (i) frequency-based and (ii) model-based attractiveness which (iii) decays in time. PMID:27429767

  1. The structure and evolution of story networks.

    PubMed

    Karsdorp, Folgert; van den Bosch, Antal

    2016-06-01

    With this study, we advance the understanding about the processes through which stories are retold. A collection of story retellings can be considered as a network of stories, in which links between stories represent pre-textual (or ancestral) relationships. This study provides a mechanistic understanding of the structure and evolution of such story networks: we construct a story network for a large diachronic collection of Dutch literary retellings of Red Riding Hood, and compare this network to one derived from a corpus of paper chain letters. In the analysis, we first provide empirical evidence that the formation of these story networks is subject to age-dependent selection processes with a strong lopsidedness towards shorter time-spans between stories and their pre-texts (i.e. 'young' story versions are preferred in producing new versions). Subsequently, we systematically compare these findings with and among predictions of various formal models of network growth to determine more precisely which kinds of attractiveness are also at play or might even be preferred as explicatory models. By carefully studying the structure and evolution of the two story networks, then, we show that existing stories are differentially preferred to function as a new version's pre-text given three types of attractiveness: (i) frequency-based and (ii) model-based attractiveness which (iii) decays in time. PMID:27429767

  2. Assembly and Structural Evolution of Micelleplexes

    NASA Astrophysics Data System (ADS)

    Jiang, Yaming; Sprouse, Dustin; Laaser, Jennifer; Reineke, Theresa; Lodge, Timothy

    Cationic micelles complex with DNA to form micelleplexes, which are attractive vehicles for gene delivery. We investigate the formation and structural evolution of micelleplexes in buffered solutions. The micelles are composed of poly((2-dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate). The formation of the micelleplexes is monitored via turbidimetric titration. With DNA oligomers, solutions of the complexes are homogeneous until near the charge neutral point, at which point the complexes precipitate. With plasmid DNA, more than a stoichiometric amount of DNA is needed to reach the inhomogeneous region, which suggests that binding is partially inhibited. This inhibition is not fully relieved when the plasmid DNA is linearized, suggesting that the stiffness of the DNA is the main source of the inhibition. With micelles in excess, the micelleplexes formed at low ionic strength exhibit bimodal size distributions and remain stable in solution. With DNA in excess, soluble micelleplexes aggregate over time and precipitate. We explain the structural evolution of the micelleplexes as an interplay between kinetic trapping and thermodynamic equilibrium, and compare the results for DNA with those for a flexible polyanion.

  3. Evolution of Martinique Island since the Oligocene inferred from K-Ar dating, geochemical analyses and geomorphological reconstructions

    NASA Astrophysics Data System (ADS)

    Germa, A.; Quidelleur, X.; Lahitte, P.; Labanieh, S.; Chauvel, C.

    2012-04-01

    Martinique is the island where the most complete history of the Lesser Antilles island arc can be studied. Geochronological and geochemical studies were investigated on more than 100 samples from this island to constrain its evolution, with a special emphasize on the initiation and westward migration of the volcanic front since the Oligocene. The Old arc has been active from 24.8 to 20.8 Ma. Then, the submarine to subaerial Intermediate arc was active in Martinique between 16.1 and 7.1 Ma. During the Pliocene, Morne Jacob volcano was built from 5.5 to 1.5 Ma, and experienced a creeping of its northern flank at about 2.2 Ma, inducing geochemical changes in shallow reservoirs and late eruptions of more basic lavas. Monogenetic volcanoes with various dynamisms erupted in the southwestern Trois Ilets peninsula (2.4 to 0.345 Ma). Simultaneously, the Carbet Complex (1 Ma - 322 ka), Mont Conil (550 - 125 ka), and finally the Mount Pelée were active along the western sector of the island. Taking advantage of the new K-Ar ages we have obtained on effusive products from Morne Jacob and the Mount Conil - Mount Pelée complex, we have interpreted Digital Elevation Model and digitalized geological map. The rather good preservation of landforms and the high temporal resolution available allowed us to model paleotopographies and compute edifice volumes as well as the volumes removed by erosion or by previously recognized mass wasting events. Considering the entire history of Morne Jacob shield volcano, between 5.14 and 1.54 Ma, we obtain a total volume of 145 ± 32 km3 above the sea level, and a time-averaged construction rate of 0.040 ± 0.008 km3/kyr. With comparison between the reconstructed paleotopographies and the DEM of present topography, we have calculated an eroded volume of 18 km3 that have occurred during the last 1.5 Myr. Since ~543 ka, when Mount Conil emerged, it has emitted ~36 km3 of andesites. It was built within two distinct stages and its activity ended at

  4. Photon-controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis

    SciTech Connect

    Lowndes, D.H.; Geohegan, D.B.; Eres, D.; Pennycook, S.J.; Mashburn, D.N.; Jellison G.E. Jr.

    1988-05-30

    Pulsed ArF (193 nm) excimer laser photolysis of disilane, germane, and disilane-ammonia mixtures has been used to deposit amorphous superlattices containing silicon, germanium, and silicon nitride layers. Transmission electron microscope cross-section views demonstrate that structures having thin (5--25 nm) layers and sharp interlayer boundaries can be deposited at substrate temperatures below the pyrolytic threshold, entirely under laser photolytic control.

  5. Structural evolution and metallicity of lead clusters

    NASA Astrophysics Data System (ADS)

    Götz, Daniel A.; Shayeghi, Armin; Johnston, Roy L.; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-05-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps

  6. Genetic diversity and population structure of the Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm collection maintained by the USDA-ARS, National Plant Germplasm System using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity and population structure present in the Ethiopia sorghum collection maintained by the USDA-ARS, National Plant Germplasm System (USDA-ARS-NPGS) is unknown. In addition, passport information is absent for 83% of these accessions which limit its evaluation and utility. Therefor...

  7. {ital Ab initio} characterization of the structure and energetics of the ArHF complex

    SciTech Connect

    van Mourik, T.; Dunning, T.H. Jr.

    1997-08-01

    The ArHF complex has been investigated using correlation consistent basis sets at several levels of theory, including Mo/ller{endash}Plesset perturbation theory (MP2, MP3, MP4) and coupled cluster techniques [CCSD, CCSD(T)]. The three stationary points (the primary linear Ar{endash}HF minimum, the secondary linear Ar{endash}FH minimum, and the interposed transition state TS) on the counterpoise-corrected potential energy surface have been characterized. Calculations with the aug-cc-pV5Z basis set predict D{sub e} for the Ar{endash}HF minimum to be (with estimated complete basis set limits in parentheses) {minus}215 ({minus}218)cm{sup {minus}1} for MP4 and {minus}206 ({minus}211)cm{sup {minus}1} for CCSD(T). For the Ar{endash}FH minimum and the TS, calculations with the d-aug-cc-pVQZ sets predict D{sub e}{close_quote}s (and CBS limits) of {minus}97 ({minus}99) and {minus}76 ({minus}78)cm{sup {minus}1} (MP4) and {minus}93 ({minus}94) and {minus}75 ({minus}76)cm{sup {minus}1} [CCSD(T)], respectively. The corresponding values for the H6(4,3,2) potential of Hutson [J. Chem. Phys. {bold 96}, 6752 (1992)] are {minus}211.1{plus_minus}4cm{sup {minus}1}, {minus}108.8{plus_minus}10cm{sup {minus}1}, and {minus}82.6{plus_minus}10cm{sup {minus}1}. While the agreement of our CCSD(T) estimate with Hutson{close_quote}s value is excellent for the global minimum, it is less so for the other two stationary points, suggesting that the H6(4,3,2) potential may be too attractive around the secondary minimum and the transition state. {copyright} {ital 1997 American Institute of Physics.}

  8. Evolution of groups with a hierarchical structure

    NASA Astrophysics Data System (ADS)

    Ohnishi, Teruaki

    2012-12-01

    The universal occurrence of a hierarchical structure and its dynamic behavior in various types of group, living or abstract, are discussed. Here the word “group” refers not only to tangible aggregation but also to invisible aggregation of social psychological and of geopolitical meaning. The evolution of these groups is simulated using a model of agents distributed on the lattices of cellular grids. It is assumed that agents, fearing isolation, interact asymmetrically with each other with regard to exchange of “power”. As an indicator of hierarchy, the Gini coefficient is introduced. Example calculations are made for the aggregation, fusion and fission of animal groups, and for the appearance of a powerful empire and the rise and fall of supremacy. It is shown that such abstract objects evolve with time in accordance with the universal rules of groups common to birds and fish.

  9. Models of Protocellular Structure, Function and Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew; Szostak, Jack W.; Keefe, Tony; Lanyi, Janos K.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    In the absence of any record of protocells, the most direct way to test our understanding, of the origin of cellular life is to construct laboratory models that capture important features of protocellular systems. Such efforts are currently underway in a collaborative project between NASA-Ames, Harvard Medical School and University of California. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures. The centerpiece of this project is a method for the in vitro evolution of protein enzymes toward arbitrary catalytic targets. A similar approach has already been developed for nucleic acids in which a small number of functional molecules are selected from a large, random population of candidates. The selected molecules are next vastly multiplied using the polymerase chain reaction.

  10. Early carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: Constraints derived from structural geology and U-Pb and 40Ar-39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Pereira, M. Francisco; Chichorro, Martim; Silva, J. Brandão; Ordóñez-Casado, Berta; Lee, James K. W.; Williams, Ian S.

    2012-08-01

    New U-Pb and 40Ar-39Ar geochronology and structural data from high- to medium grade metamorphic shear zones of the Ossa-Morena Zone, and structural data from Early Carboniferous basins (Ossa-Morena Zone and South-Portuguese Zone), place additional constraints on the Variscan tectonics in SW Iberia. A zircon U-Pb age of 465 ± 14 Ma (Middle Ordovician) measured on migmatite from the Coimbra-Cordoba shear zone is interpreted as the age of protolith crystallization. This age determination revises the information contained in the geological map of Portugal, in which these rocks were considered to be Proterozoic in age. This paper describes the evolution of Variscan wrench tectonics related to the development of shear zones, exhumation of deep crustal rocks and emplacement of magma in the Ossa-Morena Zone basement. In the Coimbra-Cordoba shear zone (transpressional), migmatites were rapidly exhumed from a depth of 42.5 km to 16.6 km over a period of ca. 10 Ma in the Viséan (ca. 340-330 Ma), indicating oblique slip exhumation rates of 8.5 to 10.6 mm/yr (Campo Maior migmatites) and 3.2 mm/yr (Ouguela gneisses) respectively. In the Évora Massif, the gneisses of the Boa Fé shear zone (transtensional) were exhumed from 18.5 to 7.4 km depth in the period ca. 344-334 Ma (Viséan), with exhumation oblique slip rates of 2.8 to 4.2 mm/yr. At the same time, the Early Carboniferous basins of SW Iberia were filled by turbidites and olistoliths, composed mostly of Devonian rocks. The presence of olistoliths indicates significant tectonic instability during sedimentation with large-scale mass movement, probably in the form of gravity slides. Deformation and metamorphism dated at 356 ± 12 Ma, 321 ± 13 Ma and 322 ± 29 Ma respectively suggests that Variscan wrench movements were active in SW Iberia during the Early Carboniferous for a period of at least 35 Ma.

  11. Structural evolution and metallicity of lead clusters.

    PubMed

    Götz, Daniel A; Shayeghi, Armin; Johnston, Roy L; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-06-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms. PMID:27181365

  12. Structure, dynamics, and evolution of centromeric nucleosomes

    PubMed Central

    Dalal, Yamini; Furuyama, Takehito; Vermaak, Danielle; Henikoff, Steven

    2007-01-01

    Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a “hemisome” consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution. PMID:17893333

  13. Combined 40Ar/39Ar and (U-Th)/He geochronological constraints on long-term landscape evolution of the Second Paraná Plateau and its ruiniform surface features, Paraná, Brazil

    NASA Astrophysics Data System (ADS)

    Riffel, Silvana B.; Vasconcelos, Paulo M.; Carmo, Isabela O.; Farley, Kenneth A.

    2015-03-01

    Regional correlation of dated weathered land surfaces provides the necessary constraints to test long-term continental landscape evolution models, but major challenges remain in properly dating these surfaces. The geomorphological province of Second Paraná Plateau, Paraná State, Brazil, is a high elevation (ca. 800 m) land surface characterized by widely distributed deep saprolites and scattered lateritic profiles (e.g., Vila Velha and Serra das Almas). Prolonged exposure to weathering and erosion has promoted the pseudo-karstic and ruiniform features that are characteristic of this landscape. In this study, 40Ar/39Ar laser incremental heating geochronology on 22 grains of supergene Mn oxyhydroxides from lateritic profiles at Vila Velha yielded results ranging from 17.2 ± 0.7 to 9.1 ± 0.7 Ma. (U-Th)/He geochronology on 28 goethite grains from the same profile yielded results ranging from 36.4 ± 3.6 to 1.0 ± 0.1 Ma, with an age cluster lying within the 17.2 ± 0.7 to 7.9 ± 0.8 Ma interval. (U-Th)/He geochronology on 17 goethite grains from the Serra das Almas lateritic profile, located 20 km from Vila Velha, yield results ranging from 35.1 ± 3.5 to 14.1 ± 1.4 Ma. The combined results for the two sites reveal a common weathering history that started ca. 35 Ma, suggesting that the Second Paraná Plateau results from regional fluvial incision and denudation before ~ 35 Ma, followed by a decline in denudation rates and proportionally more intense weathering. Consistent with the laterite profile central ages, weathering was particularly intense during the Miocene (17-8 Ma). Denudation intensified after the Pliocene.

  14. 40Ar/39Ar geochronology of hypabyssal igneous rocks in the Maranon Basin of Peru - A record of thermal history, structure, and alteration

    USGS Publications Warehouse

    Prueher, L.M.; Erlich, R.; Snee, L.W.

    2005-01-01

    Hypabyssal andesites and dacites from the Balsapuerto Dome in the Mara?on Basin of Peru record the thermal, tectonic, and alteration history of the area. The Mara?on Basin is one of 19 sub-Andean foreland basins. The hypabyssal rocks in the Balsapuerto Dome are one of four known occurrences of subvolcanic rocks along the deformation front in Peru. This dome is a potential petroleum structural trap. Petroleum seeps near the dome indicate that a source for the petroleum is present, but the extent and amount of petroleum development is unknown. The Balsapuerto hypabyssal rocks are plagioclase-, hornblende-, pyroxene-phyric andesites to dacites. Some parts of the dome are pervasively altered to a hydrothermal assemblage of quartz-sericite-pyrite. 40Ar/39Ar geochronology shows that thermal activity related to emplacement of these subvolcanic rocks took place between 12-10 Ma, subsequent to the major periods of Andean folding and faulting, previously assumed to have occurred about 9 Ma. Eleven argon mineral age-spectrum analyses were completed. Argon apparent ages on amphibole range from 12.7 to 11.6 Ma, and the age spectra are simple, which indicates that the ages are very close to emplacement ages. Potassium feldspar yields an argon age spectrum ranging in age from 12.5 to 11.4 Ma, reflecting the period during which the potassium feldspar closed to argon diffusion between the temperature range of 350?C to about 150?C; thus the potassium feldspar age spectrum reflects a cooling profile throughout this temperature range. This age range is consistent with ages of emplacement for the entire igneous complex indicating that an increased thermal state existed in the area for at least 1.0 m.y. Combined with the coexisting hornblende age, this rock cooled from ~580?C to ~150?C in ~1.2 m.y. resulting in an average cooling rate of 358?C /m.y. White mica, or sericite, formed as a later alteration phase associated with quartz- sericite- pyrite and propylitic alteration in some

  15. Investigation of plasma-dust structures in He-Ar gas mixture

    SciTech Connect

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K.

    2008-09-15

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for a He-Ar mixture. It is shown that the choice of light and heavy gases for the mixture suppresses ion heating in electric field under the conventional conditions of experiments and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths, and gas pressures.

  16. Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state.

    PubMed

    Arunkumar, Alphonse I; Campanello, Gregory C; Giedroc, David P

    2009-10-27

    Staphylococcus aureus CzrA is a zinc-dependent transcriptional repressor from the ubiquitous ArsR family of metal sensor proteins. Zn(II) binds to a pair of intersubunit C-terminal alpha5-sensing sites, some 15 A distant from the DNA-binding interface, and allosterically inhibits DNA binding. This regulation is characterized by a large allosteric coupling free energy (DeltaGc) of approximately +6 kcal mol(-1), the molecular origin of which is poorly understood. Here, we report the solution quaternary structure of homodimeric CzrA bound to a palindromic 28-bp czr operator, a structure that provides an opportunity to compare the two allosteric "end" states of an ArsR family sensor. Zn(II) binding drives a quaternary structural switch from a "closed" DNA-binding state to a low affinity "open" conformation as a result of a dramatic change in the relative orientations of the winged helical DNA binding domains within the dimer. Zn(II) binding also effectively quenches both rapid and intermediate timescale internal motions of apo-CzrA while stabilizing the native state ensemble. In contrast, DNA binding significantly enhances protein motions in the allosteric sites and reduces the stability of the alpha5 helices as measured by H-D solvent exchange. This study reveals how changes in the global structure and dynamics drive a long-range allosteric response in a large subfamily of bacterial metal sensor proteins, and provides insights on how other structural classes of ArsR sensor proteins may be regulated by metal binding. PMID:19822742

  17. Models of protocellular structures, functions and evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The central step in the origin of life was the emergence of organized structures from organic molecules available on the early earth. These predecessors to modern cells, called 'proto-cells,' were simple, membrane bounded structures able to maintain themselves, grow, divide, and evolve. Since there is no fossil record of these earliest of life forms, it is a scientific challenge to discover plausible mechanisms for how these entities formed and functioned. To meet this challenge, it is essential to create laboratory models of protocells that capture the main attributes associated with living systems, while remaining consistent with known, or inferred, protobiological conditions. This report provides an overview of a project which has focused on protocellular metabolism and the coupling of metabolism to energy transduction. We have assumed that the emergence of systems endowed with genomes and capable of Darwinian evolution was preceded by a pre-genomic phase, in which protocells functioned and evolved using mostly proteins, without self-replicating nucleic acids such as RNA.

