Science.gov

Sample records for arc energy limiting

  1. Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect

    NASA Astrophysics Data System (ADS)

    Ju, Xingbao; Sun, Haishun; Yang, Zhuo; Zhang, Junmin

    2016-05-01

    The GaInSn liquid metal current limiter based on the fluid pinch effect has broad application prospects due to its particular properties. However, the limited rated current and ability of power dissipation are the critical problems for its wide application. Firstly, the temperature distribution of the liquid metal current limiter (LMCL) was obtained by experiments with a rated current of 1 kA and the arc ignition phenomenon was observed with 1.5 kA, which indicates that the rated current is mainly limited by the arc rather than the high temperature compared to the traditional switchgears. Furthermore, an improved method is proposed by adding the paralleled pure resistance, impedance or another LMCL element to protect the setup from the fault energy concentration in the setup. The problem of a slower arc voltage increasing rate can be solved by adding a paralleled impedance with suitable parameters. Finally, the current limiting properties based on the improved method were investigated and the alternating oscillating current was found between two paralleled LMCL elements owing to their deviation of arc ignition in reality. supported by the Technology Project of State Grid (No. SGSNKYOOKJJS1501564) and the National Key Basic Research Program of China (973 Program) (No. 2015CB251005)

  2. Magnetically operated limit switch has improved reliability, minimizes arcing

    NASA Technical Reports Server (NTRS)

    Steiner, R.

    1966-01-01

    Limit switch for reliable, low-travel, snap action with negligible arcing uses an electrically nonconductive permanent magnet consisting of a ferrimagnetic ceramic and ferromagnetic pole shoes which form a magnetic and electrically conductive circuit with a ferrous-metal armature.

  3. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  4. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects. PMID:10842616

  5. Arc Energy Estimations: Applications in Lightning-Induced Concrete Spall

    SciTech Connect

    Tully, L K; Ong, M M

    2008-06-03

    After lightning contacts a building, the possibility of a physical break in its conductive path to ground may exist. Given such a break, an electric field may develop across the gap until it exceeds the breakdown strength of the non-conducting, or dielectric, material. Breakdown subsequently occurs and energy is dissipated during the development of an arc channel. If the dielectric is concrete, a concern exists that the energy available for arc formation may be capable of launching pieces of spall into sensitive equipment. This paper discusses the mechanisms of energy dissipation in arc formation and quantifies the energy available for concrete spall.

  6. Energy Balance in DC Arc Plasma Melting Furnace

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Meng, Yuedong; Yu, Xinyao; Chen, Longwei; Jiang, Yiman; Ni, Guohua; Chen, Mingzhou

    2009-04-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  7. Possibility of liberating solar energy via water arc explosions

    SciTech Connect

    Hathaway, G.; Graneau, P.

    1996-12-31

    This paper reports progress in an experimental investigation, started in the Hathaway laboratory in 1994, which deals with the liberation of intermolecular bonding energy from ordinary water by means of an arc discharge. A new fog accelerator is described and a table of results of the kinetic energies of fog jets is included. The energy of liquid cohesion is stored in water during condensation when the vapor molecules transform their kinetic energy to potential energy. Since the kinetic energy of the vapor was acquired by solar heating of the atmosphere, it is solar energy in concentrated form that is being liberated by water arc explosions. To utilize the internal water energy for electricity generation, large reductions in circuit loss and barrel losses have to be achieved. The objective has been to prove the liberation of internal water energy. The authors have made no effort to optimize the process.

  8. Current interruption limit and resistance of the self-similar electric arc

    NASA Astrophysics Data System (ADS)

    Christen, Thomas; Seeger, Martin

    2005-05-01

    A model for the axially blown cylindrical arc is derived. In contrast to earlier theories, the model is gauge invariant with respect to energy, which is crucial for investigating current interruption. We determine from our model the dependence of the maximum interruptible current rate, (dI/dt)L, on the pressure, on the parallel capacitance, and on the line impedance for an SF6 arc. (dI/dt)L scales, approximately independent of the gas type, with the square root of the pressure. The arc resistance, at current zero with current rate equal to (dI/dt)L, is pressure independent. As a consequence, the arc resistance at current zero can serve as a figure of merit for the interruption performance of gas circuit breakers.

  9. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  10. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    SciTech Connect

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick ()similarreverse arrowto)1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target ()similarreverse arrowto)1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs.

  11. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  12. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  13. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  14. Charge state dependence of cathodic vacuum arc ion energy andvelocity distributions

    SciTech Connect

    Rosen, Johanna; Schneider, Jochen M.; Anders, Andre

    2006-08-15

    In the literature, conflicting conclusions are reported concerning the charge state dependence of cathodic arc ion energy and velocity distributions. It appears that data from electrostatic energy analyzers indicate charge state dependence of ion energy, whereas time-of-flight methods support charge state independence of ion velocity. Here we present charge-state-resolved ion energy distributions and calculate the corresponding ion velocity distributions in aluminum vacuum arc plasma. We show that the conflicting conclusions reported in the literature for the two different characterization techniques may originate from the commonly employed data interpretation of energy and velocity, in which peak values and average values are not carefully distinguished.

  15. Review of Innovative Energy Savings Technology for the Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Lee, Baek; Sohn, Il

    2014-09-01

    A review of the energy innovations for the electric arc furnace (EAF) steelmaking route is discussed. Preheating of scrap using vertical and horizontal shafts that have been commercially successful in lowering the energy consumption to as much as 90 kWh/t reaching almost the operational limit to heating input scrap materials into the EAF is discussed. Bucket-type and twin-shell preheaters have also shown to be effective in lowering the overall power consumption by 60 kWh/t, but these have been less effective than the vertical shaft-type preheaters. Beyond the scrap preheating technologies, the utilization of waste heat of the slags from the laboratory scale to the pilot scale has shown possible implementation of a granulation and subsequent heat exchange with forced air for energy recovery from the hot slags. Novel techniques to increase metal recovery have shown that laboratory-scale testing of localized Fe concentration into the primary spinel crystals was possible allowing the separation of an Fe-rich crystal from an Fe-depleted amorphous phase. A possible future process for converting the thermal energy of the CO/CO2 off-gases from the EAF into chemical energy was introduced.

  16. On the Absorption Spectrum of Noble Gases at the Arc Spectrum Limit

    PubMed Central

    Fano, Ugo; Pupillo, Guido; Zannoni, Alberto; Clark, Charles W.

    2005-01-01

    Rydberg spectral lines of an atom are sometimes superimposed on the continuous spectrum of a different configuration. Effects of interaction among different configurations in one of these cases are theoretically investigated, and a formula is obtained that describes the behavior of absorption spectrum intensity. This offers qualitative justification of some experimental results obtained by BEUTLER in studies of absorption arc spectra of noble gases and Ib spectra of some metal vapors. PMID:27308180

  17. Numerical Simulation of Energy Balance in Argon-Helium Mixed Gas Tungsten Arc

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu; Nakata, Kazuhiro; Koshiishi, Fusaki; Suzuki, Keiichi; Yamazaki, Kei

    High temperature arc plasma produced by employing Gas Tungsten Arc (GTA) is highly controllable, since it is stabilized with a shielding gas. Additionally, GTA requires low cost for equipment investment. Therefore, it is widely utilized as a heat source for material processing such as melting, cutting and welding, or decomposition and detoxification of toxic waste. Energy source properties of GTA strongly depend on the physical properties of the shielding gas. For instance, helium (He) gas or admixture of He gas with argon gas is employed as the shielding gas for conditions requiring high productivity in GTA welding process. Since He has low electrical conductivity especially in low temperature range due to high ionization potential, the current channel in He arc plasma is constricted near the arc axis. Consequently, the enhanced heat input intensity into a base material by the constriction increases weld depth and, thus, leads to the high productivity. However, the effect of the admixture on the heat input characteristics to the base metal is still not clear. In this paper, energy source properties of Ar-He GTA are predicted. The properties of arc plasma and the heat input intensity into a water-cooled copper anode are numerically analyzed.

  18. Steel: Energy-Efficient Arc Furnace Dust into Saleable Chemical Products

    SciTech Connect

    Ericksen, E.

    1999-01-29

    Drinkard Metalox, Inc., has developed an innovative new technology to completely process electric arc furnace dust into saleable products by means of a hydro metallurgical process. Order this fact sheet to read how this new technology can both lower energy costs and eliminate the need to dispose of and transport hazardous waste off site.

  19. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    SciTech Connect

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-06-16

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focussed on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy ana-lyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimen-tary techniques helped to avoid possible pitfalls in interpre-tation. It was found that the ion energy distribution func-tions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be re-duced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum.

  20. Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne

    2015-01-01

    As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.

  1. Energy Distribution of a Prototype KSTAR Neutral Beam Ion Source for 300 s Arc Discharge

    NASA Astrophysics Data System (ADS)

    Chang, Doo-Hee; Jeong, Seung Ho; Oh, Byung-Hoon

    2008-02-01

    A neutral beam test-stand (NBTS) system has been developed for the extraction of a 300 s deuterium beam of 120 kV/65 A as an auxiliary heating system of Korea Superconducting Tokamak Advanced Research (KSTAR). The prototype long pulse ion source (LPIS) consists of a plasma generator and a set of tetrode accelerators. Beam extraction for 300 s was achieved at a maximum hydrogen beam power of 1.6 MW (70 kV/23 A) with an arc discharge power of 63 kW. The energy distribution of the ion source was analyzed by water-flow calorimetry (WFC) by monitoring the cooling-water temperature during the arc discharge. The power dissipation rate on the accelerator column was 0.97% of the total extracted ion beam power with a power loss of 0.2% caused by the collision of back stream electrons with the electron dump plate of the plasma generator. 74.2% of the total energy of was estimated to be distributed in the plasma generator and the accelerator for an arc discharge of 300 s. Also, 75.6% of the total energy was distributed in the ion source for an arc discharge of 2 s. The remaining energy was lost through the structures around the water-cooling path.

  2. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  3. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  4. Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture

    NASA Astrophysics Data System (ADS)

    McCrory, Patricia A.; Hyndman, Roy D.; Blair, J. Luke

    2014-04-01

    earthquakes anticipated on the Cascadia subduction fault can potentially rupture beyond the geodetically and thermally inferred locked zone to the depths of episodic tremor and slip (ETS) or to the even deeper fore-arc mantle corner (FMC). To evaluate these extreme rupture limits, we map the FMC from southern Vancouver Island to central Oregon by combining published seismic velocity structures with a model of the Juan de Fuca plate. These data indicate that the FMC is somewhat shallower beneath Vancouver Island (36-38 km) and Oregon (35-40 km) and deeper beneath Washington (41-43 km). The updip edge of tremor follows the same general pattern, overlying a slightly shallower Juan de Fuca plate beneath Vancouver Island and Oregon (˜30 km) and a deeper plate beneath Washington (˜35 km). Similar to the Nankai subduction zone, the best constrained FMC depths correlate with the center of the tremor band suggesting that ETS is controlled by conditions near the FMC rather than directly by temperature or pressure. Unlike Nankai, a gap as wide as 70 km exists between the downdip limit of the inferred locked zone and the FMC. This gap also encompasses a ˜50 km wide gap between the inferred locked zones and the updip limit of tremor. The separation of these features offers a natural laboratory for determining the key controls on downdip rupture limits.

  5. Fundamental Limits to Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2015-12-01

    Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary excitation force and different constraints is not yet fully understood. Understanding these limits is not only essential for an assessment of the technology potential, but it also provides a broader perspective on the current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current analysis framework for the simple computation of this limit for more sophisticated setups. We show that the optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation.

  6. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  7. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    SciTech Connect

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L.

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.

  8. Astrophysical implications of high energy neutrino limits

    NASA Astrophysics Data System (ADS)

    Becker, Julia K.; Groß, Andreas; Münich, Kirsten; Dreyer, Jens; Rhode, Wolfgang; Biermann, Peter L.

    2007-09-01

    Second generation high energy neutrino telescopes are being built to reach sensitivities of neutrino emission from galactic and extragalactic sources. Current neutrino detectors are already able to set limits which are in the range of some emission models. In particular, the Antarctic Muon and Neutrino Detection Array (AMANDA) has recently presented the so-far most restrictive limit on diffuse neutrino emission [A. Achterberg et al., Phys. Rev. D, submitted for publication, astro-ph/0705.1315.]. Stacking limits which apply to AGN point source classes rather than to single point sources [A. Achterberg, et al., IceCube Collaboration and P.L. Biermann, Astrophys. Phys. 26 (2006) 282] are given as well. In this paper, the two different types of limits will be used to draw conclusions about different emission models. An interpretation of stacking limits as diffuse limits to the emission from considered point source class is presented. The limits can for instance be used to constrain the predicted correlation of EGRET-detected diffuse emission and neutrino emission. Also, the correlation between X-ray and neutrino emission is constrained. Further results for source classes like TeV blazars and FR-II galaxies are presented. Starting from the source catalogs so-far examined for the stacking method, we discuss further potential catalogs and examine the possibilities of the second generation telescopes ICECUBE and KM3NET by comparing catalogs with respect to northern and southern hemisphere total flux.

  9. Distributed energy store railgun; The limiting case

    SciTech Connect

    Marshall, R.A. )

    1991-01-01

    This paper reports that when the limiting case of a distributed energy store railgun is analyzed, i.e., the case where the space between adjacent energy stores become indefinitely small, three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal and an exponential tail. Second, the rail-to-rail voltage behind the rear-most active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated.

  10. Electron Energy Estimatons From Rotational Temperature Data In An Auroral Arc

    NASA Astrophysics Data System (ADS)

    Holma, H.; Kaila, K.; Jussila, J.

    An arc-like auroral form passed twice over the magnetic zenith at Kilpisjärvi (68.47N, 22.44E), Finland, on 31st January 2001. The form was measured by a zenith- photometer at Kilpisjärvi and by a scanning photometer at Karesuvanto about 150 km Southeast from Kilpisjärvi. The form is studied in terms of rotational tempera- ture in order to estimate energies of precipitating particles causing the emissions. The zenith-photometer is used to clarify the total flux of the electrons and effective emis- sion height, whereas the scanning photometer gives the intensity distribution over the height.

  11. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  12. High energy implantation with high-charge-state ions in a vacuum arc ion implanter

    SciTech Connect

    Oks, E.M. |; Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion implantation energy can in principal be increased by increasing the charge states of the ions produced by the ion source rather than by increasing the implanter operating voltage, providing an important savings in cost and size of the implanter. In some recent work the authors have shown that the charge states of metal ions produced in a vacuum arc ion source can be elevated by a strong magnetic field. In general, the effect of both high arc current and high magnetic field is to push the distribution to higher charge states--the mean ion charge state is increased and new high charge states are formed. The effect is significant for implantation application--the mean ion energy can be about doubled without change in extraction voltage. Here they describe the ion source modifications, the results of time-of-flight measurements of ion charge state distributions, and discuss the use and implications of this technique as a means for doing metal iron implantation in the multi-hundreds of keV ion energy range.

  13. On the anticorrelation of the electric field and peak electron energy within an auroral arc

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Carlson, C. W.

    1985-01-01

    The present investigation is concerned with an example of a strongly anticorrelated electric field and particle precipitation, taking into account an application of an extended version of the model of Evans et al. (1977) to the data. A striking feature of the data reported is the high degree of anticorrelation between electric field strength and peak precipitating electron energy. A simple model consisting of a constant current traversing a region in which the conductivities increase in proportion to ionospheric energy deposition provides a qualitative explanation of the observations. However, when the effects of neutral winds, ionization transport, Hall currents, and arc motion, and the nonlinearity of the relationship between peak precipitating electron energy and equilibrium are considered, the conclusions become less clear.

  14. Energy Characterization of Short-Circuiting Transfer of Metal Droplet in Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yang, Zhu; Xiaojian, Xie; Rui, Wan

    2015-08-01

    The structure-borne acoustic emission (AE) signals were detected in real time in gas metal arc (GMA) welding and pulse GMA (P-GMA) welding. According to the AE signals, the mode of short-circuiting transfer was analyzed, and the energy gradient and total energy were calculated. The calculation to the AE signals of one metal droplet transfer (MDT) showed that the energy gradient increased with increasing welding heat input not only in GMA welding but also in P-GMA welding. The energy gradient of one MDT in P-GMA welding was higher than that in GMA welding, which indicated that a high energy gradient was the basic reason for the additional vibration energy provided by pulse effect in P-GMA welding. The total energy of AE signals increased with increasing welding heat input not only in GMA welding but also in P-GMA welding. The total energy of AE signals in P-GMA welding was higher than that in GMA welding, which indicated that the additional vibration energy provided by welding pulses was the main cause of the grain structure refining in P-GMA welding. So, the results provided another means to predict the weld grain size and optimize the welding process by AE signals detected in welding.

  15. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  16. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  17. Final Design And Manufacturing of the PEP II High Energy Ring Arc Bellows Module

    SciTech Connect

    Kurita, Nadine R.; Kulikov, Artem; Corlett, John; /LBL, Berkeley

    2011-09-01

    A novel RF shield bellows module developed at SLAC has been successfully manufactured and installed in the PEP-II High Energy Ring (HER). Tests indicate that the module meets its performance and operational requirements. The primary function of the bellows module is to allow for thermal expansion of the chambers and for lateral, longitudinal and angular offsets due to tolerances and alignment, while providing RF continuity between adjoining chambers. An update on the Arc bellows module for the PEP-II High Energy Ring is presented. Final design, manufacturing issues, material and coating selection, and tribological and RF testing are discussed. Performance and operational requirements are also reviewed. The RF shield design has been proven during assembly to allow for large manufacturing tolerances without reducing the mechanical spring force below required values. In addition, the RF shield maintains electrical contact even with large misalignments across the module.

  18. Towards a theory for Neptune's arc rings

    SciTech Connect

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-08-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus. 15 references.

  19. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  20. Dynamically limiting energy consumed by cooling apparatus

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-05-26

    Cooling apparatuses and methods are provided which include one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is coupled to the N controllable components, and dynamically adjusts operation of the N controllable components, based on Z input parameters and one or more specified constraints, to provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  1. Dynamically limiting energy consumed by cooling apparatus

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-06-09

    Cooling methods are provided which include providing: one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is also provided to dynamically adjust operation of the N controllable components, based on Z input parameters and one or more specified constraints, and provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  2. Large-Area Chemical and Biological Decontamination Using a High Energy Arc Lamp (HEAL) System.

    SciTech Connect

    Duty, Chad E; Smith, Rob R; Vass, Arpad Alexander; Ilgner, Ralph H; Brown, Gilbert M

    2008-01-01

    Methods for quickly decontaminating large areas exposed to chemical and biological (CB) warfare agents can present significant logistical, manpower, and waste management challenges. Oak Ridge National Laboratory (ORNL) is pursuing an alternate method to decompose CB agents without the use of toxic chemicals or other potentially harmful substances. This process uses a high energy arc lamp (HEAL) system to photochemically decompose CB agents over large areas (12 m2). Preliminary tests indicate that more than 5 decades (99.999%) of an Anthrax spore simulant (Bacillus globigii) were killed in less than 7 seconds of exposure to the HEAL system. When combined with a catalyst material (TiO2) the HEAL system was also effective against a chemical agent simulant, diisopropyl methyl phosphonate (DIMP). These results demonstrate the feasibility of a rapid, large-area chemical and biological decontamination method that does not require toxic or corrosive reagents or generate hazardous wastes.

  3. High energy arcing fault fires in switchgear equipment : a literature review.

    SciTech Connect

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  4. 75 FR 6378 - Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy Marketing LLC Covanta Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy..., Covanta Pylmouth Renewable Energy Limited Partnership, Covanta Energy Marketing LLC, and Covanta...

  5. Energy and power limits for microbial activity

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J.

    2014-12-01

    The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R

  6. Capital requirements for the transportation of energy materials: 1979 ARC estimates. Draft final report

    SciTech Connect

    Not Available

    1980-08-13

    This report contains TERA's estimates of capital requirements to transport natural gas, crude oil, petroleum products, and coal in the United States by 1990. The low, medium, and high world-oil-price scenarios from the EIA's Mid-range Energy Forecasting System (MEFS), as used in the 1979 Annual Report to Congress (ARC), were provided as a basis for the analysis and represent three alternative futures. TERA's approach varies by energy commodity to make best use of the information and analytical tools available. Summaries of transportation investment requirements through 1990 are given. Total investment requirements for three modes (pipelines, rails, waterways and the three energy commodities can accumulate to a $49.9 to $50.9 billion range depending on the scenario. The scenarios are distinguished primarily by the world price of oil which, given deregulation of domestic oil prices, affects US oil prices even more profoundly than in the past. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past.

  7. Limits to Photovoltaic Energy Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Introduction * Photovoltaic converters: essential requirements * Thermodynamic properties of sunlight * `Top-down' thermodynamic efficiency limits * Single-cell efficiency limits * Multiple-junction devices * Other high-efficiency options * Summary * Acknowledgement * References

  8. Klystron Gun Arcing and Modulator Protection

    SciTech Connect

    Gold, S

    2004-05-04

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc.

  9. Arc driver operation for either efficient energy transfer or high-current generator

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Silva, A. F.

    1972-01-01

    An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed.

  10. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    PubMed

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm. PMID:21944704

  11. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  12. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  13. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  14. Microbial Life Under Extreme Energy Limitation

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Jorgensen, Bo Barker

    2013-01-01

    A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 104- to 106-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.

  15. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  16. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  17. Arcing in LEO - Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  18. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  19. Possibilities and limitations of wind energy utilisation

    NASA Astrophysics Data System (ADS)

    Feustel, J.

    1981-10-01

    The existing wind resource, the most favorable locations, applications, and designs of windpowered generators are reviewed, along with descriptions of current and historic wind turbines and lines of research. Coastal regions, plains, hill summits, and mountains with funneling regions are noted to have the highest annual wind averages, with energy densities exceeding the annual solar insolation at average wind speeds of 5-7.9 m/sec. Applications for utility-grade power production, for irrigation, for mechanical heat production, and for pumped storage in water towers or reservoirs are mentioned, as well as electrical power production in remote areas and for hydrogen production by electrolysis. Power coefficients are discussed, with attention given to the German Growian 3 MW machine. It is shown that the least economically sound wind turbines, the machines with outputs below 100 kW, can vie with diesel plant economics in a good wind regime if the wind turbine operates for 15 yr.

  20. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    SciTech Connect

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J.

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  1. Effects of relative positioning of energy sources on weld integrity for hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Li, Yanqing; Liu, Fengde; Zhang, Hong; Ding, Hongtao

    2016-06-01

    This study is concerned with the effects of laser and arc arrangement on weld integrity for the hybrid laser arc welding processes. Experiments were conducted for a high-strength steel using a 4 kW Nd: YAG laser and a metal active gas (MAG) welding facility under two configurations of arc-laser hybrid welding (ALHW) and laser-arc hybrid welding (LAHW). Metallographic analysis and mechanical testing were performed to evaluate the weld integrity in terms of weld bead geometry, microstructure and mechanical properties. The morphology of the weld bead cross-section was studied and the typical macrostructure of the weld beads appeared to be cone-shaped and cocktail cup-shaped under ALHW and LAHW configurations, respectively. The weld integrity attributes of microstructure, phase constituents and microhardness were analyzed for different weld regions. The tensile and impact tests were performed and fracture surface morphology was analyzed by scanning electron microscope. The study showed that ALHW produced joints with a better weld shape and a more uniform microstructure of lath martensite, while LAHW weld had a heterogeneous structure of lath martensite and austenite.

  2. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  3. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  4. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  5. Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices

    SciTech Connect

    Nikolaev, A. G. Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P.; Barengolts, S. A.

    2014-12-07

    We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.

  6. Ab initio intermolecular potential energy surfaces of He-CS2, Ne-CS2 and Ar-CS2 complexes

    NASA Astrophysics Data System (ADS)

    Farrokhpour, H.; Tozihi, M.

    2013-03-01

    The potential energy surfaces of the He-CS2, Ne-CS2 and Ar-CS2 van der Waals complexes were calculated for the first time at the CCSD(T) level of theory using the aug-cc-pVDZ basis set augmented with a set of midbond functions (3s3p2d1f1g). It was found that the calculated interaction potential, using the applied basis set, readily converges to the complete basis set limit. For a broad range of intermolecular separations and configurations, the interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error (BSSE). In addition, symmetry-adapted perturbation theory (SAPT) calculations were performed with the same basis set in order to determine the character of the interaction energy of the most stable configuration of each complex at different intermolecular separations in order to make a comparison with the CCSD(T) results. The CCSD(T) calculated potential energy surface of each complex was fitted to an analytic expression to obtain the values of the isotropic dipole-dipole ( ? ) and dipole-quadruple ( ? ) dispersion coefficients of each complex. Finally, the interaction second virial coefficients (B12) were obtained using the calculated potential energy surface and used together with the experimental second virial coefficients of pure gases (CS2, Ar, Ne and He) to obtain the second virial coefficient of mixtures of CS2 with rare gas at different temperatures and mole fractions.

  7. Limiting energy spectrum of a saturated radiation belt

    NASA Technical Reports Server (NTRS)

    Schulz, Michael; Davidson, Gerald T.

    1988-01-01

    The condition for magnetospheric wave growth in the presence of anisotropic charged particle distributions is used to extend the Kennel-Petschek theory that traditionally imposes an upper bound on the integral flux of charged particles at energies above a certain threshold to provide a limit on the differential flux at any energy above this threshold. A closed-form expression is derived for the limiting energy spectrum consistent with marginal occurrence of a magnetospheric maser at all wave frequencies below a certain fraction of the electron or proton gyrofrequency. The bounded integral can be recast in such a way that repeated differentiations with respect to v(parallel) actually generate a closed expression for the limiting form of the velocity space distribution, and thus for the limiting energy spectrum of the corresponding particles, whenever the anisotropy parameter is an integer.

  8. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    NASA Astrophysics Data System (ADS)

    Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-06-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  9. UV Driven Evaporation of Close-in Planets: Energy-limited, Recombination-limited, and Photon-limited Flows

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Alvarez, Marcelo A.

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this "recombination-limited" flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately "energy-limited" however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term "photon-limited." In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is "recombination-limited" at high fluxes but becomes "energy-limited" at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming "energy-limited" at lower fluxes.

  10. Role of complementary relationship in Budyko framework from water-limited to energy-limited environments

    NASA Astrophysics Data System (ADS)

    Han, S.; Tian, F.; Tang, Q.

    2015-12-01

    The complementary relationship and Budyko curve are two kinds of approaches for describing the relationship between catchment-scale actual and potential evaporation. According to a nonlinear complementary relationship model, it was derived that, with constant energy input (denoted by constant radiation term (Erad) of potential evaporation), the changes in aerodynamic term (Eaero) are accompanied with opposite changes in actual evaporation under water-limited conditions, but same direction changes in actual evaporation under energy-limited conditions. As a result, the radiation term and aerodynamic term play different roles in the Budyko curve. In other words, complementary relationship plays a role in the Budyko framework, which should be seriously considered. The role of complementary relationship on the Budyko curve from water-limited to energy-limited environments was schematically analyzed, considering the different correlations between actual evaporation and the radiation and the aerodynamic terms. Under water limited conditions, the catchment with a higher Erad/Eaero would be wetter, and characterized with higher evaporation efficiency and larger properties parameter of Budyko curve. Under energy limited conditions, the role of complementary relationship may be different. Erad/Eaero is found to be connected with the variations of catchment parameter in the Budyko curve, and an exponential relationship between the catchment parameter and Erad/Eaero was derived through dimensional analysis and mathematical reasoning. The analysis will be evaluated using water balance data of a number of catchments from non-humid to humid environments over China.

  11. Experimental limit on low energy antiprotons in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Streitmatter, R. E.; Stochaj, S. J.; Ormes, J. F.; Golden, R. L.; Stephens, S. A.

    1989-01-01

    Results are reported from the Low Energy Antiproton Experiment (LEAP), a balloon-borne instrument which was flown in August, 1987. No evidence of antiproton fluxes is found in the kinetic energy range of 120 MeV to 360 MeV, at the top of the atmosphere. The 90-percent is found confidence upper limit on the antiproton/proton ratio in this energy range is 3.5 x 10 to the -5th. In particular, this new experiment places an upper limit on the flux almost an order of magnitude below the reported flux of Buffington et al. (1981).

  12. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  13. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  14. 78 FR 3893 - Enbridge Energy, Limited Partnership; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Energy Regulatory Commission Enbridge Energy, Limited Partnership; Notice of Technical Conference The... conference be held to address issues raised by Enbridge Energy, Limited Partnership's proposed revision to its downstream Nomination Verification Procedure. \\1\\ Enbridge Energy, Limited Partnership, 141...

  15. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  16. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  17. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  18. Unified limiting form of graviton radiation at extreme energies

    NASA Astrophysics Data System (ADS)

    Ciafaloni, Marcello; Colferai, Dimitri; Coradeschi, Francesco; Veneziano, Gabriele

    2016-02-01

    We derive the limiting form of graviton radiation in gravitational scattering at trans-Planckian energies (E ≫MP) and small deflection angles. We show that—owing to the graviton's spin 2—such a limiting form unifies the soft and Regge regimes of emission, by covering a broad angular range, from forward fragmentation to the deeply central region. The single-exchange emission amplitudes have a nice expression in terms of the transformation phases of helicity amplitudes under rotations. As a result, the multiple-exchange emission amplitudes can be resummed via an impact parameter b -space factorization theorem that takes into account all coherence effects. We then see the emergence of an energy spectrum of the emitted radiation which, being tuned on ℏ/R ˜MP2/E ≪MP, is reminiscent of Hawking's radiation. Such a spectrum is much softer than the one naïvely expected for increasing input energies and neatly solves a potential energy crisis. Furthermore, by including rescattering corrections in the (quantum) factorization formula, we are able to recover the classical limit and find the corresponding quantum corrections. Perspectives for the extrapolation of such limiting radiation towards the classical collapse regime (where b is of the order of the gravitational radius R ) are also discussed.

  19. Flux limits for high energy cosmic photinos from underground experiments

    NASA Astrophysics Data System (ADS)

    Fayet, P.

