Science.gov

Sample records for arc root motions

  1. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  2. Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Tiwari, N.; Meher, K. C.; Jan, A.; Bhat, A.; Sahasrabudhe, S. N.

    2015-12-01

    The transient dynamics of the anode arc root in a dc non-transferred arc plasma torch is captured through fast photography and directly correlated with the associated voltage instability for the first time. The coexistence of multiple arc roots, the transition to a single arc root, root formation and extinction are investigated for the steady, takeover and re-strike modes of the arc. Contrary to the usual concept, the emerging plasma jet of a dc non-transferred arc plasma torch is found to carry current. An unusually long self-propelled arc plasma jet, a consequence of the phenomenon, is demonstrated.

  3. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  4. Arc distribution and motion during the vacuum arc remelting process as detected with a magnetostatic approach

    NASA Astrophysics Data System (ADS)

    Woodside, Rigel

    Currently, the temporal arc distribution across the ingot during the vacuum arc remelting (VAR) process is not a known or monitored parameter. It is has previously been shown that arcs can spatially constrict during VAR, and this constriction can lead to undesired defects in the material. Additionally, correct accounting for the heat flux, electric current flux, and mass flux into the ingot are critical to achieving realistic solidification models of the VAR process. An arc position measurement system capable of locating slow moving arcs and determining the arc distribution within an industrial VAR furnace was developed. The system is based on non-invasive magnetic field measurements and VAR specific forms of the magnetostatic Biot-Savart Law. Electromagnetic finite element modeling assists the analysis. The measurement system was installed on an industrial VAR furnace at the ATI facility in Albany, OR. Data were taken during the commercial production of titanium alloy. Although more arcs were present than could be resolved with the number of sensors applied, overall arc distribution shifts were detected. Arc distribution and motion during the final production of Ti-6Al-4V were examined. It is shown that several characteristic arc distribution modes can develop. This behavior was not apparent in the existing signals used to control the furnace, indicating the measurement system provides new information. Finally, a solidification model was used to assess the potential impact of the different arc distribution modes. It is shown the magnetohydrodynamic stirring patterns in the molten pool are affected, which results in localized variations in solidification times in particular at the side wall.

  5. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    NASA Astrophysics Data System (ADS)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  6. Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Ding, Juwen; Wu, Yi; Yang, Fei; Dong, Delong; Fan, Xingyu; Rong, Mingzhe

    2016-03-01

    In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three-dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of thermal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the significant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303), National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and the Fundamental Research Funds for the Central Universities, China

  7. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  8. Motion of high-current vacuum arcs on spiral-type contacts

    SciTech Connect

    Dullni, E. )

    1989-12-01

    Motion of vacuum arcs on spiral-type contacts is not only controlled by self-induced magnetic fields, but also by heating phenomena. In this paper, an expression is derived which enables the calculation of the speed of the arc from a computation of the time needed to heat the surface up to boiling temperature. Heat flux density of the constricted arc at the anode is required as input for the calculation. Good coincidence is achieved with experimental data. The speed of the arc varies from 5 to 400 m/s depending upon experimental conditions.

  9. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  10. Simulation of Arc Motion in Air Switching Devices Taking Ferromagnetic Material into Accout

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Tusongjiang, Kari; Chen, Degui; Sun, Haitao; Xie, Ensheng

    2009-04-01

    FLUENT and ANSYS codes are used to solve the magnethydrodynamics (MHD) equations and electromagnetic field equations, respectively. An interface code is developed to implement the bi-direction transfer of calculation data between FLUENT and ANSYS. Then a 2-D MHD arc model is built up with the consideration of the nonlinear ferromagnetic material. The arc shape, gas flow velocity and magnetic field distribution are presented at a current of 200 A. The influence of the number of splitter plates on arc motion is also analyzed.