  18. Aspects of alternative network structure evolution

    NASA Astrophysics Data System (ADS)

    Singh, Naveen Kumar

    The focus of this prospectus is to study a new and simple process method to prepare and characterize elastomers and hydrogels. A prestressed double network thermoplastic elastomer and hydrogel is prepared by a two step curing process where first network is introduced in the unstrained state, while the second is introduced in the strained state, hence varying prestress after first curing step. The focus of this thesis is towards the understanding of the basic network mechanism governing the final physical, mechanical and thermo-mechanical properties of these prestressed double networks and relating them to their microstructure and morphology. Moreover, the major factors governing the final properties of these networks are being identified including the type of crosslinks, the extent of crosslinking in the two states of stresses/strains, mode of deformation and the behavior is compared with simple theoretical models. The network structure of swollen hydrogel networks has been studied and the effect of various topological constraints ranging from the crosslinks to entangled linear chains to stiff nanofillers have been studied. The study has been utilized to propose a filler reinforcing mechanism for elastomeric networks and also identify the competition between the effect of various constraints in the final steady state and relaxation properties of the swollen hydrogel networks. The final part of this thesis focuses towards the network evolution in ultra high molecular weight poly (tetrafluoroethylene) (PTFE) in its melt state. Initial studies on the viscoelastic properties of PTFE in its melt state has been discussed and later a method to alter the network evolution utilizing supercritical carbon dioxide has been discussed. The effect of supercritical carbon dioxide on the melt of PTFE has been observed by utilizing a new setup to understand the behavior of PTFE in-situ in presence of supercritical carbon dioxide.

  19. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  20. 40Ar/39Ar evidence for Middle Proterozoic (1300-1500 Ma) slow cooling of the southern Black Hills, South Dakota, midcontinent, North America: Implications for Early Proterozoic P-T evolution and posttectonic magmatism

    NASA Astrophysics Data System (ADS)

    Holm, Daniel K.; Dahl, Peter S.; Lux, Daniel R.

    1997-08-01

    40Ar/39Ar total gas and plateau dates from moscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the ˜1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (˜1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of ˜1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (˜1500 Ma) ˜300°C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350°C and 500°C, suggesting that the average upper crustal geothermal gradient was 25°-40°C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a ˜200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to ˜1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of

  1. The ArNe-N2O van der Waals trimer: a high resolution spectroscopic study of its rotational spectrum, structure and dynamics

    NASA Astrophysics Data System (ADS)

    Ngari, Mwaniki S.; Xu, Yunjie; Jäger, Wolfgang

    A new ternary van der Waals complex of the type rare gas-rare gas-linear molecule, ArNeN2O, was investigated using a pulsed molecular beam cavity Fourier transform microwave spectrometer. The rotational spectra of six isotopomers of the trimer were studied in detail. These include Ar20Ne- 14N14NO, Ar22Ne- 14N14NO, Ar20Ne-15N14NO, Ar22Ne- 15N14NO, Ar20Ne- 14N15NO and Ar22Ne- 14N15NO. Nuclear quadrupole hyperfine structures of the rotational transitions that are due to the one or two 14N nuclei were resolved and analysed. The resulting spectroscopic constants were used to provide structural and dynamical information about the trimer. Based on the quartic centrifugal distortion constants, a harmonic force field analysis was performed to estimate the frequencies of the van der Waals vibrational modes. A perturbation of the electronic charge distribution at the site of the central 14N nucleus of N2O upon complex formation was detected and discussed. Differences of structural parameters of the trimer as compared to those of the respective dimer units are indicative of the presence of significant three-body non-additive contributions to the interaction energy.

  2. Evolution and structure of sustainability science.

    PubMed

    Bettencourt, Luís M A; Kaur, Jasleen

    2011-12-01

    The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity. PMID:22114186

  3. Evolution and structure of sustainability science

    PubMed Central

    Bettencourt, Luís M. A.; Kaur, Jasleen

    2011-01-01

    The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity. PMID:22114186

  4. Models of Protocellular Structure, Function and Evolution

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew; Szostak, Jack W.; Keefe, Tony; Lanyi, Janos K.

    2001-01-01

    In the absence of any record of protocells, the most direct way to test our understanding of the origin of cellular life is to construct laboratory models that capture important features of protocellular systems. Such efforts are currently underway in a collaborative project between NASA-Ames, Harvard Medical School and University of California. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures. The centerpiece of this project is a method for the in vitro evolution of protein enzymes toward arbitrary catalytic targets. A similar approach has already been developed for nucleic acids in which a small number of functional molecules are selected from a large, random population of candidates. The selected molecules are next vastly multiplied using the polymerase chain reaction. A mutagenic approach, in which the sequences of selected molecules are randomly altered, can yield further improvements in performance or alterations of specificities. Unfortunately, the catalytic potential of nucleic acids is rather limited. Proteins are more catalytically capable but cannot be directly amplified. In the new technique, this problem is circumvented by covalently linking each protein of the initial, diverse, pool to the RNA sequence that codes for it. Then, selection is performed on the proteins, but the nucleic acids are replicated. Additional information is contained in the original extended abstract.

  5. Peculiarities of latent track etching in SiO2/Si structures irradiated with Ar, Kr and Xe ions

    NASA Astrophysics Data System (ADS)

    Al'zhanova, A.; Dauletbekova, A.; Komarov, F.; Vlasukova, L.; Yuvchenko, V.; Akilbekov, A.; Zdorovets, M.

    2016-05-01

    The process of latent track etching in SiO2/Si structures irradiated with 40Ar (38 MeV), 84Kr (59 MeV) and 132Xe (133 and 200 MeV) ions has been investigated. The experimental results of SiO2 etching in a hydrofluoric acid solution have been compared with the results of computer simulation based on the thermal spike model. It has been confirmed that the formation of a molten region along the swift ion trajectory with minimum radius of 3 nm can serve as a theoretical criterion for the reproducible latent track etching tracks in SiO2.

  6. Evolution Of Surface Topography On GaAs(100) And GaAs(111) At Normal And Oblique Incidence Of Ar{sup +}-Ions

    SciTech Connect

    Venugopal, V.; Basu, T.; Garg, S.; Majumder, S.; Sarangi, S. N.; Som, T.; Das, P.; Bhattacharyya, S. R.; Chini, T. K.

    2010-10-04

    Nanoscale surface structures emerging from medium energy (50-60 keV)Ar{sup +}-ion sputtering of p-type GaAs(100) and semi-insulating GaAs(111) substrates have been investigated. For normally incident 50 keV Ar{sup +}-ions of fluence 1x10{sup 17} ions/cm{sup 2} on GaAs(100) and GaAs(111) features in the form of nanoscale pits/holes without short range ordering are observed with densities 5.2x10{sup 9} /cm{sup 2} and 5.9x10{sup 9} /cm{sup 2}, respectively along with irregularly shaped patches of islands. For GaAs(111) on increasing the influence to 5x10{sup 17} /cm{sup 2} the pit density increases marginally to 6.2x10{sup 9} /cm{sup 2}. For 60 deg. off-normal incidence of 60 keV Ar.{sup +}-ions of fluence 2x10{sup 17} ions/cm{sup 2} on GaAs(100) microscale wavelike surface topography is observed. In all cases well-defined nanodots are absent on the surface.

  7. Structural evolution of Alpine salt deposits, Austria and Bavaria

    NASA Astrophysics Data System (ADS)

    Leitner, Ch.; Neubauer, F.; Genser, H.; Borojevic Sostaric, S.

    2009-04-01

    Structural evolution of Alpine salt deposits, Austria and Bavaria Alpine salt deposits consist of a tectonic melange of rocksalt and shale called haselgebirge representing the Haselgebirge Formation of Permian to Early Triassic age and mainly exposed within the central and eastern Northern Calcareous Alps. The initial evaporitic sediments were transformed into a breccia (protocataclasite, mylonite) during Alpine orogeny. Residual rocks of shale, anhydrite, polyhalite, sandstone and limestone float as isolated bodies in the haselgebirge matrix. Field investigations of foliation, halite mineral lineation, fold axis, veins and the overall present slickensides in shale revealed an individual history for all investigated mines (Dürrnberg, Berchtesgaden, Altaussee, in part Hallstatt). Ar-Ar dating of various micostructural types of polyhalite yield several preliminary age groups: 235 Ma, 180 Ma, and 110 Ma. Fluid inclusion measurements on anhydrite together with vitrinite reflectance data showed that temperatures of 140-180 °C were reached in Berchtesgaden and around 250° C in Altaussee. Microstructural analysis of anhydrite reveals strong stretching structures with lobate grain boundaries and the fomation of large anhydrite crystals in polyhalite (locally called muriazite). Rock salt and Haselgebirge samples were gamma-irradiated to intensify contrasts in thin section analysis. No primary structures like fluid inclusion bands or chevrons were found. The oldest visible parts are innner cores of large residual grains. All other types of grains suffered grain size reduction during the subsequent deformation. Using subgrain piezometry, high differential stresses of around 5 MPa formed the present microstructure. The Alpine rock salt deposits suffered a complex deformation history. A first peak was the formation of polyhalite veins, 235 Ma ago. The overburden was around 800 m (Rantitsch & Russegger, 2005) and first differentiation of the sea floor occurred (Mandl, 1984

  8. Relationship between human evolution and neurally mediated syncope disclosed by the polymorphic sites of the adrenergic receptor gene α2B-AR.

    PubMed

    Komiyama, Tomoyoshi; Hirokawa, Takatsugu; Sato, Kyoko; Oka, Akira; Kamiguchi, Hiroshi; Nagata, Eiichiro; Sakura, Hiroshi; Otsuka, Kuniaki; Kobayashi, Hiroyuki

    2015-01-01

    The objective of this study was to clarify the effects of disease on neurally mediated syncope (NMS) during an acute stress reaction. We analyzed the mechanism of the molecular interaction and the polymorphisms of the alpha-2 adrenoreceptor (α2B-AR) gene as the potential psychiatric cause of incentive stress. We focused on the following three genotypes of the repeat polymorphism site at Glu 301-303 in the α2B-AR gene: Glu12/12, Glu12/9, and Glu9/9. On the basis of our clinical research, NMS is likely to occur in people with the Glu12/9 heterotype. To verify this, we assessed this relationship with the interaction of Gi protein and adenylate cyclase by in silico analysis of the Glu12/9 heterotype. By measuring the difference in the dissociation time of the Gi-α subunit twice, we found that the Glu12/9 heterotype suppressed the action of adenylate cyclase longer than the Glu homotypes. As this difference in the Glu repeat number effect is thought to be one of the causes of NMS, we investigated the evolutionary significance of the Glu repeat number. Glu8 was originally repeated in simians, while the Glu12 repeats occurred over time during the evolution of bipedalism in humans. Taken with the Glu12 numbers, NMS would likely become a defensive measure to prevent significant blood flow to the human brain. PMID:25860977

  9. Relationship between Human Evolution and Neurally Mediated Syncope Disclosed by the Polymorphic Sites of the Adrenergic Receptor Gene α2B-AR

    PubMed Central

    Komiyama, Tomoyoshi; Oka, Akira; Kamiguchi, Hiroshi; Nagata, Eiichiro; Sakura, Hiroshi; Otsuka, Kuniaki; Kobayashi, Hiroyuki

    2015-01-01

    The objective of this study was to clarify the effects of disease on neurally mediated syncope (NMS) during an acute stress reaction. We analyzed the mechanism of the molecular interaction and the polymorphisms of the alpha-2 adrenoreceptor (α2B-AR) gene as the potential psychiatric cause of incentive stress. We focused on the following three genotypes of the repeat polymorphism site at Glu 301–303 in the α2B-AR gene: Glu12/12, Glu12/9, and Glu9/9. On the basis of our clinical research, NMS is likely to occur in people with the Glu12/9 heterotype. To verify this, we assessed this relationship with the interaction of Gi protein and adenylate cyclase by in silico analysis of the Glu12/9 heterotype. By measuring the difference in the dissociation time of the Gi-α subunit twice, we found that the Glu12/9 heterotype suppressed the action of adenylate cyclase longer than the Glu homotypes. As this difference in the Glu repeat number effect is thought to be one of the causes of NMS, we investigated the evolutionary significance of the Glu repeat number. Glu8 was originally repeated in simians, while the Glu12 repeats occurred over time during the evolution of bipedalism in humans. Taken with the Glu12 numbers, NMS would likely become a defensive measure to prevent significant blood flow to the human brain. PMID:25860977

  10. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Jessberger, E. K.

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  11. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Jessberger, E. K.

    1992-01-01

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  12. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar+-ion bombardment on Si: A case of initial wavelength selection

    NASA Astrophysics Data System (ADS)

    Garg, Sandeep Kumar; Cuerno, Rodolfo; Kanjilal, Dinakar; Som, Tapobrata

    2016-06-01

    We have studied the early stage dynamics of ripple patterns on Si surfaces, in the fluence range of 1-3 × 1018 ions cm-2, as induced by medium energy Ar+-ion irradiation at room temperature. Under our experimental conditions, the ripple evolution is found to be in the linear regime, while a clear decreasing trend in the ripple wavelength is observed up to a certain time (fluence). Numerical simulations of a continuum model of ion-sputtered surfaces suggest that this anomalous behavior is due to the relaxation of the surface features of the experimental pristine surface during the initial stage of pattern formation. The observation of this hitherto unobserved behavior of the ripple wavelength seems to have been enabled by the use of medium energy ions, where the ripple wavelengths are found to be order(s) of magnitude larger than those at lower ion energies.

  13. Implications of atmospheric Ar-40 escape on the interior structure of the moon

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Hoffman, J. H.

    1975-01-01

    Radiogenic Ar-40 escapes from the lunar atmosphere at a rate of about 2 x 10 to the 21st atoms/sec. This amounts to 8% of the rate of argon production in the entire moon by potassium decay. A curious feature of the argon escape rate is a variability with time scale of several months. It is shown that the variation in argon loss correlates with high-frequency lunar teleseismic events. The only apparent region of the moon which could possibly supply the amount of argon needed for escape via a plausible temporal mechanism is a semimolten asthenosphere which may be entirely primitive unfractionated lunar material, or an Fe-FeS core that is enriched in potassium. A core that is devoid of potassium is not compatible with the atmospheric argon measurements.

  14. Single-particle structure at N =29 : The structure of 47Ar and first spectroscopy of 45S

    NASA Astrophysics Data System (ADS)

    Gade, A.; Tostevin, J. A.; Bader, V.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Diget, C. Aa.; Glasmacher, T.; Hartley, D. J.; Lunderberg, E.; Stroberg, S. R.; Recchia, F.; Ratkiewicz, A.; Weisshaar, D.; Wimmer, K.

    2016-05-01

    Comprehensive spectroscopy of the N =29 nucleus 47Ar is presented, based on two complementary direct reaction mechanisms: one-neutron pickup onto 46Ar projectiles and one-proton removal from the 1- ground state of 48K. The results are compared with shell-model calculations that use the state-of-the-art SDPF-U and SDPF-MU effective interactions. Also, from the 9Be(46Cl,45S+γ )X one-proton-removal reaction, we report the first γ -ray transitions observed from 45S. By using comparisons with shell-model calculations, and from the observed intensities and energy sums, we propose a first tentative level scheme for 45S.

  15. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Astrophysics Data System (ADS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; McGee, J. J.

    1993-03-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  16. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  17. High-pressure phases, vibrational properties, and electronic structure of Ne(He)2 and Ar(He)2 : A first-principles study

    NASA Astrophysics Data System (ADS)

    Cazorla, C.; Errandonea, D.; Sola, E.

    2009-08-01

    We have carried out a comprehensive first-principles study of the energetic, structural, and electronic properties of solid rare-gas (RG)-helium binary compounds, in particular, Ne(He)2 and Ar(He)2 , under pressure and at temperatures within the range of 0≤T≤2000K . Our approach is based on density-functional theory and the generalized gradient approximation for the exchange-correlation energy; we rely on total Helmholtz free-energy calculations performed within the quasiharmonic approximation for most of our analysis. In Ne(He)2 , we find that at pressures of around 20 GPa the system stabilizes in the MgZn2 Laves structure, in accordance to what was suggested in previous experimental investigations. In the same compound, we predict a solid-solid phase transition among structures of the Laves family of the type MgZn2→MgCu2 , at a pressure of Pt=120(1)GPa . In Ar(He)2 , we find that the system stabilizes in the MgCu2 Laves phase at low pressures but it transitates toward the AlB2 -type structure by effect of compression at Pt=13.8(4)GPa . The phonon spectra of the Ne(He)2 crystal in the MgZn2 and MgCu2 Laves structures, and that of Ar(He)2 in the AlB2 -type phase, are reported. We observe that the compressibility of RG-RG and He-He bond distances in RG(He)2 crystals is practically identical to that found in respective RG and He pure solids. This behavior emulates that of a system of noninteracting hard spheres in closed-packed configuration and comes to show the relevance of short-range interactions on this type of mixtures. Based on size-ratio arguments and empirical observations, we construct a generalized phase diagram for all RG(He)2 crystals up to a pressure of 200 GPa where we map out systematic structural trends. Excellent qualitative agreement between such generalized phase diagram and accurate ab initio calculations is proved. A similar construction is done for RG(H2)2 crystals; we find that the MgCu2 Laves structure, which has been ignored in all RG

  18. Microstructural evolution of P92 ferritic/martensitic steel under Ar{sup +} ion irradiation at elevated temperature

    SciTech Connect

    Jin Shuoxue; Guo Liping; Li Tiecheng; Chen Jihong; Yang Zheng; Luo Fengfeng; Tang Rui; Qiao Yanxin; Liu Feihua

    2012-06-15

    Irradiation damage in P92 ferritic/martensitic steel irradiated by Ar{sup +} ion beams to 7 and 12 dpa at elevated temperatures of 290 Degree-Sign C, 390 Degree-Sign C and 550 Degree-Sign C has been investigated by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The precipitate periphery (the matrix/carbide interface) was amorphized only at 290 Degree-Sign C, while higher irradiation temperature could prevent the amorphization. The formation of the small re-precipitates occurred at 290 Degree-Sign C after irradiation to 12 dpa. With the increase of irradiation temperature and dose, the phenomenon of re-precipitation became more severe. The voids induced by irradiation were observed after irradiation to 7 dpa at 550 Degree-Sign C, showing that high irradiation temperature ({>=} 550 Degree-Sign C) was a crucial factor which promoted the irradiation swelling. Energy dispersive X-ray analysis revealed that segregation of Cr and W in the voids occurred under irradiation, which may influence mechanical properties of P92 F/M steel. - Graphical Abstract: High density of small voids, about 2.5 nm in diameter, was observed after irradiation to 12 dpa at 550 Degree-Sign C, which was shown in panel a (TEM micrograph). As shown in panel b (SEM image), a large number of nanometer-sized hillocks were formed in the surface irradiated at 550 Degree-Sign C, and the mean size was {approx} 30 nm. The formation of the nanometer-sized hillocks might be due to the voids that appeared as shown in TEM images (panel a). High irradiation temperature ({>=} 550 Degree-Sign C) was a crucial factor for the formation of void swelling. Highlights: Black-Right-Pointing-Pointer Small carbides re-precipitated in P92 matrix irradiated to 12 dpa at 290 Degree-Sign C. Black-Right-Pointing-Pointer High density of voids was observed at 550 Degree-Sign C. Black-Right-Pointing-Pointer Segregation of Cr and W in voids occurred under irradiation.

