Science.gov

Sample records for arabidopsis cold shock

  1. Arabidopsis cold shock domain proteins: relationships to floral and silique development

    PubMed Central

    Nakaminami, Kentaro; Hill, Kristine; Perry, Sharyn E.; Sentoku, Naoki; Long, Jeffrey A.; Karlson, Dale T.

    2009-01-01

    Cold shock domain proteins (CSPs) are highly conserved from bacteria to higher plants and animals. Bacterial cold shock proteins function as RNA chaperones by destabilizing RNA secondary structures and promoting translation as an adaptative mechanism to low temperature stress. In animals, cold shock domain proteins exhibit broad functions related to growth and development. In order to understand better the function of CSPs in planta, detailed analyses were performed for Arabidopsis thaliana CSPs (AtCSPs) on the transcript and protein levels using an extensive series of tissue harvested throughout developmental stages within the entire life cycle of Arabidopsis. On both the transcript and protein levels, AtCSPs were enriched in shoot apical meristems and siliques. Although all AtCSPs exhibited similar expression patterns, AtCSP2 was the most abundantly expressed gene. In situ hybridization analyses were also used to confirm that AtCSP2 and AtCSP4 transcripts accumulate in developing embryos and shoot apices. AtCSPs transcripts were also induced during a controlled floral induction study. In vivo ChIP analysis confirmed that an embryo expressed MADS box transcription factor, AGL15, interacts within two AtCSP promoter regions and alters the respective patterns of AtCSP transcription. Comparative analysis of AtCSP gene expression between Landsberg and Columbia ecotypes confirmed a 1000-fold reduction of AtCSP4 gene expression in the Landsberg background. Analysis of the AtCSP4 genomic locus identified multiple polymorphisms in putative regulatory cis-elements between the two ecotypes. Collectively, these data support the hypothesis that AtCSPs are involved in the transition to flowering and silique development in Arabidopsis. PMID:19269998

  2. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    SciTech Connect

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-12-21

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets.

  3. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    SciTech Connect

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young; Chae, Ho Byoung; Jung, Young Jun; Jung, Hyun Suk; Lee, Kyun Oh; Lee, Jung Ro; Lee, Sang Yeol

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  4. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development. PMID:22888122

  5. Cold shock response in mammalian cells.

    PubMed

    Fujita, J

    1999-11-01

    Compared to bacteria and plants, the cold shock response has attracted little attention in mammals except in some areas such as adaptive thermogenesis, cold tolerance, storage of cells and organs, and recently, treatment of brain damage and protein production. At the cellular level, some responses of mammalian cells are similar to microorganisms; cold stress changes the lipid composition of cellular membranes, and suppresses the rate of protein synthesis and cell proliferation. Although previous studies have mostly dealt with temperatures below 20 degrees C, mild hypothermia (32 degrees C) can change the cell's response to subsequent stresses as exemplified by APG-1, a member of the HSP110 family. Furthermore, 32 degrees C induces expression of CIRP (cold-inducible RNA-binding protein), the first cold shock protein identified in mammalian cells, without recovery at 37 degrees C. Remniscent of HSP, CIRP is also expressed at 37 degrees C and developmentary regulated, possibly working as an RNA chaperone. Mammalian cells are metabolically active at 32 degrees C, and cells may survive and respond to stresses with different strategies from those at 37 degrees C. Cellular and molecular biology of mammalian cells at 32 degrees C is a new area expected to have considerable implications for medical sciences and possibly biotechnology. PMID:10943555

  6. Shocks and cold fronts in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim; Vikhlinin, Alexey

    2007-05-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z<0.05, the Chandra's 1 angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated “cold fronts,” or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in “relaxed” clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron proton

  7. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana1

    PubMed Central

    Hajela, Ravindra K.; Horvath, David P.; Gilmour, Sarah J.; Thomashow, Michael F.

    1990-01-01

    We have previously shown that changes in gene expression occur in Arabidopsis thaliana. L. (Heyn) during cold acclimation (SJ Gilmour, RK Hajela, MF Thomashow [1988] Plant Physiol 87: 745-750). Here we report the isolation of cDNA clones of four cold-regulated (cor) genes from Arabidopsis and examine their expression in response to low temperature, abscisic acid (ABA), water stress, and heat shock. The results of Northern analysis indicated that the transcript levels for the four cor genes, represented by clones pHH7.2, pHH28, pHH29, and pHH67, increased markedly between 1 and 4 hours of cold treatment, reached a maximum at about 8 to 12 hours, and remained at elevated levels for as long as the plants were kept in the cold (up to 2 weeks). Returning cold acclimated plants to control temperature resulted in the levels of the cor transcripts falling rapidly to those found in nonacclimated plants; this occurred within 4 hours for the transcripts represented by pHH7.2 and pHH28, and 8 hours for those represented by pHH29 and pHH67. Nuclear run-on transcription assays indicated that the temperature-regulated expression of the cor genes represented by pHH7.2, pHH28, and pHH29 was controlled primarily at the posttranscriptional level while the cor gene represented by pHH67 was regulated largely at the transcriptional level. Northern analysis also indicated that the levels of cor gene transcripts increased in response to both ABA application and water stress, but not to heat shock. The possible significance of cor genes being regulated by both low temperature and water stress is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667586

  8. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature

    PubMed Central

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold. PMID:27116354

  9. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  10. Characterization of Two Dinoflagellate Cold Shock Domain Proteins

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic

    2016-01-01

    ABSTRACT Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  11. Unwinding activity of cold shock proteins and RNA metabolism.

    PubMed

    Phadtare, Sangita

    2011-01-01

    Temperature downshift from 37 °C to 15 °C results in the exertion of cold shock response in Escherichia coli, which induces cold shock proteins, such as CsdA. Previously, we showed that the helicase activity of CsdA is critical for its function in the cold acclimation of cells and its primary role is mRNA degradation. Only RhlE (helicase), CspA (RNA chaperone) and RNase R (exoribonuclease) were found to complement the cold shock function of CsdA. RNase R has two independent activities, helicase and ribonuclease, only helicase being essential for the functional complementation of CsdA. Here, we discuss the significance of above findings as these emphasize the importance of the unwinding activity of cold-shock-inducible proteins in the RNA metabolism at low temperature, which may be different than that at 37 °C. It requires assistance of proteins to destabilize the secondary structures in mRNAs that are stabilized upon temperature downshift, hindering the activity of ribonucleases. PMID:21445001

  12. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    PubMed

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. PMID:27317670

  13. Cold Transiently Activates Calcium-Permeable Channels in Arabidopsis Mesophyll Cells1[W

    PubMed Central

    Carpaneto, Armando; Ivashikina, Natalya; Levchenko, Victor; Krol, Elzbieta; Jeworutzki, Elena; Zhu, Jian-Kang; Hedrich, Rainer

    2007-01-01

    Living organisms are capable of discriminating thermal stimuli from noxious cold to noxious heat. For more than 30 years, it has been known that plant cells respond to cold with a large and transient depolarization. Recently, using transgenic Arabidopsis (Arabidopsis thaliana) expressing the calcium-sensitive protein aequorin, an increase in cytosolic calcium following cold treatment was observed. Applying the patch-clamp technique to Arabidopsis mesophyll protoplasts, we could identify a transient plasma membrane conductance induced by rapid cooling. This cold-induced transient conductance was characterized as an outward rectifying 33 pS nonselective cation channel. The permeability ratio between calcium and cesium was 0.7, pointing to a permeation pore >3.34 Å (ø of cesium). Our experiments thus provide direct evidence for the predicted but not yet measured cold-activated calcium-permeable channel in plants. PMID:17114272

  14. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55.

    PubMed Central

    Berger, F; Morellet, N; Menu, F; Potier, P

    1996-01-01

    The psychrotrophic bacterium Arthrobacter globiformis SI55 was grown at 4 and 25 degrees C, and the cell protein contents were analyzed by two-dimensional electrophoresis. Cells subjected to cold shocks of increasing magnitude were also analyzed. Correspondence analysis of protein appearance distinguished four groups of physiological significance. Group I contained cold shock proteins (Csps) overexpressed only after a large temperature downshift. Group II contained Csps with optimal expression after mild shocks. Group III contained proteins overexpressed after all cold shocks. These last proteins were also overexpressed in cells growing at 4 degrees C and were considered to be early cold acclimation proteins (Caps). Group IV contained proteins which were present at high concentrations only in 4 degrees C steady-state cells and appeared to be late Caps. A portion of a gene very similar to the Escherichia coli cspA gene (encoding protein CS7.4) was identified. A synthetic peptide was used to produce an antibody which detected a CS7.4-like protein (A9) by immunoblotting two-dimensional electrophoresis gels of A. globiformis SI55 total proteins. Unlike mesophilic microorganisms, this CS7.4-like protein was still produced during prolonged growth at low temperature, and it might have a particular adaptive function needed for balanced growth under harsh conditions. However, A9 was induced at high temperature by chloramphenicol, suggesting that CS7.4-like proteins have a more general role than their sole implication in cold acclimation processes. PMID:8655472

  15. Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling.

    PubMed

    Palmblad, Magnus; Mills, Davinia J; Bindschedler, Laurence V

    2008-02-01

    We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing. PMID:18189342

  16. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.

    PubMed

    Lee, Byeong-ha; Henderson, David A; Zhu, Jian-Kang

    2005-11-01

    To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain approximately 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance. PMID:16214899

  17. Preliminary observations on the induction of triploidy in Abramis brama by cold shock.

    PubMed

    Kucharczyk, D; Luczynski, M J; Jankun, M; Luczynski, M

    1996-01-01

    Cold shock (2 degrees C) lasting for 45 or 60 min was applied to eggs from bream (Abramis brama), beginning at 2, 3, 4, 5, 6, 7 and 8 min after fertilization. The lowest survival rate was observed in those groups treated in which a cold shock started at 4 or 5 min after fertilization. Groups exposed to cold shock lasting for 60 min showed a higher percentage of triploids than in groups shocked for 45 min. The highest yield of triploid embryos was produced by the cold shock which started 8 min after egg fertilization and which lasted for 45 min. PMID:9281814

  18. Global Transcriptome Analysis of the Cold Shock Response ofShewanella oneidensis MR-1 and Mutational Analysis of Its Classical ColdShock Proteins.

    SciTech Connect

    Gao, H.; Thompson, D.K.; Zhou, J.-Z.

    2006-04-01

    This study presents a global transcriptional analysis of thecold shock response of Shewanella oneidensis MR-1 after a temperaturedownshift from 30oC to 8 or 15oC based on time series microarrayexperiments. More than 700 genes were found to be significantly affected(P<0.05) upon cold shock challenge, especially at 8oC. The temporalgene expression patterns of the classical cold shock genes varied, andonly some of them, most notably So1648 and So2787, were differentiallyregulated in response to a temperature downshift. The global response ofS. oneidensis to cold shock was also characterized by the up-regulationof genes encoding membraneproteins, DNA metabolism and translationapparatus components, metabolic proteins, regulatory proteins, andhypothetical proteins. Most of the metabolic proteins affected areinvolved in catalytic processes that generate NADH or NADPH. Mutationalanalyses confirmed that the small cold shock proteins, So1648 and So2787,are involved in the cold shock response of S. oneidensis. The analysesalso indicated that So1648 may function only at very lowtemperatures.

  19. Auxin Response in Arabidopsis under Cold Stress: Underlying Molecular Mechanisms[C][W

    PubMed Central

    Shibasaki, Kyohei; Uemura, Matsuo; Tsurumi, Seiji; Rahman, Abidur

    2009-01-01

    To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4°C inhibited root growth and gravity response by ∼50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers. PMID:20040541

  20. A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana

    PubMed Central

    Hannah, Matthew A; Heyer, Arnd G; Hincha, Dirk K

    2005-01-01

    Many temperate plant species such as Arabidopsis thaliana are able to increase their freezing tolerance when exposed to low, nonfreezing temperatures in a process called cold acclimation. This process is accompanied by complex changes in gene expression. Previous studies have investigated these changes but have mainly focused on individual or small groups of genes. We present a comprehensive statistical analysis of the genome-wide changes of gene expression in response to 14 d of cold acclimation in Arabidopsis, and provide a large-scale validation of these data by comparing datasets obtained for the Affymetrix ATH1 Genechip and MWG 50-mer oligonucleotide whole-genome microarrays. We combine these datasets with existing published and publicly available data investigating Arabidopsis gene expression in response to low temperature. All data are integrated into a database detailing the cold responsiveness of 22,043 genes as a function of time of exposure at low temperature. We concentrate our functional analysis on global changes marking relevant pathways or functional groups of genes. These analyses provide a statistical basis for many previously reported changes, identify so far unreported changes, and show which processes predominate during different times of cold acclimation. This approach offers the fullest characterization of global changes in gene expression in response to low temperature available to date. PMID:16121258

  1. Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato.

    PubMed

    Sivankalyani, Velu; Geetha, Mahalingam; Subramanyam, Kondeti; Girija, Shanmugam

    2015-04-01

    Cold is a major stress that limits the quality and productivity of economically important crops such as tomato (Solanum lycopersicum L.). Generating a cold-stress-tolerant tomato by expressing cold-inducible genes would increase agricultural strategies. Rare cold-inducible 2a (RCI2A) is expressed in Arabidopsis, but its molecular function during cold stress is not fully understood. Here we ectopically expressed Arabidopsis RCI2A in transgenic tomato to evaluate tolerance to cold stress without altering agronomic traits. Biochemical and physiological study demonstrated that expression of RCI2A in transgenic tomato enhanced the activity of peroxidase and ascorbate peroxidase (APX) and reduced the accumulation of H2O2, alleviated lipid peroxidation, increased the accumulation of chlorophyll, reduced chilling-induced membrane damage, retained relative water content and enhanced cold tolerance. A motif search revealed that the motifs of photosystem II (PSII) phosphoproteins PsbJ and PsbH and reaction-center proteins PsbL and PsbK were common to cold-inducible RCI2A and peroxidase proteins RCI3A, tomato peroxidase (TPX1), TPX2, tomato ascorbate peroxidase (APX1), and horseradish peroxidase (HRP-c). In addition to membrane protection, RCI2A may cross talk with PSII-associated proteins or peroxidase family enzymes in response to cold stress. Our findings may strengthen the understanding of the molecular function of RCI2A in cold-stress tolerance. RCI2A could be used to improve abiotic stress tolerance in agronomic crops. PMID:25260337

  2. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.

    PubMed

    Chan, Zhulong; Wang, Yanping; Cao, Minjie; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Hu, Yuanlei; Deng, Xin; He, Xin-Jian; Zhu, Jian-Kang

    2016-03-01

    The C-REPEAT-BINDING FACTOR (CBF) pathway has important roles in plant responses to cold stress. How the CBF genes themselves are activated after cold acclimation remains poorly understood. In this study, we characterized cold tolerance of null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4), which encodes a protein that associates with RNA polymerases Pol V and Pol II, and is required for RNA-directed DNA methylation (RdDM) in Arabidopsis. The results showed that dysfunction of RDM4 reduced cold tolerance, as evidenced by decreased survival and increased electrolyte leakage. Mutation of RDM4 resulted in extensive transcriptomic reprogramming. CBFs and CBF regulon genes were down-regulated in rdm4 but not nrpe1 (the largest subunit of PolV) mutants, suggesting that the role of RDM4 in cold stress responses is independent of the RdDM pathway. Overexpression of RDM4 constitutively increased the expression of CBFs and regulon genes and decreased cold-induced membrane injury. A great proportion of genes affected by rdm4 overlapped with those affected by CBFs. Chromatin immunoprecipitation results suggested that RDM4 is important for Pol II occupancy at the promoters of CBF2 and CBF3. We present evidence of a considerable role for RDM4 in regulating gene expression at low temperature, including the CBF pathway in Arabidopsis. PMID:26522658

  3. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.

    PubMed

    Zhao, Chunzhao; Zhang, Zhengjing; Xie, Shaojun; Si, Tong; Li, Yuanya; Zhu, Jian-Kang

    2016-08-01

    The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305

  4. HOS1, a genetic locus involved in cold-responsive gene expression in arabidopsis.

    PubMed Central

    Ishitani, M; Xiong, L; Lee, H; Stevenson, B; Zhu, J K

    1998-01-01

    Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time. PMID:9668134

  5. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions.