  11. Dynamic Multileaf Collimator Tracking of Respiratory Target Motion Based on a Single Kilovoltage Imager During Arc Radiotherapy

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2010-06-01

    Purpose: To demonstrate and characterize dynamic multileaf collimator (DMLC) tracking of respiratory moving targets that are spatially localized with a single kV X-ray imager during arc radiotherapy. Methods and Materials: During delivery of an arc field (358 deg. gantry rotation, 72-sec duration, circular field shape), the three-dimensional (3D) position of a fiducial marker in a phantom was estimated in real time from fluoroscopic kV X-ray images acquired orthogonally to the treatment beam axis. A prediction algorithm was applied to account for system latency (570 ms) before the estimated marker position was used for DMLC aperture adaptation. Experiments were performed with 12 patient-measured tumor trajectories that were selected from 160 trajectories (46 patients) and reproduced by a programmable phantom. Offline, the 3D deviation of the estimated phantom position from the actual position was quantified. The two-dimensional (2D) beam-target deviation was quantified as the positional difference between the MLC aperture center and the marker in portal images acquired continuously during experiments. Simulations of imaging and treatment delivery extended the study to all 160 tumor trajectories and to arc treatments of 3-min and 5-min duration. Results: In the experiments, the mean root-mean-square deviation was 1.8 mm for the 3D target position and 1.5 mm for the 2D aperture position. Simulations agreed with this to within 0.1 mm and resulted in mean 2D root-mean-square beam-target deviations of 1.1 mm for all 160 trajectories for all treatment durations. The deviations were mainly caused by system latency (570 ms). Conclusions: Single-imager DMLC tracking of respiratory target motion during arc radiotherapy was implemented, providing less than 2-mm geometric uncertainty for most trajectories.

  12. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  13. Thick, Cold and Dry Roots: the Key to Longevity of Continental Arc Lithosphere?

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Soustelle, V.; Hirth, G.; Saal, A. E.; Kruckenberg, S. C.; Eiler, J. M.

    2015-12-01

    In contrast to the continuity of mid-ocean ridge magmatism, arc volcanism is episodic, characterized by flareups lasting 10 - 50 My which, for reasons that remain unclear, end abruptly in <10 My. Key to understanding the origins of episodic arc behavior lie in constraining the roles of subducting vs. overriding lithosphere. Here, we show that upper mantle xenoliths from the Sierra Nevada arc, CA, USA represent mantle wedge residues that were thickened and rapidly cooled at ~3 GPa and 750 C, presumably at the slab-mantle interface. Pervasive melt infiltration from wedge-derived basalts transformed the depleted residues into refertilized lherzolite. Olivine crystal-preferred orientations (CPO) are weak and show predominantly axial-(010) and one lherzolite with B-type CPO. Measured water contents by SIMS in olivine and pyroxene are low, 5 - 9 ppm and 30 - 500 ppm, respectively. Assuming olivine lost water during eruption, recalculated olivine water in equilibrium with pyroxene does not exceed 35 ppm, resulting in reconstructed bulk rock water content similar to the MORB source. Extrapolation of experimental olivine water solubility to the xenoliths' final PT conditions ranges from 30 to 270 ppm, indicating that the peridotites are water-undersaturated. Such low water contents are not sufficient to produce axial-(010) and B-type CPO. Instead, we propose that the observed CPO was inherited from the prior melt infiltration event, which deformed the peridotites via grain-size sensitive, diffusion creep (e.g., grain boundary sliding). Therefore, water played little role in deformation of arc mantle. Low water contents in thick, cold arc roots result in very high viscosities which preclude significant deformation at final PT. In the Sierran case, rapid cooling also helped to freeze in geochemical and microstructural evidence of earlier melt-assisted deformation, and allowed the preservation of arc mantle lithosphere for ~80 My after it was formed. Only when the Farallon

  14. Implementation of a New Method for Dynamic Multileaf Collimator Tracking of Prostate Motion in Arc Radiotherapy Using a Single KV Imager

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Keall, Paul J.