  19. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1977-01-01

    The general-relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general-relativistic version of the mixing-length formalism for convection is presented.

  20. Cretaceous to Miocene fault zone evolution in the Eastern Alps constrained by multi-system thermochronometry and structural data.

    NASA Astrophysics Data System (ADS)

    Wölfler, Andreas; Frisch, Wolfgang; Danišík, Martin; Fritz, Harald; Wölfler, Anke

    2015-04-01

    Fault zones that display both, ductile and brittle deformation stages offer perfect sites to study the evolution of the earth's crust over a wide range of temperatures and possibly over long time spans. This study combines structural- geo- and thermochronologcial data to evaluate the tectonic evolution of a fault zone to the southeast of the Tauern Window in the Eastern Alps. This fault zone comprises a mylonitic part, the so-called "Main Mylonitic Zone" (MMZ) that has been reworked by brittle faulting, the so-called "Ragga-Teuchl fault" (RTF). Structural data of the MMZ demonstrate ductile deformation with top-to-the NW transport in the Late Cretaceous under greenschist facies conditions. Subsequent SE-directed extension occurred under semi-brittle to brittle conditions during the Late Cretaceous and Paleocene. The Polinik Block to the north of the RTF revealed Late Cretaceous Ar/Ar ages, which reflect cooling subsequent to the thermal peak of Eo-alpine metamorphism. In contrast, the Kreuzeck Block to the south of the RTF shows early Permian Ar/Ar ages that reflect cooling related to both, late Variscan collapse in the late Carboniferous and post-Variscan extension in the Permian. Zircon and apatite fission track ages and thermal history modeling results suggest that the Polinik Block cooled rapidly to near surface temperatures in the middle Miocene. The Kreuzeck Block, in contrast, cooled and exhumed to near surface conditions already in the Oligocene and early Miocene. Thermal history modeling and apatite fission track ages of 23.3±0.8 and 11.5±1.0 suggest that brittle deformation along the RTF occurred in the middle- and late Miocene. Our results demonstrate that one single fault zone may comprise information about the evolution of the Eastern Alps from Late Cretaceous to Miocene time and that low-temperature thermochronology is a viable tool to resolve the timing of brittle faulting and accompanied fluid activity.

  1. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  2. Electronic and crystalline structure of Si/SiO 2 interface modified by ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Cháb, V.; Lukeš, I.; Ondřejček, M.; Jiříček, P.

    The native oxide layers on Si(100) surface were irradiated under UHV conditions by an ArF excimer laser pulses with energy density varied between melting and evaporating thresholds. The resulting changes were studied by LEED, AES and UPS. The increase of the energy density up to evaporation threshold results in the recrystallisation of native oxide layer. The pulses with energy densities just above the evaporation threshold ablate the top layer leaving an ordered and atomicaly clean surface. The observed (1x1) surface reconstruction is probably stabilised by strains introduced during rapid melting and quenching of the topmost layers. The surface electronic structure is dominated by random satisfaction of dangling bonds swearing a well defined surface states observed on (2x1)Si(100) surface.

  3. Structural evolution of small ruthenium cluster anions

    SciTech Connect

    Waldt, Eugen; Hehn, Anna-Sophia; Ahlrichs, Reinhart; Kappes, Manfred M.; Schooss, Detlef

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  4. Modification of the optical and structural properties of ZnO nanowires by low-energy Ar+ ion sputtering

    PubMed Central

    2013-01-01

    The effects of low-energy (≤2 kV) Ar+ irradiation on the optical and structural properties of zinc oxide (ZnO) nanowires (NWs) grown by a simple and cost-effective low-temperature technique were investigated. Both photoluminescence spectra from ZnO NW-coated films and cathodoluminescence analysis of individual ZnO NWs demonstrated obvious evidences of ultraviolet/visible luminescent enhancement with respect to irradiation fluence. Annihilation of the thinner ZnO NWs after the ion bombardment was appreciated by means of high-resolution scanning electron microscopy and transmission electron microscopy (TEM), which results in an increasing NW mean diameter for increasing irradiation fluences. Corresponding structural analysis by TEM pointed out not only significant changes in the morphology but also in the microstructure of these NWs, revealing certain radiation-sensitive behavior. The possible mechanisms accounting for the decrease of the deep-level emissions in the NWs with the increasing irradiation fluences are discussed according to their structural modifications. PMID:23570658

  5. Trichome structure and evolution in Neotropical lianas

    PubMed Central

    Nogueira, Anselmo; El Ottra, Juliana Hanna Leite; Guimarães, Elza; Machado, Silvia Rodrigues; Lohmann, Lúcia G.

    2013-01-01

    Background and Aims Trichomes are epidermal outgrowths generally associated with protection against herbivores and/or desiccation that are widely distributed from ferns to angiosperms. Patterns of topological variation and morphological evolution of trichomes are still scarce in the literature, preventing valid comparisons across taxa. This study integrates detailed morphoanatomical data and the evolutionary history of the tribe Bignonieae (Bignoniaceae) in order to gain a better understanding of current diversity and evolution of trichome types. Methods Two sampling schemes were used to characterize trichome types: (1) macromorphological characterization of all 105 species currently included in Bignonieae; and (2) micromorphological characterization of 16 selected species. Individual trichome morphotypes were coded as binary in each vegetative plant part, and trichome density and size were coded as multistate. Ancestral character state reconstructions were conducted using maximum likelihood (ML) assumptions. Key Results Two main functional trichome categories were found: non-glandular and glandular. In glandular trichomes, three morphotypes were recognized: peltate (Pg), stipitate (Sg) and patelliform/cupular (P/Cg) trichomes. Non-glandular trichomes were uniseriate, uni- or multicellular and simple or branched. Pg and P/Cg trichomes were multicellular and non-vascularized with three clearly distinct cell layers. Sg trichomes were multicellular, uniseriate and long-stalked. ML ancestral character state reconstructions suggested that the most recent common ancestor (MRCA) of Bignonieae probably had non-glandular, Pg and P/Cg trichomes, with each trichome type presenting alternative histories of appearance on the different plant parts. For example, the MRCA of Bignonieae probably had non-glandular trichomes on the stems, prophylls, petiole, petiolule and leaflet veins while P/Cg trichomes were restricted to leaflet blades. Sg trichomes were not present in the MRCA

  6. Evolution of extortion in structured populations

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games.

  7. Combined 40Ar/39Ar and Fission-Track study of the Freetown Layered Igneous Complex, Freetown, Sierra Leone, West Africa: Implications for the Initial Break-up of Pangea to form the Central Atlantic Ocean and Insight into the Post-rift Evolution of the Sie

    NASA Astrophysics Data System (ADS)

    Barrie, Ibrahim; Wijbrans, Jan; Andriessen, Paul; Beunk, Frank; Strasser-King, Victor; Fode, Daniel

    2010-05-01

    Sierra Leone lies within the south-western part of the West African Craton and comprises two major Archaean structural divisions: a low-grade granite-greenstone terrane characterised by N-S striking structures and a NW-SE striking highly metamorphosed belt of strained rocks that form the coastal margin of the craton. Intruded into the belt is the Freetown Layered Igneous Complex (FLIC), a tholeiitic magamtic body emplaced prior to or during the break-up of Pangea to form the Central Atlantic Ocean and, forming today the high ground of the coastal outline of Sierra Leone which is one of the most distinctive features on the West African coast. The break-up of Pangaea to form the Central Atlantic and its passive margins began in the Early Jurassic. Geo-tectonically, the break-up was particularly characterised by the formation of the Central Atlantic Magmatic Province (CAMP), covering once-contiguous parts of North America, Europe, Africa and South America. The FLIC forming part of the heart of CAMP is the largest single layered igneous intrusive yet known on either side of the Central Atlantic, measuring on surface, 65 x 14 x 7 km. Geophysical investigations indicate that the intrusion extends offshore to a depth of about 20 km. Geologically the Complex is a rhythmically layered elongated ultramafic-mafic lopolith divisible into 4 major zones each comprising repeated sequences of troctolitic, gabbroic and anorthositic rocks. An idealised unit of layering is from base upwards: dunite, troctolite, olivine-gabbro, leuco-gabbro, gabbro-norite and anorthosite cumulates. 40Ar-39Ar age spectra and 40Ar/36Ar versus 39Ar/36Ar isochron plots obtained by stepwise-heating experiments on plagioclases, biotites and amphiboles from troctolites, olivine-gabbros, gabbro-norites and anorthosites of the four zones yield plateau and isochron ages that seem to depict the cooling history of the Complex after emplacement. The biotites and some of the plagioclases and amphiboles give very

  8. Beneath the surface of giant planets: Evolution, structure, and composition

    NASA Astrophysics Data System (ADS)

    Kelly Miller, Neil L.

    This thesis is focused on utilizing the combination of giant exoplanet mass via radial velocity observations and radius via transit observations to study their structure and evolution. In Chapter 2, Giant planet thermal evolution models are coupled to tidal evolution dynamics, including orbital evolution and planet interior heating. Viable tidal evolution histories are explored to explain inflated radii of hot Jupiters. Tidal evolution is demonstrated to be a viable heating mechanism in some cases, but for other cases it can not explain the large radii. The thesis continues in Chapter 3 by exhibiting cases when the tidal-thermal evolution model, including energy-limited mass loss, can be used to infer interior properties and demonstrate a possible evolution history. Specifically, I utilize the thermal evolution models to examine planets CoRoT-2b, CoRoT-7b, and the Kepler-11 system. In Chapter 4, planets with lower incident irradiation are examined to infer the heavy element composition inside a range of planets. These planets don't appear to be significantly inflated by the unknown radius inflation mechanism, thus the mysterious mechanism can be ignored. It is shown that the heavy element mass inside these planets correlates with the metallicity of the star. The heavy element mass also correlates with the mass of the planet. However, the heavy element enrichment is inversely related to the mass of the planet. In the final chapter, I develop a mixing equation of state code for the MESA stellar evolution project. This code is developed with the intention of studying inhomogeneous thermal evolution of planets.

  9. Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr-Nd-Hf-Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Smart, Katie A.; Stracke, Andreas; Romer, Rolf L.; Prelević, Dejan; van den Bogaard, Paul

    2016-01-01

    A new high-precision 40Ar/39Ar anorthoclase feldspar age of 176.7 ± 0.5 Ma (2-sigma) reveals that small-volume alkaline basaltic magmatism occurred at the rifted SW margin of the Baltic Shield in Scania (southern Sweden), at a time of global plate reorganization associated with the inception of Pangea supercontinent break-up. Our combined elemental and Sr-Nd-Hf-Pb isotope dataset for representative basanite and nephelinite samples (>8 wt.% MgO) from 16 subvolcanic necks of the 30 by 40 km large Jurassic volcanic field suggests magma derivation from a moderately depleted mantle source (87Sr/86Sri = 0.7034-0.7048; εNdi = +4.4 to +5.2; εHfi = +4.7 to +8.1; 206Pb/204Pbi = 18.8-19.5). The mafic alkaline melts segregated from mixed peridotite-pyroxenite mantle with a potential temperature of ∼1400 °C at 2.7-4.2 GPa (∼90-120 km depths), which places ultimate melt generation within the convecting upper mantle, provided that the lithosphere-asthenosphere boundary beneath the southern Baltic Shield margin was at ⩽100 km depth during Mesozoic-Cenozoic rifting. Isotopic shifts and incompatible element enrichment relative to Depleted Mantle reflect involvement of at least 20% recycled oceanic lithosphere component (i.e., pyroxenite) with some minor continent-derived sediment during partial melting of well-stirred convecting upper mantle peridotite. Although pargasitic amphibole-rich metasomatized lithospheric mantle is excluded as the main source of the Jurassic magmas from Scania, hydrous ultramafic veins (i.e., hornblendite) may have caused subtle modifications to the compositions of passing sublithospheric melts. For example, modeling suggests that the more radiogenic Hf (εHfi = +6.3 to +8.1) and Pb (206Pb/204Pbi = 18.9-19.5) isotopic compositions of the more sodic and H2O-rich nephelinites, compared with relatively homogenous basanites (εHfi = +4.7 to +6.1; 206Pb/204Pbi = 18.8-18.9), originate from minor interactions between rising asthenospheric melts and

  10. Structural stages and evolution of the Urals

    NASA Astrophysics Data System (ADS)

    Puchkov, V. N.

    2013-02-01

    Five main structural and historical stages are established in the territory of the Urals: 1) Archean-Paleoproterozoic, a time of formation of the Volgo-Uralia subcontinent and its amalgamation with the other blocks of the craton of Baltica; 2) Riphean-Vendian (Meso- and Neoproterozoic), а stage that was finished with formation of Timanides; 3) Paleozoic-Early Mesozoic stage, corresponding to the development of the Uralides; 4) Mid-Jurassic-to Miocene platform stage; 5) Pliocene-Quaternary neo-orogenic stage. In this paper stratigraphic data are discussed, schemes of the structural zonation are presented, and the problems of the structural geology and geodynamics of sedimentary and magmatic complexes are discussed in a chronological order. Ideologically, the paper is based on plate and plume tectonics, in their modern versions.

  11. Evolution of extortion in structured populations.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games. PMID:25353531

  12. Structure and evolution of Uranus and Neptune

    SciTech Connect

    Hubbard, W.B.; MacFarlane, J.J.

    1980-01-10

    We present three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium. The models incorporate a new H/sub 2/O equation of state based on experimental data which is considerably 'softer' than previous H/sub 2/O equations of state. Corrections for interior temperature approx.5000 /sup 0/K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. We find that evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock.' Models with very low abundances of water, methane, and ammonia can be excluded. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small (approx.1--2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approx.15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.

  13. Combined 40Ar/39Ar and Fission-Track study of the Freetown Layered Igneous Complex, Freetown, Sierra Leone, West Africa: Implications for the Initial Break-up of Pangea to form the Central Atlantic Ocean and Insight into the Post-rift Evolution of the Sie

    NASA Astrophysics Data System (ADS)

    Barrie, Ibrahim; Wijbrans, Jan; Andriessen, Paul; Beunk, Frank; Strasser-King, Victor; Fode, Daniel

    2010-05-01

    Sierra Leone lies within the south-western part of the West African Craton and comprises two major Archaean structural divisions: a low-grade granite-greenstone terrane characterised by N-S striking structures and a NW-SE striking highly metamorphosed belt of strained rocks that form the coastal margin of the craton. Intruded into the belt is the Freetown Layered Igneous Complex (FLIC), a tholeiitic magamtic body emplaced prior to or during the break-up of Pangea to form the Central Atlantic Ocean and, forming today the high ground of the coastal outline of Sierra Leone which is one of the most distinctive features on the West African coast. The break-up of Pangaea to form the Central Atlantic and its passive margins began in the Early Jurassic. Geo-tectonically, the break-up was particularly characterised by the formation of the Central Atlantic Magmatic Province (CAMP), covering once-contiguous parts of North America, Europe, Africa and South America. The FLIC forming part of the heart of CAMP is the largest single layered igneous intrusive yet known on either side of the Central Atlantic, measuring on surface, 65 x 14 x 7 km. Geophysical investigations indicate that the intrusion extends offshore to a depth of about 20 km. Geologically the Complex is a rhythmically layered elongated ultramafic-mafic lopolith divisible into 4 major zones each comprising repeated sequences of troctolitic, gabbroic and anorthositic rocks. An idealised unit of layering is from base upwards: dunite, troctolite, olivine-gabbro, leuco-gabbro, gabbro-norite and anorthosite cumulates. 40Ar-39Ar age spectra and 40Ar/36Ar versus 39Ar/36Ar isochron plots obtained by stepwise-heating experiments on plagioclases, biotites and amphiboles from troctolites, olivine-gabbros, gabbro-norites and anorthosites of the four zones yield plateau and isochron ages that seem to depict the cooling history of the Complex after emplacement. The biotites and some of the plagioclases and amphiboles give very

  14. Clouds on Neptune: Motions, Evolution, and Structure

    NASA Technical Reports Server (NTRS)

    Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)

    2001-01-01

    The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.