    PubMed

    Juszczak, Ilona; Cvetkovic, Jelena; Zuther, Ellen; Hincha, Dirk K; Baier, Margarete

    2016-01-01

    Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period. PMID:27014325

  6. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions

    PubMed Central

    Juszczak, Ilona; Cvetkovic, Jelena; Zuther, Ellen; Hincha, Dirk K.; Baier, Margarete

    2016-01-01

    Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period. PMID:27014325

  7. [Effects of cold-shock on tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-Li; Xia, Ya-Zhen; Liu, Jin; Shi, Xiao-Dan; Sun, Zhi-Qiang

    2014-10-01

    High temperature stress (HTS) is one of the major limiting factors that affect the quality of intensively cultured seedlings in protected facilitates during hot season. Increasing the cross adaptive response of plant induced by temperature stress is an effective way to improve plant stress resistance. In order to explore the alleviating effect of cold-shock intensity on tomato seedlings under HTS, tomato seedlings were subjected to cold-shock treatments every day with 5 °C, 10 °C, and 15 °C for 10 min, 20 min, and 30 min, respectively, in an artificial climate chamber. The effect of single appropriate cold-shock on the gene expression of small heat shock proteins LeHSP 23.8 and CaHSP18 was investigated. The results showed that hypocotyl elongation and plant height of tomato seedlings were restrained by cold-shock treatment before HTS was met. The alleviating effect of tomato seedlings under HTS by cold-shock varied greatly with levels and durations of temperature. The membrane lipids in the leaf of tomato seedlings were subjected to peroxidation injury in the cold-shock treatment at 5 °C, in which the penetration of cell membrane was increased and the activities of antioxidant enzyme was inhibited. The alleviating effect to HTS by cold-shock was decreased with the increasing cold-shock duration at 10 °C, however, a reverse change was found at 15 °C. The results indicated that cross adaptive response of tomato seedling could be induced with a moderate cold-shock temperature for a proper duration before HTS was met. The optimum cold-shock treatment was at 10 °C for 10 min per day, under which, the dry mass, healthy index, activities of protective enzymes (including SOD, POD and CAT) in leaves of tomato seedlings were significantly increased, the contents of proline and soluble protein were enhanced, relative conductivity and malondialdehyde concentration were significantly decreased, and the expression levels of Le-HSP23.8 and CaHSP18 were increased compared

  8. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted

  9. Uptake of non-pathogenic E. coli by Arabidopsis induces downregulation of heat shock proteins

    PubMed Central

    Schmidt, Susanne; Lonhienne, Thierry GA

    2010-01-01

    We recently demonstrated that non-pathogenic and non-symbiotic microbes E. coli and yeast are taken up by roots and used as a source of nutrients by the plant. Although this process appears to be beneficial for the plant, the nutritional gain of microbe incorporation has to exceed the energy expense of microbe uptake and digestion, and the question remains whether the presence of microbes triggers pathogen- and other stress-induced responses. Here, we present evidence that digesting microbes is accompanied by strong downregulation of genes linked to stress response in Arabidopsis. Genome-wide transcription analysis shows that uptake of E. coli by Arabidopsis roots is accompanied by a pronounced downregulation of heat shock proteins. Plants upregulate heat shock proteins in response to environmental stresses including temperature, salt, light and disease agents including microbial pathogens. The pronounced downregulation of heat shock proteins in the presence of E. coli indicates that uptake and subsequent digestion of microbes does not induce stress. Additionally it suggests that resources devoted to stress resistance in control plants may be re-allocated to the process of microbe uptake and digestion. This observation adds evidences to the notion that uptake of microbes is an active, purposeful and intentional behavior of the plant. PMID:21139429

  10. Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis

    PubMed Central

    Lee, Jae-Hyung; Park, Chung-Mo

    2015-01-01

    Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons. PMID:26430754

  11. Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.

    PubMed

    Lee, Jae-Hyung; Park, Chung-Mo

    2015-01-01

    Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons. PMID:26430754

  12. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis

    PubMed Central

    Takahashi, Daisuke; Kawamura, Yukio; Uemura, Matsuo

    2016-01-01

    Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis. We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation. Label-free quantitative shotgun proteomics identified a number of GPI-APs (163 proteins). Among them, some GPI-APs such as fasciclin-like arabinogalactan proteins and glycerophosphoryldiester phosphodiesterase-like proteins predominantly increased in PM- and GPI-AP-enriched fractions while the changes of GPI-APs in the DRM and apoplast fractions during cold acclimation were considerably different from those of other fractions. These proteins are thought to be associated with cell wall structure and properties. Therefore, this study demonstrated that each GPI-AP responded to cold acclimation in a different manner, suggesting that these changes during cold acclimation are involved in rearrangement of the extracellular matrix including the cell wall towards acquisition of freezing tolerance. PMID:27471282

  13. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis.

    PubMed

    Takahashi, Daisuke; Kawamura, Yukio; Uemura, Matsuo

    2016-09-01

    Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation. Label-free quantitative shotgun proteomics identified a number of GPI-APs (163 proteins). Among them, some GPI-APs such as fasciclin-like arabinogalactan proteins and glycerophosphoryldiester phosphodiesterase-like proteins predominantly increased in PM- and GPI-AP-enriched fractions while the changes of GPI-APs in the DRM and apoplast fractions during cold acclimation were considerably different from those of other fractions. These proteins are thought to be associated with cell wall structure and properties. Therefore, this study demonstrated that each GPI-AP responded to cold acclimation in a different manner, suggesting that these changes during cold acclimation are involved in rearrangement of the extracellular matrix including the cell wall towards acquisition of freezing tolerance. PMID:27471282

  14. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  15. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  16. Functions of heat shock transcription factors involved in response to photooxidative stresses in Arabidopsis.

    PubMed

    Yabuta, Yukinori

    2016-07-01

    Because plants are continually exposed to various environmental stresses, they possess numerous transcription factors that regulate metabolism to adapt and acclimate to those conditions. To clarify the gene regulation systems activated in response to photooxidative stress, we isolated 76 high light and heat shock stress-inducible genes, including heat shock transcription factor (Hsf) A2 from Arabidopsis. Unlike yeast or animals, more than 20 genes encoding putative Hsfs are present in the genomes of higher plants, and they are categorized into three classes based on their structural characterization. However, the multiplicity of Hsfs in plants remains unknown. Furthermore, the individual functions of Hsfs are also largely unknown because of their genetic redundancy. Recently, the developments of T-DNA insertion knockout mutant lines and chimeric repressor gene-silencing technology have provided effective tools for exploring the individual functions of Hsfs. This review describes the current knowledge on the individual functions and activation mechanisms of Hsfs. PMID:27095030

  17. Regulatory Networks Controlling Plant Cold Acclimation or Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis (2011 JGI User Meeting)

    SciTech Connect

    Thomashow, Mike

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011. «

  18. Regulatory Networks Controlling Plant Cold Acclimation or Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis (2011 JGI User Meeting)

    ScienceCinema

    Thomashow, Mike

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011. «

  19. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  20. Cold ions at the Martian bow shock - PHOBOS observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Lundin, R.; Koskinen, H.; Norberg, O.

    1993-04-01

    Measurements carried out by the plasma spectrometer ASPERA aboard the Phobos 2 spacecraft show that the Martian bow shock is characterized by a sudden increase of ionization of the neutral corona. It acts as a source of new ions that can strongly modify the process of ion heating behind the shock front. The loss of momentum of solar wind protons due to their interaction with exospheric ions may lead to an increase in the effective scale of the obstacle.

  1. Expression, purification and characterization of cold shock protein A of Corynebacterium pseudotuberculosis.

    PubMed

    Lindae, Antje; Eberle, Raphael J; Caruso, Icaro P; Coronado, Monika A; de Moraes, Fabio R; Azevedo, Vasco; Arni, Raghuvir K

    2015-08-01

    The gram-positive bacterium Corynebacterium pseudotuberculosis is the causative agent of different diseases that cause dramatically reduced yields of wool and milk, and results in weight loss, carcass condemnation and also death mainly in sheep, equids, cattle and goats and therefore globally results in considerable economical loss. Cold shock proteins are conserved in many bacteria and eukaryotic cells and they help to restore normal cell functions after cold shock in which some appear to have specific functions at normal growth temperature as well. Cold shock protein A from C. pseudotuberculosis was expressed in Escherichia coli and purified. The thermal unfolding/refolding process characterized by circular dichroism, differential scanning calorimetry and NMR spectroscopy techniques indicated that the refolding process was almost completely reversible. PMID:25907380

  2. Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.

    2005-03-01

    We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.

  3. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.

    PubMed

    Chinnusamy, Viswanathan; Ohta, Masaru; Kanrar, Siddhartha; Lee, Byeong-Ha; Hong, Xuhui; Agarwal, Manu; Zhu, Jian-Kang

    2003-04-15

    Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants. PMID:12672693

  4. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  5. Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review.

    PubMed

    White, I G

    1993-01-01

    When sperm of the ram, bull, boar and stallion are cold-shocked by rapid cooling to near freezing point, motility and metabolic activity are irreversibly depressed and the acrosome and plasma membrane disrupted. Ram sperm become susceptible to cold shock in the proximal corpus region of the epididymis when the cytoplasmic droplet has moved backwards to the distal portion of the sperm midpiece. The membrane constituents phospholipids and cholesterol are important in cold shock which causes loss of lipid from sperm. The susceptibility of sperm to cold shock is linked with a high ratio of unsaturated:saturated fatty acids in the phospholipids and a low cholesterol content. The high unsaturated fatty acid content of sperm also makes them susceptible to damage from peroxidation which adversely affects motility, metabolism, ultrastructure and fertility. Hydroxynonenal, a product of fatty acid peroxidation, depresses the motility and oxygen uptake of ram sperm in vitro and may react with the -SH groups of the axonemal microtubules. High calcium concentrations in the external medium may decrease the motility and metabolism of sperm and 'calcium intoxication' may be a factor in cold shock. Lowering the environmental temperature increases calcium uptake by sperm and the effect is aggravated if the rate of cooling is rapid. Phospholipids, particularly those in egg yolk, protect sperm to some extent from cold shock and also prevent increased calcium flux into the sperm. Suggestions are made for increasing the life span of sperm during preservation and microencapsulation by adding agents that may stabilize membranes, counter peroxidation and decrease calcium uptake. PMID:9627725

  6. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock

    PubMed Central

    Singh, Karan; Kochar, Ekta; Prasad, N. G.

    2015-01-01

    Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704

  7. The Cold Shock Domain of YB-1 Segregates RNA from DNA by Non-Bonded Interactions

    PubMed Central

    Kljashtorny, Vladislav; Nikonov, Stanislav; Ovchinnikov, Lev; Lyabin, Dmitry; Vodovar, Nicolas; Curmi, Patrick; Manivet, Philippe

    2015-01-01

    The human YB-1 protein plays multiple cellular roles, of which many are dictated by its binding to RNA and DNA through its Cold Shock Domain (CSD). Using molecular dynamics simulation approaches validated by experimental assays, the YB1 CSD was found to interact with nucleic acids in a sequence-dependent manner and with a higher affinity for RNA than DNA. The binding properties of the YB1 CSD were close to those observed for the related bacterial Cold Shock Proteins (CSP), albeit some differences in sequence specificity. The results provide insights in the molecular mechanisms whereby YB-1 interacts with nucleic acids. PMID:26147853

  8. Contrasting the Microstructural and Mechanical Response to Shock Loading of Cold-Rolled Copper with Annealed Copper

    NASA Astrophysics Data System (ADS)

    Higgins, Daniel L.; Pang, Bo; Millett, Jeremy C. F.; Whiteman, Glenn; Jones, Ian P.; Chiu, Yu-Lung

    2015-10-01

    The response of copper to shock loading and cold working is well documented. Both shock loaded and cold-worked annealed copper display a high dislocation density and increased yield strength. However, as of yet no work has been carried out on the microstructure of shock-loaded cold-worked copper. Both annealed and cold-worked copper have been tested using a gas gun to ascertain the effect of shock loading on cold-worked copper. The annealed copper was loaded to a peak pressure of 5 GPa and the cold-worked copper was loaded to peak pressures of 6 and 10 GPa. It was found that the shock-loaded cold-worked copper had a higher hardness than the shock-loaded annealed copper and that the hardness of the cold-worked copper increased with peak shock pressure. Each specimen analyzed displayed different variations on the classic shocked copper microstructure, which was ascribed to the different momentum trapping apparatus used.

  9. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.

    PubMed

    Cheong, Yong Hwa; Kim, Kyung-Nam; Pandey, Girdhar K; Gupta, Rajeev; Grant, John J; Luan, Sheng

    2003-08-01

    Although calcium is a critical component in the signal transduction pathways that lead to stress gene expression in higher plants, little is known about the molecular mechanism underlying calcium function. It is believed that cellular calcium changes are perceived by sensor molecules, including calcium binding proteins. The calcineurin B-like (CBL) protein family represents a unique group of calcium sensors in plants. A member of the family, CBL1, is highly inducible by multiple stress signals, implicating CBL1 in stress response pathways. When the CBL1 protein level was increased in transgenic Arabidopsis plants, it altered the stress response pathways in these plants. Although drought-induced gene expression was enhanced, gene induction by cold was inhibited. In addition, CBL1-overexpressing plants showed enhanced tolerance to salt and drought but reduced tolerance to freezing. By contrast, cbl1 null mutant plants showed enhanced cold induction and reduced drought induction of stress genes. The mutant plants displayed less tolerance to salt and drought but enhanced tolerance to freezing. These studies suggest that CBL1 functions as a positive regulator of salt and drought responses and a negative regulator of cold response in plants. PMID:12897256

  10. Calcium influx into corn roots as a result of cold shock

    SciTech Connect

    Zocchi, G.; Hanson, J.B.

    1982-01-01

    Corn roots or washed corn root tissue exposed to cold shock absorb 20 to 24% more /sup 45/Ca/sup 2 +/ into a nonexchangeable phase than control roots. Addition to fusicoccin largely prevents this additional calcium influx. The results are discussed in relation to injury-induced changes in membrane permeability of root cell memebranes.

  11. Calcium influx into corn roots as a result of cold shock

    SciTech Connect

    Zocchi, G.; Hanson, J.B.

    1982-07-01

    Corn roots or washed corn root tissue exposed to cold shock absorb 20 to 24% more /sup 45/Ca/sup 2 +/ into a nonexchangeable phase than control roots. Addition to fusicoccin largely prevents this additional calcium influx. The results are discussed in relation to injury-induced changes in membrane permeability of root cell membranes.

  12. Crystal structure of CspA, the major cold shock protein of Escherichia coli.

    PubMed

    Schindelin, H; Jiang, W; Inouye, M; Heinemann, U

    1994-05-24

    The major cold shock protein of Escherichia coli, CspA, produced upon a rapid downshift in growth temperature, is involved in the transcriptional regulation of at least two genes. The protein shares high homology with the nucleic acid-binding domain of the Y-box factors, a family of eukaryotic proteins involved in transcriptional and translational regulation. The crystal structure of CspA has been determined at 2-A resolution and refined to R = 0.187. CspA is composed of five antiparallel beta-strands forming a closed five-stranded beta-barrel. The three-dimensional structure of CspA is similar to that of the major cold shock protein of Bacillus subtilis, CspB, which has recently been determined at 2.45-A resolution. However, in contrast to CspB, no dimer is formed in the crystal. The surface of CspA is characteristic for a protein interacting with single-stranded nucleic acids. Due to the high homology of the bacterial cold shock proteins with the Y-box factors, E. coli CspA and B. subtilis CspB define a structural framework for the common cold shock domain. PMID:8197194

  13. Transcription of exogenous and endogenous deoxyribonucleic acid templates in cold-shocked Bacillus subtilis.

    PubMed Central

    Kuhl, S J; Brown, L R

    1980-01-01

    Ribonucleic acid (RNA) synthesis was examined in cold-shocked Bacillus subtilis cells. The cells were grown to mid-log stage, harvested, and cold shocked. RNA synthesis was monitored by the incorporation of [3H]uridine triphosphate or [alpha 32P]adenosine triphosphate into trichloroacetic acid-precipitable material in the presence of all four nucleoside triphosphates. The inhibition of RNA synthesis in cold-shocked cells by lipiarmycin, ethidium bromide, rifampin. or streptolydigin was analyzed using mutant or wild-type cells. Also examined were the effects of temperature, salt concentration, and the addition of polyamines or highly phosphorylated nucleotides. In ultraviolet-irradiated and cold-shocked cells, RNA wynthesis decreased to low levels. The addition of exogenous phi 29 or TSP-1 template to these cells caused a 13- to 20-fold increase in RNA synthesis, as monitored by trichloroacetic acid-precipitable counts. RNA synthesized in the presence of phi 29 deoxyribonucleic acid (DNA) hybridizes mainly to EcoRI fragments A and C of phi 29 DBA, These two fragments direct transcription by purified RNA polymerase in vitro and hybridize to early phi 29 DNA produced in vivo. Our results with TSP-1 DNA in this system indicated that the RNA produced hybridizes to the same fragments as early RNA produced in vivo. Plasmic pUB110 DNA was not transcribed in this system. Images PMID:6157674

  14. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.

    PubMed

    Puyaubert, Juliette; Fares, Abasse; Rézé, Nathalie; Peltier, Jean-Benoît; Baudouin, Emmanuel

    2014-02-01

    S-nitrosylation is a nitric oxide (NO)-based post-translational modification regulating protein function and signalling. We used a combination between the biotin switch method and labelling with isotope-coded affinity tag to identify endogenously S-nitrosylated peptides in Arabidopsis thaliana proteins extracted from plantlets. The relative level of S-nitrosylation in the identified peptides was compared between unstressed and cold-stress seedlings. We thereby detected 62 endogenously nitrosylated peptides out of which 20 are over-nitrosylated following cold exposure. Taken together these data provide a new repertoire of endogenously S-nitrosylated proteins in Arabidopsis with cysteine S-nitrosylation site. Furthermore they highlight the quantitative modification of the S-nitrosylation status of specific cysteine following cold stress. PMID:24388526

  15. Heat or Eat? Cold-Weather Shocks and Nutrition in Poor American Families

    PubMed Central

    Bhattacharya, Jayanta; DeLeire, Thomas; Haider, Steven; Currie, Janet

    2003-01-01

    Objectives. The authors sought to determine the effects of cold-weather periods on budgets and nutritional outcomes among poor American families. Methods. The Consumer Expenditure Survey was used to track expenditures on food and home fuels, and the Third National Health and Nutrition Examination Survey was used to track calorie consumption, dietary quality, vitamin deficiencies, and anemia. Results. Both poor and richer families increased fuel expenditures in response to unusually cold weather. Poor families reduced food expenditures by roughly the same amount as their increase in fuel expenditures, whereas richer families increased food expenditures. Conclusions. Poor parents and their children spend less on and eat less food during cold-weather budgetary shocks. Existing social programs fail to buffer against these shocks. PMID:12835201

  16. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis.