    1989-03-01

    Underground experiments, which detect the interactions of atmospheric neutrinos, could also be sensitive to photinos. Using data from the Fréjus and Kamiokande detectors we give upper limits on the possible flux of high-energy relativistic photinos incident on the Earth, as functions of the squark or selectron masses. These limits improve considerably the existing ones, by four to nine orders of magnitude or more, especially for very energetic photinos. Although not yet very constraining, they may be used to eliminate the possibility that high-energy cosmic photinos could contribute significantly to the energy density of the Universe. Laboratoire Propre du Centre National de la Recherche Scientifique, associé à l'École Normale Supérieure et à l'Université de Paris-Sud.

  20. Prospects and Limits of Energy Storage in Batteries.

    PubMed

    Abraham, K M

    2015-03-01

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints. PMID:26262660

  1. ELS Design Group/SOL-ARC: Energy-Efficient State Office Building, San Jose, Ca, Citation.

    ERIC Educational Resources Information Center

    Progressive Architecture, 1981

    1981-01-01

    Recipient of an architectural design citation from the 28th Progressive Architecture Awards is an energy-efficient office building that relies on passive techniques of conservation to produce energy savings. (Author/MLF)

  2. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  3. Reconstruction of limited-angle dual-energy CT using mutual learning and cross-estimation (MLCE)

    NASA Astrophysics Data System (ADS)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate the connection between projections at two different energies by constructing a relationship between the linear attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate missing projections and reconstruct attenuation images from an augmented data set including projections at views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for each energy respectively. Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can much broaden DECT design in reality.

  4. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  5. Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy

    PubMed Central

    Sonmez, S; Erbay, G; Guler, O C; Arslan, G

    2014-01-01

    Objective: This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels. Methods: The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy. Results: PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30–V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60–V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB. Conclusion: Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT. Advances in knowledge: VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed. PMID:24319009

  6. Experimental Limit on the Cosmic Diffuse Ultrahigh Energy Neutrino Flux

    NASA Astrophysics Data System (ADS)

    Gorham, P. W.; Hebert, C. L.; Liewer, K. M.; Naudet, C. J.; Saltzberg, D.; Williams, D.

    2004-07-01

    We report results from 120h of live time with the Goldstone lunar ultrahigh energy neutrino experiment (GLUE). The experiment searches for ≤10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of ≥100 EeV (1 EeV=1018 eV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultrahigh energy neutrino fluxes.

  7. Experimental limit on the cosmic diffuse ultrahigh energy neutrino flux.

    PubMed

    Gorham, P W; Hebert, C L; Liewer, K M; Naudet, C J; Saltzberg, D; Williams, D

    2004-07-23

    We report results from 120 h of live time with the Goldstone lunar ultrahigh energy neutrino experiment (GLUE). The experiment searches for < or = 10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of > or = 100 EeV (1 EeV = 10(18) eV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultrahigh energy neutrino fluxes. PMID:15323748

  8. Load-limiting landing gear footpad energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Tsai, Ted

    1994-01-01

    As a precursor to future manned missions to the moon, an inexpensive, unmanned vehicle that could carry small, scientific payloads to the lunar surface was studied by NASA. The vehicle, called the Common Lunar Lander, required extremely optimized structural systems to increase the potential payload mass. A lightweight energy-absorbing system (LAGFEAS), which also acts as a landing load-limiter was designed to help achieve this optimized structure. Since the versatile and easily tailored system is a load-limiter, it allowed for the structure to be designed independently of the ever-changing landing energy predictions. This paper describes the LAGFEAS system and preliminary verification testing performed at NASA's Johnson Space Center for the Common Lunar Lander program.

  9. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  10. Low dose, limited energy spectroscopic x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nelson Weker, Johanna; Li, Yiyang; Chueh, William C.

    2015-09-01

    In order to achieve high quality in situ spectroscopic X-ray microscopy of complex systems far from equilibrium, such as lithium ion batteries under standard electrochemical cycling, careful consideration of the total number of energy points is required. Enough energy points are need to accurately determine the per pixel chemical information; however, total radiation dose needs to be limited to avoid damaging the system which would produce misleading results. Here we consider the number of energy points need to accurately reproduce the state of charge maps of a LiFePO2 electrode recorded during electrochemical cycling. We observe very good per pixel agreement using only 13 energy points. Additionally, we find the quality of the agreement is heavily dependent on the number of energy points used in the post edge fit during normalization of the spectra rather than the total number of energies used. Finally, we suggest a straightforward protocol for determining the minimum number of energy points needed prior to initiating any in situ spectroscopic X-ray microscopy experiment.

  11. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  12. Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2015-02-01

    Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far

  13. The dosimetric impact of different photon beam energy on RapidArc radiotherapy planning for cervix carcinoma

    PubMed Central

    Kumar, Lalit; Yadav, Girigesh; Raman, Kothanda; Bhushan, Manindra; Pal, Manoj

    2015-01-01

    The main purpose of this study is to know the effect of three different photon energies viz., 6, 10, and 15 mega voltage (MV) on RapidArc (RA) planning for deep-seated cervix tumor and to develop clinically acceptable RA plans with suitable photon energy. RA plans were generated for 6, 10, and 15 MV photon energies for twenty patients reported with cervix carcinoma. RA plans were evaluated in terms of planning target volume (PTV) coverage, dose to organs at risk (OARs), conformity index (CI), homogeneity index (HI), gradient measure, external volume index of dose distribution produced, total number of monitor units (MUs), nontumor integral dose (ID), and low dose volume of normal tissue. A two-sample paired t-test was performed to compare the dosimetric parameters of RA plans. Irrespective of photon energy used for RA planning, plans were dosimetrically similar in terms of PTV coverage, OARs sparing, CI and HI. The numbers of MUs were 13.4 ± 1.4% and 18.2 ± 1.5% higher and IDs were 2.7 ± 0.8% and 3.7 ± 0.9% higher in 6 MV plans in comparison to that in the 10 and 15 MV plans, respectively. V1Gy, V2Gy, V3Gy, and V4Gy were higher in 6 MV plans in comparison to that in 10 and 15 MV plans. Based on this study, 6 MV photon beam is a good choice for RA planning in case of cervix carcinoma, as it does not deliver additional exposure to patients caused by photoneutrons produced in high energy beams. PMID:26865756

  14. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  15. 76 FR 43682 - Shetek Wind Inc. Jeffers South, LLC Allco Renewable Energy Limited v. Midwest Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Shetek Wind Inc. Jeffers South, LLC Allco Renewable Energy Limited v... Renewable Energy Limited (collectively Complainants) filed a formal complaint against the...

  16. TiN coating of the PEP-II low-energy ring aluminum arc vacuum chambers

    SciTech Connect

    Kennedy, K.; Harteneck, B.; Millos, G.

    1997-05-01

    The PEP-II Low-Energy Ring will operate at a nominal energy of 3.1 GeV with a positron beam current of 2.1 A. Design parameters for vacuum components are 3.5 GeV at 3 A. The arc vacuum system is based on an aluminum antechamber concept. It consists of 192 pairs of 2 m long magnet chambers and 5.5 m long pumping chambers. Titanium nitride coating of the entire positron duct is needed in order to suppress beam instabilities caused by multipactoring and the {open_quotes}electron-cloud{close_quotes} effect. An extensive R&D program has been conducted to develop coating parameters that give proper stoichiometry and a suitable thickness of TiN. The total secondary emission yield of TiN-coated aluminum coupons has been measured after the samples were exposed to air and again after electron-beam bombardment. A coating facility has been built to cope with the large quantity of production chambers and the very tight schedule requirements.

  17. Rashba scattering in the low-energy limit

    NASA Astrophysics Data System (ADS)

    Hutchinson, Joel; Maciejko, Joseph

    2016-06-01

    We study potential scattering in a two-dimensional electron gas with Rashba spin-orbit coupling in the limit that the energy of the scattering electron approaches the bottom of the lower spin-split band. Focusing on two spin-independent circularly symmetric potentials, an infinite barrier and a delta-function shell, we show that scattering in this limit is qualitatively different from both scattering in the higher spin-split band and scattering of electrons without spin-orbit coupling. The scattering matrix is purely off-diagonal with both off-diagonal elements equal to one, and all angular momentum channels contribute equally; the differential cross section becomes increasingly peaked in the forward and backward scattering directions; the total cross section exhibits quantized plateaus. These features are independent of the details of the scattering potentials, and we conjecture them to be universal. Our results suggest that Rashba scattering in the low-energy limit becomes effectively one-dimensional.

  18. Einstein - Cartan - Dirac theory in the low-energy limit

    NASA Astrophysics Data System (ADS)

    Singh, P.; Ryder, L. H.

    1997-12-01

    We look for manifestations of the effects of torsion in the low-energy limit in the context of Einstein - Cartan - Dirac theory (or any theory of gravity in which the torsion tensor is purely axial). To proceed, we introduce the mathematical law governing the transport of orthonormal bases or tetrads in a spacetime with torsion. This law is applied to compute the metric and connection in a rotating and accelerating frame, or laboratory. A spin-0264-9381/14/12/031/img1 particle is placed in this rotating and accelerating frame and the low-energy limit of the Dirac equation is taken by means of the Foldy - Wouthuysen transformation. In addition to obtaining the Bonse - Wroblewski phase shift due to acceleration, Sagnac-type effects, rotation - spin couplings of the Mashhoon type, redshift of the kinetic energy and the spin - orbit coupling term of Hehl and Ni, we also obtain several interesting and significant terms as a consequence of introducing torsion into spacetime. We give a detailed interpretation of these additional terms and discuss their observability in the light of current well-known experimental techniques.

  19. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  20. Energy and population: transitional issues and eventual limits.

    PubMed

    Werbos, P J

    1990-08-01

    The implication of population size for US energy requirements is explored in this essay. The basic argument is that the present supply of fuels and energy technologies is not sustainable in the long run, that a wide range of choices is possible when a complete transition is made to sustainable technologies, and that the growth of population and the composition of this growth during the next 30 years are the most serious problems impacting on the achievement of sustainable technology. The importance and future of fuel oil is discussed as well as the transition to sustainable energy supplies: conservation, renewables, nuclear and coal. Dependency on oil can only be changed through time and the infusion of money, but even with these givens, the transition is also dependent on the political and budgetary climate. The race is between crisis and cure. It is argued that the soft energy systems (biomass, solar water heater, wind, hydro, and geothermal energy) along with conservation will increase easily and naturally, but the total potential from these sources amounts to only 10% of the present US energy supply. Conservation offers greater hope because 80% of end-use fossil fuel is used in transportation and industry. Further growth of the population in the US would create a demand to desalinate water, which would increase the demand for energy. A totally soft energy economy is probably not feasible without a drastic reduction in US population. The expected direction is in the increased use of coal, and then nuclear energy. Unfortunately, coal contributes to greenhouse warming, and the supply is limited to 60-100 years. Nuclear proliferation and terrorism is connected to the widespread use of nuclear energy. Some breakthrough technology with cold fusion may offer a safer alternative. High technology renewables such as solar cells can be competitive with nuclear energy, if prices can be kept down. on earth or in space, are being investigated. Exploring a variety of advanced

  1. Optimum rocket propulsion for energy-limited transfer

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Landis, Geoffrey A.

    1991-01-01

    In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of

  2. Landauer limit of energy dissipation in a magnetostrictive particle.

    PubMed

    Roy, Kuntal

    2014-12-10

    According to Landauer's principle, a minimum amount of energy proportional to temperature must be dissipated during the erasure of a classical bit of information compensating the entropy loss, thereby linking the information and thermodynamics. Here, we show that the Landauer limit of energy dissipation is achievable in a shape-anisotropic single-domain magnetostrictive nanomagnet having two mutually anti-parallel degenerate magnetization states that store a bit of information. We model the magnetization dynamics using the stochastic Landau-Lifshitz-Gilbert equation in the presence of thermal fluctuations and show that on average the Landauer bound is satisfied, i.e. it is in accordance with the generalized Landauer's principle for small systems with stochastic fluctuations. PMID:25379608

  3. Limit on rotational energy available to excite Jovian aurora

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Siscoe, G. L.

    1980-01-01

    There is a fundamental relationship between the power that is extracted from Jupiter's rotation to drive magnetospheric processes and the rate at which mass is injected into the Io plasma torus. Half of this power is consumed by bulk motion of the plasma and the other half represents an upper limit on the energy from rotation available for dissipation and in particular to excite the Jovian aurora. Since the rotation of the planet is the only plausible source of energy, the power inferred from the observed auroral intensities requires a plasma injection rate of 2.6 x 10 to the 29th AMU/sec or greater. This in turn leads to a residence time of a torus particle of 48 days or less. These results raise doubts about the applicability of equilibrium thermodynamics to the determination of plasma parameters in the Io torus.

  4. Capital requirements for the transportation of energy materials: 1979 arc estimates

    SciTech Connect

    Not Available

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  5. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  6. SU-E-J-53: Dosimetric Evaluation at Volumetric Modulated Arc Therapy for Treatment of Prostate Cancer Using Single Or Double Arcs

    SciTech Connect

    Silva, D; Salmon, H; Pavan, G; Nardi, S; Anderson, E; Fairbanks, L; Junior, J; Cursino, F; Colodette, K

    2014-06-01

    Purpose: Evaluate and compare retrospective prostate treatment plan using Volumetric Modulated Arc Therapy (RapidArc™ - Varian) technique with single or double arcs at COI Group. Methods: Ten patients with present prostate and seminal vesicle neoplasia were replanned as a target treatment volume and a prescribed dose of 78 Gy. A baseline planning, using single arc, was developed for each case reaching for the best result on PTV, in order to minimize the dose on organs at risk (OAR). Maintaining the same optimization objectives used on baseline plan, two copies for optimizing single and double arcs, have been developed. The plans were performed with 10 MV photon beam energy on Eclipse software, version 11.0, making use of Trilogy linear accelerator with Millenium HD120 multileaf collimator. Comparisons on PTV have been performed, such as: maximum, minimum and mean dose, gradient dose, as well as the quantity of monitor units, treatment time and homogeneity and conformity index. OARs constrains dose have been evaluated, comparing both optimizations. Results: Regarding PTV coverage, the difference of the minimum, maximum and mean dose were 1.28%, 0.7% and 0.2% respectively higher for single arc. When analyzed the index of homogeneity found a difference of 0.99% higher when compared with double arcs. However homogeneity index was 0.97% lower on average by using single arc. The doses on the OARs, in both cases, were in compliance to the recommended limits RTOG 0415. With the use of single arc, the quantity of monitor units was 10,1% lower, as well as the Beam-On time, 41,78%, when comparing double arcs, respectively. Conclusion: Concerning the optimization of patients with present prostate and seminal vesicle neoplasia, the use of single arc reaches similar objectives, when compared to double arcs, in order to decrease the treatment time and the quantity of monitor units.

  7. Strain-Based Acceptance Criteria for Energy-Limited Events

    SciTech Connect

    Spencer D. Snow; Dana K. Morton

    2009-07-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code was primarily written with stress-based acceptance criteria. These criteria are applicable to force, displacement, and energy-controlled loadings and ensure a factor of safety against failure. However, stress-based acceptance criteria are often quite conservative for one time energy-limited events such as accidental drops and impacts. For several years, the ASME Working Group on Design of Division 3 Containments has been developing the Design Articles for Section III, Division 3, “Containments for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material and Waste,” and has wanted to establish strain-based acceptance criteria for accidental drops of containments. This Division 3 working group asked the Working Group on Design Methodology (WGDM) to assist in developing these strain-based acceptance criteria. This paper discusses the current proposed strain-based acceptance criteria, associated limitations of use, its background development, and the current status.

  8. Fundamental Efficiency Limitations for Low Electron Energy Cathololuminescence

    SciTech Connect

    SEAGER,CARLETON H.; TALLANT,DAVID R.

    2000-08-01

    The design of field emission displays is severely constrained by the universally poor cathodoluminescence (CL) efficiency of most phosphors at low excitation energies. As part of the effort to understand this phenomenon, the authors have measured the time decay of spectrally-resolved, pulsed CL and photoluminescence (PL) in several phosphors activated by rare earth and transition metal impurities, including Y{sub 2}O{sub 3}:Eu, Y{sub 2}SiO{sub 5}:Tb, and Zn{sub 2}SiO{sub 4}:Mn. Activator concentrations ranged from {approximately}0.25 to 10%. The CL decay curves are always non-linear on a log(CL)-linear(time) plot--i.e. they deviate from first order decay kinetics. These deviations are always more pronounced at short times and larger activator concentrations and are largest at low beam energies where the decay rates are noticeably faster. PL decay is always slower than that seen for CL, but these differences disappear after most of the excited species have decayed. They have also measured the dependence of steady state CL efficiency on beam energy. They find that larger activator concentrations accelerate the drop in CL efficiency seen at low beam energies. These effects are largest for the activators which interact more strongly with the host lattice. While activator-activator interactions are known to limit PL and CL efficiency in most phosphors, the present data suggest that a more insidious version of this mechanism is partly responsible for poor CL efficiency at low beam energies. This enhanced concentration quenching is due to the interaction of nearby excited activators. These interactions can lead to non-radiative activator decay, hence lower steady state CL efficiency. Excited state clustering, which may be caused by the large energy loss rate of low energy primary electrons, appears to enhance these interactions. In support of this idea, they find that PL decays obtained at high laser pulse energies resemble the non-linear decays seen in the CL data.

  9. Limits to sustained energy intake. XXIII. Does heat dissipation capacity limit the energy budget of lactating bank voles?

    PubMed

    Sadowska, Edyta T; Król, Elżbieta; Chrzascik, Katarzyna M; Rudolf, Agata M; Speakman, John R; Koteja, Paweł

    2016-03-01

    Understanding factors limiting sustained metabolic rate (SusMR) is a central issue in ecological physiology. According to the heat dissipation limit (HDL) theory, the SusMR at peak lactation is constrained by the maternal capacity to dissipate body heat. To test that theory, we shaved lactating bank voles (Myodes glareolus) to experimentally elevate their capacity for heat dissipation. The voles were sampled from lines selected for high aerobic exercise metabolism (A; characterized also by increased basal metabolic rate) and unselected control lines (C). Fur removal significantly increased the peak-lactation food intake (mass-adjusted least square means ± s.e.; shaved: 16.3 ± 0.3 g day(-1), unshaved: 14.4 ± 0.2 g day(-1); P<0.0001), average daily metabolic rate (shaved: 109 ± 2 kJ day(-1), unshaved: 97 ± 2 kJ day(-1); P<0.0001) and metabolisable energy intake (shaved: 215 ± 4 kJ day(-1), unshaved: 185 ± 4 kJ day(-1); P<0.0001), as well as the milk energy output (shaved: 104 ± 4 kJ day(-1); unshaved: 93 ± 4 kJ day(-1); P=0.021) and litter growth rate (shaved: 9.4 ± 0.7 g 4 days(-1), unshaved: 7.7 ± 0.7 g 4 days(-1); P=0.028). Thus, fur removal increased both the total energy budget and reproductive output at the most demanding period of lactation, which supports the HDL theory. However, digestive efficiency was lower in shaved voles (76.0 ± 0.3%) than in unshaved ones (78.5 ± 0.2%; P<0.0001), which may indicate that a limit imposed by the capacity of the alimentary system was also approached. Shaving similarly affected the metabolic and reproductive traits in voles from the A and C lines. Thus, the experimental evolution model did not reveal a difference in the limiting mechanism between animals with inherently different metabolic rates. PMID:26747907

  10. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  11. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  12. 78 FR 6091 - Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge Settlement Take notice that on December 12, 2012, Enbridge Energy, Limited Partnership (Enbridge Energy), with the support...

  13. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  14. Exciton fission and solar energy conversion beyond the limit

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyang

    2014-03-01

    The absorption of one photon by a semiconductor material usually creates one electron-hole pair, but this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs in a process called singlet exciton. Recent measurements in our group by time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state. More importantly, population of the multiexciton state is found to rise concurrently with that of the singlet state on the ultrafast time scale upon photo excitation. This observation provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately following optical excitation. We demonstrate the feasibility of harvesting the multiexciton state for multiple charge carriers and the implementation of singlet fission for solar energy conversion beyond the Shockley-Queisser limit.

  15. Tritium handling experience at Atomic Energy of Canada Limited

    SciTech Connect

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  16. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  17. Interface Series: Energy and Exercise. V. Limiting Reagents.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1978-01-01

    Discusses different foods with reference to oxidation and energy production. Amino acid assays are provided for eggs, steak, rice, and lentils and white and dark turkey meat is analyzed for energy and power outputs. (MA)

  18. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  19. Three-dimensional modeling of the plasma arc in arc welding

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hu, J.; Tsai, H. L.

    2008-11-01

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  20. Reducing energy demand: what are the practical limits?

    PubMed

    Cullen, Jonathan M; Allwood, Julian M; Borgstein, Edward H

    2011-02-15

    Concern over the global energy system, whether driven by climate change, national security, or fears of shortage, is being discussed widely and in every arena but with a bias toward energy supply options. While demand reduction is often mentioned in passing, it is rarely a priority for implementation, whether through policy or through the search for innovation. This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. Previous work led to a "map" of global energy use that traces the flow of energy from primary sources (fuels or renewable sources), through fuel refinery, electricity generation, and end-use conversion devices, to passive systems and the delivery of final energy services (transport, illumination, and sustenance). The key passive systems are presented here and analyzed through simple engineering models with scalar equations using data based on current global practice. Physically credible options for change to key design parameters are identified and used to predict the energy savings possible for each system. The result demonstrates that 73% of global energy use could be saved by practically achievable design changes to passive systems. This reduction could be increased by further efficiency improvements in conversion devices. A list of the solutions required to achieve these savings is provided. PMID:21226525

  1. CT energy weighting in the presence of scatter and limited energy resolution

    SciTech Connect

    Schmidt, Taly Gilat

    2010-03-15

    Purpose: Energy-resolved CT has the potential to improve the contrast-to-noise ratio (CNR) through optimal weighting of photons detected in energy bins. In general, optimal weighting gives higher weight to the lower energy photons that contain the most contrast information. However, low-energy photons are generally most corrupted by scatter and spectrum tailing, an effect caused by the limited energy resolution of the detector. This article first quantifies the effects of spectrum tailing on energy-resolved data, which may also be beneficial for material decomposition applications. Subsequently, the combined effects of energy weighting, spectrum tailing, and scatter are investigated through simulations. Methods: The study first investigated the effects of spectrum tailing on the estimated attenuation coefficients of homogeneous slab objects. Next, the study compared the CNR and artifact performance of images simulated with varying levels of scatter and spectrum tailing effects, and reconstructed with energy integrating, photon-counting, and two optimal linear weighting methods: Projection-based and image-based weighting. Realistic detector energy-response functions were simulated based on a previously proposed model. The energy-response functions represent the probability that a photon incident on the detector at a particular energy will be detected at a different energy. Realistic scatter was simulated with Monte Carlo methods. Results: Spectrum tailing resulted in a negative shift in the estimated attenuation coefficient of slab objects compared to an ideal detector. The magnitude of the shift varied with material composition, increased with material thickness, and decreased with photon energy. Spectrum tailing caused cupping artifacts and CT number inaccuracies in images reconstructed with optimal energy weighting, and did not impact images reconstructed with photon counting weighting. Spectrum tailing did not significantly impact the CNR in reconstructed images

  2. 77 FR 22568 - Madison Paper Industries, FPL Energy Maine Hydro, LLC, Merimil Limited Partnership; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Energy Regulatory Commission Madison Paper Industries, FPL Energy Maine Hydro, LLC, Merimil Limited... Industries, FPL Energy Maine Hydro, LLC, and Merimil Limited Partnership, licensees for the Brassua Hydroelectric Project, filed an Application for a New License pursuant to the Federal Power Act (FPA) and...

  3. The discharge mechanism of the high-temperature arc

    NASA Technical Reports Server (NTRS)

    Busz-Peuckert, G.; Finkelnburg, W.

    1984-01-01

    The mechanism of the high temperature Ar arc is interpreted considering those essential points in which it deviates from the known arcs based on earlier measurements and experiments. The following points are discussed individually: the charge carrier balance, the energy balance, the volt amp characteristics, and the difference between high temperature arcs in Ar and N. Besides the volt amp characteristic of a 10 mm long arc in Ar between 10 and 200 amp, the anode fall, cathode fall, and arc gradient were obtained with the aid of probes. The difference between Ar and N arcs are attributed to variations of the heat conditions and electrical conditions at different temperatures of the gas.

  4. Limits of Free Energy Computation for Protein-Ligand Interactions

    PubMed Central

    Merz, Kenneth M.

    2010-01-01

    A detailed error analysis is presented for the computation of protein-ligand interaction energies. In particular, we show that it is probable that even highly accurate computed binding free energies have errors that represent a large percentage of the target free energies of binding. This is due to the observation that the error for computed energies quasi-linearly increases with the increasing number of interactions present in a protein-ligand complex. This principle is expected to hold true for any system that involves an ever increasing number of inter or intra-molecular interactions (e.g. ab initio protein folding). We introduce the concept of best-case scenario errors (BCSerrors) that can be routinely applied to docking and scoring exercises and used to provide errors bars for the computed binding free energies. These BCSerrors form a basis by which one can evaluate the outcome of a docking and scoring exercise. Moreover, the resultant error analysis enables the formation of an hypothesis that defines the best direction to proceed in order to improve scoring functions used in molecular docking studies. PMID:20467461

  5. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  6. New limits on coupled dark energy from Planck

    SciTech Connect

    Xia, Jun-Qing

    2013-11-01

    Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.

  7. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  8. [Arc welder's lung].

    PubMed

    Molinari, Luciana; Alvarez, Clarisa; Semeniuk, Guillermo B

    2010-01-01

    Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ. PMID:21163741

  9. High separative power vacuum arc centrifuge (HSP-VAC)

    SciTech Connect

    Qi, Niansheng; Krishnan, M.

    1997-12-01

    The reliability of supply of stable isotopes needed in medicine and science has been a problem for decades. Among the many sources of enriched stable isotopes are the Calutrons at Oak Ridge National Laboratory, ICONS of Cambridge Isotopes Limited, and reactors such as at Atomic Energy of Canada Ltd. and elsewhere. Alameda Applied Sciences Corporation (AASC) staff have spearheaded the development of a new type of isotope separator, dubbed the Vacuum Arc Centrifuge (VAC). This effort dates to the 1980s under National Science Foundation sponsorship at Yale, the early 1990s under a U.S. Department of Energy grant, and more recently, under AASC internal funding. The VAC consists of a vacuum arc discharge between a metal cathode (containing the substances to be separated) and a mesh anode across a small gap.

  10. Informatics-Based Energy Fitting Scheme for Correlation Energy at Complete Basis Set Limit.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2016-09-30

    Energy fitting schemes based on informatics techniques using hierarchical basis sets with small cardinal numbers were numerically investigated to estimate correlation energies at the complete basis set limits. Numerical validations confirmed that the conventional two-point extrapolation models can be unified into a simple formula with optimal parameters obtained by the same test sets. The extrapolation model was extended to two-point fitting models by a relaxation of the relationship between the extrapolation coefficients or a change of the fitting formula. Furthermore, n-scheme fitting models were developed by the combinations of results calculated at several theory levels and basis sets to compensate for the deficiencies in the fitting model at one level of theory. Systematic assessments on the Gaussian-3X and Gaussian-2 sets revealed that the fitting models drastically reduced errors with equal or smaller computational effort. © 2016 Wiley Periodicals, Inc. PMID:27454327

  11. Upper limit on the photon fraction in highest-energy cosmic rays from AGASA data.

    PubMed

    Risse, M; Homola, P; Engel, R; Góra, D; Heck, D; Pekala, J; Wilczyńska, B; Wilczyński, H

    2005-10-21

    A new method to derive an upper limit on photon primaries from small data sets of air showers is developed which accounts for shower properties varying with the primary energy and arrival direction. Applying this method to the highest-energy showers recorded by the AGASA experiment, an upper limit on the photon fraction of 51% (67%) at a confidence level of 90% (95%) for primary energies above 1.25 x 10(20) eV is set. This new limit on the photon fraction above the Greisen-Zatsepin-Kuzmin cutoff energy constrains the -burst model of the origin of highest-energy cosmic rays. PMID:16383814

  12. 76 FR 71007 - Shetek Wind Inc., Jeffers South, LLC and Allco Renewable Energy Limited, Midwest Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Shetek Wind Inc., Jeffers South, LLC and Allco Renewable Energy Limited... intervention to the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426....

  13. 78 FR 12048 - Gulf Shore Energy Partners, LP; Notice of Abbreviated Application for Limited Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Gulf Shore Energy Partners, LP; Notice of Abbreviated Application for Limited Amendment to Certificate of Public Convenience and Necessity On February 11, 2013, Gulf Shore Energy Partners, LP (``Gulf Shore''), filed...

  14. 77 FR 15098 - Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to... Supplement to the Settlement should file its intervention or protest with the Federal Energy...

  15. 76 FR 17411 - Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to... Supplement to the Settlement should file its intervention or protest with the Federal Energy...

  16. Atmospheric Energy Limits on Subsurface Life on Mars

    NASA Technical Reports Server (NTRS)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    1999-01-01

    It has been suggested that the terrestrial biomass of subterranean organisms may equal or exceed that at the surface. Taken as a group, these organisms can live in heavily saline conditions at temperatures from 115 C to as low as -20 C. Such conditions might exist on Mars beneath the surface oxidant in an aquifer or hydrothermal system, where the surrounding rock would also protect against the solar ultraviolet radiation. The way that such systems could obtain energy and carbon is not completely clear, although it is believed that on Earth, energy flows from the interaction of highly reduced basalt with groundwater produce H2, while carbon is derived from CO2 dissolved in the groundwater. Another potential source is the Martian atmosphere, acting as a photochemical conduit of solar insolation.

  17. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  18. Thermodynamical Limit for Correlated Gaussian Random Energy Models

    NASA Astrophysics Data System (ADS)

    Contucci, P.; Esposti, M. Degli; Giardinà, C.; Graffi, S.