    2010-03-01

    Purpose: To implement a method for real-time prostate motion estimation with a single kV imager during arc radiotherapy and to integrate it with dynamic multileaf collimator (DMLC) target tracking. Methods and Materials: An arc field with a circular aperture and 358 deg. gantry rotation was delivered to a motion phantom with a fiducial marker under continuous kV X-ray imaging at 5 Hz, perpendicular to the treatment beam. A pretreatment gantry rotation of 120 deg. in 20 sec with continuous imaging preceded the treatment. During treatment, each kV image was first used together with all previous images to estimate the three-dimensional (3D) target probability density function and then used together with this probability density function to estimate the 3D target position. The MLC aperture was then adapted to the estimated 3D target position. Tracking was performed with five patient-measured prostate trajectories that represented characteristic prostate motion patterns. Two data sets were recorded during tracking: (1) the estimated 3D target positions, for off-line comparison with the actual phantom motion; and (2) continuous portal images, for independent off-line calculation of the 2D tracking error as the positional difference between the marker and the MLC aperture center in each portal image. All experiments were also made with 1- Hz kV imaging. Results: The mean 3D root-mean-square error of the trajectory estimation was 0.6 mm. The mean root-mean-square tracking error was 0.7 mm, both parallel and perpendicular to the MLC. The accuracy degraded slightly for 1- Hz imaging. Conclusions: Single-imager DMLC prostate tracking that allows arbitrary beam modulation during arc radiotherapy was implemented. It has submillimeter accuracy for most prostate motion types.

  15. Crustal motion of the Calabrian Arc from the CALARCO GPS deployment

    NASA Astrophysics Data System (ADS)

    D'Agostino, N.; Gervasi, A.; Guerra, I.; Nedimovic, M.; Seeber, L.; Steckler, M. S.

    2009-12-01

    Here we report the first results of the analysis of the time series from the continuous GPS stations deployed in the framework of the joint NSF-UNICAL-INGV supported Calabrian Arc Project (CALARCO) (http://www.calabarco.org) in the Calabrian Arc (Italy). In Calabria, the Ionian lithosphere subducts northwestward beneath the Arc and can be traced by seismicity and tomography down to >500 km beneath the Tyrrhenian Sea. Despite the large historical earthquakes the rate and style of crustal deformation and the state of activity of the subduction interface are still poorly known. The main scientific targets of the project are: (1) the evaluation of the crustal deformation rates and strain accumulation on the active normal faults mapped in the Calabrian Arc; (2) investigation of the subduction activity and seismogenic potential of the subduction interface; (3) definition of the contemporary vertical motion. The GPS network consists of 9 continuous GPS stations installed in 2006 in collaboration with UNAVCO along a NNE-SSW oriented transect perpendicular to the local trend of the Calabrian Arc. The first results of the velocitity field shows highly oblique velocity relative to the trend of the Arc if Nubia is choosen as a reference for the lower (Ionian) incoming plate. We instead suggest that the Ionian Sea is moving indipendently relative to Nubia and a more appropriate reference frame for the lower plate of the subduction zone is defined by stations on the Apulia and Hyblean regions. In this reference frame CALARCO GPS stations on the Ionian coast move southeastward at 3 mm/yr towards the deepest part of the Ionian Sea. The velocity gradient in the emerged part of the Arc shows 2-3 mm/yr of E-W active extension across the Crati Valley and the Sila Plateau, where active normal faults have been previously decsribed.

  16. Obliquely convergent plate motion and its relation with forearc sliver movement, El Salvador volcanic arc

    NASA Astrophysics Data System (ADS)

    Tikoff, B.; DeMets, C.; Garibaldi, N.; Hernandez, W.; Hernandez, D.