    PubMed

    Jeon, Jin; Cho, Chuloh; Lee, Mi Rha; Van Binh, Nguyen; Kim, Jungmook

    2016-08-01

    Lateral roots (LRs) are a major determinant of the root system architecture in plants, and developmental plasticity of LR formation is critical for the survival of plants in changing environmental conditions. In Arabidopsis thaliana, genetic pathways have been identified that regulate LR branching in response to numerous environmental cues, including some nutrients, salt, and gravity. However, it is not known how genetic components are involved in the LR adaptation response to cold. Here, we demonstrate that CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3, encoding APETALA2 transcription factors, play an important role in regulating Arabidopsis LR initiation under cold stress. Analysis of LR developmental kinetics demonstrated that both CRF2 and CRF3 regulate LR initiation. crf2 and crf3 single mutants exhibited decreased LR initiation under cold stress compared with the wild type, and the crf2 crf3 double mutants showed additively decreased LR densities compared with the single mutants. Conversely, CRF2 or CRF3 overexpression caused increased LR densities. CRF2 was induced by cold via a subset of the cytokinin two-component signaling (TCS) pathway, whereas CRF3 was upregulated by cold via TCS-independent pathways. Our results suggest that CRF2 and CRF3 respond to cold via TCS-dependent and TCS-independent pathways and control LR initiation and development, contributing to LR adaptation to cold stress. PMID:27432872

  17. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature.

    PubMed

    Cuevas, Juan C; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F; Ferrando, Alejandro

    2008-10-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  18. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress1[w

    PubMed Central

    Kreps, Joel A.; Wu, Yajun; Chang, Hur-Song; Zhu, Tong; Wang, Xun; Harper, Jeff F.

    2002-01-01

    To identify genes of potential importance to cold, salt, and drought tolerance, global expression profiling was performed on Arabidopsis plants subjected to stress treatments of 4°C, 100 mm NaCl, or 200 mm mannitol, respectively. RNA samples were collected separately from leaves and roots after 3- and 27-h stress treatments. Profiling was conducted with a GeneChip microarray with probe sets for approximately 8,100 genes. Combined results from all three stresses identified 2,409 genes with a greater than 2-fold change over control. This suggests that about 30% of the transcriptome is sensitive to regulation by common stress conditions. The majority of changes were stimulus specific. At the 3-h time point, less than 5% (118 genes) of the changes were observed as shared by all three stress responses. By 27 h, the number of shared responses was reduced more than 10-fold (< 0.5%), consistent with a progression toward more stimulus-specific responses. Roots and leaves displayed very different changes. For example, less than 14% of the cold-specific changes were shared between root and leaves at both 3 and 27 h. The gene with the largest induction under all three stress treatments was At5g52310 (LTI/COR78), with induction levels in roots greater than 250-fold for cold, 40-fold for mannitol, and 57-fold for NaCl. A stress response was observed for 306 (68%) of the known circadian controlled genes, supporting the hypothesis that an important function of the circadian clock is to “anticipate” predictable stresses such as cold nights. Although these results identify hundreds of potentially important transcriptome changes, the biochemical functions of many stress-regulated genes remain unknown. PMID:12481097

  19. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants1[OPEN

    PubMed Central

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-01-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg2+ as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  20. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  1. [Mechanism of dwarfing effect of tomato (Solanum lycopersicon) seedlings induced by cold-shock treatment under high temperature stress].

    PubMed

    Li, Sheng-li; Bi, Ming-ming; Chen, Fei; Sun, Zhi-qiang

    2015-07-01

    To explore the dwarfing mechanism of tomato seedlings induced by cold-shock treatment followed by high temperature, tomato seedlings were subjected to cold-shock treatment once a day at 8:00 with temperature of 5, 10 and 15 °C for 10, 20 and 30 min, respectively, and ethylene production rate was measured. Plant height, ethylene production and gibberellin (GA3) content of the seedlings treated with T10 °C D10 min (cold-shock with 10 °C for 10 min), coupled with utilization of growth regulators, were also evaluated. The results showed that the release of ethylene was increased with the decrease of cold-shock temperature and extension of treatment time. The cold-shock treatment of 5 °C and 30 min had the highest ethylene production rate of 60.3 nL h-1 . g-1, which was 6.5 times of the control. None of ethephon (ETH), silver thiosulphate (STS), GA, or paclobutrazol (PP333) could completely block high ethylene production induced by cold-shock treatment. Tomato seedlings with cold-shock treatment (T10 °C D10 min ) resulted in reduction in GA3 content by 38.1% compared with the value of control (130.6 µg . g-1). Neither ethephon nor STS had significant effect on the dwarfing induced by cold-shock. However, GA3 weakened the dwarfing effect induced by cold-shock treatment (T10 °C D10 min), while PP333 greatly enhanced it. The dwarfing effect by cold-shock treatment of T10 °C D10 min was equivalent to that of application of 4.0 mg . L-1 PP333 based on the seedling height as an evaluation indicator. It was concluded that cold-shock treatment stimulated shoot ethylene production and blocked GA3 synthesis. GA3 played a vital role in dwarfing effect on tomato seedling induced by cold-shock treatment. Cold-shock with 10 °C and duration of 10 min could promote the growth of tomato seedlings with shorter stem and higher dry mass accumulation. PMID:26710633

  2. Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress

    PubMed Central

    Kumar, Deepak; Datta, Riddhi; Hazra, Saptarshi; Sultana, Asma; Mukhopadhyay, Ria; Chattopadhyay, Sharmila

    2015-01-01

    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions. PMID:25822199

  3. Gene expression profiling of a cold-shocked earthworm Eisenia andrei.

    PubMed

    Kim, H S; Ahn, C H; Park, T S; Park, H D; Koh, K S; Ryoo, Z Y; Park, S C; Lee, S

    2012-01-01

    To identify genes that are modulated under cold-stress conditions in the earthworm Eisenia andrei, we performed a genome-wide analysis of gene expression in cold-shocked earthworms by using Serial Analysis of Gene Expression (SAGE). We identified 5,977 and 5,407 unique SAGE tags under normal and cold-stressed conditions, respectively. The majority of the SAGE tags did not match to any known expressed sequences, due to a paucity of expression data in earthworms. We converted the statistically significant SAGE tags for the cold-stressed condition into expressed sequence tags (ESTs), and the results showed that particular genes associated with energy homeostasis, cellular defense mechanisms, and ion balance were up-regulated or down-regulated. We constructed a regulatory network of some of these genes and identified rps-6 as a core gene in the cold-response regulatory-gene network. Our data provide a baseline for gene expression studies of cold shock in the Lumbricidae. PMID:22434117

  4. Supermassive black hole formation by the cold accretion shocks in the first galaxies

    NASA Astrophysics Data System (ADS)

    Inayoshi, K.; Omukai, K.

    2012-09-01

    We propose a new scenario for supermassive star (SMS; >~105Msolar) formation in shocked regions of colliding cold accretion flows near the centers of first galaxies. When the post-shock density is high enough for collisionally exciting H2 rovibrational levels (>~104cm-3), enhanced H2 collisional dissociation suppresses the gas to cool below 8000 K. In this case, the layer fragments into massive clouds (>~105Msolar), which collapse isothermally (~ 8000 K) by the Lyα cooling without subsequent fragmentation. As an outcome, SMSs are expected to form and evolve eventually to seeds of supermassive black holes. By calculating thermal evolution of the shocked gas, we delimit the range of post-shock conditions for the SMS formation. We also find that metal enrichment does not affect the SMS forming condition for <~10-3Zsolar if metals are in the gas phase.

  5. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  6. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

    PubMed

    Zhuang, Lili; Yuan, Xiuyun; Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  7. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia

    PubMed Central

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia. PMID:27499753

  8. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  9. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia.

    PubMed

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia. PMID:27499753

  10. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  11. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. PMID:23831064

  12. Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis.

    PubMed

    Chen, Mingjie; Thelen, Jay J

    2016-09-01

    Membrane fluidity change has long been suggested as the primary mechanism by which, plants adapt to cold stress, but the underlying molecular mechanisms are not completely established. In this study, we found that a knockout of acyl-lipid/CoA desaturase 1 gene (ADS1; EC 1.14.99) enhances freezing tolerance after cold acclimation (CA). Fatty acid composition analysis demonstrated that 18:1 content in ads1 mutant plants was 20% lower than in wild-type (WT) grown at 23°C. Lipidomics revealed that 34C-species of monogalactosyl diacylglycerol (MGDG) content in ads1 mutants were 3.3-14.9% lower than in WT. Lipid positional analysis identified 10% lower 18:1 fatty acid content at the sn-2 position of MGDG. The cytosolic calcium content in ads1 mutant plants was also approximately two-times higher than that of WT in response to cold shock. Each of these biochemical differences between WT and ads1 mutant disappeared after CA. Subcellular localization of C- and N-terminal enhanced-fluorescence-fusion proteins indicated that ADS1 localized exclusively to chloroplasts. These observations suggest that ADS1-mediated alteration of chloroplast membrane fluidity is required to prime a CA response, and is the upstream event of cytosolic calcium signaling. PMID:27062193

  13. Laser Interferometry Measurements of Cold-Sprayed Copper Thermite Shocked to 30 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David

    2015-06-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses varying between 5-30 GPa to determine the Hugoniot and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. Low stress experiments (<20GPa) exhibited a linearly increasing shock speed with increasing particle velocity. However, an obvious change in slope (i.e. a ``kink'') is present in the Hugoniot at stresses above ~ 20 GPa which follow a linear increase up to the highest stresses attained in this work. The change in Hugoniot curve suggests a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa, but an analysis of the measured particle velocity histories does not support this assertion. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above and below 20 GPa.

  14. Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis.

    PubMed

    Hendrickson, Luke; Vlcková, Alexandra; Selstam, Eva; Huner, Norman; Oquist, Gunnar; Hurry, Vaughan

    2006-09-01

    We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl-diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered pigment-protein pools and photosynthetic function equivalent to WT. Surprisingly, this recovery was not correlated with an increase in DGDG. When returned to warm temperatures the severe dgd1 mutant phenotype reappeared. We conclude that the relative recovery of photosynthetic activity at 5 degrees C resulted from a temperature/lipid interaction enabling the stable assembly of PSI complexes in the thylakoid. PMID:16930596

  15. Cold Shock Induction of the cspL Gene in Lactobacillus plantarum Involves Transcriptional Regulation

    PubMed Central

    Derzelle, Sylviane; Hallet, Bernard; Ferain, Thierry; Delcour, Jean; Hols, Pascal

    2002-01-01

    Fragments of the cspL promoter region were fused to the gusA reporter and reintroduced into Lactobacillus plantarum cells, either on multicopy plasmids or through single-copy chromosomal integration. β-Glucuronidase activity and primer extension data demonstrate that the cspL promoter is induced in response to cold shock and that multicopy constructs quench the induction of the resident cspL gene. PMID:12218042

  16. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. PMID:26263516

  17. Spectral characteristics of heart period variability during cold face stress and shock avoidance in normal subjects.

    PubMed

    Friedman, B H; Thayer, J F; Tyrrell, R A

    1996-06-01

    Spectral analysis of heart period variability was used to examine autonomic cardiac control in several tasks used in experimental and clinical assessments of autonomic nervous system function. Cardiovascular measures were recorded in healthy humans during quiet rest, reaction time shock-avoidance, cold face stress, and combined shock-avoidance/cold face stress. Shock-avoidance was characterized by sympathetic beta-adrenergic dominance, as evidenced by (1) shorter heart periods, (2) less high-frequency spectral power, (3) elevated low-frequency power, (4) increased ratios of low- to high-frequency power, and (5) a steep regression line fitted to the log-log plot of the power spectra. Cold face stress yielded (1) longer heart periods, (2) more high-frequency power, (3) decreased low-frequency spectral power, and (4) a flat regression slope, indicating vagal dominance. Quiet rest appeared as mildly vagal, with less total spectral power, and the combination task elicited a mixed vagal-sympathetic pattern. These results are discussed in the context of (1) the autonomic underpinnings of low-frequency power, (2) the autonomic effects of facial cooling, and (3) the utility of spectral analysis of heart period variability during autonomic challenge tasks for basic research and clinical application. PMID:8832123

  18. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection.

    PubMed

    Bechtold, Ulrike; Albihlal, Waleed S; Lawson, Tracy; Fryer, Michael J; Sparrow, Penelope A C; Richard, François; Persad, Ramona; Bowden, Laura; Hickman, Richard; Martin, Cathie; Beynon, Jim L; Buchanan-Wollaston, Vicky; Baker, Neil R; Morison, James I L; Schöffl, Friedrich; Ott, Sascha; Mullineaux, Philip M

    2013-08-01

    Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H₂O₂ signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx. PMID:23828547

  19. A Soybean C2H2-Type Zinc Finger Gene GmZF1 Enhanced Cold Tolerance in Transgenic Arabidopsis

    PubMed Central

    Ma, Xue-Feng; Xu, Zhao-Shi; Liu, Meng-Meng; Shan, Shu-Guang; Cheng, Xian-Guo

    2014-01-01

    Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis. PMID:25286048

  20. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems

    PubMed Central

    Al-Fageeh, Mohamed B.; Smales, C. Mark

    2006-01-01

    Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 °C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock. PMID:16792527

  1. UVH6, a plant homolog of the human/yeast TFIIH transcription factor subunit XPD/RAD3, regulates cold-stress genes in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The UVH6 gene from Arabidopsis thaliana is predicted to function in transcription regulation, based on known activities of its human and yeast homologs. In this study, we show that UVH6-1 mutants are ultra-sensitive to cold and suggest that this defect results from reduced expression of cold-stress...

  2. Source of nitrogen associated with recovery of relative growth rate in Arabidopsis thaliana acclimated to sustained cold treatment.

    PubMed

    Atkinson, Lindsey J; Sherlock, David J; Atkin, Owen K

    2015-06-01

    To determine (1) whether acclimation of carbon metabolism to low temperatures results in recovery of the relative growth rate (RGR) of plants in the cold and (2) the source of N underpinning cold acclimation in Arabidopsis thaliana, we supplied plants with a nutrient solution labelled with (15) N and subjected them to a temperature shift (from 23 to 5 °C). Whole-plant RGR of cold-treated plants was initially less than 30% of that of warm-maintained control plants. After 14 d, new leaves with a cold-acclimated phenotype emerged, with the RGR of cold-treated plants increasing by 50%; there was an associated recovery of root RGR and doubling of the net assimilation rate (NAR). The development of new tissues in the cold was supported initially by re-allocation of internal sources of N. In the longer term, the majority (80%) of N in the new leaves was derived from the external solution. Hence, both the nutrient status of the plant and the current availability of N from external sources are important in determining recovery of growth at low temperature. Collectively, our results reveal that both increased N use efficiency and increases in nitrogen content per se play a role in the recovery of carbon metabolism in the cold. PMID:25291970

  3. Supermassive black hole formation by cold accretion shocks in the first galaxies

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Omukai, Kazuyuki

    2012-05-01

    We propose a new scenario for supermassive star (SMS: >rsim 105 M⊙) formation in shocked regions of colliding cold accretion flows near the centres of the first galaxies. Recent numerical simulations indicate that assembly of a typical first galaxy with virial temperature Tvir≳104 K proceeds via cold and dense flows penetrating deep to the centre, where supersonic streams collide with each other to develop a hot (˜104 K) and dense (˜103 cm-3) shocked gas. The post-shock layer first cools by efficient Lyα emission and contracts isobarically until ≃8000 K. Whether the layer continues its isobaric contraction depends on the density at this moment: if the density is high enough to excite H2 rovibrational levels collisionally (>rsim 104 cm-3), enhanced H2 collisional dissociation suppresses the gas from cooling further. In this case, the layer fragments into massive (>rsim 105 M⊙) clouds, which collapse isothermally (˜8000 K) by Lyα cooling without subsequent fragmentation. As an outcome, SMSs are expected to form and eventually evolve into the seeds of supermassive black holes (SMBHs). By calculating the thermal evolution of the post-shock gas, we delimit the range of post-shock conditions for SMS formation, which can be expressed as T≳6000 K (nH/104 cm-3)-1 for ? and T>rsim 5000 -6000 K for nH≳104 cm-3, depending somewhat on the initial ionization degree. We found that metal enrichment does not affect the above condition for metallicity below ≃10-3 Z⊙ if metals are in the gas phase, while condensation of several per cent of metals into dust decreases this critical value of metallicity by an order of magnitude. Unlike the previously proposed scenario for SMS formation, which postulates extremely strong ultraviolet radiation to quench H2 cooling, our scenario here naturally explains SMBH seed formation in the assembly process of the first galaxies, even without such strong radiation.