    Let {EΣ(N)}ΣΣN be a family of |ΣN|=2N centered unit Gaussian random variables defined by the covariance matrix CN of elements cN(Σ,τ):=Av(EΣ(N)Eτ(N)) and the corresponding random Hamiltonian. Then the quenched thermodynamical limit exists if, for every decomposition N=N1+N2, and all pairs (Σ,τ)ΣN×ΣN: where πk(Σ),k=1,2 are the projections of ΣΣN into ΣNk. The condition is explicitly verified for the Sherrington-Kirkpatrick, the even p-spin, the Derrida REM and the Derrida-Gardner GREM models.

  19. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  20. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  1. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations

    NASA Astrophysics Data System (ADS)

    Jamróz, Michał H.

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

  2. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  3. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  4. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  5. Structure of an energetic narrow discrete arc

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.

    1990-01-01

    Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.

  6. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  7. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  8. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  9. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  10. 76 FR 18212 - FPL Energy Maine Hydro LLC; Madison Paper Industries; Merimil Limited Partnership; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for a new... Energy Regulatory Commission FPL Energy Maine Hydro LLC; Madison Paper Industries; Merimil Limited... strongly encourages electronic filing, documents may also be paper-filed. To paper-file, mail an...

  11. 75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Application To Export Electric Energy; Centre Lane Trading Limited AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Canada pursuant to section 202... application from CLT for authority to transmit electric energy from the United States to Canada as a...

  12. 75 FR 10243 - Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enbridge Energy, Limited Partnership; Notice of Filing of Supplement to Facilities Surcharge Settlement February 25, 2010. Take notice that on February 19, 2010, Enbridge...

  13. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  14. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  15. Generalized energy-aperture product limit for multi-beam and spotlight SARs

    SciTech Connect

    Karr, T.J.

    1995-12-21

    The SAR energy-aperture product limit is extended to multi-beam SARS, Spotlight and moving spotlight SARS. This fundamental limit bounds the tradeoff between energy and antenna size. The kinematic relations between design variables such as platform speed, pulse repetition frequency, beam width and area rate are analyzed in a unified framework applicable to a wide variety of SARs including strip maps, spotlights, vermer arrays and multi-beam SARS, both scanning and swept-beam. Then the energy-aperture product limit is derived from the signal-to noise requirement and the kinematic constraints. The derivation clarifies impact of multiple beams and spotlighting on SAR performance.

  16. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  17. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  18. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-04-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  19. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  20. Electromagnetic radiation generated by arcing in low density plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  1. Limits to sustained energy intake. XIX. A test of the heat dissipation limitation hypothesis in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Yang, Deng-Bao; Li, Li; Wang, Lu-Ping; Chi, Qing-Sheng; Hambly, Catherine; Wang, De-Hua; Speakman, John R

    2013-09-01

    We evaluated factors limiting lactating Mongolian gerbils (Meriones unguiculatus) at three temperatures (10, 21 and 30°C). Energy intake and daily energy expenditure (DEE) increased with decreased ambient temperature. At peak lactation (day 14 of lactation), energy intake increased from 148.7±5.7 kJ day(-1) at 30°C to 213.1±8.2 kJ day(-1) at 21°C and 248.7±12.3 kJ day(-1) at 10°C. DEE increased from 105.1±4.0 kJ day(-1) at 30°C to 134.7±5.6 kJ day(-1) at 21°C and 179.5±8.4 kJ day(-1) at 10°C on days 14-16 of lactation. With nearly identical mean litter sizes, lactating gerbils at 30°C exported 32.0 kJ day(-1) less energy as milk at peak lactation than those allocated to 10 or 21°C, with no difference between the latter groups. On day 14 of lactation, the litter masses at 10 and 30°C were 12.2 and 9.3 g lower than those at 21°C, respectively. Lactating gerbils had higher thermal conductance of the fur and lower UCP-1 levels in brown adipose tissue than non-reproductive gerbils, independent of ambient temperature, suggesting that they were attempting to avoid heat stress. Thermal conductance of the fur was positively related to circulating prolactin levels. We implanted non-reproductive gerbils with mini-osmotic pumps that delivered either prolactin or saline. Prolactin did not influence thermal conductance of the fur, but did reduce physical activity and UCP-1 levels in brown adipose tissue. Transferring lactating gerbils from warm to hot conditions resulted in reduced milk production, consistent with the heat dissipation limit theory, but transferring them from warm to cold conditions did not elevate milk production, consistent with the peripheral limitation hypothesis, and placed constraints on pup growth. PMID:23737554

  2. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  3. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  4. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  5. The Global Array of Primitve Arc Melts

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    harzburgitic residue. Primitive high-K shoshonitic or low-Si alkaline arc melts occur in Sulawesi, Sunda, Mago, and Mexico (2 types), spatially mostly very much limited. We interpret these as derived from limited volumes of metasomatized mantle either residing in the subarc lithosphere or entrained into the mantle wedge.

  6. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  7. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  8. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  9. Systems and methods for controlling energy use during a demand limiting period

    DOEpatents

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  10. New limit on the low-energy antiproton/proton ratio in the Galactic cosmic radiation

    NASA Technical Reports Server (NTRS)

    Ahlen, S. P.; Beatty, J. J.; Barwick, S.; Gerbier, G.; Bower, C. R.

    1988-01-01

    Results are presented from a balloon-borne apparatus searching for low-energy antiprotons in the Galactic cosmic rays. For energies less than 640 MeV at the top of the atmosphere, no cosmic-ray antiprotons were observed. This yields an upper limit to the antiproton/proton ratio of 0.000046 at the 85-percent confidence level.

  11. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (<15) and moderate 206Pb/204Pb (>19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a

  12. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    PubMed

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking. PMID:19837583

  13. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  14. Evaluation of select heat and pressure measurement gauges for potential use in the NRC/OECD High Energy Arc Fault (HEAF) test program.

    SciTech Connect

    Lopez, Carlos; Wente, William Baker; Figueroa, Victor G.

    2014-01-01

    In an effort to improve the current state of the art in fire probabilistic risk assessment methodology, the U.S. Nuclear Regulatory Commission, Office of Regulatory Research, contracted Sandia National Laboratories (SNL) to conduct a series of scoping tests to identify thermal and mechanical probes that could be used to characterize the zone of influence (ZOI) during high energy arc fault (HEAF) testing. For the thermal evaluation, passive and active probes were exposed to HEAF-like heat fluxes for a period of 2 seconds at the SNLs National Solar Thermal Test Facility to determine their ability to survive and measure such an extreme environment. Thermal probes tested included temperature lacquers (passive), NANMAC thermocouples, directional flame thermometers, modified plate thermometers, infrared temperature sensors, and a Gardon heat flux gauge. Similarly, passive and active pressure probes were evaluated by exposing them to pressures resulting from various high-explosive detonations at the Sandia Terminal Ballistic Facility. Pressure probes included bikini pressure gauges (passive) and pressure transducers. Results from these tests provided good insight to determine which probes should be considered for use during future HEAF testing.

  15. Two Types of Transpolar Arc Development, Event Studies with Data Set of ASTRID-2, DMSP, FAST, and SuperDARN

    NASA Technical Reports Server (NTRS)

    Narita, Yasuhito; Maezawa, Kiyoshi; Toshinori, Mukai; Kullen, A.; Ivchenko, N.; Marklund, G.; Frederick, R.; Carlson, C. W.; Spann, J. F.; Parks, G. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Aurorae which appear in the polar cap are called transpolar arcs, polar cap arcs, sun-aligned arcs, or occasionally Theta-aurora because of its spatial distribution resembling Greek character 'Theta.' Morphology, IMF (Interplanetary Magnetic Field) relationship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/1 1/20:00 - 12/02:00 (2 events: c, d), with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of-sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed in POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in event (a),(c),(d), and another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector (event b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in event (a),(c),(d). Not clear ionospheric convection pattern was seen across the polar cap arc in event (b) die to limitation of data set. In event (c), O+ with energy more than 1 keV were observed by FAST within a transpolar arc, suggesting that their origin be from plasma sheet. Transpolar arcs are thought to be projection of plasma sheet bifurcation into lobe regime. There

  16. Two Types of Transpolar Arc Development, Event Studies With Data Set of Astrid-2, Dmsp, Fast, and Superdarn

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Maezawa, K.; Kullen, A.; Ivchenko, N.; Marklund, G.; Carlson, C. W.; Spann, J. F.; Parks, G. K.; Superdarn Team

    Auroras which appear in the polar cap are called transpolar arcs, polar cap arcs, sun- aligned arcs, or occasionally Theta-aurora because of its spatial distribution resem- bling Greek character 'Theta.' Morphology, IMF(Interplanetary Magnetic Field) rela- tionship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/11/20:00 - 12/02:00 (2 events: c, d) , with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of- sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed by POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in events (c),(d); another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector in event (b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in events (a),(c),(d). Not clear ionospheric convection pattern was seen across the transpolar arc in event (b) due to limitation of data set. Isotropic ions with energy more than 1 keV were observed within transpolar arcs. From these 1 observations it is concluded that the origin of transpolar arcs is from the plasma sheet. This is consistent with the view that transpolar

  17. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  18. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  19. Series and parallel arc-fault circuit interrupter tests.

    SciTech Connect

    Johnson, Jay; Fresquez, Armando J.; Gudgel, Bob; Meares, Andrew

    2013-07-01

    While the 2011 National Electrical Code%C2%AE (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by opening the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.

  20. The Γ-Limit of the Two-Dimensional Ohta-Kawasaki Energy. Droplet Arrangement via the Renormalized Energy

    NASA Astrophysics Data System (ADS)

    Goldman, Dorian; Muratov, Cyrill B.; Serfaty, Sylvia

    2014-05-01

    This is the second in a series of papers in which we derive a Γ-expansion for the two-dimensional non-local Ginzburg-Landau energy with Coulomb repulsion known as the Ohta-Kawasaki model in connection with diblock copolymer systems. In this model, two phases appear, which interact via a nonlocal Coulomb type energy. Here we focus on the sharp interface version of this energy in the regime where one of the phases has very small volume fraction, thus creating small "droplets" of the minority phase in a "sea" of the majority phase. In our previous paper, we computed the Γ-limit of the leading order energy, which yields the averaged behavior for almost minimizers, namely that the density of droplets should be uniform. Here we go to the next order and derive a next order Γ-limit energy, which is exactly the Coulombian renormalized energy obtained by Sandier and Serfaty as a limiting interaction energy for vortices in the magnetic Ginzburg-Landau model. The derivation is based on the abstract scheme of Sandier-Serfaty that serves to obtain lower bounds for 2-scale energies and express them through some probabilities on patterns via the multiparameter ergodic theorem. Thus, without appealing to the Euler-Lagrange equation, we establish for all configurations which have "almost minimal energy" the asymptotic roundness and radius of the droplets, and the fact that they asymptotically shrink to points whose arrangement minimizes the renormalized energy in some averaged sense. Via a kind of Γ-equivalence, the obtained results also yield an expansion of the minimal energy and a characterization of the zero super-level sets of the minimizers for the original Ohta-Kawasaki energy. This leads to the expectation of seeing triangular lattices of droplets as energy minimizers.

  1. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  2. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  3. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  4. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  5. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    SciTech Connect

    Schoske, Richard; Kennedy, Patrick; Duty, Chad E; Smith, Rob R; Huxford, Theodore J; Bonavita, Angelo M; Engleman, Greg; Vass, Arpad Alexander; Griest, Wayne H; Ilgner, Ralph H; Brown, Gilbert M

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  6. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  7. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii*♦

    PubMed Central

    Sakanaka, Akito; Kuboniwa, Masae; Takeuchi, Hiroki; Hashino, Ei; Amano, Atsuo

    2015-01-01

    Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding. PMID:26085091

  8. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  9. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  10. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  11. Energy saving in WWTP: Daily benchmarking under uncertainty and data availability limitations.

    PubMed

    Torregrossa, D; Schutz, G; Cornelissen, A; Hernández-Sancho, F; Hansen, J

    2016-07-01

    Efficient management of Waste Water Treatment Plants (WWTPs) can produce significant environmental and economic benefits. Energy benchmarking can be used to compare WWTPs, identify targets and use these to improve their performance. Different authors have performed benchmark analysis on monthly or yearly basis but their approaches suffer from a time lag between an event, its detection, interpretation and potential actions. The availability of on-line measurement data on many WWTPs should theoretically enable the decrease of the management response time by daily benchmarking. Unfortunately this approach is often impossible because of limited data availability. This paper proposes a methodology to perform a daily benchmark analysis under database limitations. The methodology has been applied to the Energy Online System (EOS) developed in the framework of the project "INNERS" (INNovative Energy Recovery Strategies in the urban water cycle). EOS calculates a set of Key Performance Indicators (KPIs) for the evaluation of energy and process performances. In EOS, the energy KPIs take in consideration the pollutant load in order to enable the comparison between different plants. For example, EOS does not analyse the energy consumption but the energy consumption on pollutant load. This approach enables the comparison of performances for plants with different loads or for a single plant under different load conditions. The energy consumption is measured by on-line sensors, while the pollutant load is measured in the laboratory approximately every 14 days. Consequently, the unavailability of the water quality parameters is the limiting factor in calculating energy KPIs. In this paper, in order to overcome this limitation, the authors have developed a methodology to estimate the required parameters and manage the uncertainty in the estimation. By coupling the parameter estimation with an interval based benchmark approach, the authors propose an effective, fast and reproducible

  12. Exciton binding energy limitations in organic materials and potentials for improvements (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kraner, Stefan; Scholz, Reinhard; Müller, Eric; Knupfer, Martin; Koerner, Christian; Leo, Karl

    2015-10-01

    In current organic photovoltaic devices, the loss in energy caused by the inevitable charge transfer step leads to a low open circuit voltage, which is one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy below 25 meV, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley Queisser limit for inorganic solar cells. We determine the size of the excitons for different one-dimensional organic small molecules or polymers by electron energy loss spectroscopy (EELS) measurements and by DFT calculations. Using the measured dielectric constant and exciton extension, the exciton binding energy is calculated for the investigated molecules, leading to a lower limit of the exciton binding energy for ladder-type polymers. We discuss and propose potential ways to increase the ionic and electronic part of the dielectric function in order to further lower the limit of the exciton binding energy in organic materials. Furthermore, the influence of charge transfer states on the exciton size and its binding energy is calculated with DFT methods for the ladder-type polymer poly(benzimidazobenzophenanthroline) (BBL) in a dimer configuration.

  13. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  14. High-energy limit of collision-induced false vacuum decay

    NASA Astrophysics Data System (ADS)

    Demidov, Sergei; Levkov, Dmitry

    2015-06-01

    We develop a consistent semiclassical description of field-theoretic collision-induced tunneling at arbitrary high collision energies. As a playground we consider a (1 + 1)-dimensional false vacuum decay initiated by a collision of N particles at energy E, paying special attention to the realistic case of N = 2 particles. We demonstrate that the cross section of this process is exponentially suppressed at all energies. Moreover, the respective suppressesion exponent F N ( E) exhibits a specific behavior which is significant for our semiclassical method and assumed to be general: it decreases with energy, reaches absolute minimum F = F min( N ) at a certain threshold energy E = E rt( N ), and stays constant at higher energies. We show that the minimal suppression F min( N ) and threshold energy can be evaluated using a special class of semiclassical solutions which describe exponentially suppressed transitions but nevertheless evolve in real time. Importantly, we argue that the cross section at energies above E rt( N ) is computed perturbatively in the background of the latter solutions, and the terms of this perturbative expansion stay bounded in the infinite-energy limit. Transitions in the high-energy regime proceed via emission of many soft quanta with total energy E rt; the energy excess E - E rt remains in the colliding particles till the end of the process.

  15. 76 FR 76153 - Allco Renewable Energy Limited v. Massachusetts Electric Company d/b/a National Grid; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Allco Renewable Energy Limited v. Massachusetts Electric Company d/b/a... Renewable Energy Limited filed a formal complaint against Massachusetts Electric Company (National...

  16. Energy straggling eliminated as a limitation to charge resolution of transmission detectors. [used for particle identification

    NASA Technical Reports Server (NTRS)

    Tarle, G.; Ahlen, S. P.; Price, P. B.

    1981-01-01

    It is pointed out that detectors of the energy loss of penetrating charged particles are widely used for particle identification. These measurements are hampered, however, by fluctuations in the amount of energy deposited within the detector. It is shown that this limitation can be overcome with a new nuclear track detector, CR-39(DOP), and that the charge resolution of this detector exceeds that of any other, including semiconductor diodes.

  17. A General Design Framework for MIMO Wireless Energy Transfer With Limited Feedback

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Zhang, Rui

    2016-05-01

    Multi-antenna or multiple-input multiple-output (MIMO) technique can significantly improve the efficiency of radio frequency (RF) signal enabled wireless energy transfer (WET). To fully exploit the energy beamforming gain at the energy transmitter (ET), the knowledge of channel state information (CSI) is essential, which, however, is difficult to be obtained in practice due to the hardware limitation of the energy receiver (ER). To overcome this difficulty, under a point-to-point MIMO WET setup, this paper proposes a general design framework for a new type of channel learning method based on the ER's energy measurement and feedback. Specifically, the ER measures and encodes the harvested energy levels over different training intervals into bits, and sends them to the ET via a feedback link of limited rate. Based on the energy-level feedback, the ET adjusts transmit beamforming in subsequent training intervals and obtains refined estimates of the MIMO channel by leveraging the technique of analytic center cutting plane method (ACCPM) in convex optimization. Under this general design framework, we further propose two specific feedback schemes termed energy quantization and energy comparison, where the feedback bits at each interval are generated at the ER by quantizing the measured energy level at the current interval and comparing it with those in the previous intervals, respectively. Numerical results are provided to compare the performance of the two feedback schemes. It is shown that energy quantization performs better when the number of feedback bits per interval is large, while energy comparison is more effective with small number of feedback bits.

  18. Along-arc and inter-arc variations in volcanic gas CO2/S signature

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Robidoux, Philippe; Fischer, Tobias

    2015-04-01

    Improving the current estimates of the global volcanic arc CO2 output requires a more accurate knowledge of the volcanic gas CO2/S ratio signature of each individual arc segment. This, when multiplied by sulphur (S) productivity of each arc segment (derived by either studies on melt inclusions or UV-based gas measurements), could in principle yield the individual arc CO2 output and, by summation, the global arc CO2 output. Unfortunately, the process is complicated, among others, by the limited volcanic gas dataset we have available, particularly for poorly explored, but potentially highly productive arc segments (Indonesia, Papua New Guinea, etc). We here review the currently available dataset of CO2/S ratios in the volcanic gas literature, and combine this with novel gas observations (partially obtained using the currently expanding DCO-DECADE Multi-GAS network) to provide experimental evidence for the existence of substantial variations in volcanic gas chemistry along individual arc segments, and from one arc segment to another. In Central America [1], for instance, we identify distinct volcanic gas CO2/S (molar) ratio signatures for magmatic volatiles in Nicaragua (~3), Costa Rica (~0.5-1.0) and El Salvador (~1.0), which we ascribe to variable extents of sedimentary carbon addition to a MORB-type (Costa Rica-like) mantle wedge. Globally, volcanic gas CO2/S ratios are typically found to be low (~1.0) in arc segments (e.g., Japan, Kuril-Kamchatka, Chile) where small amount of limestones enter the slab; whilst larger slab/crustal carbon contributions typically correspond to higher CO2/S ratio signatures for gases of other arcs, such as Indonesia (~4.0) or Italy (6 to 9). We find that CO2/S ratios of arc gases positively correlate with Ba/La and U/Th ratios in the corresponding magmas, these trace-element ratios being thought as petrological proxies for the addition slab-fluids to the magma generation zone. This relation implies a dominant slab-derivation of carbon

  19. Can limiting dietary variety assist with reducing energy intake and weight loss?☆

    PubMed Central

    Raynor, Hollie A.

    2013-01-01

    Due to the high prevalence of overweight and obesity, developing strategies to improve weight loss and weight loss maintenance is imperative. One dietary environmental variable that has received little attention in being targeted in an intervention to assist with obesity treatment is dietary variety. Experimental research has consistently shown that greater dietary variety increases consumption, with the effect of variety on consumption hypothesized to be a consequence of the differential experience of the more varied sensory properties of food under those conditions with greater dietary variety. As reduced energy intake is required for weight loss, limiting variety, particularly in food groups that are high in energy-density and low in nutrient-density, may assist with reducing energy intake and improving weight loss. A series of investigations, both observational and experimental, were conducted to examine if limiting variety in an energydense, non-nutrient-dense food group, snack foods (i.e., cookies, chips), assisted with reducing energy intake of the food group and improving weight loss. Results of the investigations suggest that a prescription for limiting variety in a food group can be implemented during obesity treatment, limiting variety is associated with the occurrence of monotony, and that reducing food group variety is related to decreased consumption of that food group. Future research is needed to ascertain the long-term effect of prescriptions targeting dietary variety on weight loss and weight loss maintenance. PMID:22450259

  20. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  1. Limits to sustained energy intake. XVIII. Energy intake and reproductive output during lactation in Swiss mice raising small litters.

    PubMed

    Zhao, Zhi-Jun; Song, De-Guang; Su, Zhen-Cheng; Wei, Wen-Bo; Liu, Xian-Bin; Speakman, John R

    2013-06-15

    Limits to sustained energy intake (SusEI) during lactation in Swiss mice have been suggested to reflect the secretory capacity of the mammary glands. However, an alternative explanation is that milk production and food intake are regulated to match the limited growth capacity of the offspring. In the present study, female Swiss mice were experimentally manipulated in two ways - litter sizes were adjusted to be between 1 and 9 pups and mice were exposed to either warm (21°C) or cold (5°C) conditions from day 10 of lactation. Energy intake, number of pups and litter mass, milk energy output (MEO), thermogenesis, mass of the mammary glands and brown adipose tissue cytochrome c oxidase activity of the mothers were measured. At 21 and 5°C, pup mass at weaning was almost independent of litter size. Positive correlations were observed between the number of pups, litter mass, asymptotic food intake and MEO. These data were consistent with the suggestion that in small litters, pup requirements may be the major factor limiting milk production. Pups raised at 5°C had significantly lower body masses than those raised at 21°C. This was despite the fact that milk production and energy intake at the same litter sizes were both substantially higher in females raising pups at 5°C. This suggests that pup growth capacity is lower in the cold, perhaps due to pups allocating ingested energy to fuel thermogenesis. Differences in observed levels of milk production under different conditions may then reflect a complex interplay between factors limiting maternal performance (peripheral limitation and heat dissipation: generally better when it is cooler) and factors influencing maximum pup growth (litter size and temperature: generally better when it is hotter), and may together result in an optimal temperature favouring reproduction. PMID:23720804

  2. Energy-limited escape revised. The transition from strong planetary winds to stable thermospheres

    NASA Astrophysics Data System (ADS)

    Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2016-01-01

    Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than log 10(-ΦG)< 13.11 erg g-1 because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with log 10(-ΦG) ≳ 13.6 erg g-1 exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Lyα and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating efficiency. Small planets undergo enhanced evaporation because they host expanded atmospheres that expose a larger surface to the stellar irradiation. We present scaling laws for the heating efficiency and the expansion radius that depend on the gravitational potential and irradiation level of the planet. The resulting revised energy-limited escape concept can be used to derive estimates for the mass-loss rates of super-Earth-sized planets as well as massive hot Jupiters with hydrogen-dominated atmospheres.

  3. Energy Engineering Analysis Program (EEAP), limited energy study - lighting, Fort Campbell, Kentucky. Executive summary. Final report

    SciTech Connect

    1994-09-23

    Systems Corp surveyed and completed energy analyses for 95 representative buildings at Fort Campbell, categorized as Korean War Barracks, Airfield Buildings, and Blanchfield Hospital buildings B and C. The energy conservation opportunities (ECOs) evaluated were high efficiency interior and exterior lighting, and indoor lighting controls. Cost estimates were prepared using MeansData for Windows Spreadsheets, Version 2.Oa. Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project development brochures (PDBs) and DD1391 forms were prepared for four Energy Conservation Investment Program (ECIP) projects. The total of the four projects that were developed represent $385,283 in annual savings with a simple payback of 6.37 years and a saving to investment ratio (SIR) of 1.89.

  4. Limited-angle multi-energy CT using joint clustering prior and sparsity regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    In this article, we present an easy-to-implement Multi-energy CT scanning strategy and a corresponding reconstruction method, which facilitate spectral CT imaging by improving the data efficiency the number-of-energy- channel fold without introducing visible limited-angle artifacts caused by reducing projection views. Leveraging the structure coherence at different energies, we first pre-reconstruct a prior structure information image using projection data from all energy channels. Then, we perform a k-means clustering on the prior image to generate a sparse dictionary representation for the image, which severs as a structure information constraint. We com- bine this constraint with conventional compressed sensing method and proposed a new model which we referred as Joint Clustering Prior and Sparsity Regularization (CPSR). CPSR is a convex problem and we solve it by Alternating Direction Method of Multipliers (ADMM). We verify our CPSR reconstruction method with a numerical simulation experiment. A dental phantom with complicate structures of teeth and soft tissues is used. X-ray beams from three spectra of different peak energies (120kVp, 90kVp, 60kVp) irradiate the phantom to form tri-energy projections. Projection data covering only 75◦ from each energy spectrum are collected for reconstruction. Independent reconstruction for each energy will cause severe limited-angle artifacts even with the help of compressed sensing approaches. Our CPSR provides us with images free of the limited-angle artifact. All edge details are well preserved in our experimental study.

  5. ALICE—ARC integration

    NASA Astrophysics Data System (ADS)

    Anderlik, C.; Gregersen, A. R.; Kleist, J.; Peters, A.; Saiz, P.

    2008-07-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites.

  6. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  7. Improving the Mach number capabilities of arc driven shock tubes

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Santiago, J.; I, L.

    1980-01-01

    New systematic trends in one of the performance parameters of pressure loaded arc driven shock tubes have been determined. For a given configuration, the Mach number increases with the cube root of capacitor energy; however, the initial driver gas pressure is relatively unimportant. A qualitative model based on the assumption of Joule-preheating by the arc discharge is discussed.

  8. Experimental investigation of megawatt dc arc heating of nitrogen

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Campbell, J. P.

    1966-01-01

    Four types of arc heaters, each with the capability of providing arc power levels in excess of 1 megawatt in nitrogen, were tested over a range of power levels and nitrogen flow rates to determine their value as heaters for hypersonic tunnels. The data derived should be useful in the design of high energy heaters for various industrial processes.

  9. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  10. The loss of material from the cathode of metal arcs

    NASA Technical Reports Server (NTRS)

    Seeliger, R.; Wulfhekel, H.

    1985-01-01

    A study was made of the effect of arc length, cathode thickness, current strength, gas pressure and the chemical nature of the cathode material and filling gases upon the material loss from Cu, Fe, and Ag cathodes in arcs. The results show that the analysis of the phenomenon is complex and the energy balance is difficult to formulate.

  11. Exciton size and binding energy limitations in one-dimensional organic materials

    SciTech Connect

    Kraner, S. Koerner, C.; Leo, K.; Scholz, R.; Plasser, F.

    2015-12-28

    In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.

  12. Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Fthenakis, Zacharias G.; Zhu, Zhen; Teich, David; Seifert, Gotthard; Tománek, David

    2013-12-01

    Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we determine the elastic range and energy storage capacity of twisted carbon nanotubes and nanotube ropes. We find that a twisted nanotube rope may reversibly store energy by twisting, stretching, bending, and compressing constituent nanotubes. We find that in the elastic regime, the interior of a twisted rope encounters hydrostatic pressures of up to tens of GPa. We examine the limits of reversible energy storage and identify structural deformations beyond the elastic limit, where irreversibility is associated with breaking and forming new covalent bonds. Under optimum conditions, the calculated reversible mechanical energy storage capacity of twisted carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of 4 to 10.

  13. Exciton size and binding energy limitations in one-dimensional organic materials

    NASA Astrophysics Data System (ADS)

    Kraner, S.; Scholz, R.; Plasser, F.; Koerner, C.; Leo, K.

    2015-12-01

    In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.

  14. An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments

    DOE PAGESBeta

    Guthrie, Michael A.

    2013-01-01

    limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment.more » For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.« less

  15. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  16. The Γ-Limit of the Two-Dimensional Ohta-Kawasaki Energy. I. Droplet Density

    NASA Astrophysics Data System (ADS)

    Goldman, Dorian; Muratov, Cyrill B.; Serfaty, Sylvia

    2013-11-01

    This is the first in a series of two papers in which we derive a Γ-expansion for a two-dimensional non-local Ginzburg-Landau energy with Coulomb repulsion, also known as the Ohta-Kawasaki model, in connection with diblock copolymer systems. In that model, two phases appear, which interact via a nonlocal Coulomb type energy. We focus on the regime where one of the phases has very small volume fraction, thus creating small "droplets" of the minority phase in a "sea" of the majority phase. In this paper we show that an appropriate setting for Γ-convergence in the considered parameter regime is via weak convergence of the suitably normalized charge density in the sense of measures. We prove that, after a suitable rescaling, the Ohta-Kawasaki energy functional Γ-converges to a quadratic energy functional of the limit charge density generated by the screened Coulomb kernel. A consequence of our results is that minimizers (or almost minimizers) of the energy have droplets which are almost all asymptotically round, have the same radius and are uniformly distributed in the domain. The proof relies mainly on the analysis of the sharp interface version of the energy, with the connection to the original diffuse interface model obtained via matching upper and lower bounds for the energy. We thus also obtain an asymptotic characterization of the energy minimizers in the diffuse interface model.

  17. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  18. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  19. Semiclassical analysis of the Efimov energy spectrum in the unitary limit

    SciTech Connect

    Bhaduri, Rajat K.; Brack, Matthias; Murthy, M. V. N.