    2012-12-01

    The magmatic arc in El Salvador is interpreted to result from the subduction of the Cocos plate underneath the Caribbean plate along the Middle America trench. In addition, El Salvador contains a fore-arc sliver that moves 11 mm/yr westward relative to the back-arc. Well-defined strike-slip faults along the magmatic arc accommodate forearc sliver motion, but are offset at several locations by en echelon pull-apart step-overs with abundant normal faults. All basaltic-andesitic magmatic centers (San Miguel, San Vincente, San Salvador, Santa Ana) are located within these step-overs, while the two major rhyolitic calderas (Ilopango, Coatepeque) occur directly along the strike-slip faults. There are two puzzling aspects about the strike-slip tectonism. First, a silicic, shallow magma body that intrudes the San Miguel fault zone (part of the El Salvador fault system) was emplaced syn-tectonically (sigmoidal field and magnetic foliations, subhorizontally plunging magnetic lineations and dextral shear at the microscale). Within the dextrally sheared portion of the intrusion, an obsidian band with a 40Ar/39Ar age of 7.46 Ma indicates that dextral strike-slip tectonism in the Salvadoran arc has been an ongoing process for ~7.5 Ma. This casts significant doubt on whether Cocos ridge subduction (that started ~1 Ma ago) is the cause of the ongoing forearc movement. The potentially more significant problem is that the fore-arc sliver in El Salvador moves 11 mm/yr westward relative to the back-arc despite a nearly orthogonal angle of convergence (with a convergence rate of ~77 mm/yr) near El Salvador and absence of significant frictional coupling along the subduction interface. Further, GPS indicates that the Nicaraguan and Salvadoran forearcs define a semi-rigid sliver moving at nearly the same trench-parallel rates despite along-trench changes in the subduction angle. Consequently, it is tempting to attribute the movement of both forearc slivers to Cocos ridge subduction

  17. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  18. Assessing the Dosimetric Impact of Real-Time Prostate Motion During Volumetric Modulated Arc Therapy

    SciTech Connect

    Azcona, Juan Diego; Xing, Lei; Chen, Xin; Bush, Karl; Li, Ruijiang

    2014-04-01

    Purpose: To develop a method for dose reconstruction by incorporating the interplay effect between aperture modulation and target motion, and to assess the dosimetric impact of real-time prostate motion during volumetric modulated arc therapy (VMAT). Methods and Materials: Clinical VMAT plans were delivered with the TrueBeam linac for 8 patients with prostate cancer. The real-time target motion during dose delivery was determined based on the 2-dimensional fiducial localization using an onboard electronic portal imaging device. The target shift in each image was correlated with the control point with the same gantry angle in the VMAT plan. An in-house-developed Monte Carlo simulation tool was used to calculate the 3-dimensional dose distribution for each control point individually, taking into account the corresponding real-time target motion (assuming a nondeformable target with no rotation). The delivered target dose was then estimated by accumulating the dose from all control points in the plan. On the basis of this information, dose–volume histograms and 3-dimensional dose distributions were calculated to assess their degradation from the planned dose caused by target motion. Thirty-two prostate motion trajectories were analyzed. Results: The minimum dose to 0.03 cm{sup 3} of the gross tumor volume (D{sub 0.03cc}) was only slightly degraded after taking motion into account, with a minimum value of 94.1% of the planned dose among all patients and fractions. However, the gross tumor volume receiving prescription dose (V{sub 100%}) could be largely affected by motion, dropping below 60% in 1 trajectory. We did not observe a correlation between motion magnitude and dose degradation. Conclusions: Prostate motion degrades the delivered dose to the target in an unpredictable way, although its effect is reduced over multiple fractions, and for most patients the degradation is small. Patients with greater prostate motion or those treated with stereotactic body

  19. Upper plate absolute motion and slab-anchor force control on back-arc deformation

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Lallemand, S.