  4. Metabolic quenching of Corynebacterium glutamicum: efficiency of methods and impact of cold shock.

    PubMed

    Wellerdiek, Max; Winterhoff, Dajana; Reule, Waldemar; Brandner, Jürgen; Oldiges, Marco

    2009-08-01

    Representative and valid cytoplasmic concentrations are essential for ensuring the significance of results in the field of metabolome analysis. One of the most crucial points in this respect is the sampling itself. A rapid and sudden stopping of the metabolism on a timescale that is much faster than the conversion rates of investigated metabolites is worthwhile. This can be achieved by applying of cold methanol quenching combined with reproducible, fast, and automated sampling. Unfortunately, quenching the metabolism by a sharp temperature shift leads to what is known as cold shock or the cell-leakage effect. In the present work, we applied a microstructure heat exchanger to analyze the cold shock effect using Corynebacterium glutamicum as a model microorganism. Using this apparatus together with a silicon pipe, it was possible to assay the leakage effect on a timescale starting at 1 s after cooling cell suspension. The high turnover rates not only require a rapid quenching technique, but also the correct application. Moreover, we succeeded in showing that even when the required appropriate setup of methanol quenching is not used, the metabolism is not stopped within the required timescale. By applying robust techniques like rapid sampling in combination with reproducible sample processing, we ensured fast and reliable metabolic inactivation during all steps. PMID:19050933

  5. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  6. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana.

    PubMed

    Saur, Isabel M L; Kadota, Yasuhiro; Sklenar, Jan; Holton, Nicholas J; Smakowska, Elwira; Belkhadir, Youssef; Zipfel, Cyril; Rathjen, John P

    2016-03-22

    Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined. PMID:26944079

  7. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    PubMed

    Larrayoz, Ignacio M; Rey-Funes, Manuel; Contartese, Daniela S; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B; Loidl, Cesar F; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  8. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures

    PubMed Central

    Contartese, Daniela S.; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B.; Loidl, Cesar F.; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  9. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max

    SciTech Connect

    Weston, David; Wullschleger, Stan D; Yang, Xiaohan; Karve, Abhijit A; Gunter, Lee E; Jawdy, Sara; Allen, Sara M

    2011-01-01

    The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

  10. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    SciTech Connect

    Ren, Jingshan; Nettleship, Joanne E.; Sainsbury, Sarah; Saunders, Nigel J.; Owens, Raymond J.

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  11. Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process

    NASA Astrophysics Data System (ADS)

    Nickel, R.; Bobzin, K.; Lugscheider, E.; Parkot, D.; Varava, W.; Olivier, H.; Luo, X.

    2007-12-01

    A new method for a combustion-free spraying is studied fundamentally by modeling and simulation in comparison with first experiments. The article focuses on the numerical simulation of the gas-particle nozzle flow, which is generated by the shock reflection at the end wall section of a shock tube. To study the physical fundamentals of this process, at present only a single shot operation is considered. The particles are injected downstream of the nozzle throat into a supersonic nozzle flow. The measurements of the particle velocity made by a laser Doppler anemometry (LDA) set up show that the maximum velocity amounts to 1220 m/s for stainless steel particles of 15 μm diameter. The CFD-Code (Fluent) is first verified by a comparison with available numerical and experimental data for gas and gas-particle flow fields in a long Laval-nozzle. The good agreement implied the great potential of the new dynamic process concept for cold-gas coating applications. Then the flow fields in the short Laval nozzle designed and realized by the Shock Wave Laboratory (SWL) are investigated. The gas flow for experimentally obtained stagnation conditions is simulated. The gas-particle flow without and with the influence of the particles on the gas flow is calculated by the Surface Engineering Institute (IOT) and compared with experiments. The influence of the injection parameters on the particle velocities is investigated, as well.

  12. Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation1[W

    PubMed Central

    Charng, Yee-yung; Liu, Hsiang-chin; Liu, Nai-yu; Hsu, Fu-chiun; Ko, Swee-suak

    2006-01-01

    Plants and animals share similar mechanisms in the heat shock (HS) response, such as synthesis of the conserved HS proteins (Hsps). However, because plants are confined to a growing environment, in general they require unique features to cope with heat stress. Here, we report on the analysis of the function of a novel Hsp, heat-stress-associated 32-kD protein (Hsa32), which is highly conserved in land plants but absent in most other organisms. The gene responds to HS at the transcriptional level in moss (Physcomitrella patens), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa). Like other Hsps, Hsa32 protein accumulates greatly in Arabidopsis seedlings after HS treatment. Disruption of Hsa32 by T-DNA insertion does not affect growth and development under normal conditions. However, the acquired thermotolerance in the knockout line was compromised following a long recovery period (>24 h) after acclimation HS treatment, when a severe HS challenge killed the mutant but not the wild-type plants, but no significant difference was observed if they were challenged within a short recovery period. Quantitative hypocotyl elongation assay also revealed that thermotolerance decayed faster in the absence of Hsa32 after a long recovery. Similar results were obtained in Arabidopsis transgenic plants with Hsa32 expression suppressed by RNA interference. Microarray analysis of the knockout mutant indicates that only the expression of Hsa32 was significantly altered in HS response. Taken together, our results suggest that Hsa32 is required not for induction but rather maintenance of acquired thermotolerance, a feature that could be important to plants. PMID:16500991

  13. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    PubMed

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in

  14. Massive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions.

    PubMed

    Brandi, A; Spurio, R; Gualerzi, C O; Pon, C L

    1999-03-15

    The most characteristic event of cold-shock activation in Escherichia coli is believed to be the de novo synthesis of CspA. We demonstrate, however, that the cellular concentration of this protein is > or = 50 microM during early exponential growth at 37 degrees C; therefore, its designation as a major cold-shock protein is a misnomer. The cspA mRNA level decreases rapidly with increasing cell density, becoming virtually undetectable by mid-to-late exponential growth phase while the CspA level declines, although always remaining clearly detectable. A burst of cspA expression followed by a renewed decline ensues upon dilution of stationary phase cultures with fresh medium. The extent of cold-shock induction of cspA varies as a function of the growth phase, being inversely proportional to the pre-existing level of CspA which suggests feedback autorepression by this protein. Both transcriptional and post-transcriptional controls regulate cspA expression under non-stress conditions; transcription of cspA mRNA is under the antagonistic control of DNA-binding proteins Fis and H-NS both in vivo and in vitro, while its decreased half-life with increasing cell density contributes to its rapid disappearance. The cspA mRNA instability is due to its 5' untranslated leader and is counteracted in vivo by the cold-shock DeaD box RNA helicase (CsdA). PMID:10075935

  15. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes.

    PubMed

    Seveso, Davide; Montano, Simone; Strona, Giovanni; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2016-08-01

    Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes. PMID:27183199

  16. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress

    PubMed Central

    Kanshin, Evgeny; Kubiniok, Peter; Thattikota, Yogitha; D'Amours, Damien; Thibault, Pierre

    2015-01-01

    The ability of cells and organisms to survive and function through changes in temperature evolved from their specific adaptations to nonoptimal growth conditions. Responses to elevated temperatures have been studied in yeast and other model organisms using transcriptome profiling and provided valuable biological insights on molecular mechanisms involved in stress tolerance and adaptation to adverse environment. In contrast, little is known about rapid signaling events associated with changes in temperature. To gain a better understanding of global changes in protein phosphorylation in response to heat and cold, we developed a high temporal resolution phosphoproteomics protocol to study cell signaling in Saccharomyces cerevisiae. The method allowed for quantitative analysis of phosphodynamics on 2,777 phosphosites from 1,228 proteins. The correlation of kinetic profiles between kinases and their substrates provided a predictive tool to identify new putative substrates for kinases such as Cdc28 and PKA. Cell cycle analyses revealed that the increased phosphorylation of Cdc28 at its inhibitory site Y19 during heat shock is an adaptive response that delays cell cycle progression under stress conditions. The cellular responses to heat and cold were associated with extensive changes in phosphorylation on proteins implicated in transcription, protein folding and degradation, cell cycle regulation and morphogenesis. PMID:26040289

  17. Cold shock induces apoptosis of dorsal root ganglion neurons plated on infrared windows.

    PubMed

    Aboualizadeh, Ebrahim; Mattson, Eric C; O'Hara, Crystal L; Smith, Amanda K; Stucky, Cheryl L; Hirschmugl, Carol J

    2015-06-21

    The chemical status of live sensory neurons is accessible with infrared microspectroscopy of appropriately prepared cells. In this paper, individual dorsal root ganglion (DRG) neurons have been prepared with two different protocols, and plated on glass cover slips, BaF2 and CaF2 substrates. The first protocol exposes the intact DRGs to 4 °C for between 20-30 minutes before dissociating individual neurons and plating 2 hours later. The second protocol maintains the neurons at 23 °C for the entire duration of the sample preparation. The visual appearance of the neurons is similar. The viability was assessed by means of trypan blue exclusion method to determine the viability of the neurons. The neurons prepared under the first protocol (cold exposure) and plated on BaF2 reveal a distinct chemical signature and chemical distribution that is different from the other sample preparations described in the paper. Importantly, results for other sample preparation methods, using various substrates and temperature protocols, when compared across the overlapping spectral bandwidth, present normal chemical distribution within the neurons. The unusual chemically specific spatial variation is dominated by a lack of protein and carbohydrates in the center of the neurons and signatures of unraveling DNA are detected. We suggest that cold shock leads to apoptosis of DRGs, followed by osmotic stress originating from ion gradients across the cell membrane leading to cell lysis. PMID:26000346

  18. Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases.

    PubMed

    Behrens, Christoph J; Zelena, Kateryna; Berger, Ralf G

    2016-08-01

    Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices. PMID:27106285

  19. Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli

    PubMed Central

    Di Pietro, Fabio; Brandi, Anna; Dzeladini, Nadire; Fabbretti, Attilio; Carzaniga, Thomas; Piersimoni, Lolita; Pon, Cynthia L; Giuliodori, Anna Maria

    2013-01-01

    Protein Y (PY) is an Escherichia coli cold-shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA, the gene encoding protein PY, demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNAs and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNAs during cold shock. PMID:23420694

  20. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    PubMed

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  1. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  2. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.

    PubMed

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called 'thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6-HSP21 control module for thermomemory in plants. PMID:27561243

  3. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis

    PubMed Central

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. PMID:27561243

  4. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis.

    PubMed

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-04-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  5. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis

    PubMed Central

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M.; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-01-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  6. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  7. Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis.

    PubMed

    Ma, Jun; Wang, Dinghe; She, Jessica; Li, Jianming; Zhu, Jian-Kang; She, Yi-Min

    2016-10-01

    N-glycosylation has a great impact on glycoprotein structure, conformation, stability, solubility, immunogenicity and enzyme activity. Structural characterization of N-glycoproteome has been challenging but can provide insights into the extent of protein folding and surface topology. We describe a highly sensitive proteomics method for large-scale identification and quantification of glycoproteins in Arabidopsis through (15) N-metabolic labeling, selective enrichment of glycopeptides, data-dependent MS/MS analysis and automated database searching. In-house databases of Arabidopsis glycoproteins and glycopeptides containing Asn-X-Ser/Thr/Cys motifs were constructed by reducing 20% and 90% of the public database size, respectively, to enable a rapid analysis of large datasets for comprehensive identification and quantification of glycoproteins and heterogeneous N-glycans in a complex mixture. Proteome-wide analysis identified c. 100 stress-related N-glycoproteins, of which the endoplasmic reticulum (ER) resident proteins were examined to be up-regulated. Quantitative measurements provided a molecular signature specific to glycoproteins for determining the degree of plant stress at low temperature. Structural N-glycoproteomics following time-course cold treatments revealed the stress-responsive degradation of high-mannose type N-glycans in ER in response to chilling stress, which may aid in elucidating the cellular mechanisms of protein relocation, transport, trafficking, misfolding and degradation under stress conditions. PMID:27558752

  8. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells.

    PubMed

    Vaultier, Marie-Noëlle; Cantrel, Catherine; Vergnolle, Chantal; Justin, Anne-Marie; Demandre, Chantal; Benhassaine-Kesri, Ghouziel; Ciçek, Dominique; Zachowski, Alain; Ruelland, Eric

    2006-07-24

    Membrane rigidification could be the first step of cold perception in poikilotherms. We have investigated its implication in diacylglycerol kinase (DAGK) activation by cold stress in suspension cells from Arabidopsis mutants altered in desaturase activities. By lateral diffusion assay, we showed that plasma membrane rigidification with temperature decrease was steeper in cells deficient in oleate desaturase than in wild type cells and in cells overexpressing linoleate desaturase. The threshold for the activation of the DAGK pathway in each type of cells correlated with this order of rigidification rate, suggesting that cold induced-membrane rigidification is upstream of DAGK pathway activation. PMID:16839551

  9. Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis.

    PubMed

    Sham, Arjun; Al-Azzawi, Ahmed; Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2014-01-01

    Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic

  10. Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis

    PubMed Central

    Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2014-01-01

    Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic

  11. Shock

    MedlinePlus

    ... Emergencies A-Z Share this! Home » Emergency 101 Shock Shock is a serious, often life-threatening medical condition ... of death for critically ill or injured people. Shock results when the body is not getting enough ...

  12. Shock

    MedlinePlus

    ... problems) Hypovolemic shock (caused by too little blood volume) Anaphylactic shock (caused by allergic reaction) Septic shock ( ... as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in ...

  13. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  14. HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis.

    PubMed

    Chen, Chin-Chung; Liang, Ching-Shin; Kao, Ai-Ling; Yang, Chien-Chih

    2010-07-01

    Heptahelical protein 1 (HHP1) is a negative regulator in abscisic acid (ABA) and osmotic signalling in Arabidopsis. The physiological role of HHP1 was further investigated in this study using transgenic and knock-out plants. In HHP1::GUS transgenic mutants, GUS activity was found to be mainly expressed in the roots, vasculature, stomata, hydathodes, adhesion zones, and connection sites between septa and seeds, regions in which the regulation of turgor pressure is crucial. By measuring transpiration rate and stomatal closure, it was shown that the guard cells in the hhp1-1 mutant had a decreased sensitivity to drought and ABA stress compared with the WT or the c-hhp1-1 mutant, a complementation mutant of HHP1 expressing the HHP1 gene. The N-terminal fragment (amino acids 1-96) of HHP1 was found to interact with the transcription factor inducer of CBF expression-1 (ICE1) in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) studies. The hhp1-1 mutant grown in soil showed hypersensitivity to cold stress with limited watering. The expression of two ICE1-regulated genes (CBF3 and MYB15) and several other cold stress-responsive genes (RD29A, KIN1, COR15A, and COR47) was less sensitive to cold stress in the hhp1-1 mutant than in the WT. These data suggest that HHP1 may function in the cross-talk between cold and osmotic signalling. PMID:20566565

  15. Heat Stress- and Heat Shock Transcription Factor-Dependent Expression and Activity of Ascorbate Peroxidase in Arabidopsis1

    PubMed Central

    Panchuk, Irina I.; Volkov, Roman A.; Schöffl, Friedrich

    2002-01-01

    To find evidence for a connection between heat stress response, oxidative stress, and common stress tolerance, we studied the effects of elevated growth temperatures and heat stress on the activity and expression of ascorbate peroxidase (APX). We compared wild-type Arabidopsis with transgenic plants overexpressing heat shock transcription factor 3 (HSF3), which synthesize heat shock proteins and are improved in basal thermotolerance. Following heat stress, APX activity was positively affected in transgenic plants and correlated with a new thermostable isoform, APXS. This enzyme was present in addition to thermolabile cytosolic APX1, the prevalent isoform in unstressed cells. In HSF3-transgenic plants, APXS activity was detectable at normal temperature and persisted after severe heat stress at 44°C. In nontransgenic plants, APXS was undetectable at normal temperature, but could be induced by moderate heat stress. The mRNA expression profiles of known and three new Apx genes were determined using real-time PCR. Apx1 and Apx2 genes encoding cytosolic APX were heat stress and HSF dependently expressed, but only the representations of Apx2 mRNA met the criteria that suggest identity between APXS and APX2: not expressed at normal temperature in wild type, strong induction by heat stress, and HSF3-dependent expression in transgenic plants. Our data suggest that Apx2 is a novel heat shock gene and that the enzymatic activity of APX2/APXS is required to compensate heat stress-dependent decline of APX1 activity in the cytosol. The functional roles of modulations of APX expression and the interdependence of heat stress and oxidative stress response and signaling mechanisms are discussed. PMID:12068123

  16. Use of Serial Analysis of Gene Expression Technology to Reveal Changes in Gene Expression in Arabidopsis Pollen Undergoing Cold Stress1[w

    PubMed Central

    Lee, Ji-Yeon; Lee, Dong-Hee

    2003-01-01

    We have characterized the global gene expression patterns of Arabidopsis pollen using Serial Analysis of Gene Expression (SAGE). A total of 21,237 SAGE tags were sequenced and 4,211 unique tags were identified. Interestingly, the number of unique tags in pollen was low compared with the SAGE library of the leaf constructed on a similar scale. The transcript profiles of pollen reflect accurately the characteristics of pollen as a reproductive organ. Functional classification of the expressed genes reveals that those involved in cellular biogenesis such as polygalacturonase, pectate lyase, and pectin methylesterase make up more than 40% of the total transcripts. However, genes involved in energy and protein synthesis, which are prevalent in leaves, were expressed at a relatively low level. The expression level of the great majority of transcripts was unaffected by cold treatment at 0°C for 72 h, whereas pollen tube growth and seed production were substantially reduced. Interestingly, many genes thought to be responsible for cold acclimation such as COR, lipid transfer protein, and β-amylase, that are highly induced in Arabidopsis leaves, were only expressed at their normal level or weakly induced in the pollen. The expression patterns of the cold-responsive transcripts identified by SAGE were confirmed by microarray analysis. Our results strongly suggest that poor accumulation of proteins that play a role in stress tolerance may be why Arabidopsis pollen is cold sensitive. PMID:12805584

  17. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis.