    2011-06-15

    We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitive orbit depends logarithmically on the energy. It is shown to be consistent with an inverse-squared radial potential with a lower cutoff radius. The lowest-order WKB quantization, including the Langer correction, is shown to reproduce the geometric scaling of the energy spectrum. The (WKB) mean-squared radii of the Efimov states scale geometrically like the inverse of their energies. The WKB wave functions, regularized near the classical turning point by Langer's generalized connection formula, are practically indistinguishable from the exact wave functions even for the lowest (n=0) state, apart from a tiny shift of its zeros that remains constant for large n.

  20. Semiclassical analysis of the Efimov energy spectrum in the unitary limit

    NASA Astrophysics Data System (ADS)

    Bhaduri, Rajat K.; Brack, Matthias; Murthy, M. V. N.

    2011-06-01

    We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitive orbit depends logarithmically on the energy. It is shown to be consistent with an inverse-squared radial potential with a lower cutoff radius. The lowest-order WKB quantization, including the Langer correction, is shown to reproduce the geometric scaling of the energy spectrum. The (WKB) mean-squared radii of the Efimov states scale geometrically like the inverse of their energies. The WKB wave functions, regularized near the classical turning point by Langer’s generalized connection formula, are practically indistinguishable from the exact wave functions even for the lowest (n=0) state, apart from a tiny shift of its zeros that remains constant for large n.

  1. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  2. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  3. Solving the inhomogeneous Bethe-Salpeter equation in Minkowski space: the zero-energy limit

    NASA Astrophysics Data System (ADS)

    Frederico, Tobias; Salmè, Giovanni; Viviani, Michele

    2015-08-01

    The inhomogeneous Bethe-Salpeter equation for an interacting system, composed of two massive scalars exchanging a massive scalar, is numerically investigated in the ladder approximation directly in Minkowski space, by using for the first time in the continuum an approach based on the Nakanishi integral representation. In this paper, the limiting case of zero-energy states is considered, thus extending an approach that has already been successfully applied to bound states. The numerical values of scattering lengths, are calculated for several values of the Yukawa coupling constant, by using two different integral equations that stem from the Nakanishi framework. Those low-energy observables are compared with (1) the analogous quantities recently obtained in literature, within a totally different framework, and (2) the non-relativistic evaluations, to illustrate the relevance of a nonperturbative, genuine field theoretical treatment in Minkowski space, even in the low-energy regime. Moreover, dynamical functions, like the Nakanishi weight functions and the distorted part of the zero-energy light-front wave functions are also presented. Interestingly, a highly non-trivial issue related to the abrupt change in the width of the support of the Nakanishi weight function, when the zero-energy limit is approached, is elucidated, ensuring a sound basis to the forthcoming evaluation of phase shifts.

  4. Energy Densities in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Mirtschink, André; Seidl, Michael; Gori-Giorgi, Paola

    2012-09-11

    We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals. PMID:26605721

  5. MAGIC upper limits on the Very High Energy emission from GRBs

    SciTech Connect

    Bastieri, D.; Gaug, M.; Galante, N.; Garczarczyk, M.; Mizobuchi, S.; Longo, F.; Scapin, V.; Stamerra, A.

    2007-07-12

    Since the beginning of its operation in April 2005, the MAGIC telescope was able to observe ten different GRB events since their early beginning, even while the prompt emission was still ongoing. Observations, with energy thresholds spanning between 80 and 300 GeV, did not reveal any {gamma}-ray emission. We present a direct determination of the MAGIC sensitivity in GRB mode and the upper limits for the ten follow-up observations. At energies around 100 GeV, MAGIC is currently the fastest and most sensitive operational GRB detector in the world.

  6. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  7. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  8. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  9. An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit

    NASA Astrophysics Data System (ADS)

    Hu, Jingwei; Wang, Li

    2015-01-01

    We design an asymptotic-preserving scheme for the semiconductor Boltzmann equation which leads to an energy-transport system for electron mass and energy as mean free path goes to zero. As opposed to the classical drift-diffusion limit where the stiff collisions are all in one scale, new difficulties arise in the two-scale stiff collision terms because the simple BGK penalization [15] fails to drive the solution to the correct limit. We propose to set up a spatially dependent threshold on the penalization of the stiffer collision operator such that the evolution of the solution resembles a Hilbert expansion at the continuous level. Formal asymptotic analysis and numerical results confirm the efficiency and accuracy of our scheme.

  10. New limits on the ultrahigh energy cosmic neutrino flux from the ANITA experiment.

    PubMed

    Gorham, P W; Allison, P; Barwick, S W; Beatty, J J; Besson, D Z; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; Dowkontt, P F; Duvernois, M A; Field, R C; Goldstein, D; Goodhue, A; Hast, C; Hebert, C L; Hoover, S; Israel, M H; Kowalski, J; Learned, J G; Liewer, K M; Link, J T; Lusczek, E; Matsuno, S; Mercurio, B C; Miki, C; Miocinović, P; Nam, J; Naudet, C J; Ng, J; Nichol, R J; Palladino, K; Reil, K; Romero-Wolf, A; Rosen, M; Ruckman, L; Saltzberg, D; Seckel, D; Varner, G S; Walz, D; Wang, Y; Wu, F

    2009-07-31

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers. PMID:19792479

  11. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Yuasa, Makoto; Ohara, Yasuhiko

    2011-05-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc by a series of spreading and rift basins. We present 40Ar/39Ar ages and geochemical data for the entire length of the Kyushu-Palau arc as well as for the conjugate arc which is stranded within the IBM fore arc. New 40Ar/39Ar ages indicate that the KPR was active between 25 and 48 Ma, but the majority of the exposed volcanism occurred in the final phase, between 25 and 28 Ma. Rifting of the Kyushu-Palau arc to form the Shikoku and Parece Vela basins occurred simultaneously along the length of the arc (circa 25 Ma), and at a similar distance from the trench. Unlike the IBM, the KPR has only limited systematic along-arc geochemical trends. Two geochemical components within the KPR indicate an origin in the suprasubduction mantle. First, EM-1-like lavas are identified in a restricted section of the arc, suggesting a localized heterogeneity. Second, EM-2-like arc volcanoes formed on juvenile West Philippine Basin crust, potentially reflecting ingress of mantle from the then active EM-2 province which lies in the west. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where the arc developed on preexisting Cretaceous Daito Ridge crust. The geochemical characteristics at this intersection likely result from the involvement of sub-Daito Ridge lithospheric mantle. Subduction flux beneath the KPR generally matches post-45 Ma Eocene/Oligocene lavas in the IBM fore arc, involving fluids and melts derived from altered igneous crust.

  12. Investigations on the radially free full circle arc

    NASA Astrophysics Data System (ADS)

    Tiller, W.

    1981-07-01

    The hypothesis that the steady state of a magnetically deflected arc is determined by the equilibrium of the thermodynamic and the magnetohydrodynamic forces is experimentally investigated. An argon arc, burning between two horizontal plane-parallel, insulating plates, bent circularly by its own and an external magnetic field, provided the well-defined conditions by giving a stationary, radially free, full circle arc for the experimental investigation. The local temperature distributions in the arc cross-section were detected spectroscopically as functions of the arc current and the arc radius or curvature. The mass flow field in the arc was determined using basic equations of conservation of energy, mass, and charge, and the known transport parameters of argon at atmospheric pressure. The results represented as a stream line graph, show a symmetric quadruple whirl instead of the expected double whirl, suggested to be due to experimental conditions. The equilibrium of heating and cooling mechanisms inside a curved arc and the relative motion of mass and arc were demonstrated. Experimental and theoretical data are in good agreement.

  13. Lower Limits on Ultrahigh-energy Cosmic Ray and Jet powers of TeV Blazars

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur; Dermer, Charles D.; Finke, Justin D.

    2012-02-01

    Lower limits on the power emitted in ultrahigh-energy cosmic rays (UHECRs), which are assumed to be protons with energy >~ 1017-1020 eV, are derived for TeV blazars with the assumption that the observed TeV γ-rays are generated due to interactions of these protons with cosmic microwave photons. The limits depend on the spectrum of the injected UHECR protons. While for a -2.2 injection spectrum the lower limits on the powers emitted in UHECRs by 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121 are lower than their respective synchrotron luminosities (~1046 erg s-1), in the case of 1ES 1426+428 it exceeds the corresponding synchrotron luminosity by up to an order of magnitude. The proposed Auger North Observatory should be able to detect 4 × 1019 eV cosmic-ray (CR) protons from 1ES 1426+428 within a few years of operation and test the TeV γ-ray production model by UHECR energy losses while propagating along the line of sight or constrain the intergalactic magnetic field to be larger than ~10-16 G in case of no detection. The lower limits on the apparent-isotropic jet power from accelerated 1010-1020 eV proton spectra in the blazar jet is of the order of the Eddington luminosity of a 109 M ⊙ black hole for a CR injection spectrum -2.2 or harder for all blazars considered except for 1ES 1426+428. In the case of the latter, the apparent-isotropic jet power exceeds the Eddington luminosity by an order of magnitude. For an injection spectrum softer than -2.2, as is required to fit the observed CR data above ~1017-1018 eV, the Eddington luminosity is exceeded by the lower limits on the jet power for all blazars considered.

  14. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy. PMID:23720802

  15. On the low-energy limit of one-loop photon-graviton amplitudes

    NASA Astrophysics Data System (ADS)

    Bastianelli, F.; Corradini, O.; Dávila, J. M.; Schubert, C.

    2012-09-01

    We present first results of a systematic study of the structure of the low-energy limit of the one-loop photon-graviton amplitudes induced by massive scalars and spinors. Our main objective is the search of KLT-type relations where effectively two photons merge into a graviton. We find such a relation at the graviton-photon-photon level. We also derive the diffeomorphism Ward identity for the 1PI one-graviton-N-photon amplitudes.

  16. Vertical Arc for ILC Low Emittance Transport

    SciTech Connect

    Tenenbaum, P.; Woodley, M.; /SLAC

    2005-06-07

    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

  17. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  18. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  19. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  20. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  1. Dynamic Discharge Arc Driver. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Slapnicar, P. I.

    1975-01-01

    A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.

  2. Vertical distribution of vibrational energy of molecular nitrogen in a stable auroral red arc and its effect on ionospheric electron densities. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Newton, G. P.

    1973-01-01

    Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.

  3. Discussion of the reliability of electron densities and energies interpreted from data and limits on the proton energy and density

    NASA Technical Reports Server (NTRS)

    Beard, D. B.

    1972-01-01

    Analysis of radio observations of Jupiter were changed to take into account the antenna resolution. A dipole magnetic field with a surface equatorial value of 7 gauss is assumed. The electron temperature is found to increase for r 2.5 Jupiter radii with decreasing r as 1/r cubed, reaching a peak of about 100 MeV at r = 2.5 Jupiter radii. For r 2.5 Jupiter radii, the electron temperature goes as r to the 6th power because of energy lost to radiation. The consequences of making an upper estimate on the proton flux by assuming the magnetic field is loaded with all the energetic protons it can hold are described. The upper limits of proton energy, density, flux, and energy flux are calculated for 1, 2, 2.5, 3, and 6 Jupiter radii. The proton energy and velocity estimates are considered to be fairly reliable; the upper limit to the number density is probably much higher than actuality.

  4. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  5. Revised upper limit to energy extraction from a Kerr black hole.

    PubMed

    Schnittman, Jeremy D

    2014-12-31

    We present a new upper limit on the energy that may be extracted from a Kerr black hole by means of particle collisions in the ergosphere (i.e., the "collisional Penrose process"). Earlier work on this subject has focused largely on particles with critical values of angular momentum falling into an extremal Kerr black hole from infinity and colliding just outside the horizon. While these collisions are able to reach arbitrarily high center-of-mass energies, it is very difficult for the reaction products to escape back to infinity, effectively limiting the peak efficiency of such a process to roughly 130%. When we allow one of the initial particles to have impact parameter b>2M, and thus not get captured by the horizon, it is able to collide along outgoing trajectories, greatly increasing the chance that the products can escape. For equal-mass particles annihilating to photons, we find a greatly increased peak energy of Eout≈6×Ein. For Compton scattering, the efficiency can go even higher, with Eout≈14×Ein, and for repeated scattering events, photons can both be produced and escape to infinity with Planck-scale energies. PMID:25615298

  6. First NIF ARC target shot results

    NASA Astrophysics Data System (ADS)

    Chen, Hui; di Nicola, P.; Hermann, M.; Kalantar, D.; Martinez, D.; Tommasini, R.; NIF ARC Team

    2015-11-01

    The commissioning of the Advanced Radiographic Capability (ARC) laser system in the National Ignition Facility (NIF) is currently in progress. ARC laser is designed to ultimately provide eight beamlets with pulse duration adjustable from 1 to 50 ps, and energies up to 1.7 kJ per beamlet. ARC will add critical capability for the NIF facility for creating precision x-ray backlighters needed for many current NIF ICF and HED experiments. ARC can also produce MeV electrons and protons for new science experiment on NIF. In the initial set of experiments, 4 of the 8 beamlets are being commissioned up to 1 kJ per beam at 30 ps pulse length using foil and wire targets. X-ray energy distribution, spot size and pulse duration are measured using various diagnostics. This talk will describe the shot setup and results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Method and apparatus for nondestructive testing. [using high frequency arc discharges

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    High voltage is applied to an arc gap adjacent to a test specimen to develop a succession of high frequency arc discharges. Those high frequency arc discharges generate pulses of ultrasonic energy within the test specimen without requiring the arc discharges to contact that test specimen and without requiring a coupling medium. Those pulses can be used for detection of flaws and measurements of certain properties and stresses within the test specimen.

  8. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    SciTech Connect

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  9. An upper limit to ground state energy fluctuations in nuclear masses

    SciTech Connect

    Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Velazquez, Victor; Isacker, Piet van; Zuker, Andres P.

    2007-02-12

    Shell model calculations are employed to estimate un upper limit of statistical fluctuations in the nuclear ground state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 to 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form {sigma}(A) {approx_equal} 20A-1.34 MeV. This estimate is consistent with the mass errors found in large shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV.

  10. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  11. Limiting Results for the Free Energy of Directed Polymers in Random Environment with Unbounded Jumps

    NASA Astrophysics Data System (ADS)

    Comets, Francis; Fukushima, Ryoki; Nakajima, Shuta; Yoshida, Nobuo

    2015-11-01

    We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free energy including the negative infinity value of the coupling constant β . Our proof of existence at β =-∞ differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at β =-∞ in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.

  12. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  13. The top 50 commodity chemicals: Impact of catalytic process limitations on energy, environment, and economics

    SciTech Connect

    Tonkovich, A.L.Y.; Gerber, M.A.

    1995-08-01

    The production processes for the top 50 U.S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratory has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts. Many commodity chemicals are used to produce large volume polymer products. Of the energy and feedstock wasted during the production of the commodity chemicals, nearly one-third and one-half, respectively, represents chemicals used as polymer precursors. Approximately 38% of the carbon dioxide emissions are generated producing polymer feedstocks.

  14. Evolution of magnetically rotating arc into large area arc plasma

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong

    2015-06-01

    An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

  15. Limits to anaerobic energy and cytosolic concentration in the living cell

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  16. Energy dependence of the band-limited noise in black hole X-ray binaries★

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2015-10-01

    Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.

  17. LH launcher Arcs Formation and Detection on JET

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. F.; Challis, C. D.; Ekedahl, A.; Goniche, M.; Kirov, K.; Mailloux, J.; Monakhov, I.

    2011-12-01

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distribution function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.

  18. LH launcher Arcs Formation and Detection on JET

    SciTech Connect

    Baranov, Yu. F.; Challis, C. D.; Kirov, K.; Mailloux, J.; Monakhov, I.

    2011-12-23

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distribution function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.

  19. Climatic correlates of tree mortality in water- and energy-limited forests

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  20. Lower limits on ultrahigh-energy cosmic ray and jet powers of TeV blazars

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur; Dermer, Charles; Finke, Justin

    2012-03-01

    Lower limits on the power emitted in ultrahigh-energy cosmic ray (UHECR) protons are derived for TeV blazars with the assumption that the observed TeV gamma rays are generated due to interactions of these protons with cosmic microwave photons. This mechanism may be at work in four blazars, namely 1ES 0229+200; 1ES 1101-232; 1ES 0347-121 and 1ES 1426+428, which are at sufficiently high redshift (>0.1) that allow efficient cascade development to make TeV emission and which are non-varying or very weakly varying at >TeV energies. The lower limits on the UHECR power are lower than the respective synchrotron luminosities in case of all blazars except for 1ES 1426+428. The proposed Auger North Observatory can detect 40 EeV cosmic rays from this extraordinary source and test the UHECR-generated TeV emission model, which requires the intergalactic magnetic field strength to be below 10-16 G. The lower limits on the jet power for all four TeV blazars exceed the Eddington luminosity of a 10^9 solar mass black hole in case the injected UHECR spectrum is softer than -2.2.

  1. Climatic correlates of tree mortality in water- and energy-limited forests.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  2. Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests

    PubMed Central

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  3. Energy-filtering TEM at high magnification: spatial resolution and detection limits.

    PubMed

    Grogger, Werner; Schaffer, Bernhard; Krishnan, Kannan M; Hofer, Ferdinand

    2003-09-01

    Energy-filtering TEM (EFTEM) has turned out to be a very efficient and rapid tool for the chemical characterization of a specimen on a nanometer and even subnanometer length scale. Especially, the detection and measurement of very thin layers has become a great application of this technique in many materials science fields, e.g. semiconductors and hard disk technology. There, the reliability of compositional profiles is an important issue. However, the experimentally obtainable spatial resolution strongly influences the appearance of a thin layer in an EFTEM image, when dimensions reach subnanometer levels, which mainly leads to a broadening of the layer in the image. This fact has to be taken into account, when measuring the thickness of such a thin layer. Additionally, the convolution decreases contrast which makes the layer less visible in the image and finally determines the detection limit. In this work we present a systematic study on specifically designed Mn/PdMn multilayer test specimens to explore the practical aspects of spatial resolution and detection limits in EFTEM. Although specific to the ionization edges used, we will present general conclusions about the practical limitations in terms of EFTEM spatial resolution. Additionally, work will be shown about low energy-loss imaging of thin oxide layers, where delocalization is the main factor responsible for broadening. PMID:12871810

  4. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  5. Electromagnetic energy transport below the diffraction limit in periodic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.; Kik, Pieter G.; Brongersma, Mark L.; Atwater, Harry A.

    2001-12-01

    We investigate the possibility of using arrays of closely spaced metal nanoparticles as waveguides for electromagnetic energy below the diffraction limit of visible light. Coupling between adjacent particles sets up coupled plasmon modes that give rise to coherent propagation of energy along the array. A point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission through chain networks such as corners and tee structures is possible at high efficiencies. Although radiation losses into the far field are negligible due to the near-field nature of the coupling, resistive heating leads to transmission losses of about 3 dB/500 nm for gold and silver particles. We confirmed the predictions of this analytical model using numeric finite difference time domain (FDTD) simulations. Also, we have fabricated gold nanoparticle arrays using electron beam lithography to study this type of electromagnetic energy transport. A modified illumination near field scanning optical microscope (NSOM) was used as a local excitation source of a nanoparticle in these arrays. Transport is studied by imaging the fluorescence of dye-filled latex beads positioned next to the nanoparticle arrays. We report on initial experiments of this kind.

  6. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    PubMed Central

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  7. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    PubMed

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  8. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  9. Master Limited Partnerships and Real Estate Investment Trusts: Opportunities and Potential Complications for Renewable Energy

    SciTech Connect

    Feldman, D.; Settle, E.

    2013-11-01

    Master Limited Partnerships (MLPs) and Real Estate Investment Trusts (REITs) are two proposed investment vehicles which have the potential to lower renewable energy assets' high cost of capital; a critical factor in the Department of Energy's goal for renewable energy to achieve grid-parity with traditional sources of electric generation. Due to current U.S. federal income tax laws, regulations, and administrative interpretations, REITs and MLPs cannot finance a significant portion of the cost of renewable energy assets. Efforts are underway to alter these rules by changing the definition of 'real property' (REIT) and 'qualified income' (MLP). However, even with rule changes, both investment vehicles have structural challenges to efficiently finance renewable energy assets. Among them are 1) effectively utilizing the U.S. federal income tax incentives; 2) administratively structuring the investments to not be overly onerous or complicated, given the potential for pooling a relatively large amount of small assets; and 3) attracting and retaining a large enough investment community to participate in the funding opportunities. This report summarizes these challenges so that if proposed federal changes are made, stakeholders have an understanding of the possible outcomes.

  10. Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes

    SciTech Connect

    Glazer, A.N.; Yeh, S.W.; Webb, S.P.; Clark, J.H.

    1985-01-25

    A broadly tunable picosecond laser source and an ultrafast streak camera were used to measure temporally and spectrally resolved emission from intact phycobilisomes and from individual phycobiliproteins as a function of excitation wavelength. Both wild-type and mutant phycobilisomes of the unicellular cyanobacterium Synechocystis 6701 were examined, as well as two biliproteins, R-phycoerythrin (240 kilodaltons, 34 bilins) and allophycocyanin (100 kilodaltons, 6 bilins). Measurements of intact phycobilisomes with known structural differences showed that the addition of an average of 1.6 phycoerythrin disks in the phycobilisome rod increased the overall energy transfer time by 30 +/- 5 picoseconds. In the isolated phycobiliproteins the onset of emission was as prompt as that of a solution of rhodamine B laser dye and was independent of excitation wavelength. This imposes an upper limit of 8 picoseconds (instrument-limited) on the transfer time from sensitizing to fluorescing chromophores in these biliproteins. These results indicate that disk-to-disk transfer is the slowest energy transfer process in phycobilisomes and, in combination with previous structural analyses, show that with respect to energy transfer the lattice of approximately 625 light-harvesting chromophores in the Synechocystis 6701 wild-type phycobilisome functions as a linear five-point array.

  11. LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS

    SciTech Connect

    Akerlof, Carl W.; Zheng, WeiKang

    2013-02-20

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  12. The plasma wave environment of an auroral arc. II - ULF waves on an auroral arc boundary

    NASA Technical Reports Server (NTRS)

    Gelpi, C. G.; Bering, E. A.

    1984-01-01

    On March 9, 1978, a sounding rocket launched from Poker Flat, Alaska, at 2200 LT, made a four-component measurement of a 0.5 Hz hydromagnetic wave as the payload crossed the poleward boundary of a quiet homogeneous auroral arc. An energy flux of about 10 to the -6th W/sq m was observed propagating upward with a left-handed polarization within the arc, and a flux 6 times greater was observed propagating downward with a right-handed polarization on the arc boundary. The waves were identified as shear mode Alfven waves. Various models for the source of the free energy are discussed with the conclusion that the most likely production mechanism was either the electromagnetic or electrostatic Kelvin-Helmholtz instability.

  13. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  14. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  15. LOWER LIMITS ON ULTRAHIGH-ENERGY COSMIC RAY AND JET POWERS OF TeV BLAZARS

    SciTech Connect

    Razzaque, Soebur; Dermer, Charles D.; Finke, Justin D.

    2012-02-01

    Lower limits on the power emitted in ultrahigh-energy cosmic rays (UHECRs), which are assumed to be protons with energy {approx}> 10{sup 17}-10{sup 20} eV, are derived for TeV blazars with the assumption that the observed TeV {gamma}-rays are generated due to interactions of these protons with cosmic microwave photons. The limits depend on the spectrum of the injected UHECR protons. While for a -2.2 injection spectrum the lower limits on the powers emitted in UHECRs by 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121 are lower than their respective synchrotron luminosities ({approx}10{sup 46} erg s{sup -1}), in the case of 1ES 1426+428 it exceeds the corresponding synchrotron luminosity by up to an order of magnitude. The proposed Auger North Observatory should be able to detect 4 Multiplication-Sign 10{sup 19} eV cosmic-ray (CR) protons from 1ES 1426+428 within a few years of operation and test the TeV {gamma}-ray production model by UHECR energy losses while propagating along the line of sight or constrain the intergalactic magnetic field to be larger than {approx}10{sup -16} G in case of no detection. The lower limits on the apparent-isotropic jet power from accelerated 10{sup 10}-10{sup 20} eV proton spectra in the blazar jet is of the order of the Eddington luminosity of a 10{sup 9} M{sub Sun} black hole for a CR injection spectrum -2.2 or harder for all blazars considered except for 1ES 1426+428. In the case of the latter, the apparent-isotropic jet power exceeds the Eddington luminosity by an order of magnitude. For an injection spectrum softer than -2.2, as is required to fit the observed CR data above {approx}10{sup 17}-10{sup 18} eV, the Eddington luminosity is exceeded by the lower limits on the jet power for all blazars considered.

  16. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  17. Parton Energy Loss Limits and Shadowing in Drell-Yan Dimuon Production

    SciTech Connect

    Isenhower, L.D.; Sadler, M.E.; Towell, R.S.; Willis, J.L.; Geesaman, D.F.; Kaufman, S.B.; Mueller, B.A.; Reimer, P.E.; Brown, C.N.; Cooper, W.E.; He, X.C.; Lee, W.M.; Petitt, G.; Kaplan, D.M.; Carey, T.A.; Garvey, G.T.; Hawker, E.A.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Peng, J.C.; Reimer, P.E.; Sondheim, W.E.; Towell, R.S.; Beddo, M.E.; Chang, T.H.; Papavassiliou, V.; Webb, J.C.; Stankus, P.W.; Young, G.R.; Vasiliev, M.A.; Gagliardi, C.A.; Hawker, E.A.; Tribble, R.E.; Koetke, D.D.

    1999-09-01

    A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/{ital c} proton beam incident on Be, Fe, and W targets is reported. The behavior of the Drell-Yan ratios at small target-parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross-section ratios as a function of the incident-parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus. {copyright} {ital 1999} {ital The American Physical Society}

  18. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGESBeta

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  19. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    SciTech Connect

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  20. Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Jones, D. S.; Schaperdoth, I.; Steinberg, L.; Macalady, J. L.

    2010-12-01

    Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic, energy-limited environments on the modern and ancient Earth and elsewhere in the solar system. Geochemical data collected in a remote stratified lake 600 m below ground surface in the sulfidic Frasassi cave system (Italy) suggest that little redox energy is available for life, consistent with low signal from domain-specific FISH probes. The carbon isotope signatures of biofilms (-33‰) and DIC (-9‰) in the anoxic water suggest in situ production by lithoautotrophs using RuBisCO. 16S rDNA libraries constructed from the biofilm are dominated by diverse sulfate reducing bacteria. The remaining bacterial and archaeal clones affiliate with more than 11 major uncultivated or novel prokaryotic lineages. Diverse dsrAB gene sequences are consistent with high sulfate concentrations and undetectable or extremely low oxygen, nitrate, and iron concentrations. However, the electron donor for sulfate reduction is unclear. Methane is detectable in the anoxic water although no 16S rDNA sequences associated with known methanogens or anaerobic methane oxidizers were retrieved. mcrA gene sequences retrieved from the biofilm by cloning are not related to cultivated methanogens or to known anaerobic methane oxidizers. Non-purgable organic carbon (NPOC) is below detection limits (i.e. <42 μM acetate) suggesting that alternative electron donors or novel metabolisms may be important. A sample collected by cave divers in October 2009 was pyrosequenced at the Pennsylvania State University Genomics Core Facility using Titanium chemistry (454 Life

  1. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  2. The negative triangularity tokamak: stability limits and prospects as a fusion energy system

    NASA Astrophysics Data System (ADS)

    Medvedev, S. Yu.; Kikuchi, M.; Villard, L.; Takizuka, T.; Diamond, P.; Zushi, H.; Nagasaki, K.; Duan, X.; Wu, Y.; Ivanov, A. A.; Martynov, A. A.; Poshekhonov, Yu. Yu.; Fasoli, A.; Sauter, O.

    2015-06-01

    The paper discusses edge stability, beta limits and power handling issues for negative triangularity tokamaks. The edge magnetohydrodynamic stability is the most crucial item for power handling. For the case of negative triangularity the edge stability picture is quite different from that for conventional positive triangularity tokamaks: the second stability access is closed for localized Mercier/ballooning modes due to the absence of a magnetic well, and nearly internal kink modes set the pedestal height limit to be weakly sensitive to diamagnetic stabilization just above the margin of the localized mode Mercier criterion violation. While a negative triangularity tokamak is thought to have a low beta limit with its magnetic hill property, it is found that plasmas with reactor-relevant values of normalized beta βN > 3 can be stable to global kink modes without wall stabilization with appropriate core pressure profile optimization against localized mode stability, and also with increased magnetic shear in the outer half-radius. The beta limit is set by the n = 1 mode for the resulting flat pressure profile. The wall stabilization is very inefficient due to strong coupling between external and internal modes. The n > 1 modes are increasingly internal when approaching the localized mode limit, and set a lower beta in the case of the peaked pressure profile leading to a Mercier unstable core. With the theoretical predictions supported by experiments, a negative triangularity tokamak would become a prospective fusion energy system with other advantages including a larger separatrix wetted area, more flexible divertor configuration design, wider trapped particle-free scrape-off layer, lower background magnetic field for internal poloidal field coils, and larger pumping conductance from the divertor room.

  3. Acoustic stabilization of electric arc instabilities in nontransferred plasma torches

    SciTech Connect

    Rat, V.; Coudert, J. F.

    2010-03-08

    Electric arc instabilities in dc plasma torches lead to nonhomogeneous treatments of nanosized solid particles or liquids injected within thermal plasma jets. This paper shows that an additional acoustic resonator mounted on the cathode cavity allows reaching a significant damping of these instabilities, particularly the Helmholtz mode of arc oscillations. The acoustic resonator is coupled with the Helmholtz resonator of the plasma torch limiting the amplitude of arc voltage variations. It is also highlighted that this damping is dependent on friction effects in the acoustic resonator.

  4. Calculation of pressure and temperature in medium-voltage electrical installations due to fault arcs

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, J.; Gockenbach, E.