    2003-04-01

    In order to test how the combined effects of overriding plate motion and trench migration can account for the variability of back-arc tectonic regimes, their "normal to the trench" absolute motion components and the strain regime of all oceanic subduction zones were compiled. Strain regime was estimated following Jarrard (1986), in a semiquantitative way. The upper plate absolute motion (Vup) is calculated in the hotspot HS3-NUVEL1A (Gripp and Gordon, 2002) reference frame and trench migration (Vt) from Vup, corrected from deformation rate of back-arc region, mainly given by GPS data. As slabs tend to sink because of their age-related-mass-excess relative to the surrounding mantle, it is generally assumed that most of the trenches have a spontaneous seaward motion (trench rollback). Ages at trench have thus also been compiled ( from Muller et al, 1997) to test a possible control of trench migration with slab age. Our values underline a high control of strain regime by Vup, but inconsistencies still remain with this single parameter. To account for all the observed deformations, trench migration is needed. There are more or less as much subduction zones with seaward Vt as landward ones, and, for 90% of subduction zones, Vt never reach 50 mm/y in the two directions. The expected relation between trench migration and slab age is far to be verified: landward trench migrations exist in many subduction zones, and, among them, many have old slabs. Several examples indicate that the slab tend to follow the trench migration and, so, to move transversely in the surrounding mantle. As a consequence, Vt is close to the "normal to the trench" slab migration and gives informations about the slab anchor force : slabs are not perfectly anchored but their possible motions appear to be limited. This 50 mm/y limitation of slab migration may provide new constraints on the poorly known slab-anchor force. No evidence of age related trench rollback have beeen found. It does not

  20. Gravity-Induced Amyloplast Motion in Hypocotyl and Root Statocytes of Cress Seedlings

    NASA Astrophysics Data System (ADS)

    Svegzdiene, D.; Rakleviciene, D.; Koryzeiene, D.

    2008-06-01

    Amyloplast motion was studied by the analysis of plastid positioning in hypocotyl endodermal and root columella cells of cress seedlings during a subsequent 6-min period of gravitropic stimulation at 90°. As compared with root statocytes, a more rapid sedimentation of amyloplasts was determined in endodermal cells with simultaneous sliding towards cell centre by comparable rate within the first minute. During the second minute, the plastids remained almost in the same position in hypocotyl statocytes while they shifted slightly downwards continuing intensively to slide along root ones. After the 6 min, their shift in the both directions was more pronounced in roots than in hypocotyls. The data allow that amyloplast motion is affected by the gravity in common with the elastic cytoskeleton forces, which pull actively the plastids along the cells of the both organs. However, a quantitative relation of these forces in hypocotyl and root statocytes differs significantly during the two first minutes of gravitropic stimulation.

  1. Electromagnetic-Guided Dynamic Multileaf Collimator Tracking Enables Motion Management for Intensity-Modulated Arc Therapy

    SciTech Connect

    Keall, Paul J.; Sawant, Amit; Cho, Byungchul; Ruan, Dan; Wu Junqing; Poulsen, Per; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Korreman, Stine

    2011-01-01

    Purpose: Intensity-modulated arc therapy (IMAT) is attractive because of high-dose conformality and efficient delivery. However, managing intrafraction motion is challenging for IMAT. The purpose of this research was to develop and investigate electromagnetically guided dynamic multileaf collimator (DMLC) tracking as an enabling technology to treat moving targets during IMAT. Methods and Materials: A real-time three-dimensional DMLC-based target tracking system was developed and integrated with a linear accelerator. The DMLC tracking software inputs a real-time electromagnetically measured target position and the IMAT plan, and dynamically creates new leaf positions directed at the moving target. Low- and high-modulation IMAT plans were created for lung and prostate cancer cases. The IMAT plans were delivered to a three-axis motion platform programmed with measured patient motion. Dosimetric measurements were acquired by placing an ion chamber array on the moving platform. Measurements were acquired with tracking, without tracking (current clinical practice), and with the phantom in a static position (reference). Analysis of dose distribution differences from the static reference used a {gamma}-test. Results: On average, 1.6% of dose points for the lung plans and 1.2% of points for the prostate plans failed the 3-mm/3% {gamma}-test with tracking; without tracking, 34% and 14% (respectively) of points failed the {gamma}-test. The delivery time was the same with and without tracking. Conclusions: Electromagnetic-guided DMLC target tracking with IMAT has been investigated for the first time. Dose distributions to moving targets with DMLC tracking were significantly superior to those without tracking. There was no loss of treatment efficiency with DMLC tracking.