  15. Investigating the Structural Evolution of the Western Baltic

    NASA Astrophysics Data System (ADS)

    Hübscher, C.; Lykke-Anderson, H.; Hansen, M. Bak; Reicherter, K.

    2004-03-01

    The western Baltic Sea, located along the northern margin of the Central European Basin System (CEBS), is a world-class site for investigating the dynamics and stratigraphic evolution of a continental basin with marine geophysical data acquisition techniques. The universities of Aarhus and Hamburg have joined forces to investigate the post-Permian-to-recent structural evolution of the western Baltic, with special emphasis on neotectonic re-activation along major structural lineaments. Deep crustal structures of the CEBS are well established from previous studies. However, no systematic and localized research has yet been carried out to investigate the neotectonic activity in this region. In fact, the limited seismic resolution of previously available data prevented detailed research on Mesozoic and Cenozoic evolution or neotectonics.

  16. Evolution of atomic structure during nanoparticle formation

    PubMed Central

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M. Ø.; Christensen, Mogens; Bøjesen, Espen D.; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J. L.; Iversen, Bo B.

    2014-01-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  17. Evolution of atomic structure during nanoparticle formation.

    PubMed

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M Ø; Christensen, Mogens; Bøjesen, Espen D; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J L; Iversen, Bo B

    2014-05-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  18. Dynamic structure evolution of time-dependent network

    NASA Astrophysics Data System (ADS)

    Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong

    2016-08-01

    In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.

  19. The high temperature structural evolution of hafnia

    NASA Astrophysics Data System (ADS)

    Haggerty, Ryan Paul

    The transformations of HfO2 are often described as analogous with the transformations in ZrO2 because of the similar crystal structures; however the phase transformations in HfO2 occur at higher temperatures. Even though this phase transformation has been extensively studied in ZrO2, the respective transformation in HfO2 is relatively unstudied and the properties that are reported are inconsistent. Much of the difficulty associated with studying HfO2 is related to the high temperatures needed and the sensitivity of the crystal to the environmental partial pressure of O2. HfO2 is expected to be capable of producing the same level of transformation toughening as ZrO2 at temperatures beyond 1000°C, the thermodynamic limit for toughened ZrO2. Despite significant effort the toughening acquired has not met with expectation. By providing information on the structure of HfO2 as it undergoes transformation, this study makes a significant step towards solving this problem. Significant advancements in experimentation have enabled a systematic study of the structure of HfO2 in its monoclinic and tetragonal phases in air. Using a quadrupole lamp furnace and a novel curved image plate detector the structure of HfO2 and ZrO 2 have been characterized by high temperature x-ray diffraction. The structural information provided by these experiments allows the properties of the transformation to be further investigated. Using phenomenological theory of martensite crystallography, the strain associated with the transformation from the tetragonal to the monoclinic phase has been described and provides insight into the lack of transformation toughening found in HfO2. Further characterization includes determination of the transformation temperature in air, the change in volume associated with the transformation and the temperature hysteresis of the transformation. In addition to transformation properties, the thermal expansion of HfO2 and ZrO2 has been thoroughly described as a function

  20. ARS Component B: structural characterization, tissue expression and regulation of the gene and protein (SLURP-1) associated with Mal de Meleda.

    PubMed

    Mastrangeli, Renato; Donini, Silvia; Kelton, Christie A; He, Chaomei; Bressan, Alessandro; Milazzo, Ferdinando; Ciolli, Veniero; Borrelli, Francesco; Martelli, Fabrizio; Biffoni, Mauro; Serlupi-Crescenzi, Ottaviano; Serani, Serenella; Micangeli, Emilia; El Tayar, Nabil; Vaccaro, Rosa; Renda, Tindaro; Lisciani, Romeo; Rossi, Mara; Papoian, Ruben

    2003-01-01

    The ARS Component B gene (EMBL ID: HSARS81S, AC: X99977) encodes a 9 kD non-glycosylated polypeptide (also known as SLURP-1, SwissProt/TrEMBL: P55000), a soluble member of the human Ly6/uPAR superfamily. ARS Component B gene mutations have been implicated in Mal de Meleda. In this study we show by immunohistochemistry that SLURP-1 (secreted Ly-6/uPAR related protein, the protein product of the ARS Component B gene) is localized to human skin, exocervix, gums, stomach and esophagus. In the epidermis, keratinocytes underlying the stratum corneum are highly positive for SLURP1 immunostaining and cultured keratinocytes secrete the expected 9 kD protein. Circulating SLURP1 is detected in human plasma and urine. In the mouse, expression is evident in skin, eye, whole lung, trachea, esophagus and stomach. Human ARS Component B mRNA expression is regulated by retinoic acid, epidermal growth factor and interferon-gamma. The tissue localization and the association with Mal de Meleda suggest that ARS Component B and its protein product SLURP1 are implicated in maintaining the physiological and structural integrity of the keratinocyte layers of the skin. PMID:14721776

  1. Model of evolution of surface grain structure under ion bombardment

    SciTech Connect

    Knyazeva, Anna G.; Kryukova, Olga N.

    2014-11-14

    Diffusion and chemical reactions in multicomponent systems play an important role in numerous technology applications. For example, surface treatment of materials and coatings by particle beam leads to chemical composition and grain structure change. To investigate the thermal-diffusion and chemical processes affecting the evolution of surface structure, the mathematical modeling is efficient addition to experiment. In this paper two-dimensional model is discussed to describe the evolution of titanium nitride coating on the iron substrate under implantation of boron and carbon. The equation for diffusion fluxes and reaction rate are obtained using Gibbs energy expansion into series with respect to concentration and their gradients.

  2. Modelling the Evolution of Social Structure

    PubMed Central

    Sutcliffe, A. G.; Dunbar, R. I. M.; Wang, D.

    2016-01-01

    Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, ‘favour-the-few’ strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa. PMID:27427758

  3. Modelling the Evolution of Social Structure.

    PubMed

    Sutcliffe, A G; Dunbar, R I M; Wang, D

    2016-01-01

    Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, 'favour-the-few' strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa. PMID:27427758

  4. Late Paleozoic structural evolution of Permian basin

    SciTech Connect

    Ewing, T.E.

    1984-04-01

    The southern Permian basin is underlain by the NNW-trending Central Basin disturbed belt of Wolfcamp age (Lower Permian), the deep Delaware basin to its west, and the shallower Midland basin to its eat. The disturbed belt is highly segmented with zones of left-lateral offset. Major segments from south to north are: the Puckett-Grey Ranch zone; the Fort Stockton uplift; the Monahans transverse zone; the Andector ridges and the Eunice ridge; the Hobbs transverse zone; and the Tatum ridges, which abut the broad Roosevelt uplift to the north. The disturbed belt may have originated along rift zones of either Precambrian or Cambrian age. The extent of Lower and Middle Pennsylvanian deformation is unclear; much of the Val Verde basin-Ozona arch structure may have formed then. The main Wolfcamp deformation over thrust the West Texas crustal block against the Delaware block, with local denudation of the uplifted edge and eastward-directed backthrusting into the Midland basin. Latter in the Permian, the area was the center of a subcontinental bowl of subsidence - the Permian basin proper. The disturbed belt formed a pedestal for the carbonate accumulations which created the Central Basin platform. The major pre-Permian reservoirs of the Permian basin lie in large structural and unconformity-bounded traps on uplift ridges and domes. Further work on the regional structural style may help to predict fracture trends, to assess the timing of oil migration, and to evaluate intrareservoir variations in the overlying Permian giant oil fields.

  5. Molecular and structural analysis of two novel StAR mutations in patients with lipoid congenital adrenal hyperplasia.

    PubMed

    Achermann, J C; Meeks, J J; Jeffs, B; Das, U; Clayton, P E; Brook, C G; Jameson, J L

    2001-08-01

    Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid congenital adrenal hyperplasia. We report a novel homozygous splice site mutation (IVS1 + 2T --> G) in STAR in two sisters (46XY, 46XX) who presented with primary adrenal insufficiency at birth and a novel homozygous R182H missense mutation in the putative lipid transfer domain of StAR in a phenotypic female (46XY) with adrenal failure and a parotid tumor. These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy and of the critical functional role of R182 in cholesterol transport. PMID:11509019

  6. Structural evolution in the electric utility industry

    SciTech Connect

    Kahn, E.P. )

    1990-01-04

    This article anticipates (and discusses) the changes in structure, planning, and operations that will be thrust upon the electric utility industry by the emergency of competition, which is assumed to have reached nearly irreversible momentum. Some of them present problems for solution. The significance of others is uncertain from a public interest standpoint, or that of cost and reliability of service for consumers. The author also considers the possibility that the decentralization which accompanies increased competition initially will ultimately eventuate in a greater degree of consolidation in this industry.

  7. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    SciTech Connect

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R. E-mail: bbl@sdu.edu.cn

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.

  8. Vibrational Level Structures of the Ground Electronic States of the C_3-Ar and C_3-Ne Complexes

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ren; Hsu, Yen-Chu

    2014-06-01

    The Heidelberg multiconfiguration time-dependent Hartree package was used. to calculate the vibrational level structures of the ground electronic states of the C_3-Ar and C_3-Ne complexes. The previously reported 4-D ab initio potentials were converted to 6-D potentials by adding the potential energies of the C-C symmetric and antisymmetric stretching vibrations of C_3. They were subsequently transformed from internal coordinates to Jacobi coordinates. The kinetic-energy operators were taken from Yang and Kühn. Preliminary results show that large amplitude motions occur in five coordinates: C-C-C bond angle, out-of-plane tilt angle, van der Waals stretch, van der Waals bend and one of the C-C bonds. G.A. Worth, M.H. Beck, A. Jäckle, H.-D. Meyer, F. Otto, M. Brill, and O. Vendrell, The MCTDH package, version 8.4, Heidelberg University, Heidelberg, Germany, 2011. Y. Yang and O. Kühn, Mol. Phys., 106, 2445 (2008)

  9. Structural and mechanical properties changes induced in nanocrystalline ZrC thin films by Ar ion irradiation

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Simeone, D.; Behdad, S.; Boesl, B.; Vasile, B. S.; Craciun, V.

    2016-01-01

    Thin ZrC films (<500 nm), grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser, were irradiated by 800 keV Ar ion at room temperature under a fixed flux of 1011 cm2 s-1 with fluences ranging from 1 × 1014 at/cm2 to 2 × 1015 at/cm2. Glancing incidence X-ray diffraction, X-ray reflectivity, transmission electron microscopy and nanoindentation investigations were used to study the structural modifications in the films' density, composition and mechanical properties induced by irradiation. After irradiation, the lattice parameter and crystallite size slightly increased, while the films' density decreased. Significant decreases in nanohardness and Young modulus values were also measured after irradiation at 1 × 1014 at/cm2 and 1 × 1015 at/cm2 fluences. No further major decreases were observed for a fluence of 2 × 1015 at/cm2. Scanning transmission electron microscopy and energy dispersive X-ray analysis showed a decrease in the Zr/C values in the irradiated film from surface towards the Si substrate.

  10. The structure of photosystem I and evolution of photosynthesis.

    PubMed

    Nelson, Nathan; Ben-Shem, Adam

    2005-09-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process--the conversion of sunlight into chemical energy--is driven by four multi-subunit membrane protein complexes named photosystem I, photosystem II, cytochrome b(6)f complex and F-ATPase. Photosystem I generates the most negative redox potential in nature and thus largely determines the global amount of enthalpy in living systems. The recent structural determination of PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. The fortuitous formation of our solar system in a space plentiful of elements, our distance from the sun and the long time of uninterrupted evolution enabled the perfection of photosynthesis and the evolution of advanced organisms. The available structural information complements the knowledge gained from genomic and proteomic data to illustrate a more precise scenario for the evolution of life systems on earth. PMID:16108066

  11. Rotational spectra and structures of the C6H6-HCN dimer and Ar3-HCN tetramer

    NASA Astrophysics Data System (ADS)

    Gutowsky, H. S.; Arunan, E.; Emilsson, T.; Tschopp, S. L.; Dykstra, C. E.

    1995-09-01

    A comparative study has been made of the rotational properties of C6H6-HCN and Ar3-HCN, observed with the Balle/Flygare pulsed beam, Fourier transform microwave spectrometer. C6H6-HCN is found to be a prolate symmetric top and Ar3-HCN an oblate one, both with the H in the middle. The rotational constants B0, DJ, and DJK of the parent species are 1219.9108(4) MHz, 1.12(3) kHz, and 18.32(8) kHz for C6H6-HCN, and 886.4878(1) MHz, 10.374(2) kHz, and 173.16(1) kHz for Ar3-HCN. Rotational constants are reported for the isotopic species C6H6-H13CN, -HC15N, and 13CC5H6-HC15N, and for Ar3-HC15N and -DCN. Analysis of the 14N hyperfine interaction χ finds its projection on the figure axis to be -4.223(4) MHz in C6H6-HCN and -1.143(2) in Ar3-HCN. They correspond to average projection angles θ between the HCN and figure axes of 15.2° and 45.3°, respectively. A pseudodiatomic analysis of the rotational constants gives the c.m. to c.m. distance to be 3.96 Å in C6H6-HCN and 3.47 Å in Ar3-HCN. While the rotational properties of C6H6-HCN are ``normal,'' those of Ar3-HCN display a long list of ``abnormalities.'' They include a J-dependent χ(14N) similar to that of Ar-HCN; a very large projection angle θ; large centrifugal distortion including higher-order terms in HJ and HJK; splitting of the K=3 transitions into J-dependent doublets; and the ready observation of an excited vibrational state. These behavioral differences are related qualitatively to the interaction surfaces for the two clusters, calculated with the molecular mechanics for clusters (MMC) model, and discussed. The potential minimum for C6H6-HCN is smooth, circular, steep except for a flat bottom, and deep (1762 cm-1). That for Ar3-HCN is tricuspid, with large gullies, and shallow (507 cm-1). In addition to the dispersion forces, the dominant interaction forming C6H6-HCN is between the benzene quadrupole moment and the HCN dipole moment, a strong 4-2 potential. That in Ar3-HCN is polarization of the spherical Ar

  12. Time-resolved evolution of coherent structures in turbulent channels

    NASA Astrophysics Data System (ADS)

    Lozano-Duran, Adrian; Jimenez, Javier

    2012-11-01

    The temporal evolution of vortex clusters and of the structures responsible for the momentum transfer in turbulent channels at Reτ = 950 , 2000 and 4000 are studied using DNS sequences with temporal separations among fields short enough for individual structures to be tracked. From the geometric intersection of structures in consecutive fields we build temporal connection graphs of all the objects and define main and secondary branches in a way that each branch represents the temporal evolution of one coherent structure. A family of evolutions is found with self-similar sizes and lifetimes that can be born at any height with respect to the wall, although the probability increases close to it. Especial attention is paid to the wall-normal displacement of the structures. Sweeps tend to go towards the wall whereas ejections move away from it. In all the cases, the vertical velocity is close to uτ and the wall-normal displacement is proportional to the lifetime of the structures and to their sizes. Finally, direct and inverse physical cascades are defined, associated with the process of splitting and merging among structures. The direct cascade predominates, but both directions are roughly comparable. Funded by ERC, CICYT and Spanish Ministry of Science.

  13. Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Piquer, Jose; Berry, Ron F.; Scott, Robert J.; Cooke, David R.

    2016-08-01

    The evolution of the Main Cordillera of Central Chile is characterized by the formation and subsequent inversion of an intra-arc volcano-tectonic basin. The world's largest porphyry Cu-Mo deposits were emplaced during basin inversion. Statistically, the area is dominated by NE- and NW-striking faults, oblique to the N-striking inverted basin-margin faults and to the axis of Cenozoic magmatism. This structural pattern is interpreted to reflect the architecture of the pre-Andean basement. Stratigraphic correlations, syn-extensional deposits and kinematic criteria on fault surfaces show several arc-oblique structures were active as normal faults at different stages of basin evolution. The geometry of syn-tectonic hydrothermal mineral fibers, in turn, demonstrates that most of these structures were reactivated as strike-slip ± reverse faults during the middle Miocene - early Pliocene. Fault reactivation age is constrained by 40Ar/39Ar dating of hydrothermal minerals deposited during fault slip. The abundance and distribution of these minerals indicates fault-controlled hydrothermal fluid flow was widespread during basin inversion. Fault reactivation occurred under a transpressive regime with E- to ENE-directed shortening, and was concentrated around major plutons and hydrothermal centers. At the margins of the former intra-arc basin, deformation was largely accommodated by reverse faulting, whereas in its central part strike-slip faulting was predominant.

  14. Structure, Function, and Evolution of Rice Centromeres

    SciTech Connect

    Jiang, Jiming

    2010-02-04

    The centromere is the most characteristic landmark of eukaryotic chromosomes. Centromeres function as the site for kinetochore assembly and spindle attachment, allowing for the faithful pairing and segregation of sister chromatids during cell division. Characterization of centromeric DNA is not only essential to understand the structure and organization of plant genomes, but it is also a critical step in the development of plant artificial chromosomes. The centromeres of most model eukaryotic species, consist predominantly of long arrays of satellite DNA. Determining the precise DNA boundary of a centromere has proven to be a difficult task in multicellular eukaryotes. We have successfully cloned and sequenced the centromere of rice chromosome 8 (Cen8), representing the first fully sequenced centromere from any multicellular eukaryotes. The functional core of Cen8 spans ~800 kb of DNA, which was determined by chromatin immunoprecipitation (ChIP) using an antibody against the rice centromere-specific H3 histone. We discovered 16 actively transcribed genes distributed throughout the Cen8 region. In addition to Cen8, we have characterized eight additional rice centromeres using the next generation sequencing technology. We discovered four subfamilies of the CRR retrotransposon that is highly enriched in rice centromeres. CRR elements are constitutively transcribed and different CRR subfamilies are differentially processed by RNAi. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric chromatin.