    2008-05-01

    In order to determine the pressure rise due to arc faults in electrical installations, the portion of energy heating the surrounding gas of fault arcs has to be known. The ratio of the portion of energy to the electric energy, the thermal transfer coefficient, is adopted as the kp factor. This paper presents a theoretical approach for the determination of the thermal transfer coefficient and the pressure rise in electrical installations. It is based on the fundamental hydro- and thermodynamic conservation equations and the equation of gas state taking into account melting and evaporation of metals as well as chemical reactions with the surrounding gas. In order to consider the dependence of the arc energy on the gas density, the radiative effect of fault arcs on the energy balance is introduced into the arc model by using the net emission coefficient as a function of gas density, arc temperature and arc radius. The results for a test container show that factors such as the kinds of insulating gases and of electrode materials, the size of test vessels and the gas density considerably influence the thermal transfer coefficient and thus the pressure rise. Furthermore, it is demonstrated, for an example of the arc fault in a compact medium-voltage station with pressure relief openings and a pressure relief channel, that the arc energy and the arc temperature can be simulated based on the changing gas density.

  5. HPF Implementation of ARC3D

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    We present an HPF (High Performance Fortran) implementation of ARC3D code along with the profiling and performance data on SGI Origin 2000. Advantages and limitations of HPF as a parallel programming language for CFD applications are discussed. For achieving good performance results we used the data distributions optimized for implementation of implicit and explicit operators of the solver and boundary conditions. We compare the results with MPI and directive based implementations.

  6. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  7. In pursuit of the ab initio limit for conformational energy prototypes

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.

    1998-06-01

    The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.

  8. Investigation of energy partitioning from Leopard short-pulse laser interactions in mass limited targets

    NASA Astrophysics Data System (ADS)

    Griffin, B.; Sawada, H.; Yabuuchi, T.; McLean, H.; Patel, P.; Beg, F.

    2013-10-01

    The energy distribution in the interaction of a high-intensity, short-pulse laser with a mass limited target was investigated by simultaneously collecting x-ray and particle data. The Leopard laser system at the Nevada Terawatt Facility delivered 15 J of energy in a 350 fs pulse duration. With a beam spot size limited to within 8 μm, the target interaction achieved a peak intensity of 1019 W/cm2 at 20° incidence. The size of the Cu foil targets was varied from 2-20 μm in thickness and from 50 by 50 μm to 2000 by 2000 μm in surface area. A Bragg crystal x-ray spectrometer and a spherical crystal imager were used to measure 7.5-9.5 keV x-rays and 8.05 keV monochromatic x-ray images respectively. The escaping electrons and protons in the rear were monitored with a magnet-based electron spectrometer and radiochromic film. Preliminary results show both a decrease of the K β/K α ratio and a stronger He α emission for smaller sized targets, less than 250 by 250 μm. The detailed analyses of the K α images and particle data will be presented.

  9. Synthesis of Electron Energy Loss Spectra for the Quantification of Detection Limits

    NASA Astrophysics Data System (ADS)

    Menon, Nanda K.; Krivanek, Ondrej L.

    2002-06-01

    We describe a method for predicting detection limits of minority elements in electron energy loss spectroscopy (EELS), and its implementation as a software package that gives quantitative predictions for user-specified materials and experimental conditions. The method is based on modeling entire energy loss spectra, including shot noise as well as instrumental noise, and taking into account all the relevant experimental parameters. We describe the steps involved in modeling the entire spectrum, from the zero loss up to inner shell edges, and pay particular attention to the contributions to the pre-edge background. The predicted spectra are used to evaluate the signal-to-noise ratios (SNRs) for inner shell edges from user-specified minority elements. The software also predicts the minimum detectable mass (MDM) and minimum mass fraction (MMF). It can be used to ascertain whether an element present at a particular concentration should be detectable for given experimental conditions, and also to quickly and quantitatively explore ways of optimizing the experimental conditions for a particular EELS analytical task. We demonstrate the usefulness of the software by confirming the recent empirical observation of single atom detection using EELS of phosphorus in thin carbon films, and show the effect on the SNR of varying the acquisition parameters. The case of delta-doped semiconductors is also considered as an important example from materials science where low detection limits and high spatial resolution are essential, and the feasibility of such characterization using EELS is assessed.

  10. Energy-limited escape revisited: A transition from strong planetary winds to stable thermospheres

    NASA Astrophysics Data System (ADS)

    Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2015-10-01

    Hot Jupiters are thought to suffer from mass loss through planetary winds powered by strong high-energy irradiation. These photoevaporative winds can affect planetary evolution. We carried out photoionization-hydrodynamics simulations of the thermospheres of hot gas planets in the solar neighborhood using our new interface between the PLUTO and CLOUDY codes called TPCI. These detailed simulations reveal efficient radiative cooling in the atmospheres of massive and compact Jovian planets, whose gravitational potential surpasses the critical limit of log_{10}( -Φ_{G}) > 13.11 erg g^{-1}. In contrast to widely-made assumptions, our modeling shows that planets like HAT-P-2 b host stable thermospheres in radiative equilibrium, whereas smaller gas giants, indeed, show considerable mass-loss rates. Hence, the heating efficiency of the absorption of EUV radiation in the planetary thermospheres depends on the gravitational potential of the planet. We present a scaling law for the heating efficiencies that can be used in the well-known energy-limited escape formula and provides easily accessible mass-loss estimates for a wide range of irradiated planets from super-Earth type planets to the most massive hot Jupiters. The trend of the heating efficiency versus the gravitational potential is reflected in the planetary Lyα absorption and emission signals. These signals can be used to distinguish between two types of thermospheres in hot gas planets: strong, cool planetary winds with Lyα absorption and hot, stable thermospheres with Lyα emission.

  11. Implications of Limiting CO2 Concentrations for Land Use and Energy

    SciTech Connect

    Wise, Marshall A.; Calvin, Katherine V.; Thomson, Allison M.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Sands, Ronald D.; Smith, Steven J.; Janetos, Anthony C.; Edmonds, James A.

    2009-05-29

    This paper is the first to simultaneously examine the implications of extending the concept of placing a value on carbon beyond fossil fuel and industrial emissions to all sources, including those associated with land use and land use change. The paper reports a variety of results that have bearing on recent discussions in the literature regarding the role of bioenergy and the indirect emission of carbon through land-use change as well as the burgeoning literature on interactions between bioenergy and crop prices. This paper goes beyond results currently in the literature by using an integrated assessment model to assess energy use and supply, atmospheric composition, land use, and terrestrial carbon in the context of limiting the concentration of atmospheric CO2. We find that when the concept of valuing carbon emissions is extended to all carbon emissions, regardless of origin, that in contrast to a mitigation scenario where only fossil fuel and industrial carbon emissions are valued, deforestation is replaced by afforestation and expanded unmanaged ecosystems; the cost of limiting CO2 concentrations falls; crop prices rise; and human diets are transformed as people shift away from consumption of beef and other carbon-intensive protein sources. The increase in crop prices flows directly from the consideration of land-use change emissions in a comprehensive emissions mitigation program and occurs even in the absence of the use of purpose-grown bioenergy. Finally, we find that the assumed rate of improvement in food and fiber crop productivity (e.g. wheat, rice, corn) has a strong influence on land-use change emissions, making the technology for growing crops potentially as important for limiting atmospheric CO2 concentrations as energy technologies such as CO2 capture and storage.

  12. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  13. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  14. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  15. Monochromatic imaging of cathodic arc plasma

    SciTech Connect

    Kinrot, U.; Goldsmith, S.; Boxman, R.L.

    1996-02-01

    Vacuum arc deposition (VAD) is an increasingly studied and applied technology that offers potential advantages such as high deposition rates, low deposition temperatures, and good adhesion. In the cathodic vacuum arc, minute hot areas on the cathode surface (``cathode spots``) emit highly ionized metallic plasma jets. Deposition of the cathode material is formed by placing a substrate in the plasma stream. Ceramic thin films such as TiN, SnO{sub 2}, and TiO{sub 2} can be deposited using VAD in the presence of a reactive gas. Plasma parameters such as the density of the various ionic components, ionic kinetic energy, electron temperature, and ion-excited state population densities, all have an important role in the film growth mechanism in VAD and largely affect the film characteristics (structure, morphology, stoichiometry, adhesion, uniformity, thickness, etc.). In the case of ceramic films, the interaction between the expanding plasma and the ambient gas is very important, but poorly understood. Here, monochromatic imaging is presented as a powerful tool for plasma diagnostics, and specifically for the investigation of cathodic vacuum arc plasma. Two-dimensional (2-D) monochromatic images in the visible region of an aluminum cathodic arc burning in helium background gas are presented. Inversion of Abel`s integral enables a reconstruction of the spatial distribution of the plasma emission coefficient. The qualitative and sometimes quantitative nature of the interaction between the expanding plasma and the ambient gas can be visualized with this technique.

  16. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  17. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  18. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  19. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    PubMed

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit. PMID:26297983

  20. Low-Energy Spin Dynamics of the Honeycomb Spin Liquid Beyond the Kitaev Limit

    NASA Astrophysics Data System (ADS)

    Song, Xue-Yang; You, Yi-Zhuang; Balents, Leon

    2016-07-01

    We investigate the generic features of the low energy dynamical spin structure factor of the Kitaev honeycomb quantum spin liquid perturbed away from its exact soluble limit by generic symmetry-allowed exchange couplings. We find that the spin gap persists in the Kitaev-Heisenberg model, but generally vanishes provided more generic symmetry-allowed interactions exist. We formulate the generic expansion of the spin operator in terms of fractionalized Majorana fermion operators according to the symmetry enriched topological order of the Kitaev spin liquid, described by its projective symmetry group. The dynamical spin structure factor displays power-law scaling bounded by Dirac cones in the vicinity of the Γ , K , and K' points of the Brillouin zone, rather than the spin gap found for the exactly soluble point.

  1. Antiproton production and energy density limitations in targets for the Fermilab pbar source

    SciTech Connect

    Azhgirey, I.L.; Mokhov, N.V.

    1988-06-01

    The recent measurements of the antiproton yield as well as the previous ones differ from the predictions which are the basis of the TEVATRON1 Design Report. It was found in reference that at small acceptances, where the data depends essentially only on the forward pbar production cross section, the measured yield data indicates that these cross sections were over estimated by about a factor of 3 in the case of tungsten and about 2.3 in the case of copper. To clear up the situation and to understand what one can do to maximize the luminosity of the TEVATRON Collider this work has been done. Two sides of the antiproton production problem are considered: pbar production cross sections and targeting limitations. Energy deposition density distributions in targets and particle yields are studied via Monte Carlo hadronic and electromagnetic cascade calculations. In the present work we use two independent Monte Carlo programs.

  2. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  3. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  4. Synthesis of silicon nanotubes by DC arc plasma method

    SciTech Connect

    Tank, C. M.; Bhoraskar, S. V.; Mathe, V. L.

    2012-06-05

    Plasma synthesis is a novel technique of synthesis of nanomaterials as they provide high rate of production and promote metastable reactions. Very thin walled silicon nanotubes were synthesized in a DC direct arc thermal plasma reactor. The effect of parameters of synthesis i.e. arc current and presence of hydrogen on the morphology of Si nanoparticles is reported. Silicon nanotubes were characterized by Transmission Electron Microscopy (TEM), Local Energy Dispersive X-ray analysis (EDAX), and Scanning Tunneling Microscopy (STM).

  5. The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David L.; Riahi, Keywan

    2013-06-01

    Progress towards climate protection has been modest over the past decades despite the ever-increasing urgency for concerted action against global warming. Partly as a response to this, but more directly as a means to promote sustainable development and poverty eradication, the United Nations has initiated a process to promote three global energy objectives: energy access, renewable energy and energy efficiency. Here we discuss the consistency of the proposed energy-related objectives with the overarching climate goal of limiting global temperature increase to below 2 °C. We find that achieving the three energy objectives could provide an important entry point to climate protection, and that sustainability and poverty eradication can go hand in hand with mitigating climate risks. Using energy indicators as the sole metrics for climate action may, however, ultimately fall short of the mark: eventually, only limits on cumulative greenhouse gas emissions will lead to stringent climate protection.

  6. The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry.

    PubMed

    Horák, Michal; Stöger-Pollach, Michael

    2015-10-01

    Since the advent of monochromated electron energy loss spectrometry (EELS) the experimental detection of band gaps in semiconducting materials is of great importance. In the non-relativistic limit of this technique the onset of the inelastic signal represents the band gap. But due to relativistic energy losses, like Čerenkov losses and the corresponding light guiding modes, appearing at high beam energies the band gap is usually hidden. The highest beam energy, which does not excite relativistic losses in a certain material, is called the Čerenkov limit of the material. In this work the low loss EELS signals of Si, GaAs and GaP are measured at various beam energies and the calculated Čerenkov limits are experimentally confirmed. PMID:26094202

  7. Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with Current Limiter

    SciTech Connect

    Xu, Yan; Li, Huijuan; Rizy, D Tom; Li, Fangxing; Kueck, John D

    2010-01-01

    Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power is provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.

  8. Plasmonics: Electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark; Hartman, John; Atwater, Harry

    2000-03-01

    Integrated optics faces the fundamental limitation that, for the guiding, modulation, and amplification of light, structures are needed that have dimensions comparable to the wavelength of light. Recently, it was theoretically shown that this problem can be circumvented by transporting electromagnetic energy along linear chains of closely spaced metal nanoparticles. This transport relies on the near-field electrodynamic interaction between metal particles that sets up coupled plasmon modes. We have modeled the transport properties of corners, T's, and switches that consist of chains of metal nanoparticles. It is shown that propagation is coherent and the group velocities can exceed saturated velocities of electrons in semiconductors ( ~ 105 m/s). High efficiency transmission of energy around sharp corners (bending radius << wavelength of visible light) is possible. The transmission is a strong function of the frequency and polarization direction of the plasmon mode. Finally, the operation of a plasmon switch is modeled in which plasmon waves can be switched. Suggestions are given for the choice of metal particle and host material. These "plasmonic devices" potentially are among the smallest structures with optical functionality.

  9. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  10. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  11. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H.

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  12. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  13. Arcing in space structures in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Marinelli, W. J.; Weyl, G.; Carleton, K. L.

    1992-01-01

    This report describes results of an experimental and theoretical program to investigate arcing of structures containing dielectric and conducting materials when they are biased negatively with respect to a plasma. An argon ion source generated Ar(+) ions of directed energy 20 to 40 eV and density approximately 10(exp 7) cm(exp -3) that impinged upon samples containing a dielectric material on top of a negatively biased Kovar plate. Arcing events were studied for bias voltages between -300 and -1000V with respect to the ion beam. The samples were Dow Corning 93-500 adhesive on Kovar, fused silica cover slips bonded on Kovar, and silicon solar cells mounted on Kovar. Measurements of discharge current, Kovar plate voltage, and radiation from the arc versus time were carried out. Microsecond duration exposure images and optical spectra in the 0.24 to 0.40 micron band were also acquired during arcing events. Arcing events were found to be associated with exposed adhesive and means were found to eliminate arcing altogether. The charging of a silica cover plate and the fields around the plate were calculated using a particle-in-cell code. Models were developed to explain the ignition of the arc and the physical processes occurring during the discharge.

  14. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  15. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  16. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  17. An arc-sequencing algorithm for intensity modulated arc therapy

    SciTech Connect

    Shepard, D. M.; Cao, D.; Afghan, M. K. N.; Earl, M. A.

    2007-02-15

    Intensity modulated arc therapy (IMAT) is an intensity modulated radiation therapy delivery technique originally proposed as an alternative to tomotherapy. IMAT uses a series of overlapping arcs to deliver optimized intensity patterns from each beam direction. The full potential of IMAT has gone largely unrealized due in part to a lack of robust and commercially available inverse planning tools. To address this, we have implemented an IMAT arc-sequencing algorithm that translates optimized intensity maps into deliverable IMAT plans. The sequencing algorithm uses simulated annealing to simultaneously optimize the aperture shapes and weights throughout each arc. The sequencer enforces the delivery constraints while minimizing the discrepancies between the optimized and sequenced intensity maps. The performance of the algorithm has been tested for ten patient cases (3 prostate, 3 brain, 2 head-and-neck, 1 lung, and 1 pancreas). Seven coplanar IMAT plans were created using an average of 4.6 arcs and 685 monitor units. Additionally, three noncoplanar plans were created using an average of 16 arcs and 498 monitor units. The results demonstrate that the arc sequencer can provide efficient and highly conformal IMAT plans. An average sequencing time of approximately 20 min was observed.

  18. A bottom-up assessment method of limitations to and vulnerability of energy supply in developing countries

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Olonscheck, Mady; Walther, Carsten; Kropp, Jürgen P.; Reusser, Dominik

    2015-04-01

    Sufficient energy access is essential for development and adequate livelihood conditions, as the majority of societal activities depend on reliable and sufficient energy. Especially in developing and threshold countries, energy access remains limited and intermittent. Moreover, compared to developed countries, often the expenditures for energy constitute a huge part of the available money. The vulnerability of energy systems to the impacts of climate change differs depending on the utilized source of energy. A special characteristic of developing and threshold countries is the fact that the spatial heterogeneity of the energy supply structure, especially between urban and rural regions, is generally larger than in developed countries, while the adaptive capacity of people is often much lower. A sound consideration of these complex conditions is a necessary basis for determining in how far climate change impacts can further diminish energy access in regions, where energy access is already limited. The topic of energy vulnerability has often been addressed for developed countries, but assessments for less developed countries remain scarce. On the one hand, data needed for energy vulnerability assessments, as they exist for the developed world, is usually not available. On the other hand, existing assessment methods for the developed world are often not transferable because they focus on specific supply infrastructure or energy carriers. Transferability is also hindered by the large differences in energy access and energy use patterns. We propose a novel approach to assess domestic energy supply vulnerability, by reversing the usual chain of assessment. On the basis of a basket of household energy needs for different purposes, we first assess which sources are used in order to fulfil specific energy needs. By focussing on the regionally specific energy carriers, we are able to significantly reduce data needs and assess directly, how energy vulnerability may play out

  19. Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an experience-dependent manner.

    PubMed

    Henderson, Yoko O; Nalloor, Rebecca; Vazdarjanova, Almira; Parent, Marise B

    2016-03-01

    There is limited knowledge regarding how the brain controls the timing of meals. Similarly, there is a large gap in our understanding of how top-down cognitive processes, such as memory influence energy intake. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit meal onset during the postprandial period. In support, we showed previously that reversible inactivation of these neurons during the period following a sucrose meal accelerates the onset of the next meal. If dHC neurons form a memory of a meal, then consumption should induce synaptic plasticity in dHC neurons. To test this, we determined (1) whether a sucrose meal increases the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC CA1 neurons, (2) whether previous experience with sucrose influences sucrose-induced Arc expression, and (3) whether the orosensory stimulation produced by the noncaloric sweetener saccharin is sufficient to induce Arc expression. Male Sprague-Dawley rats were trained to consume a sweetened solution at a scheduled time daily. On the experimental day, they were given a solution for 7 min, euthanized, and then fluorescence in situ hybridization procedures were used to measure meal-induced Arc mRNA. Compared to caged control rats, Arc expression was significantly higher in rats that consumed sucrose or saccharin. Interestingly, rats given additional experience with sucrose had less Arc expression than rats with less sucrose experience, even though both groups consumed similar amounts on the experimental day. Thus, this study is the first to suggest that orosensory stimulation produced by consuming a sweetened solution and possibly the hedonic value of that sweet stimulation induces synaptic plasticity in dHC CA1 neurons in an experience-dependent manner. Collectively, these findings are consistent with our hypothesis that dHC neurons form a memory of a

  20. Ionization and electric field properties of auroral arcs during magnetic quiescence

    SciTech Connect

    Robinson, R.M.; Mende, S.B. )

    1990-12-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm{sup 2}s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern.

  1. Diagrams of the state of a steady-state arc discharge in hydrogen and helium

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.

    2014-12-01

    The temperature, electric field strength, and specific and integrated powers of energy mechanisms of an axisymmetric steady-state equilibrium arc discharge in hydrogen and helium under atmospheric pressure are calculated for various values of the current and radius. The results of calculations are presented in the form of state diagrams intended for estimating the main energy characteristics of electric arcs.

  2. Photoionization of HOCO revisited : a new upper limit to the adiabatic ionization energy and lower limit to the enthalpy of formation.

    SciTech Connect

    Ruscic, B.; Litorja, M.; Chemistry

    2000-01-07

    A new upper limit to the adiabatic ionization energy of trans-hydroxyoxomethyl, EI(t-HOCO){<=}8.195{+-}0.022 eV, is provided, producing a lower limit to the enthalpy of formation, {Delta}H{sub f 0}{sup o}(t-HOCO){>=}-45.8{+-}0.7 kcal/mol ({>=}-46.5{+-}0.7 kcal/mol at 298 K). The spectrum shows progressions in C{double_bond}O and C-O stretches of HOCO{sup +} and provides evidence for the excitation of OCO bend. In addition, the data tentatively suggest an ionization onset as low as 8.06{+-}0.03 eV. While it is not clear whether the latter corresponds to cis or trans isomer, it may indicate that {Delta}H{sub f 0}{sup o}(HOCO) is even higher.

  3. Measurement of total ion current from vacuum arc plasmasources

    SciTech Connect

    Oks, Efim M.; Savkin, Konstantin P.; Yushkov, Georgiu Yu.; Nikolaev, Alexey G.; Anders, A.; Brown, Ian G.

    2005-07-01

    The total ion current generated by a vacuum arc plasma source was measured. The discharge system investigated allowed ion collection from the arc plasma streaming through a hemispherical mesh anode with geometric transparency of 72 percent. A range of different cathode materials was investigated, and the arc current was varied over the range 50-500 A. We find that the normalized ion current (Iion/Iarc) depends on the cathode material, with values in the range from 5 percent to 19 percent and generally greater for elements of low cohesive energy. The application of a strong axial magnetic field in the cathode and arc region leads to increased normalized ion current, but only by virtue of enhanced ion charge states formed in a strong magnetic field.

  4. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  5. Long-Wavelength Limit of Photochemical Energy Conversion in Photosystem I

    PubMed Central

    2014-01-01

    In Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700+• was followed by the absorbance increase at 826 nm. At low temperatures (T < 100 K), the formation of P700+•FA/B–• was monitored by the characteristic EPR signals of P700+• and FA/B–• and by the characteristic light-minus-dark absorbance difference spectrum in the QY region. P700 oxidation was observed upon selective excitation at 754, 785, and 808 nm, using monomeric and trimeric PS I core complexes of Thermosynechococcus elongatus and Arthrospira platensis, which differ in the amount of LWC. The results show that the LWC cannot be responsible for the long-wavelength excitation-induced charge separation at low temperatures, where thermal uphill energy transfer is frozen out. Direct energy conversion of the excitation energy from the LWC to the primary radical pair, e.g., via a superexchange mechanism, is excluded, because no dependence on the content of LWC was observed. Therefore, it is concluded that electron transfer through PS I is induced by direct excitation of a proposed charge transfer (CT) state in the reaction center. A direct signature of this CT state is seen in absorbance spectra of concentrated PS I samples, which reveal a weak and featureless absorbance band extending beyond 800 nm, in addition to the well-known bands of LWC (C708, C719 and C740) in the range between 700 and 750 nm. The present findings suggest that nature can exploit CT states for extending the long wavelength limit in PSI even beyond that of LWC. Similar mechanisms may work in other photosynthetic

  6. Stored energy in metallic glasses due to strains within the elastic limit

    NASA Astrophysics Data System (ADS)

    Greer, A. L.; Sun, Y. H.

    2016-06-01

    Room temperature loading of metallic glasses, at stresses below the macroscopic yield stress, raises their enthalpy and causes creep. Thermal cycling of metallic glasses between room temperature and 77 K also raises their enthalpy. In both cases, the enthalpy increases are comparable to those induced by heavy plastic deformation, but, as we show, the origins must be quite different. For plastic deformation, the enthalpy increase is a fraction (<10%) of the work done (WD) (and, in this sense, the behaviour is similar to that of conventional polycrystalline metals and alloys). In contrast, the room temperature creep and the thermal cycling involve small strains well within the elastic limit; in these cases, the enthalpy increase in the glass exceeds the WD, by as much as three orders of magnitude. We argue that the increased enthalpy can arise only from an endothermic disordering process drawing heat from the surroundings. We examine the mechanisms of this process. The increased enthalpy ('stored energy') is a measure of rejuvenation and appears as an exothermic heat of relaxation on heating the glass. The profile of this heat release (the 'relaxation spectrum') is analysed for several metallic glasses subjected to various treatments. Thus, the effects of the small-strain processing (creep and thermal cycling) can be better understood, and we can explore the potential for improving properties, in particular the plasticity, of metallic glasses. Metallic glasses can exhibit a wide range of enthalpy at a given temperature, and small-strain processing may assist in accessing this for practical purposes.

  7. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    SciTech Connect

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  8. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  9. Arc spot grouping: An entanglement of arc spot cells

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-01

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  10. Ion charge state fluctuations in vacuum arcs

    SciTech Connect

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  11. The ALMA Regional Centers (ARC)

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Hibbard, J.; Okumura, S. K.; Braatz, J.

    2011-04-01

    ALMA is an international facility, a partnership between Europe, East Asia, and North America, in cooperation with the Republic of Chile. As such, ALMA will serve a worldwide community of astronomers. To interface with the geographically distributed user community, the partners have established three ALMA Regional Centers, or ARCs. The ARCs provide the primary gateway to ALMA for the user community. The ARCs are staffed by scientists with expertise in radio astronomy and interferometry, and their purpose is to work with the community of astronomers to maximize the scientific productivity of the telescope.

  12. Coordination between Drosophila Arc1 and a specific population of brain neurons regulates organismal fat.

    PubMed

    Mosher, Jeremy; Zhang, Wei; Blumhagen, Rachel Z; D'Alessandro, Angelo; Nemkov, Travis; Hansen, Kirk C; Hesselberth, Jay R; Reis, Tânia

    2015-09-15

    The brain plays a critical yet incompletely understood role in regulating organismal fat. We performed a neuronal silencing screen in Drosophila larvae to identify brain regions required to maintain proper levels of organismal fat. When used to modulate synaptic activity in specific brain regions, the enhancer-trap driver line E347 elevated fat upon neuronal silencing, and decreased fat upon neuronal activation. Unbiased sequencing revealed that Arc1 mRNA levels increase upon E347 activation. We had previously identified Arc1 mutations in a high-fat screen. Here we reveal metabolic changes in Arc1 mutants consistent with a high-fat phenotype and an overall shift toward energy storage. We find that Arc1-expressing cells neighbor E347 neurons, and manipulating E347 synaptic activity alters Arc1 expression patterns. Elevating Arc1 expression in these cells decreased fat, a phenocopy of E347 activation. Finally, loss of Arc1 prevented the lean phenotype caused by E347 activation, suggesting that Arc1 activity is required for E347 control of body fat. Importantly, neither E347 nor Arc1 manipulation altered energy-related behaviors. Our results support a model wherein E347 neurons induce Arc1 in specific neighboring cells to prevent excess fat accumulation. PMID:26209258

  13. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument. PMID:26429486

  14. Smarter finance for cleaner energy: open up master limited partnerships (MLPs) and real estate investment trusts (REITs) to renewable energy investment

    SciTech Connect

    Mormann, Feliz; Reicher, Dan

    2012-11-15

    Master Limited Partnerships (MLPs) and Real Estate Investment Trusts (REITs)—both well-established investment structures—should be opened up to renewable energy investment. MLPs and, more recently, REITs have a proven track record for promoting oil, gas, and other traditional energy sources. When extended to renewable energy projects these tools will help promote growth, move renewables closer to subsidy independence, and vastly broaden the base of investors in America’s energy economy. The extension of MLPs and REITs to renewables enjoys significant support from the investment and clean energy communities. In addition, MLPs for renewables also enjoy bipartisan political backing in Congress.

  15. 76 FR 58260 - FPL Energy Maine Hydro LLC; Madison Paper Industries; Merimil Limited Partnership; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for a new... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FPL Energy Maine Hydro LLC; Madison Paper Industries; Merimil...

  16. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I + CF4 + Ar ternary gas mixtures

    NASA Astrophysics Data System (ADS)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-01

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF3I + CF4 + Ar in the E/N range of 100-700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF3I component is increased while the CF4 component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF3I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in the mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF3I component.

  17. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  18. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  19. Barrier island arcs along abandoned Mississippi River deltas

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.; Boyd, Ron

    1985-01-01

    Generation of transgressive barrier island arcs along the Mississippi River delta plain and preservation of barrier shoreline facies in their retreat paths on the inner shelf is controlled by: (1) shoreface translation; (2) age of the transgression; and (3) the thickness of the barrier island arc sediment package. Barrier island arcs experience an average relative sea level rise of 0.50-1.00 cm yr-1 and shoreface retreat rates range from 5-15 m yr-1. Young barrier island arc sediment packages (Isles Dernieres) are thin and have experienced limited landward retreat of the shoreface. Older barrier island arcs (Chandeleur Islands) are thicker and have experienced significant landward movement of the shoreface because of the greater time available for retreat. If the transgressed barrier shoreline sediment package lies above the advancing ravinement surface, the entire sequence is truncated. A thin reworked sand sheet marks the shoreface retreat path. The base of the transgressive sediment package can lie below the ravinement surface in older barrier shorelines. In this setting, the superstructure of the barrier shoreline is truncated, leaving the basal portion of the transgressive sequence preserved on the inner shelf. A variety of transgressive stratigraphic sequences from sand sheets to truncated barrier islands to sand-filled tidal inlet scars have been identified by high resolution seismic profiling across the shoreface retreat paths of Mississippi delta barrier island arcs. One of these examples, the Isles Dernieres, represents a recently detached barrier island arc in the early stages of transgression. An older example, the Chandeleur Islands, represents a barrier island arc experiencing long-term shoreface retreat. This paper describes the stratigraphic character and preserved transgressive facies for the Isles Dernieres and Chandeleur Islands. ?? 1985.