  2. Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy.

    PubMed

    Wuyts, Nathalie; Bengough, A Glyn; Roberts, Timothy J; Du, Chengjin; Bransby, M Fraser; McKenna, Stephen J; Valentine, Tracy A

    2011-10-01

    Root growth is a highly dynamic process influenced by genetic background and environment. This paper reports the development of R scripts that enable root growth kinematic analysis that complements a new motion analysis tool: PlantVis. Root growth of Arabidopsis thaliana expressing a plasma membrane targeted GFP (C24 and Columbia 35S:LTI6b-EGFP) was imaged using time-lapse confocal laser scanning microscopy. Displacement of individual pixels in the time-lapse sequences was estimated automatically by PlantVis, producing dense motion vector fields. R scripts were developed to extract kinematic growth parameters and report displacement to ± 0.1 pixel. In contrast to other currently available tools, Plantvis-R delivered root velocity profiles without interpolation or averaging across the root surface and also estimated the uncertainty associated with tracking each pixel. The PlantVis-R analysis tool has a range of potential applications in root physiology and gene expression studies, including linking motion to specific cell boundaries and analysis of curvature. The potential for quantifying genotype × environment interactions was examined by applying PlantVis-R in a kinematic analysis of root growth of C24 and Columbia, under contrasting carbon supply. Large genotype-dependent effects of sucrose were recorded. C24 exhibited negligible differences in elongation zone length and elongation rate but doubled the density of lateral roots in the presence of sucrose. Columbia, in contrast, increased its elongation zone length and doubled its elongation rate and the density of lateral roots. PMID:21630041

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery*

    PubMed Central

    Hunt, Margie A.; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-ping; Morf, Daniel; Mageras, Gig S.; Zelefsky, Michael; Zhang, Pengpeng

    2016-01-01

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registration of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm — significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  5. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery.

    PubMed

    Hunt, Margie A; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-Ping; Morf, Daniel; Mageras, Gig S; Zelefsky, Michael; Zhang, Pengpeng

    2016-01-01

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registra-tion of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm - significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  6. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    SciTech Connect

    Mieno, T.; Takeguchi, M.

    2006-05-15

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition.

  7. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  8. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    SciTech Connect

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-07-15

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators.

  9. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.

    PubMed

    Singh, S D; Xu, X Y; Pepper, J R; Izgi, C; Treasure, T; Mohiaddin, R H

    2016-07-01

    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta. PMID:27255604

  10. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    SciTech Connect

    Xu, Z; Wang, I; Yao, R; Podgorsak, M

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  11. Ground motion prediction equations for intermediate-depth earthquakes in the Southern Aegean Subduction Zone : Identification of significant along-arc/back-arc differences and their impact on seismic hazard

    NASA Astrophysics Data System (ADS)

    Skarlatoudis, A. A.; Papazachos, C. B.; Margaris, B. N.; Ventouzi, Ch.; Kalogeras, I.; Vambakaris, D.

    2012-04-01

    Ground-motion equations for earthquakes that occur in subduction zones are an important input for seismic-hazard analyses. Interplate thrust earthquakes as well as large events that occur within the subducting slab along the Hellenic arc can pose significant hazard to the broader South Aegean area. In order to study the impact of significant intermediate-depth earthquakes (M4.5-6.7) in the seismic hazard of the area, a response spectra database is compiled from hundreds of high quality data from both acceleration-sensor and broadband velocity-sensor instruments. The size of this database is much larger than the available one for previous empirical regressions, which enables improved determination of the various parameters of ground motion attenuation. New terms accounting for the highly complex propagation of seismic waves in the Greek subduction zone are introduced based on the hypocentral depth and location of the event, as these factors control the effects of the back-arc low-velocity low-Q mantle wedge on the seismic wave propagation. The derived results show a strong dependence of the recorded ground motions on both hypocentral depth and distance, which leads to the classification of the data set into three depth-hypocentral distance categories. Ground motions from in-slab earthquakes with h>100km, are amplified for along-arc stations, probably due to channeled waves through the high-velocity slab, as well as attenuated in back-arc ones, due to the low-Q mantle wedge, independent of their hypocentral distance. On the other hand for shallower events, 60kmmotion for along-arc and back-arc stations is observed beyond a specific critical hypocentral distance range. Moreover, for longer periods, both along-arc amplification and back-arc attenuation factors strongly diminish, suggesting that the longer wavelengths of seismic waves "ignore" the complex geophysical structure, resulting in similar