    PubMed

    Ding, Z T; Li, C; Shi, H; Wang, H; Wang, Y

    2015-01-01

    CsICE1 is thought to be involved in hardiness resistance of tea plants. Using seedling cuttings of biennial Wuniuzao in this study, the pattern of CsICE1 expression under cold temperature (4°, -5°C), drought [20% polyethylene glycol 6000 (PEG-6000)], and plant hormone [200 mg/L abscisic acid (ABA), 1 mg/L brassinolide (BR)] treatment was studied by real-time quantitative PCR. Additionally, stress resistance, such as the freezing resistance of CsICE1, was studied using Arabidopsis lines transformed with sense or anti-sense CsICE1 via Agrobacterium tumefaciens infection. Our results showed that CsICE1 mRNA could be induced under -5°C, PEG, ABA, or BR treatment, although the pattern of expression differed for all treatments. Compared to wild type (WT) and anti-sense ICE1 transgenic lines, sense lines displayed higher relative germination rates under salt and drought stress. After freezing treatment, the sense transgenic lines over-expressing CsICE1 showed a higher survival rate, increased levels of proline, and decreased levels of malonaldehyde. Conversely, compared with WT, anti-sense ICE1 transgenic lines had lower proline levels and higher malonaldehyde levels under freezing conditions. Our study indicates that CsICE1 is an important anti-freezing gene and that over-expression of CsICE1 can improve cold resistance and enhance salt and drought tolerance of transgenic lines. PMID:26400357

  18. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster)

    PubMed Central

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990

  19. A Putative Arabidopsis Nucleoporin, AtNUP160, Is Critical for RNA Export and Required for Plant Tolerance to Cold Stress▿ †

    PubMed Central

    Dong, Chun-Hai; Hu, Xiangyang; Tang, Weiping; Zheng, Xianwu; Kim, Yong Sig; Lee, Byeong-ha; Zhu, Jian-Kang

    2006-01-01

    To study the genetic control of plant responses to cold stress, Arabidopsis thaliana mutants were isolated by a screen for mutations that impair cold-induced transcription of the CBF3-LUC reporter gene. We report here the characterization and cloning of a mutated gene, atnup160-1, which causes reduced CBF3-LUC induction under cold stress. atnup160-1 mutant plants display altered cold-responsive gene expression and are sensitive to chilling stress and defective in acquired freezing tolerance. AtNUP160 was isolated through positional cloning and shown to encode a putative homolog of the animal nucleoporin Nup160. In addition to the impaired expression of CBF genes, microarray analysis revealed that a number of other genes important for plant cold tolerance were also affected in the mutants. The atnup160 mutants flower early and show retarded seedling growth, especially at low temperatures. AtNUP160 protein is localized at the nuclear rim, and poly(A)-mRNA in situ hybridization shows that mRNA export is defective in the atnup160-1 mutant plants. Our study suggests that Arabidopsis AtNUP160 is critical for the nucleocytoplasmic transport of mRNAs and that it plays important roles in plant growth and flowering time regulation and is required for cold stress tolerance. PMID:17030626

  20. Cold shock domain proteins repress transcription from the GM-CSF promoter.

    PubMed Central

    Coles, L S; Diamond, P; Occhiodoro, F; Vadas, M A; Shannon, M F

    1996-01-01

    The human granulocyte-macrophage colony stimulating factor (GM-CSF) gene promoter binds a sequence-specific single-strand DNA binding protein termed NF-GMb. We previously demonstrated that the NF-GMb binding sites were required for repression of tumor necrosis factor-alpha (TNF-alpha) induction of the proximal GM-CSF promoter sequences in fibroblasts. We now describe the isolation of two different cDNA clones that encode cold shock domain (CSD) proteins with NF-GMb binding characteristics. One is identical to the previously reported CSD protein dbpB and the other is a previously unreported variant of the dbpA CSD factor. This is the first report of CSD factors binding to a cytokine gene. Nuclear NF-GMb and expressed CSD proteins have the same binding specificity for the GM-CSF promoter and other CSD binding sites. We present evidence that CSD factors are components of the nuclear NF-GMb complex. We also demonstrate that overexpression of the CSD proteins leads to complete repression of the proximal GM-CSF promoter containing the NF-GMb/CSD binding sites. Surprisingly, we show that CSD overexpression can also directly repress a region of the promoter which apparently lacks NF-GMb/CSD binding sites. NF-GMb/CSD factors may hence be acting by two different mechanisms. We discuss the potential importance of CSD factors in maintaining strict regulation of the GM-CSF gene. PMID:8710501

  1. Up-regulation of heat shock proteins is essential for cold survival during insect diapause

    PubMed Central

    Rinehart, Joseph P.; Li, Aiqing; Yocum, George D.; Robich, Rebecca M.; Hayward, Scott A. L.; Denlinger, David L.

    2007-01-01

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects. PMID:17522254

  2. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. PMID:27524241

  3. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock

    PubMed Central

    2015-01-01

    Background The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. Results We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Conclusions Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms. PMID:26694630

  4. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions.

    PubMed

    Suh, Ji Yeon; Kim, Woo Taek

    2015-08-01

    Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis. PMID:26086094

  5. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis.

    PubMed

    Artlip, Timothy S; Wisniewski, Michael E; Takatsuji, Hiroshi; Bassett, Carole L

    2016-08-01

    Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage. PMID:26806544

  6. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.

    PubMed

    Savitch, L V; Barker-Astrom, J; Ivanov, A G; Hurry, V; Oquist, G; Huner, N P; Gardeström, P

    2001-12-01

    The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold

  7. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization. PMID:26808446

  8. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing temperatures during winter generally do not injure floral buds of horticulturally important crops. Entry into dormancy coupled with cold acclimation provides adequate protection unless the temperatures are exceptionally low. This measure of protection is lost in spring when the floral bud...

  9. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-06-01

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  10. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  11. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins.

    PubMed

    Wouters, J A; Frenkiel, H; de Vos, W M; Kuipers, O P; Abee, T

    2001-11-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000 Delta AB lacks the tandemly orientated cspA and cspB genes, and NZ9000 Delta ABE lacks cspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of the cspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756-3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10 degrees C was significantly reduced in strain NZ9000 Delta ABE but not in strain NZ9000 Delta AB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection. PMID:11679342

  12. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis.

    PubMed

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  13. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  14. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response.

    PubMed

    Monedero, Vicente; Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Beaufils, Sophie; Hartke, Axel; Deutscher, Josef

    2007-01-01

    Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P~EIIB-dependent phosphorylation regulates induction of the corresponding genes and P~His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-beta-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response. PMID:17183208

  15. Computational and Experimental Investigation of the Shock Compression Response of Cold-Rolled Ni/Al Multilayers

    NASA Astrophysics Data System (ADS)

    Specht, Paul; Thadhani, Naresh; Weihs, Timothy

    2013-06-01

    Heterogeneities at the meso-scale strongly influence the shock compression response of composite materials. In reactive material mixtures, such as Ni and Al, these heterogeneities greatly affect material mixing, heating, and activation, often initiating a reaction. Cold-rolled multilayered composites of Ni and Al provide a unique and potentially beneficial reactive material system, due to their full density, periodic layering, and intimate particle contacts. The shock-compression response of cold-rolled Ni/Al multilayers was investigated under uniaxial strain loading conditions using plate-impact experiments. Time-resolved diagnostics, including VISAR, PDV, and PVDF stress gauges, were used to obtain the equilibrium Hugoniot response of the multilayers. The experimental results were coupled with a computational investigation using the multi-material, finite-volume, Eulerian hydrocode CTH, developed by Sandia National Laboratories. The computations employed real, heterogeneous microstructures, obtained from optical microscopy, enabling their correlation with the experimental results to provide validation of the models and computational method used for describing the response of the cold-rolled Ni/Al multilayers. Research funded by ONR/MURI grant No. N00014-07-1-0740.

  16. The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates FLOWERING LOCUS C Transcription via Chromatin Remodeling under Short-Term Cold Stress in Arabidopsis[C][W

    PubMed Central

    Jung, Jae-Hoon; Park, Ju-Hyung; Lee, Sangmin; To, Taiko Kim; Kim, Jong-Myong; Seki, Motoaki; Park, Chung-Mo

    2013-01-01

    Exposure to short-term cold stress delays flowering by activating the floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis thaliana. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) negatively regulates cold responses. Notably, HOS1-deficient mutants exhibit early flowering, and FLC expression is suppressed in the mutants. However, it remains unknown how HOS1 regulates FLC expression. Here, we show that HOS1 induces FLC expression by antagonizing the actions of FVE and its interacting partner histone deacetylase 6 (HDA6) under short-term cold stress. HOS1 binds to FLC chromatin in an FVE-dependent manner, and FVE is essential for the HOS1-mediated activation of FLC transcription. HOS1 also interacts with HDA6 and inhibits the binding of HDA6 to FLC chromatin. Intermittent cold treatments induce FLC expression by activating HOS1, which attenuates the activity of HDA6 in silencing FLC chromatin, and the effects of intermittent cold are diminished in hos1 and fve mutants. These observations indicate that HOS1 acts as a chromatin remodeling factor for FLC regulation under short-term cold stress. PMID:24220632

  17. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis.

    PubMed

    Catala, Rafael; Santos, Elisa; Alonso, Jose M; Ecker, Joseph R; Martinez-Zapater, Jose M; Salinas, Julio

    2003-12-01

    Transient increases in cytosolic free calcium concentration ([Ca2+]cyt) are essential for plant responses to a variety of environmental stimuli, including low temperature. Subsequent reestablishment of [Ca2+]cyt to resting levels by Ca2+ pumps and antiporters is required for the correct transduction of the signal [corrected]. C-repeat binding factor/dehydration responsive element binding factor 1 (Ca2+/H+) antiporters is required for the correct transduction of the signal. We have isolated a cDNA from Arabidopsis that corresponds to a new cold-inducible gene, rare cold inducible4 (RCI4), which was identical to calcium exchanger 1 (CAX1), a gene that encodes a vacuolar Ca2+/H+ antiporter involved in the regulation of intracellular Ca2+ levels. The expression of CAX1 was induced in response to low temperature through an abscisic acid-independent pathway. To determine the function of CAX1 in Arabidopsis stress tolerance, we identified two T-DNA insertion mutants, cax1-3 and cax1-4, that display reduced tonoplast Ca2+/H+ antiport activity. The mutants showed no significant differences with respect to the wild type when analyzed for dehydration, high-salt, chilling, or constitutive freezing tolerance. However, they exhibited increased freezing tolerance after cold acclimation, demonstrating that CAX1 plays an important role in this adaptive response. This phenotype correlates with the enhanced expression of CBF/DREB1 genes and their corresponding targets in response to low temperature. Our results indicate that CAX1 ensures the accurate development of the cold-acclimation response in Arabidopsis by controlling the induction of CBF/DREB1 and downstream genes. PMID:14630965

  18. Leaves of the Arabidopsis maltose exporter1 Mutant Exhibit a Metabolic Profile with Features of Cold Acclimation in the Warm

    PubMed Central

    Purdy, Sarah J.; Bussell, John D.; Nunn, Christopher P.; Smith, Steven M.

    2013-01-01

    Background Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. Principal Findings Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. Conclusions The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation. PMID:24223944

  19. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct.

    PubMed

    Wunderlich, Markus; Werr, Wolfgang; Schöffl, Friedrich

    2003-08-01

    Upon heat stress, heat shock factors (HSFs) control the expression of heat shock protein (HSP) genes by transcriptional activation. The perplexing multiplicity of HSF genes in Arabidopsis- 21 potential genes have been identified - renders it difficult to identify mutant phenotypes. In this study, we have attempted to generate a transdominant-negative mutant of HSF by transgenic expression of a protein fusion construct, EN-HSF1, consisting of the Drosophila engrailed repressor domain (EN) and the complete Arabidopsis AtHSF1. Transgenic lines were screened for impaired ability to induce high levels of low-molecular-weight heat shock proteins (sHSPs). Two lines, EH14-6 and EH16-3, which showed quantitative differences in the expression of EN-HSF1, were further analysed for induction of thermotolerance and heat-stress-dependent mRNAs of a number of different HSF target genes encoding different HSP and HSF. The mRNA levels of all genes tested were moderately downregulated in EH14-6 but strongly reduced in EH16-3 plants compared to wild-type (Wt) and HSF1-overexpressing control plants. The inhibition of the induction of heat shock response correlated with impaired basal and acquired thermotolerance of the EH16-3 line. The kinetics of HSP expression suggest that the negative effect of EN-HSF1 is stronger in the early phase of the heat shock response, and that the reduction in mRNA levels is partially compensated at the translational level. PMID:12904207

  20. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    PubMed

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  1. Cold Shock Proteins of Lactococcus lactis MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins

    PubMed Central

    Wouters, Jeroen A.; Frenkiel, Hélène; de Vos, Willem M.; Kuipers, Oscar P.; Abee, Tjakko

    2001-01-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000ΔAB lacks the tandemly orientated cspA and cspB genes, and NZ9000ΔABE lacks cspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of the cspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756–3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10°C was significantly reduced in strain NZ9000ΔABE but not in strain NZ9000ΔAB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection. PMID:11679342

  2. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  3. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    PubMed Central

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  4. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  5. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.

    PubMed

    Lv, Yan; Guo, Zilong; Li, Xiaokai; Ye, Haiyan; Li, Xianghua; Xiong, Lizhong

    2016-03-01

    In order to understand cold adaptability and explore additional genetic resources for the cold tolerance improvement of rice, we investigated the genetic variation of 529 rice accessions under natural chilling and cold shock stress conditions at the seedling stage using genome-wide association studies; a total of 132 loci were identified. Among them, 12 loci were common for both chilling and cold shock tolerance, suggesting that rice has a distinct and overlapping genetic response and adaptation to the two stresses. Haplotype analysis of a known gene OsMYB2, which is involved in cold tolerance, revealed indica-japonica differentiation and latitude tendency for the haplotypes of this gene. By checking the subpopulation and geographical distribution of accessions with tolerance or sensitivity under these two stress conditions, we found that the chilling tolerance group, which mainly consisted of japonica accessions, has a wider latitudinal distribution than the chilling sensitivity group. We conclude that the genetic basis of natural chilling stress tolerance in rice is distinct from that of cold shock stress frequently used for low-temperature treatment in the laboratory and the cold adaptability of rice is associated with the subpopulation and latitudinal distribution. PMID:26381647

  6. Effect of a cold shock on the activity and composition of the communities of ammonium-oxidizing microorganisms in a chestnut soil

    NASA Astrophysics Data System (ADS)

    Cherobaeva, A. S.; Stepanov, A. L.; Kravchenko, I. K.

    2012-05-01

    The simulation of a cold shock was performed in an incubation experiment with soil microcosms by a sharp decrease of the temperature to negative values and the subsequent analysis of the nitrification rate of the ammonium-oxidizing microorganisms. Three procedures of the cold shock effect were selected: long, short-time, and cyclic. A significant decrease of the nitrifying activity was recorded after the long effect, whereas the 8-, 16-, and 24-hour cold shocks did not affect the intensity of nitrification. A cyclic temperature decrease alternating with periods of incubation under high temperatures also did not affect the nitrifying activity of the microorganisms. We suppose that the domination of mesophilic microorganisms with a resistant enzyme system or of psychrophilic and psychrotolerant microorganisms contributes to the preservation of a high nitrification level in soils with frequent alternations of high and low temperatures.

  7. Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy).

    PubMed

    Bernabò, Paola; Rebecchi, Lorena; Jousson, Olivier; Martínez-Guitarte, Jose Luis; Lencioni, Valeria

    2011-07-01

    To better understand the physiological capability of cold-stenothermal organisms to survive high-temperature stress, we analyzed the thermotolerance limits and the expression level of hsp70 genes under temperature stress in the alpine midge Pseudodiamesa branickii (Diptera Chironomidae). A lethal temperature (LT(100)) of 36°C and a lethal temperature 50% (LT(50)) of 32.2°C were found for the cold-stenothermal larvae after short-term shocks (1 h). Additional experiments revealed that the duration of the exposure negatively influenced survival, whereas a prior exposure to a less severe high temperature generated an increase in survival. To investigate the molecular basis of this high thermotolerance, the expression of the hsp70 gene family was surveyed via semi-quantitative reverse transcription-polymerase chain reaction analysis in treated larvae. The constitutive (hsc70) and inducible (hsp70) forms were both analyzed. Larvae of P. branickii showed a significant up-regulation of inducible hsp70 gene with increasing temperatures and an over-expression of both hsp70 and hsc70 by increasing the time of exposure. Different from that was shown in many cold-stenothermal Antarctic organisms, P. branickii was able to activate hsp70 genes transcription (equal to heat shock response) in response to thermal stress. Finally, the unclear relationship between hsp70 expression and survival led us to surmise that genes other than hsp70 and other processes apart from the biochemical processes might generate the high thermaltolerance of P. branickii larvae. These results and future high-throughput studies at both the transcriptome and proteome level will improve our ability to predict the future geographic distribution of this species within the context of global warming. PMID:21188662

  8. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress

    PubMed Central

    Jung, Young Jun; Melencion, Sarah Mae Boyles; Lee, Eun Seon; Park, Joung Hun; Alinapon, Cresilda Vergara; Oh, Hun Taek; Yun, Dae-Jin; Chi, Yong Hun; Lee, Sang Yeol

    2015-01-01

    Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function. PMID:26734042

  9. Tryptophan Transport in Neurospora crassa: a Tryptophan-Binding Protein Released by Cold Osmotic Shock

    PubMed Central

    Wiley, W. R.