  20. ARC syndrome in preterm baby.

    PubMed

    Elmeery, A; Lanka, K; Cummings, J

    2013-10-01

    A preterm female infant born of 32 weeks gestational age was presenting with musculoskeletal abnormalities, and cholestasis that later on resolved. Later on, she developed renal tubular acidosis (RTA), poor weight gain, unexplained intermittent fever and recurrent spontaneous bleeding episodes. ARC is an acronym that stands for arthrogryposis, renal dysfunction and cholestasis. ARC syndrome is a rare disorder that is difficult to diagnose and is associated with poor outcomes. We present a case of ARC syndrome in an infant with a history of failure to thrive, early cholestasis and RTA. There are many unique features about this case that should add to our understanding of this genetic condition. To our knowledge this is the first identified case of ARC syndrome in a preterm infant. Although the specific mutation found in our patient has not been reported previously, the type and location of this mutation is consistent with our genetic understanding of this disorder. PMID:24071963

  1. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  2. Multipass Arc Lattice Design for Recirculating Linac Muon Accelerators

    SciTech Connect

    G.M. Wang, R.P. Johnson, S.A. Bogacz, D. Trbojevic

    2009-05-01

    Recirculating linear accelerators (RLA) are the most likely means to achieve rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. A drawback of this scheme is that a separate return arc is required for each passage of the muons through the linac. In the work described here, a novel arc optics based on a Non-Scaling Fixed Field Alternating Gradient (NSFFAG) lattice is developed, which would provide sufficient momentum acceptance to allow multiple passes (two or more consecutive energies) to be transported in one string of magnets. An RLA with significantly fewer arcs will reduce the cost. We will develop the optics and technical requirements to allow the maximum number of passes by using an adjustable path length to accurately control the returned beam to synchronize with the linac RF phase.

  3. Limits on low energy photon-photon scattering from an experiment on magnetic vacuum birefringence

    SciTech Connect

    Bregant, M.; Cantatore, G.; Della Valle, F.; Lozza, V.; Milotti, E.; Raiteri, G.; Zavattini, E.; Carusotto, S.; Polacco, E.; Cimino, R.; Di Domenico, G.; Zavattini, G.; Gastaldi, U.; Ruoso, G.; Karuza, M.

    2008-08-01

    Experimental bounds on induced vacuum magnetic birefringence can be used to improve present photon-photon scattering limits in the electronvolt energy range. Measurements with the Polarizzazione del Vuoto con Laser apparatus [E. Zavattini et al., Phys. Rev. D 77, 032006 (2008)] at both {lambda}=1064 and 532 nm lead to bounds on the parameter A{sub e}, describing nonlinear effects in QED, of A{sub e}{sup (1064)}<6.6x10{sup -21} T{sup -2}-1064 nm and A{sub e}{sup (532)}<6.3x10{sup -21} T{sup -2}-532 nm, respectively, at 95% confidence level, compared to the predicted value of A{sub e}=1.32x10{sup -24} T{sup -2}. The total photon-photon scattering cross section may also be expressed in terms of A{sub e}, setting bounds for unpolarized light of {sigma}{sub {gamma}}{sub {gamma}}{sup (1064)}<4.6x10{sup -62} m{sup 2} and {sigma}{sub {gamma}}{sub {gamma}}{sup (532)}<2.7x10{sup -60} m{sup 2}. Compared to the expected QED scattering cross section these results are a factor of {approx_equal}2x10{sup 7} higher and represent an improvement of a factor about 500 on previous bounds based on ellipticity measurements and of a factor of about 10{sup 10} on bounds based on direct stimulated scattering measurements.

  4. Arc-heater performance research

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Durgapal, Prabha

    1994-01-01

    The tasks performed can be divided into the following categories: an analysis of the electric arc phenomena, especially near the electrodes; a parametric study of arcjet performance by means of a computer code (ARCFLO) and verification with experimental data where possible; the development of a data acquisition system to collect the above experimental data using Ames arc-jets; and a study of the critical components (electrodes and constrictor disks) and suggestions of how to improve their performance.

  5. Multi-colour detection of gravitational arcs

    NASA Astrophysics Data System (ADS)

    Maturi, Matteo; Mizera, Sebastian; Seidel, Gregor

    2014-07-01

    Strong gravitational lensing provides fundamental insights into the understanding of the dark matter distribution in massive galaxies, galaxy clusters, and the background cosmology. Despite their importance, few gravitational arcs have been discovered so far. The urge for more complete, large samples and unbiased methods of selecting candidates increases. Several methods for the automatic detection of arcs have been proposed in the literature, but large amounts of spurious detections retrieved by these methods force observers to visually inspect thousands of candidates per square degree to clean the samples. This approach is largely subjective and requires a huge amount of checking by eye, especially considering the actual and upcoming wide-field surveys, which will cover thousands of square degrees. In this paper we study the statistical properties of the colours of gravitational arcs detected in the 37 deg2 of the CFHTLS-Archive-Research Survey (CARS). Most of them lie in a relatively small region of the (g' - r', r' - i') colour-colour diagram. To explain this property, we provide a model that includes the lensing optical depth expected in a ΛCDM cosmology that, in combination with the sources' redshift distribution of a given survey, in our case CARS, peaks for sources at redshift z ~ 1. By furthermore modelling the colours derived from the spectral energy distribution of the galaxies that dominate the population at that redshift, the model reproduces the observed colours well. By taking advantage of the colour selection suggested by both data and model, we automatically detected 24 objects out of 90 detected by eye checking. Compared with the single-band arcfinder, this multi-band filtering returns a sample complete to 83% and a contamination reduced by a factor of ~6.5. New gravitational arc candidates are also proposed.

  6. Strings on AdS2 and the high-energy limit of noncritical M-theory

    SciTech Connect

    Horava, Petr; Horava, Petr; Keeler, Cynthia A.

    2007-04-16

    Abstract. Noncritical M-theory in 2+1 dimensions has been defined as a double-scaling limit of a nonrelativistic Fermi liquid on a flat two-dimensional plane. Here we study this noncritical M-theory in the limit of high energies, analogous to the alpha' --> infinity limit of string theory. In the related case of two-dimensional Type 0A strings, it has been argued that the conformal alpha' --> infinity limit leads to AdS_2 with a propagating fermion whose mass is set by the value of the RR flux. Here we provide evidence that in the high-energy limit, the natural ground state of noncritical M-theory similarly describes the AdS_2 x S1 spacetime, with a massless propagating fermion. We argue that the spacetime effective theory in this background is captured by a topological higher-spin extension of conformal Chern-Simons gravity in 2+1 dimensions, consistently coupled to a massless Dirac field. Intriguingly, the two-dimensional plane populated by the original nonrelativistic fermions is essentially the twistor space associated with the symmetry group of the AdS_2 x S1 spacetime; thus, at least in the high-energy limit, noncritical M-theory can be nonperturbatively described as a"Fermi liquid on twistor space.''

  7. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  8. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  9. The voltage threshold for arcing for solar cells in LEO: Flight and ground test results

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1986-01-01

    Ground and flight results of solar cell arcing in low Earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a strong power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.

  10. Solar Arrays for Direct-Drive Electric Propulsion: Arcing at High Voltages

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.

    2004-01-01

    The results from an experimental investigation to assess arcing during operation of high voltage solar arrays in a plasma environment are presented. The experiments were part of an effort to develop systems that would allow safe operation of Hall-Effect Thrustefls) in direct-drive mode. Arc discharges are generated when the array is biased negative with respect to the plasma. If sustained for long periods of time between adjacent solar cells, arcs may severely damage a solar array, thus significantly shortening its lifetime. Most often sustained arcs are triggered by plasma produced during short-duration discharge arcs (approximately 20 microseconds). These trigger arcs are sparked between the semiconducting cell and the covering dielectric. Both trigger and sustained (greater than 1 millisecond) arcs have been captured during the tests. Current and voltage waveforms associated with the different arc events are presented. The test results have defined operational limits (thresholds) for the various array concepts studied that minimize the likelihood of damage from sustained arcs. Experimental trends regarding the effect of the solar array substrate on arc duration are also presented.

  11. Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.

    1981-01-01

    Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.

  12. Measurements of the total ion flux from vacuum arc cathodespots

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu; Savkin,Konstantin P.; Brown, Ian G.; Nikolaev, Alexey G.

    2005-05-25

    The ion flux from vacuum arc cathode spots was measured in two vacuum arc systems. The first was a vacuum arc ion source which was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The second discharge system essentially consisted of a cathode placed near the center of a spherically shaped mesh anode. In both systems, the ion current streaming through the mesh was measured by a biased collector. The mesh anodes had geometric transmittances of 60 percent and 72 percent, respectively, which were taken into account as correction factors. The ion current from different cathode materials was measured for 50-500 A of arc current. The ion current normalized by the arc current was found to depend on the cathode material, with values in the range from 5 percent to 19 percent. The normalized ion current is generally greater for elements of low cohesive energy. The ion erosion rates were determined from values of ion current and ion charge states, which were previously measured in the same ion source. The absolute ion erosion rates range from 16-173 mu g/C.

  13. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  14. Formation of Gapless Fermi Arcs and Fingerprints of Order in the Pseudogap State of Cuprate Superconductors

    SciTech Connect

    Kondo, Takeshi; Palczewski, Ari D.; Hamaya, Yoichiro; Takeuchi, Tsunehiro; Wen, J. S.; Gu, Genda; Kaminski, Adam

    2013-10-11

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T∗). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T∗ and Tpair, consistent with the presence of an ordered state below T∗. These arcs collapse again at the temperature below which pair formation occurs (Tpair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.

  15. Formation of Gapless Fermi Arcs and Fingerprints of Order in the Pseudogap State of Cuprate Superconductors

    SciTech Connect

    Kondo, Takeshi; Palczewski, Ari; Hamaya, Yoichiro; Takeuchi, Tsunehiro; Wen, J. S.; Xu, Z. J.; Gu, Genda; Kaminski, Adam

    2013-10-08

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between (T*) and Tpair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (Tpair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.

  16. Fluctuations of precipitated electron intensity in flickering auroral arcs

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Anderson, H. R.

    1985-01-01

    Electron spectra associated with two aurorae observed by ground-based television are reported. One auroral arc was observed to flicker, large variations in the precipitated electron energy occurring on a time scale of 114 ms. The major variations occur at the higher energies of the 0.5-20 keV range covered by the detectors. Changes in the particle flux occur primarily in the pitch angle range 0 to 60 deg. Analysis of the video data shows a larger variation in intensity along the lower border of the arc in keeping with the results of the electron spectra. The second arc was not observed to flicker, and the associated electron spectra and video data show no large variations in precipitated electron energy or video intensity modulation. While pitch-angle distributions tend to be field-aligned in the first arc, the distributions in the second arc are nearly isotropic or peaked from 60 to 90 deg in the downward hemisphere.

  17. Zirconium diboride nanofiber generation via microwave arc heating

    NASA Astrophysics Data System (ADS)

    Baldridge, Tyson; Gupta, Mool C.

    2008-07-01

    Ultrahigh temperature zirconium diboride nanofibers were produced by microwave arc heating using micron-sized raw powder. While microwave heating the ZrB2 powder, the development of local arcing led to rapid heating and solidification of the samples, along with the creation of nanofibers. The morphology of these high aspect ratio nanofibers was characterized using scanning electron microscopy and transmission electron microscopy. Energy dispersive x-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction showed the composition to contain zirconium, boron, nitrogen, aluminum and oxygen as well as the crystallographic orientation. ZrB2 nanofiber applications include aerospace and other harsh environments.

  18. Differentiation of arcA, arcB, and cpxA mutant phenotypes of Escherichia coli by sex pilus formation and enzyme regulation.

    PubMed Central

    Iuchi, S; Furlong, D; Lin, E C

    1989-01-01

    In Escherichia coli, mutations in arcA (dye) or arcB anaerobically derepress the synthesis of a multitude of enzymes of aerobic function, and mutations in arcA or cpxA impair F-pilus formation. It is thought that arcA encodes a promoter-recognizing protein, whereas arcB and cpxA encode sensor proteins which interact with the arcA product. In this study we found that anaerobic growth of a wild-type F' strain decreased the synthesis of both the enzymes and the pilus. Although the two arcA mutants examined were both anaerobically derepressed in the enzymes and impaired in aerobic pilus formation as expected, one mutant hyperproduced the pilus anaerobically. The two arcB mutants examined showed normal pilus formation when grown aerobically. When grown anaerobically they developed more pili than the wild-type strain did when grown aerobically. When a cpxA mutant was examined for synthesis of two aerobic enzymes, normal regulation was found. The available data suggest the following. The arcA product anaerobically represses certain genes of aerobic function and activates certain genes related to F function. It appears that the arcB product senses the redox or energy state; absence of the gene function shifts the arcA product to the nonrepressive form for enzyme synthesis for aerobic pathways. The cpxA product, on the other hand, senses the sexual state; absence of the gene function shifts the arcA product to the inactive form for F-pilus synthesis. Images PMID:2565334

  19. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  20. Arc is a flexible modular protein capable of reversible self-oligomerization

    PubMed Central

    Myrum, Craig; Baumann, Anne; Bustad, Helene J.; Flydal, Marte Innselset; Mariaule, Vincent; Alvira, Sara; Cuéllar, Jorge; Haavik, Jan; Soulé, Jonathan; Valpuesta, José Maria; Márquez, José Antonio; Martinez, Aurora; Bramham, Clive R.

    2015-01-01

    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. PMID:25748042

  1. Models for residential-and commercial-sector energy conservation analysis: Applications, limitations, and future potential

    NASA Astrophysics Data System (ADS)

    Cole, H. E.; Fuller, R. E.

    1980-09-01

    Four of the major models used by DOE for energy conservation analyses in the residential and commercial building sectors are reviewed and critically analyzed to determine how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. The most effective role for each model in addressing future issues of buildings energy conservation policy and analysis is assessed. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  2. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution. PMID:20545181

  3. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    This paper evaluates neotectonic segmentation in the Solomon Islands forearc, and considers how it relates to regional tectonic evolution and the extent of ruptures of large megathrust earthquakes. We first consider regional geomorphology and Quaternary vertical displacements, especially uplifted coral reef terraces. Then we consider geographic seismicity patterns, aftershock areas and vertical displacements for large earthquakes, focal mechanisms, and along-arc variations in seismic moment release to evaluate the relationship between neotectonically defined segments and seismicity. Notably, one major limitation of using seismicity to evaluate arc segmentation is the matter of accurately defining earthquake rupture zones. For example, shoreline uplifts associated with the 1 April 2007 M w 8.1 Western Solomons earthquake indicate that the along-arc extent of rupture was about 50 km smaller than the aftershock area. Thus if we had relied on aftershocks alone to identify the 2007 rupture zone, as we do for most historical earthquakes, we would have missed the rupture's relationship to a major morphologic feature. In many cases, the imprecision of defining rupture zones without surface deformation data may be largely responsible for the poor mismatches to neotectonic boundaries. However, when a precise paleoseismic vertical deformation history is absent, aftershocks are often the best available tool for inferring rupture geometries. Altogether we identify 16 segments in the Solomon Islands. These comprise three major tectonic regimes or supersegments that correspond respectively to the forearc areas of Guadalcanal-Makira, the New Georgia island group, and Bougainville Islands. Subduction of the young and relatively shallow and buoyant Woodlark Basin and spreading system distinguishes the central New Georgia supersegment from the two neighboring supersegments. The physiographic expression of the San Cristobal trench is largely absent, but bathymetric mapping of the

  4. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  5. Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint

    SciTech Connect

    Diakov, V.; Short, W.; Gilchrist, B.

    2012-06-01

    Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

  6. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of limit-feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± ...

  7. Mineralogical characteristics of electric arc furnace dusts

    NASA Astrophysics Data System (ADS)

    Hagni, Ann M.; Hagni, Richard D.; Demars, Christelle

    1991-04-01

    Reflected light microscopy can contribute important information regarding the mineralogy, mineral abundance, internal textures, sizes and shapes of particles in electric arc furnace (EAF) dusts. Scanning electron microscopy-energy dispersive spectroscopy and electron microprobe analysis are useful to determine the chemical compositions of the specific mineral grains in the dust particles. Furthermore, the mineralogical reactions that have taken place during the pyro-metallurgical treatment of EAF dusts and the mineralogy and textural character of those treated dust samples can be directly observed by reflected light microscopy. Such studies are useful in monitoring the efficiency of experimental pyrometallurgical treatment of EAF dusts which are designed to render them nonhazardous.

  8. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer. PMID:22843367

  9. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    SciTech Connect

    Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

  10. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    SciTech Connect

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  11. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  12. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  13. Muon acceleration with RLA and non-scaling FFAG ARCS

    SciTech Connect

    Morozov, V.S.; Trbojevic, D.; Bogacz, A.

    2010-05-23

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  14. Muon Acceleration with RLA and Non-scaling FFAG Arcs

    SciTech Connect

    Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

    2010-05-01

    Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

  15. The railgun force in the presence of secondary arcs

    SciTech Connect

    Calvin, H.A. . Marine Div.)

    1991-01-01

    In this paper the analytical expression for the force accelerating a current filament in a railgun geometry is derived. The model is extended to develop the force on the primary in the presence of secondary arcs. The correspondence between the physical model and an equivalent circuit is established, and the force is shown to reduce properly in limiting cases.

  16. Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiró, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonçalves Do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; H˙Ague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Lozano Bahilo, J.; Lucero, A.; Luna García, R.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Mueller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravignani, D.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Smetniansky de Grande, N.; Smiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcaǧu, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Younk, P.; Yuan, G.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-07-01

    From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1EeV≡1018eV), respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.

  17. Limits on dark radiation, early dark energy, and relativistic degrees of freedom

    SciTech Connect

    Calabrese, Erminia; Melchiorri, Alessandro; Huterer, Dragan; Linder, Eric V.; Pagano, Luca

    2011-06-15

    Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N{sub eff} over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N{sub eff}, a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N{sub eff}, bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y{sub p} and the scalar perturbation index n{sub s}. The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy.

  18. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  19. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  20. Arc-cathode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Heberlein, J.

    1992-01-01

    Insufficient electrode life and uncertainties in that life are major problems hampering the development in many plasma application areas which make use of plasma torches, arc heaters, and arc jet thrusters. In spite of a considerable amount of work published dealing with arc-cathode phenomena, our present understanding is still incomplete because different physical phenomena dominate for different combinations of experimental parameters. The objective of our present research project is to gain a better understanding of the behavior of arc-cathode surface interaction over a wide range of parameters, and furthermore to develop guidelines for better thermal design of the electrode and the selection of materials. This report will present the research results and progress obtained on the arc-cathode interaction studies at the University of Minnesota. It includes results which have been obtained under programs other than the NASA funded program. Some of the results have been submitted in an informal interim progress report, and all of the results have been presented in a seminar during a visit to the NASA Lewis Research Center on October 16, 1992.

  1. Observations beyond the limit. [high energy cosmic rays from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1989-01-01

    Observations which extend the energy range for astronomy above the TeV level are reviewed and discussed. Whether the particles originating the radiation are protons or neutrons is considered. Observations at the high-energy tail of the observed particle distribution are suggested to resolve this question.

  2. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  3. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  4. Subduction initiation at relic arcs

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Gurnis, Michael

    2015-09-01

    Although plate tectonics is well established, how a new subduction zone initiates remains controversial. Based on plate reconstruction and recent ocean drilling within the Izu-Bonin-Mariana, we advance a new geodynamic model of subduction initiation (SI). We argue that the close juxtaposition of the nascent plate boundary with relic oceanic arcs is a key factor localizing initiation of this new subduction zone. The combination of thermal and compositional density contrasts between the overriding relic arc, and the adjacent old Pacific oceanic plate promoted spontaneous SI. We suggest that thermal rejuvenation of the overriding plate just before 50 Ma caused a reduction in overriding plate strength and an increase in the age contrast (hence buoyancy) between the two plates, leading to SI. The computational models map out a framework in which rejuvenated relic arcs are a favorable tectonic environment for promoting subduction initiation, while transform faults and passive margins are not.

  5. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  6. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  7. Resource limits and conversion efficiency with implications for climate change and California's energy supply

    NASA Astrophysics Data System (ADS)

    Croft, Gregory Donald

    There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based

  8. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets

    SciTech Connect

    Roa, Dante E.; Schiffner, Daniel C.; Zhang Juying; Dietrich, Salam N.; Kuo, Jeffrey V.; Wong, Jason; Ramsinghani, Nilam S.; Al-Ghazi, Muthana S.A.L.

    2012-10-01

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI{sub RTOG}), homogeneity index (HI{sub RTOG}), inverse Paddick Conformity Index (PCI), D{sub mean} and D5-D95. OAR sparing was analyzed in terms of D{sub max} and D{sub mean}. Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times {+-} SD for IMRT and 1-arc and 2-arc treatments were 10.5 {+-} 7.3, 2.6 {+-} 1.6, and 3.0 {+-} 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery

  9. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  10. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  11. An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; McFadyen, A. I.; Woosley, S. E.; Pian, E.; Tanaka, M.

    2014-09-01

    The kinetic energy of supernovae (SNe) accompanied by gamma-ray bursts (GRBs) tends to cluster near 1052 erg, with 2 × 1052 erg an upper limit to which no compelling exceptions are found (assuming a certain degree of asphericity), and it is always significantly larger than the intrinsic energy of the GRB themselves (corrected for jet collimation). This energy is strikingly similar to the maximum rotational energy of a neutron star rotating with period 1 ms. It is therefore proposed that all GRBs associated with luminous SNe are produced by magnetars. GRBs that result from black hole formation (collapsars) may not produce luminous SNe. X-ray flashes, which are associated with less energetic SNe, are produced by neutron stars with weaker magnetic field or lower spin.

  12. Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2016-07-01

    Longwave radiation and turbulent heat fluxes are the mechanisms by which the Earth's surface transfers heat into the atmosphere, thus affecting the surface temperature. However, the energy partitioning between the radiative and turbulent components is poorly constrained by energy and mass balances alone. We use a simple energy balance model with the thermodynamic limit of maximum power as an additional constraint to determine this partitioning. Despite discrepancies over tropical oceans, we find that the broad variation of heat fluxes and surface temperatures in the ERA-Interim reanalyzed observations can be recovered from this approach. The estimates depend considerably on the formulation of longwave radiative transfer, and a spatially uniform offset is related to the assumed cold temperature sink at which the heat engine operates. Our results suggest that the steady state surface energy partitioning may reflect the maximum power constraint.

  13. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  14. When should species richness be energy-limited, and how would we know?

    SciTech Connect

    Hurlbert, Allen H.; Stegen, James C.

    2014-04-01

    Energetic constraints are fundamental to ecology and evolution, and empirical relationships between species richness and estimates of available energy have led some to suggest that richness is energetically constrained. However, the mechanism linking energy with richness is rarely specified and predictions of secondary patterns consistent with energy-constrained richness are lacking. Here we lay out the necessary and sufficient assumptions of a causal relationship linking energy gradients to richness gradients. We then describe an eco-evolutionary simulation model that combines spatially-explicit diversification with trait evolution, resource availability, and assemblage-level carrying capacities. Our model identified patterns in richness and phylogenetic structure expected when a spatial gradient in energy availability determines the number of individuals supported in a given area. A comparison to patterns under alternative scenarios, in which fundamental assumptions behind energetic explanations were violated, revealed patterns that are useful for evaluating the importance of energetic constraints in empirical systems. We find that clades arising at the low-energy end of a gradient provide the most powerful inferences regarding whether assumptions are met, and use rockfish (Sebastes) from the northeastern Pacific to show how empirical data can be coupled with model predictions to evaluate the role of energetic constraints in generating observed richness gradients.

  15. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  16. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGESBeta

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  17. Unzipping of the volcano arc, Japan

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Smoot, N. C.; Rubin, M.

    1984-02-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin.

  18. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  19. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  20. Does slow energy transfer limit the observed time constant for radical pair formation in photosystem II reaction centers?

    PubMed

    Rech, T; Durrant, J R; Joseph, D M; Barber, J; Porter, G; Klug, D R

    1994-12-13

    We have used spectrally photoselective femtosecond transient absorption spectroscopy on photosystem II reaction centers to show that there are at least two pools of chlorin molecules/states which can transfer excitation energy to P680, the primary electron donor in photosystem II. It has previously been shown that one chlorin pool equilibrates with P680 in 100 fs [Durrant et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636], and we report here the observation of energy transfer from a second more weakly coupled chlorin pool. The effect of the weakly coupled pool is to increase the apparent time constant for radical pair formation from 21 ps when P680 is selectively excited to 27 ps when the accessory chlorins are excited. We conclude that it is possible to observe both radical pair formation somewhat slowed by an energy transfer step and radical pair formation not limited by this slow energy transfer, depending upon which chromophores are initially excited. These observations provide evidence that when using photoselective excitation of P680, the observed 21 ps time constant for radical pair formation is not limited by a slow energy transfer step. PMID:7993905

  1. Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Domany, E.; Gendelman, O. V.

    2013-10-01

    The paper considers dynamics of Van der Pol-Duffing (VdPD) oscillator with attached nonlinear energy sink. Due to a cubic nonlinearity of the VdPD oscillator, a frequency of oscillations near the unstable origin strongly differs from the frequency of limit cycle oscillations (LCO). The paper demonstrates that, despite the strong nonlinearity of the model system, one can efficiently describe the dynamics with a combination of averaging and multiple scales methods. Global structure of possible response regimes is revealed. It is also demonstrated that the nonlinear energy sink can efficiently control and mitigate the undesired LCOs in this system.

  2. Nature of convection-stabilized dc arcs in dual-flow nozzle geometry. I - The cold flow field and dc arc characteristics. II - Optical diagnostics and theory

    NASA Technical Reports Server (NTRS)

    Serbetci, Ilter; Nagamatsu, H. T.

    1990-01-01

    Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.

  3. Arc track resistant polymers for space applications

    NASA Technical Reports Server (NTRS)

    Haghighat, Ross

    1995-01-01

    The properties and test methods of aorimide polymers, kapton, and fep teflon are given in table format. Graphic depiction of an atomic oxygen resistance comparison, arc track resistance set-up and arc incident vs. propagation are given.

  4. Arc restrike in the rail accelerator

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1989-01-01

    One of the causes of the degradation in rail accelerator performance is the formation of a secondary arc. Experimental evidence of arc restrike and the subsequent growth of this secondary arc is presented. A simple analytical treatment of arc restrike is developed in terms of breakdown of residual vapor atoms. It is found that after the passage of the primary arc, the bore volume contains a large number of residual neutral vapor atoms. If the density of these atoms is in excess of the critical density, then for a certain length of time the condition exists in the bore for the formation of a secondary arc. Evaporation of atoms from the bore surfaces cannot provide a sufficient number of atoms for an arc restrike. A likely source of the high residual atom density is the leakage of a portion of the ablated material that is added to the trailing edge of the primary arc.

  5. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    PubMed

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  6. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  7. Physiological Responses of Soybean Plants Grown in a Nitrogen-Free or Energy Limited Environment 1

    PubMed Central

    Zhu, Yu-xian; Schubert, Karel R.; Kohl, Daniel H.

    1991-01-01

    Soybean (Glycine max [L.] Merr.) seedlings grown in the absence of combined N and in an Ar:O2 (79:21, volume/volume) atmosphere had greater seedling and nodule mass, threefold higher acetylene reducing activity per gram fresh weight nodules, no observable increase in nitrogenase Fe-protein, and a higher energy charge than did control plants. A sharp fall in acetylene reducing activity and energy charge accompanying stem-girdling was prevented by exogenous succinate, a result consistent with a path from the roots to the nodule other than via the phloem. ImagesFigure 1 PMID:16668170

  8. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  9. Dynamic Resource Allocation with the arcControlTower

    NASA Astrophysics Data System (ADS)

    Filipčič, A.; Cameron, D.; Nilsen, J. K.

    2015-12-01

    Distributed computing resources available for high-energy physics research are becoming less dedicated to one type of workflow and researchers workloads are increasingly exploiting modern computing technologies such as parallelism. The current pilot job management model used by many experiments relies on static dedicated resources and cannot easily adapt to these changes. The model used for ATLAS in Nordic countries and some other places enables a flexible job management system based on dynamic resources allocation. Rather than a fixed set of resources managed centrally, the model allows resources to be requested on the fly. The ARC Computing Element (ARC-CE) and ARC Control Tower (aCT) are the key components of the model. The aCT requests jobs from the ATLAS job management system (PanDA) and submits a fully-formed job description to ARC-CEs. ARC-CE can then dynamically request the required resources from the underlying batch system. In this paper we describe the architecture of the model and the experience of running many millions of ATLAS jobs on it.

  10. Graphite electrode arc melter demonstration Phase 2 test results

    SciTech Connect

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  11. Correlation Energy of 3D Spin-Polarized Electron Gas: A Single Interpolation Between High- and Low-Density Limits

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John; Seidl, Michael

    2008-03-01

    We present an analytic model for the correlation energy per electron ec(rs,ζ) in the three-dimensional (3D) uniform electron gas, covering the full range 0<=rs<∞ and 0<=ζ<=1 of the density parameter rs and the relative spin polarization ζ. An interpolation is made between the exactly known high-density (rs->0) and low-density (rs->∞) limits, using a formula which (unlike previous ones) has the right analytic structures in both limits. We find that there is almost enough information available from these limits to determine the correlation energy over the full range. By minimal fitting to numerical quantum Monte Carlo data, we predict the value of b1(ζ) at ζ=0 close to the theoretical value [1], where b1(ζ) is the coefficient of the rsterm in the high-density expansion. The model finds correlation energies for the unpolarized (ζ=0) and fully polarized (ζ=1) cases in excellent agreement with Monte Carlo data. [1] T. Endo, M. Horiuchi, Y. Takada and H. Yasuhara, Phys. Rev. B 59, 7367 (1999)

  12. Review of Cosmic Background Radiation Spectrum Measurements:Limits on Distortions, Energy Release, and Cosmological Processes

    SciTech Connect

    Smoot, G.F.

    1986-01-01

    This paper reviews the three major cosmic microwave background radiation (CMBR) spectrum measurement programs conducted and published since the last (XVII) IAU General Assembly. The results are consistent with a Planckian spectrum with temperature 2.72 {+-} 0.03 K spanning a wavelength range of 0.1 to 12 cm. Limits on possible distortions and implications are outlined. Ongoing and future measurements are discussed.