  15. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  16. Plant enolase: gene structure, expression, and evolution.

    PubMed Central

    Van der Straeten, D; Rodrigues-Pousada, R A; Goodman, H M; Van Montagu, M

    1991-01-01

    Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle. PMID:1841726

  17. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  18. Theoretical study of phase transitions in Kr and Ar clathrate hydrates from structure II to structure I under pressure

    NASA Astrophysics Data System (ADS)

    Subbotin, Oleg S.; Adamova, Tatiana P.; Belosludov, Rodion V.; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki; Kudoh, Jun-ichi; Rodger, P. M.; Belosludov, Vladimir R.

    2009-09-01

    The theory developed in our earlier papers is extended to predict dynamical and thermodynamic properties of clathrate structures by accounting for the possibility of multiple filling of cavities by guest molecules. The method is applied to the thermodynamic properties of argon and krypton hydrates, considering both structures I (sI) and II (sII), in which the small cages can be singly occupied and large cages of sII can be singly or doubly occupied. It was confirmed that the structure of the clathrate hydrate is determined by two main factors: intermolecular interaction between guest and host molecules and the configurational entropy. It is shown that for guests weakly interacting with water molecules, such as argon or krypton, the free energy of host lattices without the contribution of entropy is the main structure-determining factor for clathrate hydrates, and it is a cause of hydrate sII formation at low pressure with these guests. Explicit account of the entropy contribution in the Gibbs free energy allows one to determine the stability of hydrate phases and to estimate the line of structural transition from sII to sI in P-T plane. The structural transition between sII and sI in argon and krypton hydrates at high pressure is shown to be the consequence of increasing intermolecular interaction and the degree of occupancy of the large cavities.

  19. Theoretical study of phase transitions in Kr and Ar clathrate hydrates from structure II to structure I under pressure.

    PubMed

    Subbotin, Oleg S; Adamova, Tatiana P; Belosludov, Rodion V; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki; Kudoh, Jun-ichi; Rodger, P M; Belosludov, Vladimir R

    2009-09-21

    The theory developed in our earlier papers is extended to predict dynamical and thermodynamic properties of clathrate structures by accounting for the possibility of multiple filling of cavities by guest molecules. The method is applied to the thermodynamic properties of argon and krypton hydrates, considering both structures I (sI) and II (sII), in which the small cages can be singly occupied and large cages of sII can be singly or doubly occupied. It was confirmed that the structure of the clathrate hydrate is determined by two main factors: intermolecular interaction between guest and host molecules and the configurational entropy. It is shown that for guests weakly interacting with water molecules, such as argon or krypton, the free energy of host lattices without the contribution of entropy is the main structure-determining factor for clathrate hydrates, and it is a cause of hydrate sII formation at low pressure with these guests. Explicit account of the entropy contribution in the Gibbs free energy allows one to determine the stability of hydrate phases and to estimate the line of structural transition from sII to sI in P-T plane. The structural transition between sII and sI in argon and krypton hydrates at high pressure is shown to be the consequence of increasing intermolecular interaction and the degree of occupancy of the large cavities. PMID:19778129

  20. Population structure and the rate of evolution.

    PubMed

    Wei, Xinzhu; Zhao, Lei; Lascoux, Martin; Waxman, David

    2015-01-21

    The way population size, population structure (with migration), and spatially dependent selection (where there is no globally optimal allele), combine to affect the substitution rate is poorly understood. Here, we consider a two patch model where mutant alleles are beneficial in one patch and deleterious in the other patch. We assume that the spatial average of selection on mutant alleles is zero. We take each patch to maintain a finite number of N adults each generation, hence random genetic drift can independently occur in each patch. We show that the principal way the population size, N, when large, affects the substitution rate, R∞, is through its dependence on two composite parameters. These are the scaled migration rate M (∝ population size × migration rate), and the scaled selection intensity S (∝population size × beneficial effect of a mutant). Any relation between S and M that arises for ecological/evolutionary reasons can strongly influence the way the substitution rate, R∞, depends on the population size, N. In the simplest situation, both M and S are proportional to N, and this is shown to lead to R∞ increasing with N when S is not large. The behaviour, that R∞ increases with N, is not inevitable; a more complex relation between S and M can lead to the opposite or other behaviours. In particular, let us assume that dM/dN is positive, as would occur if the migration rate were constant, S is not large, and S depends on M (i.e., S=S(M)). We then find that if S(M) satisfies S(M)>((1+M)/1+2M)S(0) then the substitution rate, R∞, increases with N, but if S(M)<((1+M)/1+2M)S(0) then R∞ decreases with N. PMID:25451534

  1. The structure and evolution of plankton communities

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  2. The nonsinglet structure function evolution by Laplace method

    SciTech Connect

    Boroun, G. R. E-mail: boroun@razi.ac.ir; Zarrin, S.

    2015-12-15

    We derive a general scheme for the evolution of the nonsinglet structure function at the leadingorder (LO) and next-to-leading-order (NLO) by using the Laplace-transform technique. Results for the nonsinglet structure function are compared with MSTW2008, GRV, and CKMT parameterizations and also EMC experimental data in the LO and NLO analysis. The results are in good agreement with the experimental data and other parameterizations in the low- and large-x regions.

  3. Transregional zones of concentrated deformation: Structure, evolution, and comparative geodynamics

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.

    2016-03-01

    The comparative tectonic characterization of transregional linear structures (zones of concentrated deformations) is given for the Pieniny Klippen Belt, the Main Mongolian Lineament, and the transregional Alpine Fault Zone. They represent significant geodynamic elements of the Earth's crust, which separate large crustal segments and reflect their interaction in time and space. The main features of the structure, evolution, and geodynamics inherent to zones of concentrated deformations are described. It is shown that the similarity of their outlines, morphology, internal structure, and kinematic features is combined with a clearly distinct structural position, set of rock associations, formation mechanism, and their role in the origin of mobile belts.

  4. Hinterland-to-foreland structural evolution of the base of the Himalayan metamorphic core, west Nepal

    NASA Astrophysics Data System (ADS)

    Braden, Z.; Godin, L.; Yakymchuk, C.; Kellett, D.; Cottle, J. M.

    2015-12-01

    The base of the Himalayan metamorphic core is a folded reverse-sense shear zone exposed extensively along its transport direction. In west Nepal, along-transport exposures show a transition in structural style from hinterland to foreland, and sampled quartzite and pelite show variations in thermobarometry, quartz crystallographic preferred orientation (CPO), monazite Th-Pb ages and 40Ar/39Ar thermochronology. In the hinterland region, the shear zone yields a deformation temperature gradient from > 700°C at the top of the shear zone down to 400°C at the base. Metamorphic grade also decreases downwards through the shear zone. Muscovite 40Ar/39Ar ages are ca. 6 Ma. In the transition zone separating hinterland and foreland on the north flank of the Karnali klippe, a comparable structural section yields a deformation temperature gradient that similarly decreases down structural level from ~700 to 500°C. Muscovite 40Ar/39Ar dating yield ca. 14-12 Ma cooling ages. In-situ monazite geochronology indicates prograde metamorphism at ca. 43-34 Ma and melt crystallization at ca. 26-18 Ma. In the foreland, deformation is not strictly brittle; CPO analyses on sheared quartzite on the south flank of the Karnali klippe suggest deformation temperatures decreasing from 500 to 400°C downwards through the shear zone. Muscovite from the foreland yields 40Ar/39Ar ages of ca. 17 Ma. Deformation temperatures decrease marginally from hinterland to foreland and structurally downward within the shear zone, and estimates suggest ductile deformation prevails well into the foreland. Hinterland 40Ar/39Ar muscovite ages in west Nepal are anomalously young, and are possibly related to recent exhumation due to the SE-propagating mid-Miocene Gurla Mandhata-Humla system. Alternatively, they could be linked to the activation of a young duplex in the footwall of the Himalayan metamorphic core due to along-strike variation in geometry of the Main Himalayan thrust ramp.

  5. Biophysical constraints on the evolution of tissue structure and function

    PubMed Central

    Hunter, P J; de Bono, B

    2014-01-01

    Phylogenetic analyses based on models of molecular sequence evolution have driven to industrial scale the generation, cataloguing and modelling of nucleic acid and polypeptide structure. The recent application of these techniques to study the evolution of protein interaction networks extends this analytical rigour to the study of nucleic acid and protein function. Can we further extend phylogenetic analysis of protein networks to the study of tissue structure and function? If the study of tissue phylogeny is to join up with mainstream efforts in the molecular evolution domain, the continuum field description of tissue biophysics must be linked to discrete descriptions of molecular biochemistry. In support of this goal we discuss tissue units, and biophysical constraints to molecular function associated with these units, to present a rationale with which to model tissue evolution. Our rationale combines a multiscale hierarchy of functional tissue units (FTUs) with the corresponding application of physical laws to describe molecular interaction networks and flow processes over continuum fields within these units. Non-dimensional numbers, derived from the equations governing biophysical processes in FTUs, are proposed as metrics for comparative studies across individuals, species or evolutionary time. We also outline the challenges inherent to the systematic cataloguing and phylogenetic analysis of tissue features relevant to the maintenance and regulation of molecular interaction networks. These features are key to understanding the core biophysical constraints on tissue evolution. PMID:24882821

  6. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes.

    PubMed

    van der Sluis, Eli O; Bauerschmitt, Heike; Becker, Thomas; Mielke, Thorsten; Frauenfeld, Jens; Berninghausen, Otto; Neupert, Walter; Herrmann, Johannes M; Beckmann, Roland

    2015-05-01

    The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic

  7. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes

    PubMed Central

    van der Sluis, Eli O.; Bauerschmitt, Heike; Becker, Thomas; Mielke, Thorsten; Frauenfeld, Jens; Berninghausen, Otto; Neupert, Walter; Herrmann, Johannes M.; Beckmann, Roland

    2015-01-01

    The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic

  8. Diencephalic and septal structures containing the avian vasotocin receptor (V1aR) involved in the regulation of food intake in chickens, Gallus gallus.

    PubMed

    Nagarajan, Gurueswar; Jurkevich, Alexander; Kang, Seong W; Kuenzel, Wayne J

    2016-10-01

    Recently, it was found that the avian central vasotocin receptor (V1aR) is associated with the regulation of food intake. To identify V1aR-containing brain structures regulating food intake, a selective V1aR antagonist SR-49059 that induced food intake was administrated intracerebroventricularly in male chickens followed by detection of brain structures using FOS immunoreactivity. Particularly, the hypothalamic core region of the paraventricular nucleus, lateral hypothalamic area, dorsomedial hypothalamic nucleus, a subnucleus of the central extended amygdalar complex [dorsolateral bed nucleus of the stria terminalis], medial septal nucleus and caudal brainstem [nucleus of the solitary tract] showed significantly increased FOS-ir cells. On the other hand, the supraoptic nucleus of the preoptic area and the nucleus of the hippocampal commissure of the septum showed suppressed FOS immunoreactivity in the V1aR antagonist treatment group. Further investigation revealed that neuronal activity of arginine vasotocin (AVT-ir) magnocellular neurons in the supraoptic nucleus, preoptic periventricular nucleus, paraventricular nucleus and ventral periventricular hypothalamic nucleus and most likely corticotropin releasing hormone (CRH-ir) neurons in the nucleus of the hippocampal commissure were reduced following the antagonist treatment. Dual immunofluorescence labeling results showed that perikarya of AVT-ir magnocellular neurons in the preoptic area and hypothalamus were colabeled with V1aR. Within the nucleus of the hippocampal commissure, CRH-ir neurons were shown in close contact with V1aR-ir glial cells. Results of the present study suggest that the V1aR plays a role in the regulation of food intake by modulating neurons that synthesize and release anorectic neuropeptides in the avian brain. PMID:27317836

  9. The volcanic evolution of Martinique Island: Insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Quidelleur, Xavier; Labanieh, Shasa; Chauvel, Catherine; Lahitte, Pierre

    2011-12-01

    The Lesser Antilles island arc bifurcates into two lines in its northern part, with an old branch to the east and a recent active branch to the west. Martinique is located at the southern tip of the separation. The two arcs diverge northward, and at maximum divergence are separated by a 50 km wide depression. Despite this separation, which suggests a jump in volcanism, activity has been almost continuous in Martinique Island with a slow displacement of the eruptive centers to the west. Considering timing of emplacement, previous authors defined three cycles of activity, the old, intermediate and recent arcs, of Late Oligocene-Early Miocene, Mid Miocene and Late Miocene to present ages, respectively. The present study investigates the timing of emplacement of the volcanic units in Martinique Island in order to constrain the activity of the old and intermediate Lesser Antilles arcs, as recorded on this island. Unspiked K-Ar age determinations on groundmass and plagioclase separates (Cassignol-Gillot technique) were conducted on 20 samples from the old and intermediate volcanic chains. Martinique has evolved as eight distinct volcanic centers: (1) Basal Complex and Sainte Anne Series (24.8 ± 0.4-20.8 ± 0.4 Ma) for the old arc; (2) Vauclin-Pitault Chain (16.1 ± 0.2-8.44 ± 0.12 Ma) and (3) South-western Volcanism (9.18 ± 0.16-7.10 ± 0.10 Ma) for the intermediate arc; and (4) Morne Jacob volcano (5.14 ± 0.07-1.54 ± 0.03 Ma), (5) Trois Ilets Volcanism (2.358 ± 0.034 Ma and 346 ± 27 ka), (6) Carbet Complex (998 ± 14 to 322 ± 6 ka), (7) Mount Conil (543 ± 8 to 127 ± 2 ka) and (8) Mount Pelée (126 ± 2 ka to present) for the recent arc ( Germa et al., 2010, 2011a).We propose migration rates of 1.1-1.4 km/Myr westward, toward the back arc region throughout the whole volcanic history of Martinique Island. These rates, together with geochemical evidence for a more enriched signature in the youngest magmas, are consistent with a geodynamic evolution involving the

  10. Ab initio study of the structures and electronic states of small neutral and ionic DABCO--Ar(n) clusters.

    PubMed

    Mathivon, Kevin; Linguerri, Roberto; Hochlaf, Majdi

    2014-03-01

    In the present theoretical work, we investigated the stationary points (minima and transition states) on the ground state potential energy surfaces of neutral and ionic 1,4-diazabicyclo[2.2.2]octane (DABCO)--Ar(n)⁰,⁺¹ (n = 1-4) clusters. As established in our systematic work on DABCO--Ar cluster (Mathivon et al., J Chem Phys 139:164306, 2013), the (R)MP2/aug-cc-pVDZ level is accurate enough for validating the prediction of stable forms. For n = 1 and 2, further computations at the MP2/aug-cc-pVTZ level confirm these assumptions. We show that some of the already known isomers of these heteroclusters derived using lower levels of theory are not realistic. More interestingly, our work reveals that DABCO is subject to slight deformations when binding to a small number of Ar atoms. Moreover, we computed the potential energy surfaces of the lowest singlet electronic states of DABCO--Ar(n)(n = 1-3) and of DABCO⁺--Ar(n)(n = 1-3), and the transition moments for the Sp(p = 1-3) ← S0 neutral transitions. These electronic states are found to be Rydberg in nature. The shape of their potentials is mainly repulsive with slight stabilization in the S2 potentials. Finally, the effects of microsolvation of DABCO in Ar clusters in ground and electronic excited states are discussed. The photophysical and photochemical dynamics of these electronic states may be complex. PMID:24549795

  11. Time evolution of a single, quiet-Sun magnetic structure

    NASA Astrophysics Data System (ADS)

    Requerey, Iker S.; Bonet, José Antonio; Solanki, Sami K.; Bellot Rubio, L. R.; Del Toro Iniesta, Jose Carlos

    Isolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective instability mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studied in fully resolved structures. Here we report on the formation and subsequent evolution of a photospheric magnetic flux tube, observed in the quiet Sun with unprecedented spatial resolution (0. ('') 15 - 0. ('') 18) and high temporal cadence (33 s). The observations were acquired by the Imaging Magnetograph Experiment (IMaX) aboard the textsc{Sunrise} balloon-borne solar observatory. The equipartition field strength magnetic element is reached from the merging of several magnetic flux patches in a mesogranule-sized sink. The magnetic structure is then further intensified to kG field strengths by convective collapse and granular compression. The fine structure found within the flux concentration reveal that the scenario is more complex than a canonical flux tube model. After a subsequent weakening process, the field is further intensified to kG strengths. Seen as a whole, the evolution of the magnetic structure is compatible with oscillations in all basic physical quantities. A discussion on whether this evolution fits to the current theoretical descriptions is also presented.

  12. Structural evolution and optoelectronic applications of multilayer silicene

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Xin; Zhang, Yue-Yu; Xiang, Hongjun; Gong, Xin-Gao; Oshiyama, Atsushi

    2015-11-01

    Despite the recent progress on two-dimensional multilayer materials (2DMMs) with weak interlayer interactions, the investigation of 2DMMs with strong interlayer interactions is far from sufficient. Here, we report on first-principles calculations that clarify the structural evolution and optoelectronic properties of such a 2DMM, multilayer silicene. With our global optimization algorithm, we discover the existence of rich dynamically stable multilayer silicene phases, whose stability is closely related to the extent of s p3 hybridization that can be evaluated by average bonds and effective bond angles. Stable Si(111) surface structures are obtained when the silicene thickness gets up to four, showing the critical thickness for a structural evolution. We also find that multilayer silicene with π -bonded surfaces presents outstanding optoelectronic properties for solar cells and optical fiber communications due to the incorporation of s p2 -type bonds in the s p3 -type bond dominated system. This study helps to complete the picture of the structure and related property evolution of 2DMMs with strong interlayer interactions.

  13. Evolution of genomic structures on Mammalian sex chromosomes.

    PubMed

    Katsura, Yukako; Iwase, Mineyo; Satta, Yoko

    2012-04-01

    Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes. PMID:23024603

  14. Colloidal structural evolution of asphaltene studied by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Jannett; Castillo, Jimmy A.; Reyes, A.