    1970-01-01

    Osmotic shock treatment of germinated conidia of Neurospora reduced the capacity for tryptophan transport in these cells approximately 90% without an appreciable loss of cell viability. Tryptophan-binding proteins and alkaline phosphatase were consistently released into the osmotic shock fluid by this treatment. Four lines of evidence suggest that the binding protein may be related to the tryptophan transport system. (i) It appears to be located on or near the cell surface. (ii) a decreased capacity for binding tryptophan was observed in shock fluids from cells repressed for tryptophan uptake; reduced or altered binding capacity was released from a transport-negative mutant. (iii) The specificity of tryptophan binding was similar to that observed in the in vivo transport system. (iv) The dissociation constant for binding, as measured by equilibrium dialysis, was approximately the same as the Km for tryptophan transport. PMID:5474881

  10. Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis.

    PubMed

    Zhou, Yanli; Cheng, Ying; Yang, Yunqiang; Li, Xiong; Supriyo, Basak; Sun, Xudong; Yang, Yongping

    2016-09-01

    The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants. PMID:27393148

  11. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations.

    PubMed

    Stormo, S K; Praebel, K; Elvevoll, E O

    2009-09-01

    Third-stage larvae of Pseudoterranova decipiens commonly infect whitefish such as cod, and the parasite can be transferred to humans through lightly prepared (sushi) meals. Because little is known about the nematode's cold tolerance capacity, we examined the nematode's ability to supercool, and whether or not cold acclimation could induce physiological changes that might increase its ability to tolerate freezing conditions. Even if third-stage Pseudoterranova decipiens larvae have some supercooling ability, they show no potential for freezing avoidance because they are not able to withstand inoculative freezing. Still, they have the ability to survive freezing at high subzero temperatures, something which suggests that these nematodes have a moderate freeze tolerance. We also show that acclimation to high temperatures triggers trehalose accumulation to an even greater extent than cold acclimation. Trehalose is a potential cryoprotectant which has been shown to play a vital role in the freeze tolerance of nematodes. We suggest that the trehalose accumulation observed for the cold acclimation is a general response to thermal stress, and that the nematode's moderate freeze tolerance may be acquired through adaptation to heat rather than coldness. PMID:19627634

  12. Upregulation of Heat Shock Proteins is Essential for Cold Survival during Insect Diapause

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly most, but not all, of the fly’s heat shock proteins (Hsps) are upregulated. The diapause upregulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TC...

  13. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.

    PubMed

    Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi

    2016-05-01

    Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. PMID:27012548

  14. Consensus by Democracy. Using Meta-Analyses of Microarray and Genomic Data to Model the Cold Acclimation Signaling Pathway in Arabidopsis1[W

    PubMed Central

    Benedict, Catherine; Geisler, Matt; Trygg, Johan; Huner, Norman; Hurry, Vaughan

    2006-01-01

    The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (−1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing. PMID:16896234

  15. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.

    PubMed

    Benedict, Catherine; Geisler, Matt; Trygg, Johan; Huner, Norman; Hurry, Vaughan

    2006-08-01

    The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (-1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing. PMID:16896234

  16. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors

    PubMed Central

    Chawade, Aakash; Bräutigam, Marcus; Lindlöf, Angelica; Olsson, Olof; Olsson, Björn

    2007-01-01

    Background With the advent of microarray technology, it has become feasible to identify virtually all genes in an organism that are induced by developmental or environmental changes. However, relying solely on gene expression data may be of limited value if the aim is to infer the underlying genetic networks. Development of computational methods to combine microarray data with other information sources is therefore necessary. Here we describe one such method. Results By means of our method, previously published Arabidopsis microarray data from cold acclimated plants at six different time points, promoter motif sequence data extracted from ~24,000 Arabidopsis promoters and known transcription factor binding sites were combined to construct a putative genetic regulatory interaction network. The inferred network includes both previously characterised and hitherto un-described regulatory interactions between transcription factor (TF) genes and genes that encode other TFs or other proteins. Part of the obtained transcription factor regulatory network is presented here. More detailed information is available in the additional files. Conclusion The rule-based method described here can be used to infer genetic networks by combining data from microarrays, promoter sequences and known promoter binding sites. This method should in principle be applicable to any biological system. We tested the method on the cold acclimation process in Arabidopsis and could identify a more complex putative genetic regulatory network than previously described. However, it should be noted that information on specific binding sites for individual TFs were in most cases not available. Thus, gene targets for the entire TF gene families were predicted. In addition, the networks were built solely by a bioinformatics approach and experimental verifications will be necessary for their final validation. On the other hand, since our method highlights putative novel interactions, more directed experiments

  17. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy. PMID:25441032

  18. Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures†

    PubMed Central

    Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.

    1999-01-01

    Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205

  19. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis

    PubMed Central

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  20. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis.

    PubMed

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  1. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions.

    PubMed

    Sakamoto, Hideki; Maruyama, Kyonoshin; Sakuma, Yoh; Meshi, Tetsuo; Iwabuchi, Masaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2004-09-01

    ZPT2-related proteins that have two canonical Cys-2/His-2-type zinc-finger motifs in their molecules are members of a family of plant transcription factors. To characterize the role of this type of protein, we analyzed the function of Arabidopsis L. Heynh. genes encoding four different ZPT2-related proteins (AZF1, AZF2, AZF3, and STZ). Gel-shift analysis showed that the AZFs and STZ bind to A(G/C)T repeats within an EP2 sequence, known as a target sequence of some petunia (Petunia hybrida) ZPT2 proteins. Transient expression analysis using synthetic green fluorescent protein fusion genes indicated that the AZFs and STZ are preferentially localized to the nucleus. These four ZPT2-related proteins were shown to act as transcriptional repressors that down-regulate the transactivation activity of other transcription factors. RNA gel-blot analysis showed that expression of AZF2 and STZ was strongly induced by dehydration, high-salt and cold stresses, and abscisic acid treatment. Histochemical analysis of beta-glucuronidase activities driven by the AZF2 or STZ promoters revealed that both genes are induced in leaves rather than roots of rosette plants by the stresses. Transgenic Arabidopsis overexpressing STZ showed growth retardation and tolerance to drought stress. These results suggest that AZF2 and STZ function as transcriptional repressors to increase stress tolerance following growth retardation. PMID:15333755

  2. Interrelated Effects of Cold Shock and Osmotic Pressure on the Permeability of the Escherichia coli Membrane to Permease Accumulated Substrates1

    PubMed Central

    Leder, Irwin G.

    1972-01-01

    Permease studies are generally carried out by incubating cells in growth medium with labeled substrate, collecting the cells on microporous membrane filters, and washing them free from extracellular radioactivity with ice-cold medium. Studies of thiomethylgalactoside, valine, and galactose accumulation indicate that in several strains of Escherichia coli the bacterial membrane is exquisitely sensitive to isosmotic cold shock. Substrate pools formed at 25 C may suffer almost total loss if the cells are rapidly chilled to approximately 0 C during sampling. In glycerol-grown cells, this rapid efflux of substrate is prevented or minimized if the cells are subjected at the moment of cold shock to a simultaneous hyperosmotic transition. Because of this protective effect, the apparent size of a permease accumulated substrate pool is extremely sensitive to the osmotic composition of the incubation medium and may appear to be increased as much as 10-fold when the osmolarity is reduced from approximately 0.3 to 0.1 osmolar. These differences vanish when sampling and washing are carried out with medium at room temperature. It is suggested that isosmotic cold shock causes crystallization of the liquid-like lipids within the membrane. The hydrophilic channels created in this process would facilitate the rapid efflux of permease accumulated substrates. The imposition of a simultaneous hyperosmotic transition by dehydrating the cell periphery would cause increased lipid interaction, thus preserving the integrity of the cells membrane. PMID:4591477

  3. "Shocking" masculinity: Stanley Milgram, "obedience to authority," and the "crisis of manhood" in Cold War America.

    PubMed

    Nicholson, Ian

    2011-06-01

    Stanley Milgram's study of "obedience to authority" is one of the best-known psychological experiments of the twentieth century. This essay examines the study's special charisma through a detailed consideration of the intellectual, cultural, and gender contexts of Cold War America. It suggests that Milgram presented not a "timeless" experiment on "human nature" but, rather, a historically contingent, scientifically sanctioned "performance" of American masculinity at a time of heightened male anxiety. The essay argues that this gendered context invested the obedience experiments with an extraordinary plausibility, immediacy, and relevance. Immersed in a discourse of masculinity besieged, many Americans read the obedience experiments not as a fanciful study of laboratory brutality but as confirmation of their worst fears. Milgram's extraordinary success thus lay not in his "discovery" of the fragility of individual conscience but in his theatrical flair for staging culturally relevant masculine performances. PMID:21874687

  4. Expression of Selected Ginkgo biloba Heat Shock Protein Genes After Cold Treatment Could Be Induced by Other Abiotic Stress

    PubMed Central

    Cao, Fuliang; Cheng, Hua; Cheng, Shuiyuan; Li, Linling; Xu, Feng; Yu, Wanwen; Yuan, Honghui

    2012-01-01

    Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily. PMID:22754330

  5. Purification, characterization and safety assessment of the introduced cold shock protein B in DroughtGard maize.

    PubMed

    Wang, Cunxi; Burzio, Luis A; Koch, Michael S; Silvanovich, Andre; Bell, Erin

    2015-03-01

    DroughtGard maize was developed through constitutive expression of cold shock protein B (CSPB) from Bacillus subtilis to improve performance of maize (Zea mays) under water-limited conditions. B. subtilis commonly occurs in fermented foods and CSPB has a history of safe use. Safety studies were performed to further evaluate safety of CSPB introduced into maize. CSPB was compared to proteins found in current allergen and protein toxin databases and there are no sequence similarities between CSPB and known allergens or toxins. In order to validate the use of Escherichia coli-derived CSPB in other safety studies, physicochemical and functional characterization confirmed that the CSPB produced by DroughtGard possesses comparable molecular weight, immunoreactivity, and functional activity to CSPB produced from E. coli and that neither is glycosylated. CSPB was completely digested with sequential exposure to pepsin and pancreatin for 2 min and 30 s, respectively, suggesting that CSPB will be degraded in the mammalian digestive tract and would not be expected to be allergenic. Mice orally dosed with CSPB at 2160 mg/kg, followed by analysis of body weight gains, food consumption and clinical observations, showed no discernible adverse effects. This comprehensive safety assessment indicated that the CSPB protein from DroughtGard is safe for food and feed consumption. PMID:25545317

  6. Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution

    PubMed Central

    Zeeb, Markus; Max, Klaas E.A.; Weininger, Ulrich; Löw, Christian; Sticht, Heinrich; Balbach, Jochen

    2006-01-01

    Cold shock proteins (CSP) belong to the family of single-stranded nucleic acid binding proteins with OB-fold. CSP are believed to function as ‘RNA chaperones’ and during anti-termination. We determined the solution structure of Bs-CspB bound to the single-stranded DNA (ssDNA) fragment heptathymidine (dT7) by NMR spectroscopy. Bs-CspB reveals an almost invariant conformation when bound to dT7 with only minor reorientations in loop β1–β2 and β3–β4 and of few aromatic side chains involved in base stacking. Binding studies of protein variants and mutated ssDNA demonstrated that Bs-CspB associates with ssDNA at almost diffusion controlled rates and low sequence specificity consistent with its biological function. A variation of the ssDNA affinity is accomplished solely by changes of the dissociation rate. 15N NMR relaxation and H/D exchange experiments revealed that binding of dT7 increases the stability of Bs-CspB and reduces the sub-nanosecond dynamics of the entire protein and especially of loop β3–β4. PMID:16956971

  7. Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains

    PubMed Central

    Guryanov, Sergey G.; Selivanova, Olga M.; Nikulin, Alexey D.; Enin, Gennady A.; Melnik, Bogdan S.; Kretov, Dmitry A.; Serdyuk, Igor N.; Ovchinnikov, Lev P.

    2012-01-01

    YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions. Here we report that it is the cold shock domain that is responsible for formation of YB-1 fibrils, while the terminal domains differentially modulate this process depending on salt conditions. We demonstrate that YB-1 fibrils have amyloid-like features, including affinity for specific dyes and a typical X-ray diffraction pattern, and that in contrast to most of amyloids, they disassemble under nearly physiological conditions. PMID:22590640

  8. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC.

    PubMed

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2014-08-01

    Posttranslational modifications of histone tails are an important factor regulating chromatin structure and gene expression. Epigenetic memory systems have been predicted to involve mutually exclusive histone modifications that, through positive feedback mechanisms, generate bistable states. How the states are interconverted is not understood, and whether the histone modifications are sufficient for epigenetic memory is still greatly debated. We have exploited the process of vernalization, the slow quantitative epigenetic silencing of Arabidopsis FLC induced by cold, to detail with fine temporal and spatial resolution the dynamics of histone modifications during an epigenetic switch. The profiles of H3K36me3, H3K4me3, and H3K4me2 at FLC throughout the vernalization process were compared to H3K27me3, which accumulates at a local nucleation region during the cold and spreads across the locus on return to the warm. We find for many phases of the vernalization process that H3K36me3 and H3K27me3 show opposing profiles in the FLC nucleation region and gene body, that H3K36me3 and H3K27me3 rarely coexist on the same histone tail, and that this antagonism is functionally important. A lack of H3K36me3 results in a fully silenced state at FLC even in the absence of cold. We therefore propose that H3K36me3 is the opposing modification to H3K27me3 in the Polycomb-mediated silencing of FLC. However, the lack of an absolute mirror profile predicted from modeling suggests that their antagonistic roles contribute a necessary, but not sufficient, component of the mechanism enabling switching between and inheritance of epigenetic states. PMID:25065750

  9. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis.

    PubMed

    Kim, Ye Seul; Lee, Minyoung; Lee, Jae-Hyung; Lee, Hyo-Jun; Park, Chung-Mo

    2015-09-01

    During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1-CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE-CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation. PMID:26311645

  10. Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana.

    PubMed

    Ivanov, A G; Rosso, D; Savitch, L V; Stachula, P; Rosembert, M; Oquist, G; Hurry, V; Hüner, N P A

    2012-09-01

    Exposure of control (non-hardened) Arabidopsis leaves to high light stress at 5 °C resulted in a decrease of both photosystem II (PSII) (45 %) and Photosystem I (PSI) (35 %) photochemical efficiencies compared to non-treated plants. In contrast, cold-acclimated (CA) leaves exhibited only 35 and 22 % decrease of PSII and PSI photochemistry, respectively, under the same conditions. This was accompanied by an accelerated rate of P700(+) re-reduction, indicating an up-regulation of PSI-dependent cyclic electron transport (CET). Interestingly, the expression of the NDH-H gene and the relative abundance of the Ndh-H polypeptide, representing the NDH-complex, decreased as a result of exposure to low temperatures. This indicates that the NDH-dependent CET pathway cannot be involved and the overall stimulation of CET in CA plants is due to up-regulation of the ferredoxin-plastoquinone reductase, antimycin A-sensitive CET pathway. The lower abundance of NDH complex also implies lower activity of the chlororespiratory pathway in CA plants, although the expression level and overall abundance of the other well-characterized component involved in chlororespiration, the plastid terminal oxidase (PTOX), was up-regulated at low temperatures. This suggests increased PTOX-mediated alternative electron flow to oxygen in plants exposed to low temperatures. Indeed, the estimated proportion of O(2)-dependent linear electron transport not utilized in carbon assimilation and not directed to photorespiration was twofold higher in CA Arabidopsis. The possible involvement of alternative electron transport pathways in inducing greater resistance of both PSII and PSI to high light stress in CA plants is discussed. PMID:22843101

  11. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    PubMed

    Xu, Jinyan; Xue, Chenchen; Xue, Dong; Zhao, Jinming; Gai, Junyi; Guo, Na; Xing, Han

    2013-01-01

    Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline. PMID:23936107

  12. FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding

    PubMed Central

    Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-01-01

    Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357

  13. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins.