  13. Review of cosmic background radiation spectrum measurements: limits on distortions, energy release, and cosmological processes

    SciTech Connect

    Smoot, G.F.

    1986-01-01

    This paper reviews the three major cosmic microwave background radiation (CMBR) spectrum measurement programs conducted and published since the last (XVII) IAU General Assembly. The results are consistent with a Planckian spectrum with temperature 2.72 +- 0.03 K spanning a wavelength range of 0.1 to 12 cm. Limits on possible distortions and implications are outlined. Ongoing and future measurements are discussed.

  14. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  15. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    A technique to weld repair the main combustion chamber of Space Shuttle Main Engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloy-Z, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloy-Z while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  16. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  17. Darwin : The Third DOE ARM TWP ARCS Site /

    SciTech Connect

    Clements, William E.; Jones, L. A.; Baldwin, T.; Nitschke, K.

    2002-01-01

    The United States Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998, a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. The Manus, Nauru, and Darwin sites are operated through collaborative agreements with the PNG National Weather Service, The Nauru Department of Industry and Economic Development (IED), and the Australian Bureau of Meteorology's (BOM) Special Services Unit (SSU) respectively. All ARM TWP activities in the region are coordinated with the South Pacific Regional Environment Programme (SPREP) based in Apia, Samoa. The Darwin ARM site and its role in the ARM TWP Program are discussed.

  18. Arcing in Leo and Geo Simulated Environments: Comparative Analysis

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Galofaro, Joel TY.

    2006-01-01

    Comprehensive tests of two solar array samples in simulated Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) environments have demonstrated that the arc inception voltage was 2-3 times lower in the LEO plasma than in the GEO vacuum. Arc current pulse wave forms are also essentially different in these environments. Moreover, the wide variations of pulse forms do not allow introducing the definition of a "standard arc wave form" even in GEO conditions. Visual inspection of the samples after testing in a GEO environment revealed considerable damage on coverglass surfaces and interconnects. These harmful consequences can be explained by the discharge energy being one order of magnitude higher in vacuum than in background plasma. The tests also revealed a potential danger of powerful electrostatic discharges that could be initiated on the solar array surface of a satellite in GEO during the ignition of an arcjet thruster.

  19. Rotating Drive for Electrical-Arc Machining

    NASA Technical Reports Server (NTRS)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  20. 75 FR 4143 - Federal Speculative Position Limits for Referenced Energy Contracts and Associated Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... section 2(h)(7) of the Act. 74 FR 37988 (July 30, 2009). \\3\\ US-based traders also enter into various... of the Act that the Commission could independently enforce. \\8\\ Food, Conservation and Energy Act of... enumerated in the 1936 Act. \\14\\ 3 FR 3145 (December 24, 1938). Over the following years, Federal...

  1. 75 FR 50950 - Federal Speculative Position Limits for Referenced Energy Contracts and Associated Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... the definition encompasses energy commodities and metals. \\2\\ 75 FR 4133 (January 26, 2010). \\3... Commodity Exchange Act of 1936 (``Act'' or ``CEA'') by the recent enactment of the Dodd-Frank Wall Street... designated contract market or significant price discovery contracts traded on exempt commercial markets....

  2. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  3. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  4. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  5. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  6. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  7. Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: First cycle volcanogenic sedimentary rocks in an intraoceanic arc trench complex

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Kerrich, R.

    2006-09-01

    The ˜2.7 Ga Sandur Superterrane (SST), of the western Dharwar craton, is a collage of greenstone terranes having distinct lithotectonic associations; volcanic associations are prevalent. Fine-grained metasedimentary rocks, which are optimal for provenance studies, are sparse in greenstone terranes of this craton. However, extensive shale sequences are present in the eastern volcanic terrane (EVT) and the eastern felsic volcanic terrane (EFVT) of the SST. Within the EVT, the black shales are stratigraphically associated with black cherts, metabasalt and banded iron formation (BIF), and underlain by greywackes. Shales have compositions of tholeiitic basalt in terms of TiO 2, Cr, Co, Ni, V, and Sc contents, and plot near the arc basalt endmember on the Th/Sc versus Sc mixing hyperbola. In contrast, Archean average upper continental crust of Taylor and McLennan [Taylor, S.R., McLennan, S.M., 1985. The Continental crust: Its Composition and Evolution. Blackwell, Oxford, 307p.; Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Rev. Geophys.33, 241-265], plots mid-hyperbola indicative of bimodal arc magma provenance. Accordingly, the Sandur shales likely had a catchment in an oceanic arc or back-arc dominated by tholeiitic basalts. Specifically, Nb/Th ratios 1.5-2.5 in shales are close to those of Archean arc basalts (1-4), so a plateau or ocean island basalt source, where Nb/Th >8, can be ruled out. Compositionally, cherts are shale highly diluted by silica, with positive Eu anomalies, and are interpreted to be hydrothermal sediments precipitated from reduced fluids during periods of limited siliciclastic input. In the shales, variable SiO 2 and Fe 2O 3 contents, depletions of MnO, MgO, and Na 2O, and positive to negative Eu anomalies, but gains of K relative to arc basalt compositions, are interpreted as due to hydrothermal alteration. Greywackes underlying the shales have two compositions. Type I is similar to the shales, whereas

  8. Limits to sustained energy intake XXV: milk energy output and thermogenesis in Swiss mice lactating at thermoneutrality

    PubMed Central

    Zhao, Zhi-Jun; Li, Li; Yang, Deng-Bao; Chi, Qing-Sheng; Hambly, Catherine; Speakman, John R.

    2016-01-01

    Previous studies at 21 °C and 5 °C suggest that in Swiss mice sustained energy intake (SusEI) and reproductive performance are constrained by the mammary capacity to produce milk. We aimed to establish if this constraint also applied at higher ambient temperature (30 °C). Female Swiss mice lactating at 30 °C had lower asymptotic food intake and weaned lighter litters than those at 21 °C. Resting metabolic rate, daily energy expenditure, milk energy output and suckling time were all lower at 30 °C. In a second experiment we gave mice at 30 °C either 6 or 9 pups to raise. Female performance was independent of litter size, indicating that it is probably not controlled by pup demands. In a third experiment we exposed only the mother, or only the offspring to the elevated temperature. In this case the performance of the mother was only reduced when she was exposed, and not when her pups were exposed, showing that the high temperature directly constrains female performance. These data suggest that at 30 °C SusEI and reproductive performance are likely constrained by the capacity of females to dissipate body heat, and not indirectly via pup demands. Constraints seem to change with ambient temperature in this strain of mouse. PMID:27554919

  9. Limits to sustained energy intake XXV: milk energy output and thermogenesis in Swiss mice lactating at thermoneutrality.

    PubMed

    Zhao, Zhi-Jun; Li, Li; Yang, Deng-Bao; Chi, Qing-Sheng; Hambly, Catherine; Speakman, John R

    2016-01-01

    Previous studies at 21 °C and 5 °C suggest that in Swiss mice sustained energy intake (SusEI) and reproductive performance are constrained by the mammary capacity to produce milk. We aimed to establish if this constraint also applied at higher ambient temperature (30 °C). Female Swiss mice lactating at 30 °C had lower asymptotic food intake and weaned lighter litters than those at 21 °C. Resting metabolic rate, daily energy expenditure, milk energy output and suckling time were all lower at 30 °C. In a second experiment we gave mice at 30 °C either 6 or 9 pups to raise. Female performance was independent of litter size, indicating that it is probably not controlled by pup demands. In a third experiment we exposed only the mother, or only the offspring to the elevated temperature. In this case the performance of the mother was only reduced when she was exposed, and not when her pups were exposed, showing that the high temperature directly constrains female performance. These data suggest that at 30 °C SusEI and reproductive performance are likely constrained by the capacity of females to dissipate body heat, and not indirectly via pup demands. Constraints seem to change with ambient temperature in this strain of mouse. PMID:27554919

  10. Experimental research on electric propulsion. Note 5: Experimental study of a magnetic field stabilized arc-jet

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1984-01-01

    The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.

  11. FY95 limited energy study. Area B nitric acid production facilities, Holston Army Ammunition Plant, Kingsport, Tennessee. Final report

    SciTech Connect

    1996-04-02

    In June 1995, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District U.S. Army Corps of Engineers to perform a Limited Energy Study for Holston Army Ammunition Plant, Kingsport, Tennessee. The field survey of existing conditions was completed in July 1995. The results of this field survey were subsequently tabulated and used to generate single line process flow diagrams on Autocad. A subsequent one day field survey was conducted in August 1995. This report summarizes the results obtained from field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s). ECO`s were analyzed for suitability for the Energy Conservation Investment Program (ECIP) using the government`s software package called Life Cycle Cost in Design (LCCID).

  12. Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.; Kik, Pieter G.; Atwater, Harry A.; Meltzer, Sheffer; Requicha, Aristides A. G.; Koel, Bruce E.

    2002-10-01

    We investigate the possibility of using arrays of closely spaced metal nanoparticles as plasmon waveguides for electromagnetic energy below the diffraction limit of light. Far-field spectroscopy on arrays of closely spaced 50 nm Au particles fabricated using electron beam lithography reveals the presence of near-field optical particle interactions that lead to shifts in the plasmon resonance frequencies for longitudinal and transverse excitations. We link this observation to a point-dipole model for energy transfer in plasmon waveguides and give an estimate of the expected group velocities and energy decay lengths for the fabricated structures. A near-field optical excitation and detection scheme for energy transport is proposed and demonstrated. The fabricated structures show a high propagation loss of about 3 dB / 15 nm which renders a direct experimental observation of energy transfer impossible. The nature of the loss and ways to decrease it by an order of magnitude are discussed. We also present finite-difference time-domain simulations on the energy transfer properties of plasmon waveguides.

  13. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON–BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT

    PubMed Central

    LI, BO; LIU, YUAN

    2015-01-01

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson–Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions. PMID:26877556

  14. Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1981-01-01

    The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.

  15. Survival in an extreme habitat: the roles of behaviour and energy limitation.

    PubMed

    Plath, Martin; Tobler, Michael; Riesch, Rüdiger; García de León, Francisco J; Giere, Olav; Schlupp, Ingo

    2007-12-01

    Extreme habitats challenge animals with highly adverse conditions, like extreme temperatures or toxic substances. In this paper, we report of a fish (Poecilia mexicana) inhabiting a limestone cave in Mexico. Several springs inside the cave are rich in toxic H(2)S. We demonstrate that a behavioural adaptation, aquatic surface respiration (ASR), allows for the survival of P. mexicana in this extreme, sulphidic habitat. Without the possibility to perform ASR, the survival rate of P. mexicana was low even at comparatively low H(2)S concentrations. Furthermore, we show that food limitation affects the survival of P. mexicana pointing to energetically costly physiological adaptations to detoxify H(2)S. PMID:17639290

  16. Survival in an extreme habitat: the roles of behaviour and energy limitation

    NASA Astrophysics Data System (ADS)

    Plath, Martin; Tobler, Michael; Riesch, Rüdiger; García de León, Francisco J.; Giere, Olav; Schlupp, Ingo

    2007-12-01

    Extreme habitats challenge animals with highly adverse conditions, like extreme temperatures or toxic substances. In this paper, we report of a fish ( Poecilia mexicana) inhabiting a limestone cave in Mexico. Several springs inside the cave are rich in toxic H2S. We demonstrate that a behavioural adaptation, aquatic surface respiration (ASR), allows for the survival of P. mexicana in this extreme, sulphidic habitat. Without the possibility to perform ASR, the survival rate of P. mexicana was low even at comparatively low H2S concentrations. Furthermore, we show that food limitation affects the survival of P. mexicana pointing to energetically costly physiological adaptations to detoxify H2S.

  17. Limits on decaying dark energy density models from the CMB temperature-redshift relation

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Tortora, Crescenzo

    2012-03-01

    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx propto (1 + z)m, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z ~ 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff for such types of dark energy models.

  18. Summer declines in activity and body temperature offer polar bears limited energy savings

    USGS Publications Warehouse

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  19. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    PubMed

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  20. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view. PMID:18205484

  1. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  2. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  3. The standard flare model in three dimensions. II. Upper limit on solar flare energy

    NASA Astrophysics Data System (ADS)

    Aulanier, G.; Démoulin, P.; Schrijver, C. J.; Janvier, M.; Pariat, E.; Schmieder, B.

    2013-01-01

    Context. Solar flares strongly affect the Sun's atmosphere as well as the Earth's environment. Quantifying the maximum possible energy of solar flares of the present-day Sun, if any, is thus a key question in heliophysics. Aims: The largest solar flares observed over the past few decades have reached energies of a few times 1032 erg, possibly up to 1033 erg. Flares in active Sun-like stars reach up to about 1036 erg. In the absence of direct observations of solar flares within this range, complementary methods of investigation are needed to assess the probability of solar flares beyond those in the observational record. Methods: Using historical reports for sunspot and solar active region properties in the photosphere, we scaled to observed solar values a realistic dimensionless 3D MHD simulation for eruptive flares, which originate from a highly sheared bipole. This enabled us to calculate the magnetic fluxes and flare energies in the model in a wide paramater space. Results: Firstly, commonly observed solar conditions lead to modeled magnetic fluxes and flare energies that are comparable to those estimated from observations. Secondly, we evaluate from observations that 30% of the area of sunspot groups are typically involved in flares. This is related to the strong fragmentation of these groups, which naturally results from sub-photospheric convection. When the model is scaled to 30% of the area of the largest sunspot group ever reported, with its peak magnetic field being set to the strongest value ever measured in a sunspot, it produces a flare with a maximum energy of ~6 × 1033 erg. Conclusions: The results of the model suggest that the Sun is able to produce flares up to about six times as energetic in total solar irradiance fluence as the strongest directly observed flare of Nov. 4, 2003. Sunspot groups larger than historically reported would yield superflares for spot pairs that would exceed tens of degrees in extent. We thus conjecture that superflare

  4. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats

    PubMed Central

    Verhagen, Frank J. M.; Laanbroek, Hendrikus J.

    1991-01-01

    The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h−1. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h−1, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria. PMID:16348588

  5. Energy efficiency and color quality limits in artificial light sources emulating natural illumination.

    PubMed

    Hertog, Wim; Llenas, Aleix; Quintero, Jesús M; Hunt, Charles E; Carreras, Josep

    2014-12-15

    We present in this work a calculation of the theoretical limits attainable for natural light emulation with regard to the joint optimization of the Luminous Efficacy of Radiation and color fidelity by using multiple reflectance spectra datasets, along with an implementation of a physical device that approaches these limits. A reduced visible spectrum of blackbody radiators is introduced and demonstrated which allows lamps designed to emulate natural light to operate with excellent color fidelity and higher efficiency as compared to full visible spectrum sources. It is shown that even though 3,000K and 5,500K blackbody sources have maximum efficacies of 21 lm/W and 89 lm/W, respectively, reduced-spectrum artificial light sources can exceed those values up to 363 lm/W and 313 lm/W, respectively, while retaining excellent color fidelity. Experimental demonstration approaching these values is accomplished through the design and implementation of a 12-channel light engine which emits arbitrarily-tunable spectra. The color fidelity of the designed spectra is assessed through Color Rendering Maps, showing that color fidelity is preserved uniformly over a large spectral reflectance dataset, unlike other approaches to generate white light. PMID:25607479

  6. Enthalpy modulation of a laminar pulsed nitrogen arc jet: time-resolved diagnostics and model

    NASA Astrophysics Data System (ADS)

    Rat, V.; Krowka, J.; Coudert, J. F.

    2015-08-01

    In most studies, plasma spraying of liquid feedstock for ceramic coating elaboration requires limiting the arc motion to obtain stable plasma and to favour homogeneous treatment of nanomaterials. In this chapter, an alternative approach is proposed and consists of using a pulsed arc jet modulating the specific enthalpy in time. The momentum and heat transfers can be controlled provided a synchronous injection of materials is associated with it. The rotational temperatures of the nitrogen arc jet are measured by means of time-resolved optical emission spectroscopy synchronized with the arc voltage. The enthalpy modulation ratio (hmax/hmin) is shown to be close to 2.68. A simplified model of the dynamics of heat transfers is used to interpret diagnostics and highlights a time delay between arc voltage and enthalpy at the nozzle exit due to the characteristic time of heat transfers and residence time of plasma.

  7. Energy conservation investment program, FY95 limited energy study area B nitric acid production facilities Holston Army Ammunition Plant Kingsport, Tennessee

    SciTech Connect

    1995-12-31

    In June 1995, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District U.S. Army Corps of Engineers to perform a Limited Energy Study for Holston Army Ammunition Plant, Kingsport, Tennessee. The field survey of existing conditions was completed in July 1995. The results of this field survey were subsequently tabulated and used to generate single line process flow diagrams on Autocad. A subsequent one day field survey was conducted in August 1995. This report summarizes the results obtained from field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s).

  8. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, Richard J.; Pollina, Richard J.

    1990-04-01

    The objective of this task is to study the corrosion and arc erosion of magnetohydrodynamic (MHD) materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues: sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The detailed correlation and analysis of data obtained from nearly all of the tests performed since 1986 has shown that the apparent leakage current flowing through the slag on the channel walls depends upon channel operating parameters in an unexpected way. A comprehensive report of the results obtained to date and a first attempt at their interpretation has been prepared and a copy is attached. The second activity has concerned the examination of electrodes (platinum anodes/tungsten cathodes) by scanning electron microscopy and energy dispersive x ray spectroscopy of the surface degradation. Results of these examinations are reported.

  9. Limiting variety in non-nutrient-dense, energy-dense foods during a lifestyle intervention: a randomized controlled trial123

    PubMed Central

    Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R

    2012-01-01

    Background: Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. Objective: This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (ie, chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Design: Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200–1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, ie, 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Results: Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: −9.9 ± 7.6%; Lifestyle: −9.6 ± 9.2%). Conclusions: Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719. PMID:22552025

  10. Detailed Seismic Reflection Images of the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K. D.; Fulthorpe, C. S.

    2005-12-01

    New high-resolution seismic reflection profiles across the Central American volcanic arc (CAVA) reveal an asymmetric deformation pattern with large-scale folding and uplift of basinal strata in the forearc contrasted by intrusive bodies, normal faults, and possible strikes-slip faults in the backarc. Since Miocene times the CAVA has migrated seaward, apparently impinging on the Sandino forearc basin and creating or modifying the low-lying Nicaragua depression, which contains the backarc and much of the arc. However the structural nature of the depression and its possible relationship to forearc sliver movement is poorly known. In November-December 2004 we recorded a large, high-resolution, seismic reflection dataset largely on the Pacific shelf (forearc) area of Central America, extending from NW Costa Rica to the SE edge of El Salvador's territorial waters. We seized an opportunity to study the nature of the CAVA by recording data into the Gulf of Fonseca, a large embayment at the intersection of Nicaragua, Honduras, and El Salvador. With 3 GI airguns and a 2100 m streamer we recorded data with typical penetration of 2-3 seconds in the Sandino basin and frequency content of ~10-250 Hz (at shallow levels). Penetration was limited over the arc summit with high velocity volcanic rocks encountered at depths as shallow as a few hundred meters. To the NE the edge of the Nicaragua depression occurs abruptly; our data show a well-developed sedimentary basin 1.5-3 km thick separated by numerous steeply-dipping faults. The broadband signal and good penetration of this dataset will help us determine the chronology of arc development in this position and the styles of deformation in the forearc, arc, and backarc areas. In turn, this will help us understand the regional tectonic and stratigraphic development of this margin due to the profound affects of the arc.

  11. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  12. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  13. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  14. Thermodynamics of a Fermi Liquid beyond the Low-Energy Limit

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Maslov, Dmitrii L.; Gangadharaiah, Suhas; Glazman, Leonid I.

    2005-07-01

    We consider the nonanalytic temperature dependences of the specific heat coefficient, C(T)/T, and spin susceptibility, χs(T), of 2D interacting fermions beyond the weak-coupling limit. We demonstrate within the Luttinger-Ward formalism that the leading temperature dependences of C(T)/T and χs(T) are linear in T, and are described by the Fermi liquid theory. We show that these temperature dependences are universally determined by the states near the Fermi level and, for a generic interaction, are expressed via the spin and charge components of the exact backscattering amplitude of quasiparticles. We compare our theory to recent experiments on monolayers of He3.

  15. Energy confinement in auxiliary-heated divertor and limiter discharges in the DIII-D Tokamak

    SciTech Connect

    Burrell, K.H.; Allen, S.L.; Bramson, G.; Brooks, N.H.; Callis, R.W.; Carlstrom, T.N.; Chance, M.S.; Chu, M.S.; Colleraine, A.P.; Content, D.; DeBoo, J.C.; Dominguez, R.R.; Ejima, S.; Ferron, J.R.; Freeman, R.L.; Fukumoto, H.; Gohil, P.; Gottardi, N.; Greenfield, C.M.; Groebner, R.J.; Haas, G.; Harvey, R.W.; Heidbrink, W.W.; Helton, F.J.; Hill, D.N.; Hinton, F.L.; Hong, R.M.; Hosogane, N.; Howl, W.; Hsieh, C.L.; Jackson, G.L.; Jahns, G.L.; James, R.A.; Kellman, A.G.; Kim, J.; Kinoshita, S.; Lao, L.L.; Lazarus, E.A.; LeHecka, T.; Lee, P.; Lister, J.; Lohr, J.; Lomas, P.; Luce, T.C.; Luxon, J.L.; Mahdavi, M.A.; Matsuda, K.; Matsumoto, H.; Mayberry, M.; Moeller, C.P.; Neyatani, Y.; Ohkawa, T.; Ohyabu, N.; Osborne, T.H.; Overskei, D.O.; Ozeki, T.; Peebles, A.; Perkins, S.; Perry, M.; Petersen, P.I.; Petrie, T.W.; Philipono, R.; Phillips, J.C.; Pinsker, R.; Politzer, P.A.; Porter, G.D.; Prater, R.; Remsen, D.B.; Rensink, M.E.; Sakamoto, K.; Schafer, M.J.; Schissel, D.P.; Scoville, J.T.; Sera

    1988-10-01

    We have determined the scaling of the H-mode power threshold with various plasma parameters; the roughly linear increase with plasma density and toroidal field are particularly significant. The data indicate that the H-mode transition is associated with the sudden reduction in anomalous, fluctuation-connected transport across the outer midplane of the plasma. We find that the edge localized modes (ELMs) are triggered when the pressure gradient at the edge of the plasma exceeds the threshold given by ideal ballooning theory. Energy confinement time increases linearly with plasma current until the safety factor at the 95% flux surface q/sup 95/ drops below three; at q/sub 95/ < 3, it is independent of current and, at constant q/sub 95/, depends linearly on toroidal field. Controlling the effects of ELMs has allowed us to produce nearly-steady-state plasmas with H-mode durations up to 4.4 seconds. Energy confinement time in H-mode plasmas created with Ohmic heating alone shows a factor of two improvements over standard Ohmic plasmas. Confinement time in 2.0 MA H-mode plasmas with neutral beam heating can significantly exceed the standard Ohmic value also. Local transport studies have shown that the thermal diffusivity in the outer half of the plasma in neutral-beam-heated H-mode is a factor of three lower than the L-mode diffusivity at the same plasma density. 32 refs., 8 figs.

  16. Optimization of electron arc therapy doses by multi-vane collimator control

    SciTech Connect

    Leavitt, D.D.; Stewart, J.R.; Moeller, J.H.; Earley, L.

    1989-02-01

    Retrospective computer simulations, based on clinical treatment planning data available from over 50 patients treated by electron arc radiotherapy to the chestwall following mastectomy, show that a dramatic improvement in dose uniformity can, in many clinical situations, be achieved by dynamic shaping of the electron arc collimator, under computer control, as a function of gantry angle and distance superior or inferior to the central plane. The greatest improvement in dose uniformity is seen in calculational planes in which the patient contour has the greatest departure from a circular shape. Dosimetric studies demonstrate this improvement. Indicators for use of variable-width multi-vane electron arc collimators include the following: (1) Mechanical constraints of the therapy equipment may limit the placement of isocenter to an inadequate depth which causes large variation in the SSD around the arc; (2) Out of the central plane, the shape of the chest wall may change dramatically across the limits of the arc, creating large variations in the dose distribution; (3) Clinical definition of the treatment surface to include surgical scars or other at-risk volume may create an irregularly shaped treatment surface, thereby changing the fraction of the arc included in the treatment surface from one plane to the next. Electron arc collimator shape determines both the dose rate and the electron arc beam profile. Both the dose rate and the beam profile must be included in the integration of dose to a point within the arc. The dose to a point within the arc can be modified by as much as a factor of 1.5 to 2.0 by increasing the collimator width from 3 cm to 7 cm. A multi-vane collimator allows these changes to be made in each specific plane to compensate for changes in patient contour.

  17. Testing of low Z coated limiters in tokamak fusion devices

    SciTech Connect

    Whitely, J.B.; Mullendore, A.W.; Langley, R.A.

    1980-01-01

    Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB/sub 2/ and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB/sub 2/ limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results.

  18. Locating Cantori for Symmetric Tokamap and Symmetric Ergodic Magnetic Limiter Map Using Mean-Energy Error Criterion

    NASA Astrophysics Data System (ADS)

    Jazayeri, S. M.; Sohrabi, A. R.

    2014-06-01

    We use a method based on the conservation of energy, the mean-energy error criterion, to approximately locate the place of a cantorus by locating the series of its convergents. The mean-energy error curve has nearly stationary parts in the vicinity of elliptic (minimax) orbits, the so-called magnetic islands. Stable minimax orbits converge to orbits homoclinic to a cantorus. By tracing the island series, we limit the cantorus to a narrow region. A near-critical perturbation parameter is used so that, while the cantorus may be destabilized, its high-order minimax orbits remain intact. As illustrations, we consider two symplectic maps, systematically derived from the Hamilton-Jacobi equation and Jacobi's theorem, in the context of the magnetically confined plasmas in a tokamak: a symmetric tokamap realistically reproduces the main features of a tokamak, and a symmetric ergodic magnetic limiter (EML) map is defined to describe the action of EML rings on the magnetic field lines in the tokamak.

  19. Limits to sustained energy intake XXIV: impact of suckling behaviour on the body temperatures of lactating female mice

    PubMed Central

    Gamo, Y.; Bernard, A.; Troup, C.; Munro, F.; Derrer, K.; Jeannesson, N.; Campbell, A.; Gray, H.; Miller, J.; Dixon, J.; Mitchell, S. E.; Hambly, C.; Vaanholt, L. M.; Speakman, J. R.

    2016-01-01

    The objective of this study was to investigate the potential causes of high body temperature (Tb) during lactation in mice as a putative limit on energy intake. In particular we explored whether or not offspring contributed to heat retention in mothers while suckling. Tb and physical activity were monitored in 26 female MF1 mice using intraperitoneally implanted transmitters. In addition, maternal behaviour was scored each minute for 8 h d−1 throughout lactation. Mothers that raised larger litters tended to have higher Tb while nursing inside nests (P < 0.05), suggesting that nursing offspring may have influenced heat retention. However, Tb during nursing was not higher than that recorded during other behaviours. In addition, the highest Tb during the observation period was not measured during nursing behaviour. Finally, there was no indication that mothers discontinued suckling because of a progressive rise in their Tb while suckling. Tb throughout lactation was correlated with daily increases in energy intake. Chronic hyperthermia during lactation was not caused by increased heat retention due to surrounding offspring. Other factors, like metabolic heat produced as a by-product of milk production or energy intake may be more important factors. Heat dissipation limits are probably not a phenomenon restricted to lactation. PMID:27157478

  20. Limits to sustained energy intake XXIV: impact of suckling behaviour on the body temperatures of lactating female mice.

    PubMed

    Gamo, Y; Bernard, A; Troup, C; Munro, F; Derrer, K; Jeannesson, N; Campbell, A; Gray, H; Miller, J; Dixon, J; Mitchell, S E; Hambly, C; Vaanholt, L M; Speakman, J R

    2016-01-01

    The objective of this study was to investigate the potential causes of high body temperature (Tb) during lactation in mice as a putative limit on energy intake. In particular we explored whether or not offspring contributed to heat retention in mothers while suckling. Tb and physical activity were monitored in 26 female MF1 mice using intraperitoneally implanted transmitters. In addition, maternal behaviour was scored each minute for 8 h d(-1) throughout lactation. Mothers that raised larger litters tended to have higher Tb while nursing inside nests (P < 0.05), suggesting that nursing offspring may have influenced heat retention. However, Tb during nursing was not higher than that recorded during other behaviours. In addition, the highest Tb during the observation period was not measured during nursing behaviour. Finally, there was no indication that mothers discontinued suckling because of a progressive rise in their Tb while suckling. Tb throughout lactation was correlated with daily increases in energy intake. Chronic hyperthermia during lactation was not caused by increased heat retention due to surrounding offspring. Other factors, like metabolic heat produced as a by-product of milk production or energy intake may be more important factors. Heat dissipation limits are probably not a phenomenon restricted to lactation. PMID:27157478

  1. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  2. Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations.

    PubMed

    Aran, Shima; Shaqdan, Khalid W; Abujudeh, Hani H

    2014-08-01

    Recent advances in computed tomography (CT) technology allow for acquisition of two CT datasets with different X-ray spectra. There are different dual-energy computed tomography (DECT) technical approaches such as: the dual-source CT, the fast kilovoltage-switching method, and the sandwich detectors technique. There are various postprocessing algorithms that are available to provide clinically relevant spectral information. There are several clinical applications of DECT that are easily accessible in the emergency setting. In this review article, we aim to provide the emergency radiologist with a discussion on how this new technology works and how some of its applications can be useful in the emergency room setting. PMID:24676736

  3. Metabolic Restructuring during Energy-Limited States: Insights from Artemia franciscana Embryos and Other Animals

    PubMed Central

    Hand, Steven C.; Menze, Michael A.; Borcar, Apu; Patil, Yuvraj; Covi, Joseph A.; Reynolds, Julie A.; Toner, Mehmet

    2011-01-01

    Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ion gradients from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically-depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to precondition mammalian cells prior to cell biostabilization and storage. PMID:21335009

  4. 3D cartography of the Alpine Arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, N.; Sue, C.; Champagnac, J. D.; Calcagno, P.