    2004-10-01

    In this work, a detail analysis of the flocculation kinetic of asphaltenes colloidal particles has been carried out usng confocal microscopy. The colloidal structural evolution of the asphaltene flocculated has had varies postulated; however, the aggregation process of asphaltene is still not fully understood. In a recent paper, using Confocal microscope (homemade), we reported high-resolution micrographic images of asphaltenes flocculated and the correlation between crude oil stability and flocculation process. This technique permitted visualizes directly the physical nature of asphaltene flocculated. In this work, a detail analysis of the flocculation kinetic of asphaltene colloidal particles has been carried out using confocal microscopy. The physical nature of asphaltene flocculated from different crude oils is showed through of high-resolution image micrographies and its colloidal structural evolution.

  15. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    USGS Publications Warehouse

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  16. Data structures for parsimony correlation and biosequence co-evolution.

    PubMed

    Hochberg, Robert; Milam, Treena Larrew

    2014-04-01

    We give an algorithm for discovering co-evolution in biosequences from a dataset consisting of aligned data and a phylogeny. The method correlates vectors of parsimony scores on the edges of a graph, averaged over all optimally parsimonious reconstructions of the data. We describe an efficient data structure, and a preprocessing step that allows for rapid, interactive computation of many correlation scores, at the expense of storage space. PMID:19563266

  17. Modeling Structural and Genomic Constraints in the Evolution of Proteins

    NASA Astrophysics Data System (ADS)

    Bastolla, Ugo; Porto, Markus

    Macromolecules influence the phenotype of the organism where they are expressed through their function, and in particular through their interactions. Nevertheless, it is very difficult to computationally predict protein function and interactions. Moreover, only a few residues take part in them. For these reasons, models of molecular evolution usually represent folded macromolecules such as RNA or proteins and identify the function of the molecule with the folded structure, whose stability determines the modeled fitness.

  18. Thermotectonic evolution of the Apuseni mountains (Romania) based on structural and geothermochronological data

    NASA Astrophysics Data System (ADS)

    Reiser, M. K.; Fügenschuh, B.; Schuster, R.

    2012-04-01

    The Apuseni Mountains in Romania take a central position in the Alpine Carpathian Dinaride system between the Pannonian basin in the West and the Transylvanian basin in the East. Following the final Mid-Cretaceous obduction of the East Vardar ophiolite a NW-vergent nappe stack formed, which involves from bottom to top: Tisza- (Bihor and Codru) and Dacia-derived (Biharia) units, overlain by the South Apuseni or Transylvanian ophiolite belt (see Schmid et al, 2008). This study tries to provide new and additional information on the complex structural and metamorphic evolution of these units, from the onset of obduction during Jurassic times, to the (final?) exhumation processes observed during the Eocene (according to Merten, 2011). Based on observed stretching lineations, kinematic indicators such as porphyroclasts, shearbands etc. were analyzed to establish a relative chronological order of deformation and tectonic transport. Microstructural studies provided additional data on the relative succession of events and the relevant synkinematic temperatures. A thermochronological study, based on the integration of newly aquired Rb-Sr, Sm-Nd, Ar-Ar and fission track ages with existing data allowed the construction of a time-temperature deformation path. Our data indicate three major events, a Late Jurassic-Earliest Cretaceous exhumation event, which cannot be directly constrained by structural data so far. Yet the position of the Transsylvanian ophiolites tectonically overlying the Biharia unit as well as distinct thermochronological data are self-explaining. The second event ("Austrian Phase" in local nomenclature), documented by structural and thermochronological data, is related to the top to the NE thrusting (i.e. in present-day coordinates) of Tisza over Dacia during the Mid-Cretaceous. This penetrative event in the Biharia unit is overprinted at the contact between nappes by a third, top to the NW event during the Turonian, which relates to the NW directed

  19. Tertiary structural evolution of the Gangdese thrust system southeastern Tibet

    SciTech Connect

    Yin, An; Harrison, M.; Ryerson, F.J.; Wenji, Chen; Kidd, W.S.F.; Copeland, P.

    1994-09-10

    Structural and thermochronological investigations of southern Tibet (Xizang) suggest that intracontinental thrusting has been the dominant cause for formation of thickened crust in the southernmost Tibetan plateau since late Oligocene. Two thrust systems are documented in this study: the north dipping Gangdese system (GTS) and the younger south dipping Renbu-Zedong system (RZT). West of Lhasa, the Gangdese thrust juxtaposes the Late Cretaceous forearc basin deposits of the Lhasa Block (the Xigaze Group) over the Tethyan sedimentary rocks of the Indian plate, whereas east of Lhasa, the fault juxtaposes the Late Cretaceous-Eocene, Andean-type arc (the Gangdese batholith) over Tethyan sedimentary rocks. Near Zedong, 150 km southeast of Lhasa, the Gangdese thrust is marked by a >200-m-thick mylonitic shear zone that consists of deformed granite and metasedimentary rocks. A major south dipping backthrust in the hanging wall of the Gangdese thrust puts the Xigaze Group over Tertiary conglomerates and the Gangdese plutonics north of Xigaze and west of Lhasa. A lower age bound for the Gangdese thrust of 18.3{+-}0.5 Ma is given by crosscutting relationships. The timing of slip on the Gangdese thrust is estimate to be 27-23 Ma from {sup 40}Ar/{sup 39}Ar thermochronology, and a displacement of at least 46{+-}9 km is indicated near Zedong. The age of the Gangdese thrust (GT) is consistent with an upper age limit of {approximately}24 Ma for the initiation of movement on the Main Central thrust. In places, the younger Renbu-Zedong fault is thrust over the trace of the GT, obscuring its exposure. The RZT appears to have been active at circa 18 Ma but had ceased movement by 8{+-}1 Ma. The suture between India and Asia has been complexely modified by development of the GTS, RZT, and, locally, strike-slip and normal fault systems. 64 refs., 14 figs., 2 tabs.

  20. Evolution of Tertiary Structure of Viral RNA Dependent Polymerases

    PubMed Central

    Černý, Jiří; Černá Bolfíková, Barbora; Valdés, James J.; Grubhoffer, Libor; Růžek, Daniel

    2014-01-01

    Viral RNA dependent polymerases (vRdPs) are present in all RNA viruses; unfortunately, their sequence similarity is too low for phylogenetic studies. Nevertheless, vRdP protein structures are remarkably conserved. In this study, we used the structural similarity of vRdPs to reconstruct their evolutionary history. The major strength of this work is in unifying sequence and structural data into a single quantitative phylogenetic analysis, using powerful a Bayesian approach. The resulting phylogram of vRdPs demonstrates that RNA-dependent DNA polymerases (RdDPs) of viruses within Retroviridae family cluster in a clearly separated group of vRdPs, while RNA-dependent RNA polymerases (RdRPs) of dsRNA and +ssRNA viruses are mixed together. This evidence supports the hypothesis that RdRPs replicating +ssRNA viruses evolved multiple times from RdRPs replicating +dsRNA viruses, and vice versa. Moreover, our phylogram may be presented as a scheme for RNA virus evolution. The results are in concordance with the actual concept of RNA virus evolution. Finally, the methods used in our work provide a new direction for studying ancient virus evolution. PMID:24816789

  1. 40Ar/39Ar geochronology and geochemistry of the Central Saurashtra mafic dyke swarm: insights into magmatic evolution, magma transport, and dyke-flow relationships in the northwestern Deccan Traps

    NASA Astrophysics Data System (ADS)

    Cucciniello, Ciro; Demonterova, Elena I.; Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali

    2015-05-01

    The Central Saurashtra mafic dyke swarm in the northwestern Deccan Traps contains a few picrites, several subalkalic basalts and basaltic andesites, and an andesite. We have obtained precise 40Ar/39Ar ages of 65.6 ± 0.2 Ma, 66.6 ± 0.3, and 62.4 ± 0.3 Ma (2σ errors) for three of the dykes, indicating the emplacement of the swarm over several million years. Mineral chemical and whole-rock major and trace element and Sr-Nd isotopic data show that fractional crystallization and crystal accumulation were important processes. Except for two dykes (with ɛNd t values of -8.2 and -12.3), the magmas were only moderately contaminated by continental crust. The late-emplaced (62.4 Ma) basalt dyke has compositional characteristics (low La/Sm and Th/Nb, high ɛNd t of +4.3) suggesting little or no crustal contamination. Most dykes are low-Ti and a few high-Ti, and these contrasting Ti types cannot be produced by fractional crystallization processes but require distinct parental magmas. Some dykes are compositionally homogeneous over tens of kilometers, whereas others are heterogeneous, partly because they were formed by multiple magma injections. The combined field and geochemical data establish the Sardhar dyke as ≥62 km long and the longest in Saurashtra, but this and the other Central Saurasthra dykes cannot have fed any of the hitherto studied lava-flow sequences in Saurashtra, given their very distinct Sr-Nd isotopic compositions. As observed previously, high-Ti lavas and dykes only outcrop east-northeast of a line joining Rajkot and Palitana, probably because of underlying enriched mantle at ~65 Ma.

  2. Protoplanetary Disk Structure with Grain Evolution: The ANDES Model

    NASA Astrophysics Data System (ADS)

    Akimkin, V.; Zhukovska, S.; Wiebe, D.; Semenov, D.; Pavlyuchenkov, Ya.; Vasyunin, A.; Birnstiel, T.; Henning, Th.

    2013-03-01

    We present a self-consistent model of a protoplanetary disk: "ANDES" ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R <~ 50 AU) and lower in the outer disk (R >~ 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO2, NH2CN, HNO, H2O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  3. PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL

    SciTech Connect

    Akimkin, V.; Wiebe, D.; Pavlyuchenkov, Ya.; Zhukovska, S.; Semenov, D.; Henning, Th.; Vasyunin, A.; Birnstiel, T. E-mail: dwiebe@inasan.ru E-mail: zhukovska@mpia.de E-mail: henning@mpia.de E-mail: tbirnstiel@cfa.harvard.edu

    2013-03-20

    We present a self-consistent model of a protoplanetary disk: 'ANDES' ('AccretioN disk with Dust Evolution and Sedimentation'). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R {approx}< 50 AU) and lower in the outer disk (R {approx}> 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO{sub 2}, NH{sub 2}CN, HNO, H{sub 2}O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  4. Low energy electron heating and evolution of the electron energy distribution by diluted O2 in an inductive Ar/O2 mixture discharge

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Lee, Min-Hyong; Chung, Chin-Wook

    2010-01-01

    A remarkable increase in electron temperature with diluted O2 gas was observed in a low pressure Ar/O2 mixture inductive discharge from the measurement of the electron energy distribution function (EEDF). At a pure Ar gas discharge of 3 mTorr and 100 W, the measured EEDF had a bi-Maxwellian distribution with two electron temperature groups. However, as the O2 flow rate increased with fixing total gas pressure, a significant increase in the low energy electron temperature was observed. Finally, the EEDF evolved from a bi-Maxwellian to a Maxwellian distribution. These results can be understood by an efficient low energy electron heating from both an enhanced collisionless and a collisional heating mechanism because of increases of both skin depth and the elastic collision with the non-Ramsauer gas, O2. These experiments were also studied with different ICP power and Ar/He mixture.

  5. Structural evolution of the Kolar Schist Belt, South India

    NASA Technical Reports Server (NTRS)

    Mukhopahyay, Dilip K.

    1988-01-01

    The structural evolution of the Kolar Schist Belt was discussed. Evidence was described from structures in the ferrigenous quartzite within the schist belt for two periods of nearly coaxial isoclinal folding attributable to E-W compression. This folding was followed by collapse of the F sub 1/F sub 2 folds, forming open F sub 3 folds with NNE-SSW axes. Finally, a period of N-S shortening caused a broad warping of the earlier N-S trending fold axes. There is evidence within the gneisses for shearing produced by similar, nearly E-W compression.

  6. Polyhedra structures and the evolution of the insect viruses

    PubMed Central

    Ji, Xiaoyun; Axford, Danny; Owen, Robin; Evans, Gwyndaf; Ginn, Helen M.; Sutton, Geoff; Stuart, David I.

    2015-01-01

    Polyhedra represent an ancient system used by a number of insect viruses to protect virions during long periods of environmental exposure. We present high resolution crystal structures of polyhedra for seven previously uncharacterised types of cypoviruses, four using ab initio selenomethionine phasing (two of these required over 100 selenomethionine crystals each). Approximately 80% of residues are structurally equivalent between all polyhedrins (pairwise rmsd ⩽1.5 Å), whilst pairwise sequence identities, based on structural alignment, are as little as 12%. These structures illustrate the effect of 400 million years of evolution on a system where the crystal lattice is the functionally conserved feature in the face of massive sequence variability. The conservation of crystal contacts is maintained across most of the molecular surface, except for a dispensable virus recognition domain. By spreading the contacts over so much of the protein surface the lattice remains robust in the face of many individual changes. Overall these unusual structural constraints seem to have skewed the molecule’s evolution so that surface residues are almost as conserved as the internal residues. PMID:26291392

  7. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  8. Speed of evolution with spatial structure and interacting mutations

    NASA Astrophysics Data System (ADS)

    Otwinowski, Jakub

    Perhaps the simplest question about long term evolutionary adaptation is how quickly do populations adapt to a new environment by incorporating mutations? This question is approached from several different angles. Chapter 1 investigates the speed of evolution when there is a large supply of beneficial mutations and the population has spatial structure. For large system sizes, a speed limit is found on the rate adaptation. The model is analyzed as a surface growth model in physics, which reveals universal properties of the model, such as the distribution of fitnesses. However, neglecting spatial structure, the speed of evolution also depends on how mutations interact with each other. This may be quantified by a fitness landscape, or a genotype-phenotype-fitness map. In chapter 2, the fitness landscape and genotype-phenotype map of an E. coli lac promoter is inferred from a large dataset with 100,000 sequences and fluorescence measurements. The interactions between mutations are quantified using a simple quadratic model, similar to a spin glass Hamiltonian. Chapter 3 describes a toy model based on an overdamped particle in a potential, which demonstrates how a fitness landscape with time dependent interactions between mutations determines the speed of evolution.

  9. Evolution of complex dynamics in spatially structured populations

    PubMed Central

    Johst, K.; Doebeli, M.; Brandl, R.

    1999-01-01

    Dynamics of populations depend on demographic parameters which may change during evolution. In simple ecological models given by one-dimensional difference equations, the evolution of demographic parameters generally leads to equilibrium population dynamics. Here we show that this is not true in spatially structured ecological models. Using a multi-patch metapopulation model, we study the evolutionary dynamics of phenotypes that differ both in their response to local crowding, i.e. in their competitive behaviour within a habitat, and in their rate of dispersal between habitats. Our simulation results show that evolution can favour phenotypes that have the intrinsic potential for very complex dynamics provided that the environment is spatially structured and temporally variable. These phenotypes owe their evolutionary persistence to their large dispersal rates. They typically coexist with phenotypes that have low dispersal rates and that exhibit equilibrium dynamics when alone. This coexistence is brought about through the phenomenon of evolutionary branching, during which an initially uniform population splits into the two phenotypic classes.

  10. Spectral evolution of pulse structures in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-Ray Burst Spectrometer (HXRBS) and Gamma-Ray Spectrometer (GRS) data from the Solar Maximum Mission satellite have been searched for gamma-ray bursts with sufficient intensities and relatively simple time profiles such that their spectral behavior may be studied on a time scale of about 1 s. Ten such events were observed with the GRS experiment, and four of these were also detected within the HXRBS field of view. Details are presented for two moderately intense bursts with relatively simple structure. The spectral evolutions of the remaining events are summarized briefly. Results suggest a pattern in the spectral evolution within burst pulses: a tendency for the high-energy emission to lead the low-energy emission, in contrast to the correlation of intensity and spectral hardness reported by Golenetskii et al. (1983).

  11. NASA Structure and Evolution of the Universe Theme: Science Overview

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Margon, Bruce

    2001-01-01

    The NASA Office of Space Science Structure and Evolution of the Universe (SEU) theme covers a wide variety of scientific investigations, from the nearest bodies to the farthest observable distances just after the time of the Big Bang. SEU supports experiments that sense radiation of all wavelengths, together with particle and gravitational wave detection. Recently completed road mapping and strategic planning exercises have identified a number of near- and medium-term space initiatives for the 2003-2023 time frame. Each of these experiments pushes the state of the art technically, but will return incredible new insights on the formation and evolution of the universe, as well as probe fundamental laws of physics in regimes never before tested. The scientific goals and technological highlights of each mission are described.

  12. The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Grigoriev, S. N.; Romanov, R. I.; Volosova, M. A.; Grunin, A. I.; Teterina, G. D.

    2016-06-01

    It has been found that the pulsed laser deposition of a thin tungsten selenide film, followed by thermal treatment at 550°C in an Ar + O2 mixture of gases, results in the formation of a hybrid structure that is made up of ultrathin WSe2 and WO3- y platelets. The structural and size characteristics of the nanoplatelets deposited on microcrystalline graphite provide the effective hydrogen evolution reaction in a 0.5 M H2SO4 solution, with the cathode current made about seven times higher at a potential of-100 mV and the slope of the Tafel characteristic reduced from 340 to 90 mV/dec.