    PubMed Central

    Michel, V; Lehoux, I; Depret, G; Anglade, P; Labadie, J; Hebraud, M

    1997-01-01

    The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes. PMID:9393697

  14. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    PubMed

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  15. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis

    PubMed Central

    Jenkins, Gareth I.; Wang, Shuangfeng; Shang, Zhonglin; Shi, Yiting; Yang, Shuhua; Li, Xia

    2015-01-01

    Abstract Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance. PMID:26393916

  16. INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.

    PubMed

    Lee, Jae-Hyung; Jung, Jae-Hoon; Park, Chung-Mo

    2015-10-01

    Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold-activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1-FLC-SOC1 signaling network contributes to the fine-tuning of flowering during changing seasons. PMID:26248809

  17. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements.

    PubMed

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y

    2015-09-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5. PMID:26175515

  18. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements1[OPEN

    PubMed Central

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y.

    2015-01-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5. PMID:26175515

  19. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2015-06-01

    Various environmental stresses limit plant growth, development, and reproductive success. Plants have therefore evolved sophisticated adaptive responses to deal with environmental challenges. The responses of plants to environmental stresses are mainly mediated by abscisic acid (ABA)-dependent and ABA-independent signaling pathways. While these two pathways have been implicated to play discrete roles in abiotic stress responses, accumulating evidence suggests that they are also intertwined. Here, we report that an R2R3-type MYB transcription factor, MYB96, integrates the ABA and cold signaling pathways. In addition to its role in ABA-mediated drought responses, MYB96 is also induced by cold stress in an ABA-independent manner and subsequently activates freezing tolerance. Notably, MYB96 regulates HEPTAHELICAL PROTEIN (HHP) genes by binding to their promoters. The HHP proteins, in turn, interact with C-REPEAT BINDING FACTOR (CBF) upstream regulators, such as INDUCER OF CBF EXPRESSION 1 (ICE1), ICE2, and CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3). The specific interactive networks of HHPs with the CBF upstream regulators are necessary to facilitate transcriptional activation of the CBF regulon under stressful conditions. Together, the MYB96-HHP module integrates ABA-dependent and ABA-independent signals and activates the CBF pathway, ensuring plant adaptation to a wide range of adverse environmental fluctuations. PMID:25912720

  20. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.

    PubMed

    Benoit, J B; Lopez-Martinez, G; Teets, N M; Phillips, S A; Denlinger, D L

    2009-12-01

    This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses. PMID:19941608

  1. Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp. Ant5-2 from East Antarctica.

    PubMed

    Mojib, Nazia; Andersen, Dale T; Bej, Asim K

    2011-06-01

    A cold shock domain (CSD)-containing protein, CspD, of molecular mass ~7.28 kDa in a psychrotolerant Antarctic Janthinobacterium sp. Ant5-2 (ATCC BAA-2154) exhibited constitutive expression at 37, 22, 15, 4 and -1°C. The cspD gene encoding the CspD protein of Ant5-2 was cloned, sequenced and analyzed. The deduced protein sequence was highly similar to the conserved domains of the cold shock proteins (Csps) from bacteria belonging to the class Betaproteobacteria. Its expression was both time- and growth phase-dependent and increased when exposed to 37°C and UV radiation (UVC, dose: 1.8 and 2.8 mJ cm(-2)). The results from the electrophoretic mobility shift and subcellular localization study confirmed its single-stranded DNA-binding property. In silico analysis of the deduced tertiary structure of CspD from Ant5-2 showed a highly stable domain-swapped dimer, forming two similar monomeric Csp folds. This study established an overall framework of the structure, function and phylogenetic analysis of CspD from an Antarctic Janthinobacterium sp. Ant5-2, which may facilitate and stimulate the study of CSD fold proteins in the class Betaproteobacteria. PMID:21426380

  2. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  3. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction

    PubMed Central

    Ray, Swagat; Anderson, Emma C.

    2016-01-01

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression. PMID:26936655

  4. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses.

    PubMed

    Jiang, Shang-Chuan; Mei, Chao; Liang, Shan; Yu, Yong-Tao; Lu, Kai; Wu, Zhen; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-07-01

    Whereas several mitochondrial/chloroplast pentatricopeptide repeat (PPR) proteins have been reported to regulate plant responses to abiotic stresses, no nucleus-localized PPR protein has been found to play role in these processes. In the present experiment, we provide evidence that a cytosol-nucleus dual-localized PPR protein SOAR1, functioning to negatively regulate abscisic acid (ABA) signaling in seed germination and postgermination growth, is a crucial, positive regulator of plant response to abiotic stresses. Downregulation of SOAR1 expression reduces, but upregulation of SOAR1 expression enhances, ABA sensitivity in ABA-induced promotion of stomatal closure and inhibition of stomatal opening, and plant tolerance to multiple, major abiotic stresses including drought, high salinity and low temperature. Interestingly and importantly, the SOAR1-overexpression lines display strong abilities to tolerate drought, salt and cold stresses, with surprisingly high resistance to salt stress in germination and postgermination growth of seeds that are able to potentially germinate in seawater, while no negative effect on plant growth and development was observed. So, the SOAR1 gene is likely useful for improvement of crops by transgenic manipulation to enhance crop productivity in stressful conditions. Further experimental data suggest that SOAR1 likely regulates plant stress responses at least partly by integrating ABA-dependent and independent signaling pathways, which is different from the ABI2/ABI1 type 2C protein phosphatase-mediated ABA signaling. These findings help to understand highly complicated stress and ABA signalling network. PMID:26093896

  5. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus. PMID:24241624

  6. Interaction between autumnal temperature-photoperiod and experimentally induced transient cold shock influences proliferative activity in the brain of an adult terrestrial heterothermic vertebrate, Rana bergeri (Günther, 1986).

    PubMed

    Margotta, Vito

    2015-01-01

    It has been shown previously that in adult Rana esculenta, caught in nature, cold-shocked and brain-injured, encephalic cell proliferation is increased when capture and experiment occurred in spring and depressed when they occurred in autumn. Upon exclusive thermal stress cell proliferation appeared weak in spring and intense in autumn. The present study has investigated cold-shocked, but otherwise uninjured Rana bergeri to assess the impact of autumnal environment on encephalic cell proliferation. Lowering temperature--natural or experimental--seemed to exert a mild stimulation on the proliferative activity only in the forebrain. These results complete those previously obtained in spring and appear in substantial agreement with past reports about antithetical interactions between natural (season climate-photoperiod) and experimental (cold stimulus) environmental factors. However, the present results do not seem sufficient to explain the regenerative events described by past authors. A possible explanation of this discrepancy might be that if the spread between the autumnal environmental conditions and the entity of the cold shock is small the latter would be less effective. Alternatively, cold shock may need to be accompanied by further stimuli, such as surgical trauma (partial resection of brain tissue), to achieve extended stimulation and in the absence of those stimuli it would promote cell proliferation only in the forebrain, which is the region best provided with stand-by putative stem cells. PMID:27086419

  7. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  8. Pressurized thermal shock: TEMPEST computer code simulation of thermal mixing in the cold leg and downcomer of a pressurized water reactor. [Creare 61 and 64

    SciTech Connect

    Eyler, L.L.; Trent, D.S.

    1984-04-01

    The TEMPEST computer program was used to simulate fluid and thermal mixing in the cold leg and downcomer of a pressurized water reactor under emergency core cooling high-pressure injection (HPI), which is of concern to the pressurized thermal shock (PTS) problem. Application of the code was made in performing an analysis simulation of a full-scale Westinghouse three-loop plant design cold leg and downcomer. Verification/assessment of the code was performed and analysis procedures developed using data from Creare 1/5-scale experimental tests. Results of three simulations are presented. The first is a no-loop-flow case with high-velocity, low-negative-buoyancy HPI in a 1/5-scale model of a cold leg and downcomer. The second is a no-loop-flow case with low-velocity, high-negative density (modeled with salt water) injection in a 1/5-scale model. Comparison of TEMPEST code predictions with experimental data for these two cases show good agreement. The third simulation is a three-dimensional model of one loop of a full size Westinghouse three-loop plant design. Included in this latter simulation are loop components extending from the steam generator to the reactor vessel and a one-third sector of the vessel downcomer and lower plenum. No data were available for this case. For the Westinghouse plant simulation, thermally coupled conduction heat transfer in structural materials is included. The cold leg pipe and fluid mixing volumes of the primary pump, the stillwell, and the riser to the steam generator are included in the model. In the reactor vessel, the thermal shield, pressure vessel cladding, and pressure vessel wall are thermally coupled to the fluid and thermal mixing in the downcomer. The inlet plenum mixing volume is included in the model. A 10-min (real time) transient beginning at the initiation of HPI is computed to determine temperatures at the beltline of the pressure vessel wall.

  9. The rapid assembly of synaptic sites in photoreceptor terminals of the fly's optic lobe recovering from cold shock.

    PubMed

    Brandstätter, J H; Meinertzhagen, I A

    1995-03-28

    When a housefly, Musca domestica, is subject to cold exposure (0 degrees C for 24 hr), a number of obvious changes are seen in the first optic neuropil, or lamina, beneath the compound eye. In particular, the number of afferent photoreceptor synapses declines by about 30%. This loss is dramatically restored after warm recovery at 23 degrees C for 24 hr. Synapses disappear at an average rate of 2-3/hr during cold exposure and reappear at a maximal rate of more than 20/hr during the first 2 hr of warm recovery. Thereafter their number temporarily overshoots control values, to increase at 6 hr of warm recovery to 60% above their cold-exposed minimum. The number subsequently returns more or less to normal. These changes demonstrate the lability of synaptic sites under these conditions, with individual sites forming and disappearing rapidly. The changes also interrupt the close correlation between synaptic number and the surface area of the receptor terminal, a correlation that normally conserves synaptic spacing density. The density is preserved during cold exposure but increases during warm recovery at a time when the addition of newly formed synapses exceeds the slower increase in receptor terminal size. PMID:7708704

  10. Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1.

    PubMed

    Wang, N; Yamanaka, K; Inouye, M

    2000-11-01

    Escherichia coli CspA, a major cold shock protein, is dramatically induced upon temperature downshift. As it binds co-operatively to single-stranded DNA (ssDNA) and RNA without apparent sequence specificity, it has been proposed that CspA acts as an RNA chaperone to facilitate transcription and translation at low temperature. CspA consists of a five-stranded beta-barrel structure containing two RNA-binding motifs, RNP1 and RNP2. Eukaryotic Y-box proteins, such as human YB-1, are a family of nucleic acid-binding proteins that share a region of high homology with CspA (43% identity), termed the cold shock domain (CSD). Their cellular functions are very diverse and are associated with growth-related processes. Here, we replaced the six-residue loop region of CspA between the beta3 and beta4 strands with the corresponding region of the CSD of human YB-1 protein. The resulting hybrid protein became capable of binding to double-stranded DNA (dsDNA) in addition to ssDNA and RNA. The dsDNA-binding ability of an RNP1 point mutant (F20L) of the hybrid was almost unchanged. On the other hand, the dsDNA-binding ability of the hybrid protein was abolished in high salt concentrations in contrast to its ssDNA-binding ability. These results indicate that the loop region between the beta3 and beta4 strands of Y-box proteins, which is a little longer and more basic than that of CspA, plays an important role in their binding to dsDNA. PMID:11069676

  11. The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA

    PubMed Central

    1996-01-01

    SSH1, a newly identified member of the heat shock protein (hsp70) multigene family of the budding yeast Saccharomyces cerevisiae, encodes a protein localized to the mitochondrial matrix. Deletion of the SSH1 gene results in extremely slow growth at 23 degrees C or 30 degrees C, but nearly wild-type growth at 37 degrees C. The matrix of the mitochondria contains another hsp70, Ssc1, which is essential for growth and required for translocation of proteins into mitochondria. Unlike SSC1 mutants, an SSH1 mutant showed no detectable defects in import of several proteins from the cytosol to the matrix compared to wild type. Increased expression of Ssc1 partially suppressed the cold- sensitive growth defect of the SSH1 mutant, suggesting that when present in increased amounts, Ssc1 can at least partially carry out the normal functions of Ssh1. Spontaneous suppressors of the cold-sensitive phenotype of an SSH1 null mutant were obtained at a high frequency at 23 degrees C, and were all found to be respiration deficient. 15 of 16 suppressors that were analyzed lacked mitochondrial DNA, while the 16th had reduced amounts. We suggest that Ssh1 is required for normal mitochondrial DNA replication, and that disruption of this process in ssh1 cells results in a defect in mitochondrial function at low temperatures. PMID:8707841

  12. Functional phosphoproteomic analysis reveals cold-shock domain protein A to be a Bcr-Abl effector-regulating proliferation and transformation in chronic myeloid leukemia

    PubMed Central

    Sears, D; Luong, P; Yuan, M; Nteliopoulos, G; Man, Y K S; Melo, J V; Basu, S

    2010-01-01

    One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind 14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis. PMID:21368869

  13. Proliferative events experimentally induced by a transient cold shock in the brain of adult terrestrial heterothermic vertebrates: preliminary analysis of PCNA expression in Podarcis sicula.

    PubMed

    Margotta, Vito

    2014-01-01

    In past studies on the encephalic regenerative phenomena some authors adopted a pre-surgi- cal stratagem (drastic, sudden, transient thermal stimulus) to adult brain-injured newts to limit death rate upon surgery and with this method, unexpected tissue reparation was obtained. This procedure became a routine technicality also in frog and lizard to stimulate an increase in the neurogenesis, attributable to putative stem cells which appear either in clusters ("matrix areas" or "matrix zones"), mostly at or near the telencephalic ventricular surfaces, or scattered ("matrix cells") within other cerebral districts. On the basis of this literature background, planning an immunocytochemical re-evaluation of the survival of latent proliferative properties in these adult cold shocked organisms, as already studied in Triturus carnifex, the actual investigation was carried out on the brain of Podarcis sicula not subjected to cerebral injury. The immunohistochem- ical expression of the proliferating cell nuclear antigen (PCNA) seemed moderate only in those encephalic portions better provided with cells in stand-by: the olfactory peduncles and the telen- cephalic zonae germinativae ventrales. This scenario appeared rather disappointed and inadequate with respect to the unexpected, widespread restoration of the removed portions observed by previous authors. These findings could be due both to a small effectiveness of a relatively mild thermal stress, depending on the difference between the applied temperature and seasonal one, to the lack of other experimental conditions (surgical trauma, encephalic injury) adopted in the past, and to the interspecific differences in sensitivity, since lacertilian Reptiles are less endowed with proliferative/regenerative power than Amphibians, mainly Urodela, and Teleosts. PMID:25665278

  14. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins.

    PubMed Central

    Li, W W; Hsiung, Y; Wong, V; Galvin, K; Zhou, Y; Shi, Y; Lee, A S

    1997-01-01

    The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system. PMID:8972186

  15. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  16. The complete sequence of a heterochromatic island from a higher eukaryote. The Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center, and PE Biosystems Arabidopsis Sequencing Consortium.

    PubMed

    2000-02-01

    Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation. PMID:10676819

  17. Analysis of Differential Expression Patterns of mRNA and Protein During Cold-acclimation and De-acclimation in Arabidopsis*

    PubMed Central

    Nakaminami, Kentaro; Matsui, Akihiro; Nakagami, Hirofumi; Minami, Anzu; Nomura, Yuko; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Takahashi, Satoshi; Uemura, Matsuo; Shirasu, Ken; Seki, Motoaki

    2014-01-01

    Overwintering plants are capable of exhibiting high levels of cold tolerance, which is acquired through the process of cold acclimation (CA). In contrast to CA, the acquired freezing tolerance is rapidly reduced during cold de-acclimation (DA) and plants resume growth after sensing warm temperatures. In order to better understand plant growth and development, and to aid in the breeding of cold-tolerant plants, it is important to decipher the functional mechanisms of the DA process. In this study, we performed comparative transcriptomic and proteomic analyses during CA and DA. As revealed by shotgun proteomics, we identified 3987 peptides originating from 1569 unique proteins and the corresponding mRNAs were analyzed. Among the 1569 genes, 658 genes were specifically induced at the transcriptional level during the process of cold acclimation. In order to investigate the relationship between mRNA and the corresponding protein expression pattern, a Pearson correlation was analyzed. Interestingly, 199 genes showed a positive correlation of mRNA and protein expression pattern, indicating that both their transcription and translation occurred during CA. However, 226 genes showed a negative correlation of mRNA and protein expression pattern, indicating that their mRNAs were transcribed during CA and were stored for the subsequent DA step. Under this scenario, those proteins were specifically increased during DA without additional transcription of mRNA. In order to confirm the negative correlation of mRNA and protein expression patterns, qRT-PCR and western blot analyses were performed. Mitochondrial malate dehydrogenase 1 (mMDH1) exhibited a negative correlation of mRNA and protein levels, which was characterized by CA-specific mRNA induction and protein accumulation specifically during DA. These data indicate that the expression of specific mRNAs and subsequent accumulation of corresponding proteins are not always in accordance under low temperature stress conditions in

  18. A 31-kDa seminal plasma heparin-binding protein reduces cold shock stress during cryopreservation of cross-bred cattle bull semen.