    2012-04-01

    We present a 3D cartography of the alpine arc, a highly non-cylindrical mountain belt, built using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimentional cartography that would be used as input for further alpine studies.

  5. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  6. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array.

    PubMed

    Rock, William; Bonn, Mischa; Parekh, Sapun H

    2013-07-01

    We demonstrate near shot-noise limited hyperspectral stimulated Raman scattering (SRS) spectroscopy using oscillator-only excitation conditions. Using a fast CMOS camera synchronized to an acousto-optic modulator and subtracting subsequent frames acquired at up to 1 MHz frame rates, we demonstrate demodulation and recovery of the SRS spectrum. Surprisingly, we observe that the signal-to-noise of SRS spectra is invariant at modulation frequencies down to 2.5 kHz. Our approach allows for a direct comparison of SRS with coherent anti-Stokes Raman scattering (CARS) spectroscopy under identical experimental conditions. Our findings suggest that hyperspectral SRS imaging with shot-noise limited performance at biologically compatible excitation energies is feasible after minor modifications to fast frame-rate CMOS array technology. PMID:23842298

  7. Joint operation of the superconducting fault current limiter and magnetic energy storage system in an electric power network

    NASA Astrophysics Data System (ADS)

    Kopylov, S. I.; Balashov, N. N.; Ivanov, S. S.; Veselovsky, A. S.; Zhemerikin, V. D.

    2010-06-01

    An opportunity of using superconductors as active elements of electric power systems designed to control the electric power distribution, to enhance the systems operating modes and to limit fault currents, was very attractive for investigators for a long time. In this paper, is considered an opportunity to enhance the electric power systems with the aid of superconducting magnetic energy storage systems (SMES) and superconducting fault current limiters (SFCL) operating together. It has been shown that the joint operation of both these superconducting devices allows additional varying of their parameters, what in turn gives a further opportunity to reduce their mass and dimensions and consequently the costs. There had been also shown an additional advantage of the SMES and SFCL joint operation consisting in that they ensure a more effective protection for a power system, preventing its uncontrolled load-off and subsequent acceleration up to the inaccessible rotation speed.

  8. Self-organisation Processes In The Carbon ARC For Nanosynthis

    SciTech Connect

    Ng, Jonathan; Raitses, Yevgeny

    2014-02-26

    The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface, and show how the operation of the arc is self-organised process. Our results suggest that the can arc operate in two di erent regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat.

  9. Self-organisation Processes In The Carbon ARC For Nanosynthis

    SciTech Connect

    Ng, J.; Raitses, Yefgeny

    2014-02-02

    The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface, and show how the operation of the arc is self-organised process. Our results suggest that the can arc operate in two di erent regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat.

  10. Origin of dissipative Fermi arc transport in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2016-06-01

    By making use of a low-energy effective model of Weyl semimetals, we show that the Fermi arc transport is dissipative. The origin of the dissipation is the scattering of the surface Fermi arc states into the bulk of the semimetal. It is noticeable that the corresponding scattering rate is nonzero and can be estimated even in a perturbative theory, although in general the reliable calculations of transport properties necessitate a nonperturbative approach. Nondecoupling of the surface and bulk sectors in the low-energy theory of Weyl semimetals invalidates the usual argument of a nondissipative transport due to one-dimensional arc states. This property of Weyl semimetals is in drastic contrast to that of topological insulators, where the decoupling is protected by a gap in the bulk. Within the framework of the linear response theory, we obtain an approximate result for the conductivity due to the Fermi arc states and analyze its dependence on chemical potential, temperature, and other parameters of the model.

  11. Scattering-matrix arc detection on the JET ITER-like ICRH antenna

    SciTech Connect

    Becoulet, A.; Vrancken, M.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Lerche, E.; Van Eester, D.; Vervier, M.; Argouarch, A.; Blackman, T.

    2009-06-01

    Operating Ion Cyclotron Resonance Heating (ICRH) antennas at high power density puts them at risk of arcing which reduces the coupled power to the plasma because the perturbed impedance match triggers the Voltage Standing Wave Ratio (VWSR) based generator trip system but even worse might damage the antenna beyond repair because of the the arc s localised energy deposition. New antennas are designed to operate in a load tolerant way which creates low impedance zones that are especially at risk since the existing VSWR protection systems are less sensitive to arcs in these areas. To protect these low impedance areas, a new arc protection system referred as Scattering Matrix Arc Detection (SMAD) was proposed. This paper describes the basic operating principle and implementation in hard- and software for the JET ITER-Like Antenna (ILA), with testbed and preliminary JET commissioning results.

  12. The refractory painful arc syndrome.

    PubMed

    Watson, M

    1978-11-01

    Twenty-three patients with a severe refractory painful arc syndrome have been treated by excision of the outer end of the clavicle and division of the coracoacromial ligament through a deltoid-splitting approach. After a follow-up of more than six months all patients have been relieved of night pain. Six still have slight pain on movement, but the rest are symptom-free. PMID:711806

  13. The plasma arc torch -- its electrical and thermal characteristics

    SciTech Connect

    Camacho, S.L.

    1995-12-31

    The plasma arc torch is a very effective heating device. Plasma arc heating technology is very appropriate and essential for product manufacture and for remediating and protecting the environment. The plasma torch initiates and maintains a length of arc column, similar to a lightning bolt, and the electrically-conducting column is used in the conversion of electricity into heat energy. The format of the heat energy delivery is a low-mass, high-enthalpy gas. Heat energy is delivered by the plasma torch with a minimum of mass -- only about 2--3% of the mass delivery from a combustion heater that is delivering the same heat enthalpy. This virtually mass-less heat is ideal for promoting very rapid physical changes and chemical changes in the material being heated. It is ideal for the pyrolysis (or gasification) of organic materials and for the vitrification (or melting) of inorganic materials -- processes that are desirable for new product manufacture and for environmental remediation and protection. Plasma arc heating technology has been perfected by industry during the last 20--30 years, and the industrial sector today is employing this unique heating source in product manufacture and, lately, in environmental remediation and protection processes. It is a cost-effective industrial heat source. The primary objective of this paper is to familiarize one with plasma heaters and their operating characteristics. The essential elements of the plasma arc torch: electrodes, insulators, gas injectors, water-cooling, electrical connectors, etc., are described and the electrical and thermal characteristics of this novel heating device are highlighted. An overview of today`s employment of plasma heating technology and a sample of some of today`s applications of the technology in the industrial sector in the United States and around the world are presented.

  14. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  15. Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability.

    PubMed

    Aguergaray, Claude; Runge, Antoine; Erkintalo, Miro; Broderick, Neil G R

    2013-08-01

    We report on the destabilization of the mode-locking operation of a long cavity fiber laser. We show that the destabilization is accompanied by the abrupt emergence of a strong frequency-downshifted Stokes signal, and simultaneously, we find that the laser output displays characteristics typical of noise-like pulses. We use numerical simulations to illustrate how the Stokes signal grows from stimulated Raman scattering and plays a key role in the destabilization of the laser output. Our results indicate that stimulated Raman scattering may impose an ultimate limit on the energy scalability via cavity lengthening. PMID:23903099

  16. Limited rotation-invariant pattern recognition using optical wavelet circular harmonic function minimum average correlation energy (MACE) filter

    NASA Astrophysics Data System (ADS)

    Lee, Ha-Woon; Kim, Jeong-Woo; Kim, Cheol S.; Kim, Soo-Joong

    1995-04-01

    The optical wavelet circular harmonic function minimum average correlation energy (WCHF- MACE) filter is proposed. The proposed WCHF-MACE filter uses the wavelet transformed image by Mexican-hat wavelet function for circular harmonic function and the multiple harmonic components of circular harmonic function are used for MACE filter synthesis. The proposed filter has good discrimination compared with the conventional circular harmonic function filter and conventional circular harmonic MACE filter about the limited rotated images. And the filter is made of the type of optical wavelet matched filter (WMF), so that the proposed filter can use the conventional 4f correlator.

  17. Matched Optics of Muon RLA and Non-Scaling FFAG ARCS

    SciTech Connect

    V.S. Morozov, S.A. Bogacz, Y. Roblin, K.B. Beard, D. Trbojevic

    2011-03-01

    Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes’ energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs.

  18. Reforming of biogas to synthesis gas by a rotating arc plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chung, Woo-Jae; Park, Hyun-Woo; Liu, Jing-Lin; Park, Dong-Wha

    2015-09-01

    In order to produce synthesis gas, reforming of biogas composed with 60 percent for CH4 and 40 percent for CO2 was performed by a novel rotating arc plasma process. The effect of O2/CH4 ratio on the conversion, syngas composition and energy cost was investigated to evaluate the performance of proposed system compared with conventional gliding arc plasma process. When the O2/CH4 ratio was increased from 0.4 to 0.9, the conversions of CH4 and O2 increased up to 97.5 percent and 98.8 percent, respectively, while CO2 conversion was almost constant to be 38.6 percent. This is due to more enhance the partial oxidation of CH4 to CO and H2 than that of dry reforming by increasing the O2/CH4 ratio. In this work, energy cost of 32 kJ/mol was achieved with high syngas composition of 71 percent using pure O2 as oxidant reactant. These are lower than those of different arc plasma processes (energy cost of 122 - 1870 kJ/mol) such as spark, spark-shade and gliding arc plasma. Because, this rotating arc plasma can remain in a long arc length and a large volume of plasma with constant arc length mode.

  19. Bioenergetic Limitations on Slow Microbial Growth in the Subsurface: What is the Burden of Maintenance on the Overall Energy Budget?

    NASA Astrophysics Data System (ADS)

    Smeaton, C. M.; Bajracharya, B. M.; Ridenour, C.; Van Cappellen, P.

    2014-12-01

    In low energy environments such as the subsurface, the minimum energy required to maintain cellular integrity and function (maintenance energy) may represent a significant fraction of the total energy available to microbial communities. However, traditional kinetic and thermodynamic models incorporating key microbial processes are often developed using data collected in nutrient rich growth media. In this study, slow microbial growth in the subsurface was simulated using a flow through bioreactor system in experiments designed to determine the maintenance energy requirement of the model subsurface bacterium Shewanella oneidensis. An existing bioreactor system (Applikon EZ-control®, 2.4 L) was modified to include a biomass retention filtration unit (retentostat) resulting in biomass accumulation over time. An artificial low-nutrient groundwater medium was optimized for slow S. oneidensis growth and was supplied and removed from the reactor at flow rates on the order of 1 mL min-1 with a dilution rate of 0.025 h-1. The retentostat was run under electron donor limited conditions with nitrate, a common groundwater contaminant, supplied at 0.025 mM h-1 and lactate supplied in excess at 0.125 mM h-1. Respiratory ammonification of nitrate by S. oneidensis and cell growth was monitored over time (40 days) and compared to parallel incubations in batch reactors. Initial rates of ammonification were similar in the bioreactor and batch reactors, however, optical density and ATP measurements showed slow yet increasing microbial growth over time (generation time = 17 days) in the retentostat. In contrast, cells in the batch reactors did not grow significantly and died within 2 weeks of inoculation. A maintenance energy demand was estimated (2.5 kJ C-mol biomass h-1) by fitting the biomass production rates to the van Verseveld equation. The low maintenance energy demand of S. oneidensis as compared to typical maintenance energies reported in the literature (>10 kJ C-mol biomass

  20. On a Mechanism for Limiting the Frequency and Energy Characteristics of Lasers on Self-terminating Transitions of Metal Atoms

    NASA Astrophysics Data System (ADS)

    Yudin, N. A.; Yudin, N. N.

    2016-04-01

    Electrophysical approach to estimation of conditions for efficient pumping of active medium of lasers on selfterminating transitions of metal atoms in a gas discharge tube with electrodes in cold buffer zones is used. Existence of processes that enhance the effect of the well-known mechanism of limitation of radiation frequency and energy characteristics caused by the presence of a pre-pulse electron concentration in the discharge circuit of lasers on self-terminating transitions of metal atoms is demonstrated. The mechanism of influence of these processes on frequency and energy characteristics of lasers on self-terminating transitions of metal atoms and the technical methods of neutralization of these processes are considered. It is shown that the practical efficiency of a copper vapor laser can attain ~10% under conditions of neutralization of these processes.

  1. A limited assessment and characterization of the solar radiation energy resources in the Caribbean region

    SciTech Connect

    Hulstrom, R.L.

    1988-02-01

    The objective of our work was to produce a preliminary assessment and characterization of the Caribbean region (Barbados, Dominican Republic, Guatemala, Jamaica, and Panama) solar radiation energy resources. Such information will be used to estimate the performance of, and identify the most promising applications of, solar heat technologies in the Caribbean region. We expect the solar radiation resources in the Caribbean region to be very location specific. Sunny areas will have an annual direct-beam resource of about 3,000 kWhm/sup /minus 2// and a global solar radiation resource of about 2,500 kWhm/sup /minus 2//. Cloud-covered areas will have annual solar radiation resources of about 1,500 kWhm/sup /minus 2/ for both the direct-beam and the global solar radiation. Monthly levels of solar radiaion will vary markedly, ranging from an average of 9 to 3 kWhm/sup /minus 2//day/sup /minus 1// for the direct-beam and from an average of 7 to 4 kWhm/sup /minus 2//day/sup /minus 1// for the global solar radiation. The Caribbean region is comparable to the Great Plains region of the US, in terms of annual solar radiation resources; however, thorough ''prospecting'' is required to avoid areas having very low amounts of solar radiation.

  2. Present Limits on the Precision of SM Predictions for Jet Energies

    SciTech Connect

    Paramonov, A.A.; Canelli, F.; D'Onofrio, M.; Frisch, H.J.; Mrenna, S.; /Fermilab

    2010-08-01

    We investigate the impact of theoretical uncertainties on the accuracy of measurements involving hadronic jets. The analysis is performed using events with a Z boson and a single jet observed in p{bar p} collisions at {radical}s = 1.96 TeV in 4.6 fb{sup -1} of data from the Collider Detector at Fermilab (CDF). The transverse momenta (p{sub T}) of the jet and the boson should balance each other due to momentum conservation in the plane transverse to the direction of the p and {bar p} beams. We evaluate the dependence of the measured p{sub T}-balance on theoretical uncertainties associated with initial and final state radiation, choice of renormalization and factorization scales, parton distribution functions, jet-parton matching, calculations of matrix elements, and parton showering. We find that the uncertainty caused by parton showering at large angles is the largest amongst the listed uncertainties. The proposed method can be re-applied at the LHC experiments to investigate and evaluate the uncertainties on the predicted jet energies. The distributions produced at the CDF environment are intended for comparison to those from modern event generators and new tunes of parton showering.

  3. Ultrafast Electronic Energy Transfer Beyond the Weak Coupling Limit in a Proximal but Orthogonal Molecular Dyad.

    PubMed

    Hedley, Gordon J; Ruseckas, Arvydas; Benniston, Andrew C; Harriman, Anthony; Samuel, Ifor D W

    2015-12-24

    Electronic energy transfer (EET) from a donor to an acceptor is an important mechanism that controls the light harvesting efficiency in a wide variety of systems, including artificial and natural photosynthesis and contemporary photovoltaic technologies. The detailed mechanism of EET at short distances or large angles between the donor and acceptor is poorly understood. Here the influence of the orientation between the donor and acceptor on EET is explored using a molecule with two nearly perpendicular chromophores. Very fast EET with a time constant of 120 fs is observed, which is at least 40 times faster than the time predicted by Coulombic coupling calculations. Depolarization of the emission signal indicates that the transition dipole rotates through ca. 64°, indicating the near orthogonal nature of the EET event. The rate of EET is found to be similar to structural relaxation rates in the photoexcited oligothiophene donor alone, which suggests that this initial relaxation brings the dyad to a conical intersection where the excitation jumps to the acceptor. PMID:26617059

  4. Properties of vacuum arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Anders, A.; Raoux, S.

    1995-04-01

    Amorphous hard carbon films formed by vacuum arc deposition are hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. The authors have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content they have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.

  5. On the accuracy limits of orbital expansion methods: Explicit effects of k-functions on atomic and molecular energies

    NASA Astrophysics Data System (ADS)

    Valeev, Edward F.; Allen, Wesley D.; Hernandez, Rigoberto; Sherrill, C. David; Schaefer, Henry F.

    2003-05-01

    For selected first- and second-row atoms, correlation-optimized Gaussian k functions have been determined and used in the construction of septuple-ζ basis sets for the correlation-consistent cc-pVXZ and aug-cc-pVXZ series. Restricted Hartree-Fock (RHF) and second-order Møller-Plesset (MP2) total and pair energies were computed for H, N, O, F, S, H2, N2, HF, H2O, and (H2O)2 to demonstrate the consistency of the new septuple-ζ basis sets as extensions of the established (aug)-cc-pVXZ series. The pV7Z and aug-pV7Z sets were then employed in numerous extrapolation schemes on the test species to probe the accuracy limits of the conventional MP2 method vis-à-vis explicitly correlated (MP2-R12/A) benchmarks. For (singlet, triplet) pairs, (X+1/2)-n functional forms with n=(3, 5) proved best for extrapolations. The (mean abs. relative error, std. dev.) among the 73 singlet pair energies in the dataset is (1.96%, 0.54%) and (1.72%, 0.51%) for explicit computations with the pV7Z and aug-pV7Z basis sets, respectively, but only (0.07%, 0.09%) after two-point, 6Z/7Z extrapolations with the (X+1/2)-3 form. The effects of k functions on molecular relative energies were examined by application of the septuple-ζ basis sets to the barrier to linearity and the dimerization energy of water. In the former case, an inherent uncertainty in basis set extrapolations persists which is comparable in size to the error (≈20 cm-1) in explicit aug-pV7Z computations, revealing fundamental limits of orbital expansion methods in the domain of subchemical accuracy (0.1 kcal mol-1).

  6. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  7. Arc Testing of a Mockup Cable in a Simulated Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Schneider, T. A.; Vaughn, J. A.

    2007-01-01

    A mockup cable was irradiated with electrons of 25-100 keV energy in a vacuum chamber. The m'ockup cable consisted of insulated wires on a kapton substrate, overlaid with a metallized teonex shield. Voltages induced on the wires and shield by the electron beam during irradiation were monitored, and voltage changes were used, along with video, to detect arcs due to the charge built-up in the cable. The cable was also cooled with liquid nitrogen to very low temperatures, to simulate cables kept in the dark for long periods of time. Arcing was common at fluences typical of long space missions. Occasionally an arc would occur some time after the electron beam was turned off. The conductivity of the wires and shield was monitored as a function of temperature, and behaved as expected, with lower conductivities at lower temperatures. Arcs from the wires and shield to ground and from the wires to the shield were measured. Sympathetic arcs were also seen, wherein an arc from the shield to ground or from the wires to ground was followed in a short period of time by another arc of a different type. Implications of these results for real cables on long space missions will be discussed, and recommendations given for arc mitigation.

  8. Ab Initio Quantum Mechanical Description of Noncovalent Interactions at Its Limits: Approaching the Experimental Dissociation Energy of the HF Dimer.

    PubMed

    Řezáč, Jan; Hobza, Pavel

    2014-08-12

    Hydrogen fluoride dimer is a perfect model system for studying hydrogen bonding. Its size makes it possible to apply the most advanced theoretical methods available, yet it is a full-featured complex of molecules with nontrivial electronic structure and dynamic properties. Moreover, the dissociation energy of the HF dimer has been measured experimentally with an unparalleled accuracy of ±1 cm(-1)(Bohac et al. J. Chem. Phys. 1992, 9, 6681). In this work, we attempt to reproduce it by purely ab initio means, using advanced quantum-mechanical computational methods free of any empiricism. The purpose of this study is to demonstrate the capabilities of today's computational chemistry and to point out its limitations by identifying the contributions that introduce the largest uncertainty into the result. The dissociation energy is calculated using a composite scheme including large basis set CCSD(T) calculations, contributions of higher excitations up to CCSDTQ, relativistic and diagonal Born-Oppenheimer corrections and anharmonic vibrational calculations. The error of the calculated dissociation energy is 0.07 kcal/mol (25 cm(-1), 2.5%) when compared to the experiment. The major part of this error can be attributed to the inaccuracy of the calculations of the zero-point vibrational energy. PMID:26588277

  9. Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intercellular CO/sub 2/ concentration

    SciTech Connect

    Taylor, S.E.; Terry, N.

    1984-05-01

    Although there is now some agreement with the view that the supply of photochemical energy may influence photosynthetic rate (P) at high CO/sub 2/ pressures, it is less clear whether this limitation extends to P at low CO/sub 2/. This was investigated by measuring P per area as a function of the intercellular CO/sub 2/ concentration (C/sub i/) at different levels of photochemical energy supply. Changes in the latter were obtained experimentally by varying the level of irradiance to normal (Fe-sufficient) leaves of Beta vulgaris L. cv F58-554H1, and by varying photosynthetic electron transport capacity using leaves from Fe-deficient and Fe-sufficient plants. P and C/sub i/ were determined for attached sugar beet leaves using open flow gas exchange. The results suggest the P/area was colimited by the supply of photochemical energy at very low as well as high values of C/sub i/. Using the procedure developed by Perchorowicz et al., we investigated the effect or irradiance on ribulose bisphosphate carboxylase (RuBPCase) activation. The ratio of initial extractable activity to total inducible RuBPCase activity increased from 0.25 to 0.90 as leaf irradiance increased from 100 to 1500 microeinsteins photosynthetically active radiation per square meter per second. These data suggest that colimitation by photochemical energy supply at low C/sub i/ may be mediated via effects on RuBPCase activation.

  10. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis.

    PubMed

    Wilhelm, Christian; Selmar, Dirk

    2011-01-15

    In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO(2) conditions or other metabolic strategies which can increase the carbon flux from CO(2) to metabolic pools. However, even under optimal CO(2) conditions plants will provide much more NADPH+H(+) and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP(+) would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called "alternative electron cycling" which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non

  11. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  12. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  13. Similarity and scaling laws for transient arcs in a strongly accelerating gas flow

    SciTech Connect

    Blundell, R.E.; Fang, M.T.C.; Terrill, R.M.

    1995-12-31

    A high-power electric arc, such as that burning in the interrupter (usually a supersonic nozzle) of a gas-blast circuit-breaker, presents a challenging problem both to theoretical and experimental investigators. The complex non-linear nature of the governing equations and steep radial gradients of arc quantities make analytic and numerical solution of the equations extremely difficult. Experimental work is also difficult due to the extreme physical conditions encountered. It is therefore highly desirable to use similarity theory to extend the limited results available to as wide a variety of arcing conditions as possible.

  14. Along-arc geochemical and isotopic variations in Javanese volcanic rocks: 'crustal' versus 'source' contamination at the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Handley, H.; Blichert-Toft, J.; Turner, S.; Macpherson, C. G.

    2012-12-01

    lavas. This information presented will help elucidate the nature of the transition between the continental and oceanic basement to the arc, which is expected to lie between Sumatra and East Java. Whitford, D.J. (1975) Strontium isotopic studies of the volcanic rocks of the Sunda arc, Indonesia, and their petrogenesis. Geochim. Cosmochim. Acta, 39: 12871302. Handley, H.K., Macpherson, C. G., Davidson, J. P., Berlo, K. & Lowry, D. (2007). Constraining Fluid and Sediment Contributions to Subduction-Related Magmatism in Indonesia: Ijen Volcanic Complex. J. Petrol. 48, 1155-1183. Handley, H.K., Davidson, J.P., Macpherson, C.G. & Stimac .J.A. (2008). Untangling differentiation in arc lavas: constraints from unusual minor and trace element variations at Salak Volcano, Indonesia. Chem. Geol. 255, 360-376. Handley, H.K., Macpherson, C.G., Davidson, J.P. (2010). Geochemical and Sr-O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, Java, Indonesia. Contrib. Mineral. Pet. 159, 885-908. Handley, H.K., Turner, S., Macpherson, C.G., Gertisser, R., Davidson, J.P. (2011) Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies and Sm/Hf ratios as input indicators. Earth Planet. Sci. Lett. 304, 212-223.

  15. Arc detection for the ICRF system on ITER

    NASA Astrophysics Data System (ADS)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  16. A Paleogene extensional arc flare-up in Iran

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; Wernicke, Brian P.; Hassanzadeh, Jamshid; Guest, Bernard

    2011-06-01

    Arc volcanism across Iran is dominated by a Paleogene pulse, despite protracted and presumably continuous subduction along the northern margin of the Neotethyan ocean for most of Mesozoic and Cenozoic time. New U-Pb and 40Ar/39Ar data from volcanic arcs in central and northern Iran constrain the duration of the pulse to ˜17 Myr, roughly 10% of the total duration of arc magmatism. Late Paleocene-Eocene volcanic rocks erupted during this flare-up have major and trace element characteristics that are typical of continental arc magmatism, whereas the chemical composition of limited Oligocene basalts in the Urumieh-Dokhtar belt and the Alborz Mountains which were erupted after the flare-up ended are more consistent with derivation from the asthenosphere. Together with the recent recognition of Eocene metamorphic core complexes in central and east central Iran, stratigraphic evidence of Eocene subsidence, and descriptions of Paleogene normal faulting, these geochemical and geochronological data suggest that the late Paleocene-Eocene magmatic flare-up was extension related. We propose a tectonic model that attributes the flare-up to decompression melting of lithospheric mantle hydrated by slab-derived fluids, followed by Oligocene upwelling and melting of enriched mantle that was less extensively modified by hydrous fluids. We suggest that Paleogene magmatism and extension was driven by an episode of slab retreat or slab rollback following a Cretaceous period of flat slab subduction, analogous to the Laramide and post-Laramide evolution of the western United States.

  17. Resource limits and conversion efficiency with implications for climate change and California's energy supply

    NASA Astrophysics Data System (ADS)

    Croft, Gregory Donald

    There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based

  18. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density.

    PubMed

    Zanton, G I; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effects of limit feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± 7 d, hereafter "young," and 4 heifers beginning at 610 ± 16 d, hereafter "old") were limit-fed high [HED; 2.64 Mcal/kg of dry matter (DM), 15.31% crude protein (CP)] or low (LED; 2.42 Mcal/kg of DM, 14.15% CP) energy density diets according to a 4-period, split-plot Latin square design with 28-d periods. Diets were limit-fed to provide isonitrogenous and isoenergetic intake on a rumen empty body weight (BW) basis at a level predicted to support approximately 800 g/d of average daily gain. During the last 7d of each period, rumen contents were subsampled over a 24-h period, rumen contents were completely evacuated, and total collection of feces and urine was made over 4d. Intakes of DM and water were greater for heifers fed LED, although, by design, calculated intake of metabolizable energy did not differ between age groups or diets when expressed relative to rumen empty BW. Rumen pH was lower, ammonia (NH3-N) concentration tended to be higher, and volatile fatty acids (VFA) concentration was not different for HED compared with LED and was unaffected by age group. Rumen content mass was greater for heifers fed LED and for old heifers, so when expressing rumen fermentation responses corrected for this difference in pool size, NH3-N pool size was not different between diets and total moles of VFA in the rumen were greater for heifers fed LED, whereas these pool sizes were greater for old heifers. Total-tract digestibility of potentially digestible neutral detergent fiber (NDF) was greater in heifers fed LED and for young heifers, whereas the fractional rate of ruminal passage and digestion of NDF were both greater in heifers fed LED. Digestibility of N was greater for

  19. Sediment dynamics and the changing nature of the subduction component beneath the Kurile volcanic Arc

    NASA Astrophysics Data System (ADS)

    Dreyer, B.; Morris, J.; Tera, F.; Gill, J.

    2006-12-01

    a flux to the point beneath the volcanic front of ~3.4x10^{24} atoms/km-arc-Myr (corrected for additional decay during subduction). The input values will be refined with data from samples closer to the trench, but assuming magma production rates similar to other NW Pacific island arcs (30-60 km3/km-arc-Myr; Dimalanta et al., Earth Planet. Sci. Lett., 2002), a reasonable estimate for the upper limit for the 10Be recycling efficiency (ratio of 10Be flux in / 10Be flux out) is 12-24%. This range overlaps estimates for other NW Pacific island arcs (Morris et al., Rev. in Mineral. and Geochem., 2002; Morris and Ryan, Treatise on Geochemistry, 2003), with the exception of the adjacent Kamchatkan arc, which has no 10Be enrichment and has been considered an endmember for little or no sediment involvement in arc lavas (Kersting and Arculus, Earth Planet. Sci. Lett., 1995; Turner et al., Contrib. Mineral. Petrol., 1998). Recent work details the involvement of slab components in arc lavas by integrating fluid- and melt-sensitive geochemical tracers to map the transition across the arc, which may place constraints on surface temperatures of this old, cold Pacific slab.

  20. Effects of chemical stress and food limitation on the energy reserves and growth of turbot, Scophthalmus maximus.

    PubMed

    Kerambrun, E; Henry, F; Rabhi, K; Amara, R

    2014-12-01

    The objective of the present study is to examine the growth and energetic performance of juvenile turbot after exposure to contaminated sediment and during the subsequent recovery period with or without food limitation. We designed a two-step experiment by first exposing juvenile turbot to harbour sediment for 26 days and then transferring them to clean sea water with different frequencies of feeding for 35 days. Without food limitation, fish previously exposed to contaminated sediment compensated for weight, length and lipid reserve losses; we did not record any differences in size, Fulton's K condition index and triacylglycerol/sterol (TAG/ST) ratio after the 35-day depuration period compared to the reference fish. This result could be related to the compensatory growth mechanism observed in a wide range of fish species following a period of growth depression. With food limitation during the 35-day depuration period, recovery growth was not sufficient to restore length and weight values similar to the reference fish. Moreover, turbot previously exposed to contaminated sediment and subsequently fed twice or once a week exhibited extremely low TAG/ST ratios, but the reference fish submitted to the same restrictive feeding conditions did not. This study indicates that juvenile fish affected by chemical pollution can improve their biological performance if pollution events are followed by a period of abundant food. However, if pollution events occur during periods of food scarcity, e.g. in winter, storage of energy reserves will be compromised. PMID:25015714