  13. Successive reactivation of older structures under variable heat flow conditions evidenced by K-Ar fault gouge dating in Sierra de Ambato, northern Argentine broken foreland

    NASA Astrophysics Data System (ADS)

    Nóbile, Julieta C.; Collo, Gilda; Dávila, Federico M.; Martina, Federico; Wemmer, Klaus

    2015-12-01

    The Argentine broken foreland has been the subject of continuous research to determine the uplift and exhumation history of the region. High-elevation mountains are the result of N-S reverse faults that disrupted a W-E Miocene Andean foreland basin. In the Sierra de Ambato (northern Argentine broken foreland) the reverse faults offset Neogene sedimentary rocks (Aconquija Fm., ˜9 Ma) and affect the basement comprising Paleozoic metamorphic rocks that have been dated at ˜477-470 Ma. In order to establish a chronology of these faults affecting the previous continuous basin we date the formation age of clay minerals associated with fault gouge using the K-Ar dating technique. Clay mineral formation is a fundamental process in the evolution of faults under the brittle regime (<<300 °C). K-Ar ages (9 fractions from 3 samples collected along a transect in the Sierra de Ambato) vary from Late Devonian to Late Triassic (˜360-220 Ma). This age distribution can be explained by a long lasting brittle deformation history with a minimum age of ˜360 Ma and a last clay minerals forming event at ˜220 Ma. Moreover, given the progression of apparent ages decreasing from coarse to fine size fractions (˜360-311 Ma for 2-1 μm grain size fraction, ˜326-286 Ma for 1-0.2 μm and ˜291-219 Ma of <0.2 μm), we modeled discrete deformation events at ˜417 Ma (ending of the Famatinian cycle), ˜317-326 Ma (end of Gondwanic orogeny), and ˜194-279 Ma (Early Permian - Jurassic deformation). According to our data, the Neogene reactivation would not have affected the K-Ar system neither generated a significant clay minerals crystallization in the fault gouge, although an exhumation of more than 2 Km is recorded in this period from stratigraphic data.

  14. Structural Evolution in Nuclei: The Importance of a Systematic Perspective

    SciTech Connect

    Casten, R.F.

    2005-05-24

    One of the signature features of Raman's work was the love and exploitation of nuclear systematics as a tool to discern interesting structural phenomena and to understand better the evolution of structure with nucleon number. Such a tool, properly used, can be extremely powerful, especially when data are correlated with a physically meaningful variable that yields simple and compact trajectories. It can reveal trends that reflect basic elements of nucleonic interactions, it can reveal nuclei with special symmetries, or anomalous nuclei, and it can point to possibly incorrect measurements. We focus on several uses of correlations of nuclear data, illustrating the above ideas. Particular aspects are proton-neutron interactions, quadrupole collectivity, the search for phase transitional behavior and critical point nuclei, and a new mapping of collective nuclear structure across large parts of the nuclear chart, leading to a discovery of an 'arc of regularity' characterizing certain nuclei while others nearby in Z and N exhibit chaotic spectra.

  15. The thermal structure and thermal evolution of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1984-01-01

    The thermal structure and evolution of the continental lithosphere are examined. Surface heat flow data and the factors which modify them are addressed, and the diversity of thermal phenomena in the lithosphere is discussed in the framework of plate interactions. The lithosphere is divided into three sections for the purposes of discussion. In the upper, near-surface zone, temperatures can be strongly affected by near-surface processes, which must be taken into account in the measurement and evaluation of surface heat flow. The thermal structure of the middle, internal zone of the lithosphere responds to the heat balance and thermal properties of the lithosphere, which define its steady state thermal structure. Internal deformation and magmatic intrusion within this zone, and interaction between the lithosphere and the asthenosphere in the lower boundary zone of the lithosphere cause transient thermal disturbances in the lithosphere. The criteria for defining the base of the thermal lithosphere are briefly discussed.

  16. Structural evolution of carbon during oxidation. Final report

    SciTech Connect

    Sarofim, A.F.

    1998-04-01

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs in the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation using SAXS, CO{sub 2} and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be {open_quotes}hidden{close_quotes} or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and CO{sub 2} surface areas, fractal analysis and TEM. Studies has confirmed that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  17. 40Ar/39Ar and U-Pb Ages and Isotopic Data for Oligocene Ignimbrites, Calderas, and Granitic Plutons, Southern Stillwater Range and Clan Alpine Mountains: Insights into the Volcanic-Plutonic Connection and Crustal Evolution in Western Nevada

    NASA Astrophysics Data System (ADS)

    John, D. A.; Watts, K. E.; Henry, C.; Colgan, J. P.; Cousens, B.

    2014-12-01

    Calderas in the southern Stillwater Range (SSR) and Clan Alpine Mountains (CAM) were formed during the mid-Tertiary ignimbrite flareup and subsequently tilted (40->90°) by large-magnitude extension. New geologic mapping, geochemistry, and 40Ar/39Ar and SHRIMP U-Pb zircon dating document 2 periods of magmatism resulting in 4 nested calderas and related granitoid plutons in sections up to 10 km thick. The first period included pre-caldera rhyolite lava domes (30(?) Ma), ~5 km of pre- and post-collapse intermediate lavas and rhyolite tuff that filled the Job Canyon caldera (~29.4 to 28.8 Ma), and the >4-5 km thick, geochemically similar IXL pluton (28.9±0.4 Ma) that intruded the Job Canyon caldera. The second period included pre-caldera rhyolite lava domes and dikes (~25.5 Ma) and 3 ignimbrite units in 3 calderas: tuff of the Louderback Mountains (low-silica rhyolite; ≥600 m thick; ~25.2 Ma); tuff of Poco Canyon (high-silica rhyolite; up to 4.3 km thick; 25.27±0.05 Ma); and ≥2000 km3 tuff of Elevenmile Canyon (trachydacite to rhyolite; up to 4.5 km thick; 25.12±0.01 Ma). The composite Freeman Creek pluton (granite, 24.8±0.4 Ma; granodiorite, 25.0±0.2 Ma) and Chalk Mountain rhyolite porphyry (25.2±0.2 Ma) and granite (24.8±0.3 Ma) plutons intruded the Poco Canyon and Elevenmile Canyon calderas. Early (30 Ma) rhyolites have the least radiogenic compositions (Sri~0.7040), whereas other units are relatively homogeneous (Sri~0.7050, ENd~0.0). Oxygen isotope compositions for SSR and CAM calderas are highly variable (d18Oquartz=5.6-8.2‰, d18Osanidine=5.5-7.0‰, d18Ozircon= 4.1-6.3‰), corresponding to a magmatic range of 5.7-7.9‰. U-Pb dating of zircons indicates homogeneous age populations and few/no xenocrysts and antecrysts. These data show that (1) thick plutons (>2-5 km) underlie compositionally and temporally related caldera-filling ignimbrites, (2) caldera-forming cycles are isotopically variable, requiring divergent magmatic sources in relatively

  18. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  19. Synthesis and textural evolution of alumina particles with mesoporous structures

    SciTech Connect

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-06-15

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous {gamma}-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl{sup -} in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into {gamma}-Al{sub 2}O{sub 3} particles with mesostructures after further calcination at 1173 K, whereas coexisting SO{sub 4}{sup 2-} can promote above morphology evolution and then transformed into {gamma}-Al{sub 2}O{sub 3} nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m{sup 2} g{sup -1} even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl{sup -} is beneficial for the formation of {gamma}-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  20. Evolution and structure of Mercury's interior from MESSENGER observations

    NASA Astrophysics Data System (ADS)

    Tosi, Nicola

    2015-04-01

    During the past four years, the MESSENGER mission (MErcury Surface, Space Environment, GEochemistry and Ranging) has delivered a wealth of information that has been dramatically advancing the understanding of the geological, chemical, and physical state of Mercury. Taking into account the latest constraints on the interior structure, surface composition, volcanic and tectonic history, we employed numerical models to simulate the thermo-chemical evolution of the planet's interior [1]. Typical evolution scenarios that allow the observational constraints to be satisfied consist of an initial phase of mantle heating accompanied by planetary expansion and the production of a substantial amount of partial melt. The evolution subsequent to 2 Ga is characterised by secular cooling that proceeds approximately at a constant rate and implies that contraction should be still ongoing. Most of the models also predict mantle convection to cease after 3-4 Ga, indicating that Mercury may be no longer dynamically active. In addition, the topography, measured by laser altimetry and the gravity field, obtained from radio-tracking, represent fundamental observations that can be interpreted in terms of the chemical and mechanical structure of the interior. The observed geoid-to-topography ratios at intermediate wavelengths are well explained by the isostatic compensation of the topography associated with lateral variations of the crustal thickness, whose mean value can be estimated to be ~35 km, broadly confirming the predictions of the evolution simulations [2]. Finally, we will show that the degree-2 and 4 of the topography and geoid spectra can be explained in terms of the long-wavelength deformation of the lithosphere resulting from deep thermal anomalies caused by the large latitudinal and longitudinal variations in temperature experienced by Mercury's surface. [1] Tosi N., M. Grott, A.-C. Plesa and D. Breuer (2013). Thermo-chemical evolution of Mercury's interior. Journal of

  1. Structural evolution in the crystallization of rapid cooling silver melt

    SciTech Connect

    Tian, Z.A.; Dong, K.J.; Yu, A.B.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  2. Structure of the ArsI C-As Lyase: Insights into the Mechanism of Degradation of Organoarsenical Herbicides and Growth Promoters.

    PubMed

    Nadar, Venkadesh Sarkarai; Yoshinaga, Masafumi; Pawitwar, Shashank S; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P

    2016-06-01

    Arsenic is a ubiquitous and carcinogenic environmental element that enters the biosphere primarily from geochemical sources, but also through anthropogenic activities. Microorganisms play an important role in the arsenic biogeochemical cycle by biotransformation of inorganic arsenic into organic arsenicals and vice versa. ArsI is a microbial non-heme, ferrous-dependent dioxygenase that transforms toxic methylarsenite [MAs(III)] to less toxic and carcinogenic inorganic arsenite [As(III)] by C-As bond cleavage. An ArsI ortholog, TcArsI, from the thermophilic bacterium Thermomonospora curvata was expressed, purified, and crystallized. The structure was solved in both the apo form and with Ni(II), Co(II), or Fe(III). The MAs(III) binding site is a vicinal cysteine pair in a flexible loop. A structure with the loop occupied with β-mercaptoethanol mimics binding of MAs(III). The structure of a mutant protein (Y100H/V102F) was solved in two different crystal forms with two other orientations of the flexible loop. These results suggest that a loop-gating mechanism controls the catalytic reaction. In the ligand-free open state, the loop is exposed to solvent, where it can bind MAs(III). The loop moves toward the active site, where it forms a closed state that orients the C-As bond for dioxygen addition and cleavage. Elucidation of the enzymatic mechanism of this unprecedented C-As lyase reaction will enhance our understanding of recycling of environmental organoarsenicals. PMID:27107642

  3. Saturn layered structure and homogeneous evolution models with different EOSs

    NASA Astrophysics Data System (ADS)

    Nettelmann, Nadine; Püstow, Robert; Redmer, Ronald

    2013-07-01

    The core mass of Saturn is commonly assumed to be 10-25M⊕ as predicted by interior models with various equations of state (EOSs) and the Voyager gravity data, and hence larger than that of Jupiter (0-10M⊕). We here re-analyze Saturn's internal structure and evolution by using more recent gravity data from the Cassini mission and different physical equations of state: the ab initio LM-REOS which is rather soft in Saturn's outer regions but stiff at high pressures, the standard Sesame-EOS which shows the opposite behavior, and the commonly used SCvH-i EOS. For all three EOS we find similar core mass ranges, i.e. of 0-20M⊕ for SCvH-i and Sesame EOS and of 0-17M⊕ for LM-REOS. Assuming an atmospheric helium mass abundance of 18%, we find maximum atmospheric metallicities, Zatm of 7× solar for SCvH-i and Sesame-based models and a total mass of heavy elements, MZ of 25-30M⊕. Some models are Jupiter-like. With LM-REOS, we find MZ = 16-20M⊕, less than for Jupiter, and Zatm ≲ 3× solar. For Saturn, we compute moment of inertia values λ = 0.2355(5). Furthermore, we confirm that homogeneous evolution leads to cooling times of only ˜2.5 Gyr, independent on the applied EOS. Our results demonstrate the need for accurately measured atmospheric helium and oxygen abundances, and of the moment of inertia for a better understanding of Saturn's structure and evolution.

  4. The structural and property evolution of cellulose during carbonization

    NASA Astrophysics Data System (ADS)

    Rhim, Yo-Rhin

    The understanding of the structure and related property evolution during carbonization is imperative in engineering carbon materials for specific functionalities. High purity cellulose was used as a model precursor to help understand the conversion of organic compounds to hard carbons. Several characterization techniques were employed to follow the structural, compositional and property changes during the thermal transformation of microcrystalline cellulose to carbon over the temperature range of 250°C to 2000°C. These studies revealed several stages of composition and microstructure evolution during carbonization supported by the observation of five distinct regions of electrical and thermal properties. In Region I, from 250°C to 400°C, depolymerisation of cellulose molecules caused the evolution of volatile gases and decrease in dipole polarization. This also led to the reduction of overall AC electrical conductivity and specific heat. In Region II, from 450°C to 500°C, the formation and growth of conducting sp 2 carbon clusters resulted in increases in overall AC electrical conductivity and thermal diffusivity with rising temperature. For heat treatment temperatures of 550°C and 600°C, Region III, carbon clusters grew into aggregates of curved carbon layers leading to interfacial polarization and onset of percolation. AC electrical and thermal conductivities are enhanced due to electron hopping and improved phonon transport among carbon clusters. With temperatures rising from 650°C to 1000°C, Region IV, DC conductivity began to emerge and increased sharply along with thermal conductivity with further percolation of carbon clusters as lateral growth of carbon layers continued. Lastly, from 1200°C to 2000°C, Region V, DC electrical conductivity remained constant due to a fully percolated system.

  5. Dynamic structural network evolution in compressed granular systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James; Daniels, Karen; Bassett, Danielle

    The heterogeneous dynamic behavior of granular packings under shear or compression is not well-understood. In this study, we use novel techniques from network science to investigate the structural evolution that occurs in compressed granular systems. Specifically, we treat particles as network nodes, and pressure-dependent forces between particles as layer-specific network edges. Then, we use a generalization of community detection methods to multilayer networks, and develop quantitative measures that characterize changes in the architecture of the force network as a function of pressure. We observe that branchlike domains reminiscent of force chains evolve differentially as pressure is applied: topological characteristics of these domains at rest predict their coalescence or dispersion under pressure. Our methods allow us to study the dynamics of mesoscale structure in granular systems, and provide a direct way to compare data from systems under different external conditions or with different physical makeup.

  6. Radiogenic Ar retention in residual silica from acid-treated micas

    NASA Astrophysics Data System (ADS)

    Derkowski, Arkadiusz; Szczerba, Marek; Środoń, Jan; Banaś, Michał

    2014-03-01

    In sedimentary basins, immediate equilibration with surface and pore waters of Ar, released from K-bearing minerals during their diagenesis or weathering, has been a paradigm for geochemistry and geochronology. Consequently, K-Ar and Ar-Ar isotope geochronology techniques applied to sedimentary rocks are based on an assumption that no measurable external radiogenic 40Ar (“excess argon”) has been locked in the rock components during their formation and alteration. Our results indicate that the reaction of micaceous sedimentary and diagenetic clay minerals (illite, glauconite) with acid produces microporous silica that retains a great fraction of the initial argon, releasing potassium to the solution. In all tested cases the evolution of K-Ar isotope ages followed the very same pattern: the apparent K-Ar isotope age increased enormously after acid treatment and dropped significantly after silica removal (with hot Na2CO3), but never decreased lower than the initial K-Ar isotope age of the untreated sample. The amorphous silica content and the apparent K-Ar age increased with the acid reaction time. Using the molecular dynamics simulations, the clay-acid reaction by-product was shown to bend and wrap, producing three-dimensional, protonated and hydrated silica. As a consequence of dramatically different hydration energies of Ar and K, potassium is instantaneously released and hydrated outside the residual structure while Ar atoms remain inside the silica network, adsorbed on the surface. This is, to our knowledge, the first experimental evidence that the excess argon can be retained in solid mineral reaction products formed under pressure and temperature close to those of the Earth surface (1 atm, <80 °C).

  7. Photofragmentation spectra and structures of Sr{sup +}Ar{sub n},thinspn=2{endash}8 clusters: Experiment and theory

    SciTech Connect

    Fanourgakis, G.S.; Farantos, S.C.; Lueder, C.; Velegrakis, M.; Xantheas, S.S.

    1998-07-01

    The total photofragmentation cross sections of size selected Sr{sup +}Ar{sub n},n=2{endash}8, clusters have been recorded in a time of flight (TOF) mass spectrometer. In the energy range of 21thinsp000{endash}27thinsp000 cm{sup {minus}1} three absorption bands are observed that are attributed to transitions from the ground to the three excited states that correlate to the 5p orbitals of strontium. No vibrational structure in the spectral bands is observed, even in regions where the spectrum is recorded with a resolution of 1 cm{sup {minus}1}. The absorption spectra are calculated within a semiclassical approximation. Accurate {ital ab initio} calculations for the ground Xthinsp{sup 2}{summation} and the Athinsp{sup 2}{product} and Bthinsp{sup 2}{summation} excited states of Sr{sup +}Ar are combined with a perturbative one-electron model, which includes the spin{endash}orbit coupling, to construct potential energy surfaces for the excited states of all clusters. The theoretical spectra obtained without using any adjustable parameters reproduce the patterns and trends of the experimental spectra, but they are shifted to higher frequencies. A better agreement between theoretical and experimental spectra is obtained by adjusting the depth of the potential wells of the ground Xthinsp{sup 2}{summation} and excited Athinsp{sup 2}{product} states of the Sr{sup +}Ar dimer to the experimentally estimated values. From both calculations we conclude that Sr{sup +}Ar{sub 3} is a trigonal pyramid of C{sub 3v} symmetry and Sr{sup +}Ar{sub 6} has a C{sub 5v} symmetry with five argon atoms forming a regular pentagon, one argon atom below and the cation above the pentagon plane. For these clusters, theory reproduces the characteristic blue shifts found in the absorption spectra and the splittings of the doubly degenerate states encountered in these symmetric complexes. {copyright} {ital 1998 American Institute of Physics.}

  8. Structural framework, stratigraphy, and evolution of Brazilian marginal basins

    SciTech Connect

    Ojeda, H.A.O.