    PubMed

    Patel, M K; Cheema, R S; Bansal, A K; Gandotra, V K

    2016-10-01

    from cold shock effect by coating the sperm surface. PMID:27377210

  19. Arabidopsis Chloroplast RNA Binding Proteins CP31A and CP29A Associate with Large Transcript Pools and Confer Cold Stress Tolerance by Influencing Multiple Chloroplast RNA Processing Steps[W

    PubMed Central

    Kupsch, Christiane; Ruwe, Hannes; Gusewski, Sandra; Tillich, Michael; Small, Ian; Schmitz-Linneweber, Christian

    2012-01-01

    Chloroplast RNA metabolism is mediated by a multitude of nuclear encoded factors, many of which are highly specific for individual RNA processing events. In addition, a family of chloroplast ribonucleoproteins (cpRNPs) has been suspected to regulate larger sets of chloroplast transcripts. This together with their propensity for posttranslational modifications in response to external cues suggested a potential role of cpRNPs in the signal-dependent coregulation of chloroplast genes. We show here on a transcriptome-wide scale that the Arabidopsis thaliana cpRNPs CP31A and CP29A (for 31 kD and 29 kD chloroplast protein, respectively), associate with large, overlapping sets of chloroplast transcripts. We demonstrate that both proteins are essential for resistance of chloroplast development to cold stress. They are required to guarantee transcript stability of numerous mRNAs at low temperatures and under these conditions also support specific processing steps. Fine mapping of cpRNP–RNA interactions in vivo suggests multiple points of contact between these proteins and their RNA ligands. For CP31A, we demonstrate an essential function in stabilizing sense and antisense transcripts that span the border of the small single copy region and the inverted repeat of the chloroplast genome. CP31A associates with the common 3′-terminus of these RNAs and protects them against 3′-exonucleolytic activity. PMID:23110894

  20. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana.

    PubMed Central

    Hong, S W; Jon, J H; Kwak, J M; Nam, H G

    1997-01-01

    A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed. PMID:9112773

  1. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  2. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  3. Implications of pressure diffusion for shock waves

    NASA Technical Reports Server (NTRS)

    Ram, Ram Bachan

    1989-01-01

    The report deals with the possible implications of pressure diffusion for shocks in one dimensional traveling waves in an ideal gas. From this new hypothesis all aspects of such shocks can be calculated except shock thickness. Unlike conventional shock theory, the concept of entropy is not needed or used. Our analysis shows that temperature rises near a shock, which is of course an experimental fact; however, it also predicts that very close to a shock, density increases faster than pressure. In other words, a shock itself is cold.

  4. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  5. Interaction between spring temperature-photoperiod and experimentally induced transient cold shock influencing proliferative activity in the brain of an adult terrestrial heterothermic vertebrate, Rana bergeri (Günther, 1986).

    PubMed

    Chimenti, Claudio; Margotta, Vito

    2015-01-01

    The seasonal thermal cycle and correlated variations in photoperiod exert antithetical influences on the proliferation of the reserve brain stem cells, which are mostly ependymal and subependymal, of adult earth-dwelling heterothermic vertebrates upon deprivation of an encephalic area. Also, an induced sudden, transient thermal stress preceding surgical cerebral maiming increases or depresses the proliferation of these stand-by cells, depending on the season. In particular, the concomitance of spring temperature and photoperiod with a cold stimulus increases proliferation. To re-evaluate these findings, normal adults of Rana bergeri were exposed to a cold shock in spring time. The outlined patterns, as revealed by immunocytochemical detection of a proliferation-linked antigen, showed that those conditions affect only the forebrain, where immunoreactivity was identifiable in quiescent cells mostly located in peculiar telencephalic ependymal sites, known as zonae germinativae dorsales and ventrales, while the regions lying behind had no substantial proliferative response. These results may be due to the absence of further proliferative stimuli (surgical stress, cerebral ablation), so that only the stand-by cells in the encephalic areas more rich in such cells are activated to proliferate. The findings are in line with the subordinate position of Anurans as compared with Urodeles, which are the most gifted with spontaneous and experimentally induced reparative and regenerative capacity among vertebrates. PMID:27086439

  6. Effects of a recombinant complement component C3b functional fragment α2MR (α2-macroglobulin receptor) additive on the immune response of juvenile orange-spotted grouper (Epinephelus coioides) after the exposure to cold shock challenge.

    PubMed

    Luo, Sheng-Wei; Cai, Luo; Qi, Zeng-Hua; Wang, Cong; Liu, Yuan; Wang, Wei-Na

    2015-08-01

    The effects of Ec-α2MR (Epinephelus coiodes-α2-macroglobulin receptor) on growth performance, enzymatic activity, respiratory burst, MDA level, total antioxidant capacity, DPPH radical scavenging percentage and immune-related gene expressions of the juvenile orange-spotted grouper were evaluated. The commercial diet supplemented with α2MR additive was used to feed the orange-spotted grouper for six weeks. Although a slight increase was observed in the specific growth rate, survival rate and weight gain, no significance was observed among different group. After the feeding trial, the groupers were exposed to cold stress. Respiratory burst activity and MDA level decreased significantly in α2MR additive group by comparing with the control and additive control group, while a sharp increase of ACP activity, ALP activity, total antioxidant capacity and DPPH radial scavenging percentage was observed in α2MR additive group. qRT-PCR analyses confirmed that the up-regulated mRNA expressions of C3, TNF1, TNF2, IL-6, CTL, LysC, SOD1 and SOD2 were observed in α2MR additive group at 20 °C. These results showed that α2MR additive may moderate the immune response in grouper following cold shock challenge. PMID:25917969

  7. Termination Shock Surfing

    NASA Astrophysics Data System (ADS)

    Burrows, R. H.; Zank, G. P.; Webb, G. M.

    2009-11-01

    The recent Voyager 2 (V2) observations of the termination shock (TS) indicate that it is a plasma shock like no other in the heliosphere with dynamics and structure heavily influenced by the presence of an energized population of pickup ions (PUIs). The `unexpected' finding of a cold plasma in the heliosheath with very little heating of the solar wind suggests that the energy dissipated by the shock could be dominated by the acceleration of PUIs at the TS. We examine the 'shock surfing' mechanism at the test particle level, where multiply reflected ions (MRIs) gain energy from the motional electric field as a consequence of reflection from the cross-shockpotential, for a specific model of the TS3 (the third TS crossing measured by V2). The energization of PUI shell distributions at a stationary, perpendicular model of the TS3 indicate that shock surfing can provide substantial PUI acceleration and a dissipation mechanism at the TS. For a strong enough cross-shock potential and sufficiently narrow shock ramp MRI acceleration can account for the `missing' energy of the downstream solar wind plasma.

  8. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    NASA Astrophysics Data System (ADS)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  9. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  10. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  11. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  12. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  13. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  14. [Survival in cold water. Physiological consequences of accidental immersion in cold water].

    PubMed

    Mantoni, Teit; Belhage, Bo; Pott, Frank Christian

    2006-09-18

    This survey addresses the immediate physiological reactions to immersion in cold water: cold shock response, diving reflex, cardiac arrhythmias and hypothermia. Cold shock response is the initial sympathetic reaction to immersion in cold water. The diving reflex is elicited by submersion of the face. Afferent and efferent nerves are the trigeminal and vagal nerves. Cardiac arrhythmias occur immediately after immersion. If the immersion persists, hypothermia becomes an issue. Hypothermia is delayed by habituation to immersion in cold water as well as insulating garments, subcutaneous fat and a large lean body mass. PMID:17026891

  15. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  16. Rubidium (Potassium) Uptake by Arabidopsis

    PubMed Central

    Polley, L. David; Hopkins, Johns W.

    1979-01-01

    Experiments are reported in which the uptake of 86Rb+, used as an analog of K+, into cultured cells of Arabidopsis thaliana is investigated. A single transport system is found with Km = 0.34 millimolar and Vmax = 14 nmoles per milligram of protein per hour. This system is blocked by the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and by cold. At high concentrations of external K+ (above 1 millimolar), a significant fraction of total uptake is energy-independent. No evidence is found for more than one energy-dependent uptake system or for concentration-dependent modifications of a carrier as postulated in multiphasic transport models. Rb+ uptake was also examined in cultured cells derived from an “osmotic mutant” of Arabidopsis. The system closely resembles that found in wild type cells with the exception that the Michaelis-Menten constants are higher: Km = 1 millimolar and Vmax = 32 nanomoles per milligram of protein per hour. The possibility that these results are artifacts associated with use of cultured cells was checked by examining 86Rb+ uptake by roots of intact seedlings of wild type Arabidopsis. A single energy-dependent transport system is found with Km = 0.42 millimolar which is not significantly different from the Km of cultured cells. There is also energy-independent uptake at high external ion concentration. PMID:16660969

  17. Heterologous Expression of Wheat VERNALIZATION 2 (TaVRN2) Gene in Arabidopsis Delays Flowering and Enhances Freezing Tolerance

    PubMed Central

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-01

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species. PMID:20084169

  18. Septic shock

    MedlinePlus

    Septic shock is a serious condition that occurs when a body-wide infection leads to dangerously low blood ... Septic shock occurs most often in the very old and the very young. It may also occur in ...

  19. Cardiogenic shock

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000185.htm Cardiogenic shock To use the sharing features on this page, please enable JavaScript. Cardiogenic shock is when the heart has been damaged so ...

  20. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  1. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  2. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  3. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    SciTech Connect

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  4. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine (Vitis pseudoreticulata).

    PubMed

    Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Li, Ya-Juan; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-02-01

    Heat shock transcription factors (Hsfs) are known to play pivotal roles in the adaptation of plants to heat stress and other stress stimuli. While grapevine (Vitis vinifera L.) is one of the most important fruit crops worldwide, little is known about the Hsf family in Vitis spp. Here, we identified nineteen putative Hsf genes (VviHsfs) in Vitis spp based on the 12 × grape genome (V. vinifera L.). Phylogenetic analysis revealed three classes of grape Hsf genes (classes A, B, and C). Additional comparisons between grape and Arabidopsis thaliana demonstrated that several VviHsfs genes occurred in corresponding syntenic blocks of Arabidopsis. Moreover, we examined the expression profiles of the homologs of the VviHsfs genes (VpHsfs) in the wild Chinese Vitis pseudoreticulata accession Baihe-35-1, which is tolerant to various environmental stresses. Among the nineteen VpHsfs, ten VpHsfs displayed lower transcript levels under non-stress conditions and marked up-regulation during heat stress treatment; several VpHsfs also displayed altered expression levels in response to cold, salt, and hormone treatments, suggesting their versatile roles in response to stress stimuli. In addition, eight VpHsf-GFP fusion proteins showed differential subcellular localization in V. pseudoreticulata mesophyll protoplasts. Taken together, our data may provide an important reference for further studies of Hsf genes in Vitis spp. PMID:26689772

  5. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  6. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  7. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  8. Heat can erase epigenetic marks of vernalization in Arabidopsis

    PubMed Central

    Bouché, Frédéric; Detry, Nathalie; Périlleux, Claire

    2015-01-01

    Vernalization establishes a memory of winter that must be maintained for weeks or months in order to promote flowering the following spring. The stability of the vernalized state varies among plant species and depends on the duration of cold exposure. In Arabidopsis thaliana, winter leads to epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC) and the duration of cold is measured through the dynamics of chromatin modifications during and after cold. The growing conditions encountered post-vernalization are thus critical for the maintenance of the vernalized state. We reported that high temperature leads to devernalization and, consistently, to FLC reactivation in Arabidopsis seedlings. Here we show that the repressive epigenetic mark H3K27me3 decreases at the FLC locus when vernalized seedlings are grown at 30°C, unless they were first exposed to a stabilizing period at 20°C. Ambient temperature thus controls the epigenetic memory of winter. PMID:25648822

  9. Hypovolemic shock

    MedlinePlus

    ... clammy skin Confusion Decreased or no urine output General weakness Pale skin color (pallor) Rapid breathing Sweating , moist skin Unconsciousness The greater and more rapid the blood loss, the more severe the symptoms of shock.

  10. Natural Genetic Variation of Freezing Tolerance in Arabidopsis[W][OA

    PubMed Central

    Hannah, Matthew A.; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G.; Hincha, Dirk K.

    2006-01-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance. PMID:16844837

  11. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana

    PubMed Central

    Lin, Bai-Ling; Wang, Jang-Shiun; Liu, Hung-Chi; Chen, Rung-Wu; Meyer, Yves; Barakat, Abdellalli; Delseny, Michel

    2001-01-01

    The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress. PMID:11599561

  12. Common cold

    MedlinePlus

    ... often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, cough, ... symptoms are: Nasal congestion Runny nose Scratchy throat Sneezing Adults and older children with colds generally have ...

  13. Cold Intolerance

    MedlinePlus

    ... from the Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Cold Intolerance Many polio ... index of Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Back to top Contact ...

  14. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa1[OPEN

    PubMed Central

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M.; Hunter, Ben

    2016-01-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana. Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  15. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa.

    PubMed

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M; Hunter, Ben; Bomblies, Kirsten

    2016-05-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  16. Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea).

    PubMed

    Khanal, Nityananda; Moffatt, Barbara A; Gray, Gordon R

    2015-05-15

    Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis, but possessing much higher constitutive levels of tolerance to abiotic stress. This study aimed to characterize the freezing tolerance of Arabidopsis (Columbia ecotype) and two ecotypes of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations. Under our growth conditions, maximal freezing tolerance was observed after two- and three-weeks of cold acclimation for Arabidopsis and Eutrema, respectively. The ecotypes of Eutrema and Arabidopsis do not differ in their constitutive level of freezing tolerance or short-term cold acclimation capacity. However Eutrema remarkably outperforms Arabidopsis in long-term acclimation capacity suggesting a wider phenotypic plasticity for the trait of freezing tolerance. The combination of drought treatment and one-week of cold acclimation was more effective than long-term cold acclimation in achieving maximum levels of freezing tolerance in Eutrema, but not Arabidopsis. Furthermore, it was demonstrated growth conditions, particularly irradiance, are determinates of the level of freezing tolerance attained during cold acclimation suggesting a role for photosynthetic processes in adaptive stress responses. PMID:25889872

  17. Reactive oxygen species trigger a regulatory module invovled in the early responses of rice seedlings to cold stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to low temperature through an intricately coordinated transcriptional network controlled by specific groups of transcription factors. Major regulatory pathways in plants that evolved to withstand freezing by cold acclimation have been elucidated in Arabidopsis. A prominent pathway i...

  18. [Obstructive shock].

    PubMed

    Pich, H; Heller, A R

    2015-05-01

    An acute obstruction of blood flow in central vessels of the systemic or pulmonary circulation causes the clinical symptoms of shock accompanied by disturbances of consciousness, centralization, oliguria, hypotension and tachycardia. In the case of an acute pulmonary embolism an intravascular occlusion results in an acute increase of the right ventricular afterload. In the case of a tension pneumothorax, an obstruction of the blood vessels supplying the heart is caused by an increase in extravascular pressure. From a hemodynamic viewpoint circulatory shock caused by obstruction is closely followed by cardiac deterioration; however, etiological and therapeutic options necessitate demarcation of cardiac from non-cardiac obstructive causes. The high dynamics of this potentially life-threatening condition is a hallmark of all types of obstructive shock. This requires an expeditious and purposeful diagnosis and a rapid and well-aimed therapy. PMID:25994928

  19. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  20. A Strong Merger Shock in Abell 665

    NASA Astrophysics Data System (ADS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.; Vacca, V.

    2016-03-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M = 3.0 ± 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M ≈ 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 ± 0.7) × 103 km s-1. The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the re-acceleration model with the X-ray and radio data combined.

  1. [Neurogenic shock].

    PubMed

    Meister, Rafael; Pasquier, Mathieu; Clerc, David; Carron, Pierre-Nicolas

    2014-08-13

    The neurogenic shock is a common complication of spinal cord injury, especially when localized at the cervical level. Characterized by a vasoplegia (hypotension) and bradycardia, the neurogenic shock is secondary to the damage of the sympathetic nervous system. The clinical presentation often includes tetraplegia, with or without respiratory failure. Early treatment aims to minimize the occurrence of secondary spinal cord lesions resulting from systemic ischemic injuries. Medical management consists in a standardized ABCDE approach, in order to stabilize vital functions and immobilize the spine. The hospital care includes performing imaging, further measures of neuro-resuscitation, and coordinated surgical assessment and treatment of any other injury. PMID:25199226

  2. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  3. Carbon partitioning and the impact of starch deficiency on the initial response of Arabidopsis to chilling temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific metabolites and RNA transcripts were measured in Arabidopsis thaliana leaves in response to chilling temperatures. During the first 24 h of cold treatment eight soluble carbohydrates increased 9.4 fold on average during cold treatment. Except for maltose and raffinose carbohydrate accumul...

  4. Interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Hollenbach, D. J.

    1980-01-01

    The structure of interstellar shocks driven by supernova remnants and by expanding H II regions around early-type stars is discussed. Jump conditions are examined, along with shock fronts, post-shock relaxation layers, collisional shocks, collisionless shocks, nonradiative shocks, radiative atomic shocks, and shock models of observed nebulae. Effects of shock waves on interstellar molecules are examined, with reference to the chemistry behind shock fronts, infrared and vibrational-rotational cooling by molecules, and observations of shocked molecules. Some current problems and applications of the study of interstellar shocks are summarized, including the initiation of star formation by radiative shock waves, interstellar masers, the stability of shocks, particle acceleration in shocks, and shocks in galactic nuclei.

  5. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  6. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.

    PubMed Central

    Hirschi, K D

    1999-01-01

    Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses. PMID:10559438

  7. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  8. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  9. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  10. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Peng; Wang, Chongying

    2016-07-01

    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034