    1982-06-01

    The structural framework of the Brazilian continental margin is basically composed of eight structural types: antithetic tilted step-fault blocks, synthetic untilted step-fault blocks, structural inversion axes, hinges with compensation grabens, homoclinal structures, growth faults with rollovers, diapirs, and igneous structures. The antithetic tilted and synthetic untilted step-fault blocks are considered as synchronous, complementary structural systems, separated by an inversion axis. Two evaporitic cycles (Paripueira and Ibura) were differentiated in the Sergipe-Alagoas type basin and tentatively correlated to the evaporitic section of other Brazilian marginal basis. Four phases are considered in the evolution of the Brazilian marginal basins: pre-rift, rift, transitional, and drift. During the pre-rift phase (Late Jurassic-Early Cretaceous), continental sediments were deposited in peripheral intracratonic basins. In the rift phase (Early Cretaceous), the breakup of the continental crust of the Gondwana continent gave rise to a central graben and rift valleys where lacustrine sediments were deposited. The transitional phase (Aptian) developed under relative tectonic stability, when evaporitic and clastic lacustrine sequences were being deposited. In the drift phase (Albian to Holocene), a regionl homoclinal structure developed, consisting of two distinct sedimentary sequences, a lower clastic-carbonate and an upper clastic. From the Albian to the Holocene Epoch, structures associated to plastic displacement of salt or shale developed in many Brazilian marginal basins. Two phases of major igneous activity occurred: one in the Early Cretaceous associated with the rift phase of the Gondwana continent, and the other in the Tertiary during the migration phase of the South American and African plates.

  9. Studying the Thermal and Structural Evolution of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammadali

    The focus of this research is to study the thermal and structural evolution of three planetary bodies, Mars, Venus and the asteroid Vesta. The almost uniform spatial distribution of craters on the surfaces of planets makes them excellent candidates to examine the evolution of planets as a whole. By modeling the viscoelastic deformation of craters at the surface and subsurface with the Finite Element Method (FEM), this study investigated the role of lower crustal flow in crater relaxation, and since lower crustal flow is sensitive to the thermal state, it serves as a probe into the thermal evolution of planets. The thermal history of Mars was explored by modeling the evolution of large craters and Quasi-Circular Depressions (QCDs) in the Southern Highlands and Northern Lowlands, respectively. Because of the spatial distribution of craters, this study yielded a thermal map for Mars that is more complete and less biased regionally relative to other studies. The results revealed a higher background heat flux for the Northern Lowlands relative to the Southern Highlands during the most ancient Noachian epoch, which suggests a thermal fingerprint to whatever process that formed the hemispherical crustal dichotomy, the oldest and most prominent geomorphic feature on Mars. Next, the largest crater on the surface of Venus, Mead, also appears to have undergone significant lower crustal flow. Modeling the viscoelastic deformation of Mead puts constraints on the thermal state of our sister planet in the vicinity of the basin. The background heat flux of Venus estimated here is higher than globally average values predicted by previous thermal models. Moreover, this study showed that Venus's crust and mantle seem to be dry relative to those of the Earth. Last, modeling the evolution of two large craters in the south polar region of Vesta (Rheasilvia and Veneneia) showed that the shallow topography and large central peak of these craters are likely the products of a planetary

  10. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  11. Structural evolution of the methane cation in subfemtosecond photodynamics.

    PubMed

    Mondal, T; Varandas, A J C

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH4 (+) in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X˜(2)T2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ∼1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry. PMID:26156480

  12. Structural evolution of the methane cation in subfemtosecond photodynamics

    NASA Astrophysics Data System (ADS)

    Mondal, T.; Varandas, A. J. C.

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH 4+ in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X ˜ 2 T 2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ˜1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.

  13. Directed Evolution and Structural Characterization of a Simvastatin Synthase

    SciTech Connect

    Gao, Xue; Xie, Xinkai; Pashkov, Inna; Sawaya, Michael R.; Laidman, Janel; Zhang, Wenjun; Cacho, Ralph; Yeates, Todd O.; Tang, Yi; UCLA

    2010-02-02

    Enzymes from natural product biosynthetic pathways are attractive candidates for creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds. LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster drug simvastatin using MJA and a synthetic {alpha}-dimethylbutyryl thioester, albeit with suboptimal properties as a biocatalyst. Here we used directed evolution to improve the properties of LovD toward semisynthesis of simvastatin. Mutants with improved catalytic efficiency, solubility, and thermal stability were obtained, with the best mutant displaying an {approx}11-fold increase in an Escherichia coli-based biocatalytic platform. To understand the structural basis of LovD enzymology, seven X-ray crystal structures were determined, including the parent LovD, an improved mutant G5, and G5 cocrystallized with ligands. Comparisons between the structures reveal that beneficial mutations stabilize the structure of G5 in a more compact conformation that is favorable for catalysis.

  14. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing.

    PubMed

    Hu, Nan; Rao, YuanQiao; Sun, Shengtong; Hou, Lei; Wu, Peiyi; Fan, Shaojuan; Ye, Bangjiao

    2016-08-01

    The curing of coatings of two types of siloxane containing materials, silica gel and silsesquioxane, at a modest temperature (<280℃) was studied with in situ heating Fourier transform infrared spectroscopy (FT-IR) in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2D-COS) analyses. The result revealed detailed structural evolution of these two different gels. When the silica gel was heated, (Si-O)6 rings appeared from the random Si-O-Si network formed after sol gel reaction, followed by condensation of silanol groups. Upon further heating, the existing (Si-O)4 rings were broken down and converted into (Si-O)6 structures, and finally isolated silanols appeared. The transition from (Si-O)4 rings to (Si-O)6 rings was observed by IR and further confirmed with positron annihilation lifetime spectroscopy (PALS). In comparison, during the curing of hybrid silsesquioxane, the condensation of silanols happens immediately upon heating without the rearrangement of Si-O-Si network. Afterwards, the fraction of (Si-O)6 ring structure increased. (Si-O)4 structures exhibited higher stability in hybrid silsesquioxanes. In addition, the amount of silanols in silsesquioxane continued to reduce without the generation of isolated silanol in the end. The different curing behavior of silsesquioxanes from silica gel originates from the organic groups in silsesquioxanes, which lowers the cross-linking density and reduces the rigidity of siloxane network. PMID:27340213

  15. Rheological structure in Mars and its time evolution

    NASA Astrophysics Data System (ADS)

    Azuma, S.; Katayama, I.

    2014-12-01

    Mars is one of the terrestrial planets which are composed of rock and metal such as the Earth. There is no water, no life, and no plate tectonics on Mars, suggesting that Mars and Earth followed different evolutionary paths. Rheological structure, which indicates the deformation behavior and the strength of planetary interior, plays an important role in the evolution of planets. The rheological behavior of planetary interiors is strongly sensitive to temperature, which may produce strong rheological layering. Rheological structure of Mars in past must be different from the current rheological structure. First, the evolutions of temperature profiles in Mars are inferred from the surface heat flow and the heat conduction equation. The surface heat flow of Mars every 1 billion years was calculated from present abundances of the radioactive isotopes (235U, 235U, 232Th, and 40K) and their half-lives (Hahn et al 2011). Based on the temperature profile, we calculate the rheological structure of Mars every 1 billion years using flow-law of plagioclase and olivine. Calculated rheological structure shows that the brittle-ductile transition of present Mars, which is transition of deformation behavior from brittle failure to viscous flow, is deeper as compared with that of past Mars, suggesting that current elastic thickness also becomes thicker than that of past Mars. Under water-saturated conditions, the rheological structure which simulates the northern lowlands shows the strength contrast between the crust and mantle, indicating that the decoupling might occur at the Moho from 4 Ga to present day. Under dry conditions, lithosphere of northern lowlands has no strength contrast at the Moho, implying that crust and mantle might be coupled from 3 Ga to present day. Viscosity contrast between the surface and planetary interior is key for the mantle convection style (Moresi and Solomatov 1995), and the calculated viscosity contrast at present Mars is ~10-5 (Pa), suggesting that

  16. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  17. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  18. Evolution of structural and functional diversification among plant Argonautes

    PubMed Central

    Singh, Ravi K; Pandey, Shree P

    2015-01-01

    Argonautes (AGOs) are the effector proteins of the RNA-induced silencing (RISC) complex, formed during the phenomena of small-RNA mediated post-transcriptional gene silencing. AGOs are a large family of proteins; their number varies from a few (4 in Chlamydomonas reinhardtii) to many (18 in Oryza sativa) in plants. Genetics-guided analysis have demonstrated the roles of some of the AGOs during growth and development of plants. Biochemical studies have further revealed differences in functional specificities among AGOs. How the AGO family expanded in different plant species during the course of evolution is starting to emerge. We hypothesized that 4 classes of AGOs evolved after divergence of unicellular green algae when an ancestral AGO underwent duplication events. Evolution of multicellularity may have coincided with the diversification of AGOs. A comparative sequence and structure analysis of the plant AGOs, including those from the mosses and the unicellular algae, show not only conformational differences between those from lower and higher plants, but also functional divergence of important sites. PMID:26237574

  19. Evolution, structure, and synthesis of vertebrate egg-coat proteins

    PubMed Central

    Litscher, Eveline S.; Wassarman, Paul M.

    2015-01-01

    All vertebrate eggs are surrounded by an extracellular coat that supports growth of oocytes, protects oocytes, eggs, and early embryos, and participates in the process of fertilization. In mammals (platypus to human beings) the coat is called a zona pellucida (ZP) and in non-mammals (molluscs to birds), a vitelline envelope (VE). The ZP and VE are composed of just a few proteins that are related to one another and possess a common motif, called the zona pellucida domain (ZPD). The ZPD arose more than ~600 million years ago, consists of ~260 amino acids, and has 8 conserved Cys residues that participate in 4 intramolecular disulfides. It is likely that egg-coat proteins are derived from a common ancestral gene. This gene duplicated several times during evolution and gave rise to 3–4 genes in fish, 5 genes in amphibians, 6 genes in birds, and 3–4 genes in mammals. Some highly divergent sequences, N- and C-terminal to the ZPD, have been identified in egg-coat proteins and some of these sequences may be under positive Darwinian selection that drives evolution of the proteins. These and other aspects of egg-coat proteins, including their structure and synthesis, are addressed in this review. PMID:26504367

  20. Evolution of structural and functional diversification among plant Argonautes.

    PubMed

    Singh, Ravi K; Pandey, Shree P

    2015-01-01

    Argonautes (AGOs) are the effector proteins of the RNA-induced silencing (RISC) complex, formed during the phenomena of small-RNA mediated post-transcriptional gene silencing. AGOs are a large family of proteins; their number varies from a few (4 in Chlamydomonas reinhardtii) to many (18 in Oryza sativa) in plants. Genetics-guided analysis have demonstrated the roles of some of the AGOs during growth and development of plants. Biochemical studies have further revealed differences in functional specificities among AGOs. How the AGO family expanded in different plant species during the course of evolution is starting to emerge. We hypothesized that 4 classes of AGOs evolved after divergence of unicellular green algae when an ancestral AGO underwent duplication events. Evolution of multicellularity may have coincided with the diversification of AGOs. A comparative sequence and structure analysis of the plant AGOs, including those from the mosses and the unicellular algae, show not only conformational differences between those from lower and higher plants, but also functional divergence of important sites. PMID:26237574

  1. Thermal and Structural Evolution of a Partially Differentiated Titan

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, W. B.

    2012-10-01

    Titan’s moment of inertia (C/MR2) has been measured by Cassini to be 0.34, indicating either partial differentiation, or full differentiation with a low-density (hydrated) silicate core. Fully differentiated models have been constructed [Castillo-Rogez and Lunine, 2010], but require specific geochemical assumptions (e.g., rapid accretion, minimal core dehydration). In contrast, the alternative, partially differentiated models have not yet been fully vetted. Here we investigate the thermal stability of such partially differentiated internal structures by evaluating whether complete differentiation can be avoided. Our model assumes an initial three-layer internal structure consisting of a pure ice layer, mixed ice-rock layer, and silicate core, and calculates the temperature of each layer following the numerical approach in Bland et al. (2008, 2009). The model allows melting in the pure ice and mixed layer, and dehydration of the initially hydrated silicate core (leading to densification and absorption of latent heat). Melting of the mixed layer liberates silicate material, which is assumed to sink to the top of the silicate layer over time scales short relative to simulation time scales (in reality some may mx back into the convecting mixed ice-rock layer). Simulations so far indicate that melting of Titan’s pure ice shell is common early in Solar System history, and that melting frequently extends into Titan’s nominal mixed ice-rock layer. Such melting leads to irreversible unmixing of some of the mixed ice-rock layer. Nearly complete dehydration of the silicate core occurs when condritic K is retained in the rock component. The structural evolution decreases Titan’s initial moment of inertia; however, long-lived radiogenic species are generally incapable of completely melting and separating Titan’s mixed layer. To date, thermally stable structural models with C/MR2 as large as 0.33 have been achieved. We continue to investigate how realistic ocean and

  2. Constraints on Composition, Structure and Evolution of the Lithosphere

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek

    2015-05-01

    The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.

  3. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  4. Microscopic derivation of IBM and structural evolution in nuclei

    SciTech Connect

    Nomura, Kosuke

    2011-05-06

    A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structural evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.

  5. Diversity, structure and convergent evolution of the global sponge microbiome.

    PubMed

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B; Erwin, Patrick M; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W; Thacker, Robert W; Montoya, Jose M; Hentschel, Ute; Webster, Nicole S

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  6. Diversity, structure and convergent evolution of the global sponge microbiome

    PubMed Central

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  7. The structure and evolution of boundary layers in stratified convection

    NASA Astrophysics Data System (ADS)

    Anders, Evan H.; Brown, Benjamin; Brandenburg, Axel; Rast, Mark

    2016-05-01

    Solar convection is highly stratified, and the density in the Sun increases by many orders of magnitude from the photosphere to the base of the convection zone. The photosphere is an important boundary layer, and interactions between the surface convection and deep convection may lie at the root of the solar convection conundrum, where observed large-scale velocities are much lower than predicted by full numerical simulations. Here, we study the structure and time evolution of boundary layers in numerical stratified convection. We study fully compressible convection within plane-parallel layers using the Dedalus pseudospectral framework. Within the context of polytropic stratification, we study flows from low (1e-3) to moderately high (0.1) Mach number, and at moderate to high Rayleigh number to study both laminar and turbulent convective transport. We aim to characterize the thickness and time variation of velocity and thermal (entropy) boundary layers at the top and bottom boundaries of the domain.

  8. Structure and Evolution of Internally Heated Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Youdin, Andrew N.

    2015-11-01

    The transit radii of many close-in extrasolar giant planets, or "hot Jupiters," are systematically larger than those expected from models considering only cooling from an initial high-entropy state. Though these planets receive strong irradiation, with equilibrium temperatures of 1000-2500 Kelvin, the absorption of stellar incident flux in the upper atmosphere alone cannot explain these anomalous radii. More promising mechanisms involve irradiation-driven meteorological activity, which penetrates much deeper into the planet than direct stellar heating. This circulation can lead to large-scale mixing and downward transport of kinetic energy, both processes whereby a fraction of the stellar incident power is transported downwards to the interior of the planet. Here we consider how deposition of heat at different pressure levels or structural locations within a planet affects the resulting evolution. To do so, we run global gas giant evolutionary models with with the stellar structure code MESA including additional energy dissipation. We find that relatively shallow atmospheric heating alone can explain the transit radii of the hot Jupiter sample, but heating in the convective zone is an order of magnitude more efficient regardless of exact location. Additionally, a small difference in atmospheric heating location can have a significant effect on radius evolution, especially near the radiative-convective boundary. The most efficient location to heat the planet is at the radiative-convective boundary or deeper. We expect that shear instabilities at this interface may naturally explain energy dissipation at the radiative-convective boundary, which typically lies at a pressure of ~1 kilobar after 5 Gyr for a planet with the mass and incident stellar flux of HD 209458b. Hence, atmospheric processes are most efficient at explaining the bloated radii of hot Jupiters if they can transport incident stellar power downwards to the top of the inner convective zone.

  9. The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): Evolution of a transpressional orogenic wedge

    NASA Astrophysics Data System (ADS)

    Jabaloy-Sánchez, Antonio; Azdimousa, Ali; Booth-Rea, Guillermo; Asebriy, Lahcen; Vázquez-Vílchez, Mercedes; Martínez-Martínez, José Miguel; Gabites, Janet

    2015-11-01

    The structure of the Temsamane fold-and-thrust stack corresponds to four units limited by anastomosing ductile shear zones cutting a trend of south verging recumbent folds. This ductile stack was formed in an inclined left-handed transpressional zone at the North African paleomargin during Chattian to Langhian times producing two main deformational events. The first event (Dp) produced a Sp/Lp planar linear fabric generated in a non-coaxial deformation with a top-to-the-WSW sense of movement and was associated to metamorphic P-T conditions varying from late diagenesis in the southernmost Temsamane outcrops to epizone in the north. According to the 40Ar/39Ar ages, this deformation occurred at Chattian-Aquitanian times. The second deformational event (Dc event) generated ENE-WSW trending folds with SSE vergence and a set of anastomosing shear zones with Sm/Lm planar linear fabric. The latter units were generated at around 15 Ma (Langhian), and indicate a strong localization of the simple shear component of the transpression. Moreover, this orientation is compatible with the kinematics of the Temsamane detachment, which can explain most of the uplift of the Temsamane rocks from the middle to the uppermost crust. The described evolution indicates that collision between the western Mediterranean terranes and the North African paleomargin and the formation of the Rifean orogenic wedge occurred at Chattian to Langhian times.

  10. The influence of halo evolution on galaxy structure

    NASA Astrophysics Data System (ADS)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.