  12. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    SciTech Connect

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  13. Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile

    NASA Astrophysics Data System (ADS)

    Reubi, O.; Bourdon, B.; Dungan, M. A.; Koornneef, J. M.; Sellés, D.; Langmuir, C. H.; Aciego, S.

    2011-02-01

    U-series disequilibria provide important constraints on the processes and time scales of melt production, differentiation, and transport in subduction settings. Such constraints, which are essential for understanding the chemical evolution of the continental crust, are conventionally based on the assumption that the U-series disequilibria measured in mafic lavas are produced during mantle metasomatism and melting, and that intracrustal differentiation and assimilation have limited impacts. Here we show that mantle-derived U-series disequilibria in mafic lavas erupted at Volcán Llaima, Chile are significantly diminished by assimilation of plutonic rocks forming Llaima's subvolcanic basement. This contamination process is extremely subtle in terms of "classical" indicators of crustal assimilation like Sr, Nd or Pb isotopes because it is a manifestation of assimilative recycling of the plutonic roots of the arc. This process results in variations in U-series disequilibria and incompatible trace element ratios that are significant compared to regional and global variability in arc magmas. Furthermore, it yields linear correlations between U-series excesses and incompatible trace element ratios that are generally interpreted as slab-fluid indicators and chronometers, or tracers of sediment recycling in subduction zone. Cannibalization of ancestral magmas by ascending melts warrants careful evaluation when considering the components and chemical fluxes in subduction zones. Linear arrays defined by activity ratios of U-series nuclides with different half-lives may be the most reliable indicators of assimilative recycling of ancestral intrusive magmas.

  14. Qingyuan high-grade granite-greenstone terrain in the Eastern North China Craton: Root of a Neoarchaean arc

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Wang, Chong; Wang, Xinping; Yang, Shuyan

    2015-11-01

    . The Qingyuan terrain represents remnants of the root of a Neoarchaean arc: its anticlockwise P-T-path recorded the initiation of the arc to its cession and exhumation/cratonization at ~ 2480 Ma.

  15. Vacuum-arc plasma-beam motion in curved magnetic fields

    NASA Astrophysics Data System (ADS)

    Gidalevich, Evgeny; Goldsmith, Samuel; Boxman, Raymond

    1994-05-01

    A theoretical model is presented for transport of vacuum arc generated metal vapor plasma through a magnetized quarter-tours duct used for filtering out macroparticles in order to deposit high quality thin films. The model utilizes a two fluid approximation which takes into account collisions among the plasma particles. It is found that centrifugal forces must lead to a charge separation generated field, that determines plasma drift in the centrifugal force direction to the duct wall and give rise to ion loss. Another cause for plasma is the plasma pressure gradient. The plasma output flux is an increasing function of the magnetic field strength. The plasma flux in the output plane is asymmetrically skewed to favor the outside half. A further asymmetry in the flux distribution in the direction of the torroidal axis of symmetry is introduced if ions of different charge states are present in the plasma.

  16. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volumetric-modulated arc therapy (VMAT).

    PubMed

    Casey, Kevin E; Wong, Pei-Fong; Tung, Samuel S

    2015-01-01

    VMAT is an important tool in the treatment of head and neck cancers, many of which also require treatment to the supraclavicular lymph nodes. However, full VMAT arcs treating this nodal region necessarily cause entrance beam to pass through patients' shoulders. Thus, interfractional variations in shoulder position may cause unwanted dose perturbations. To assess this possibility, six patients undergoing treatment at our institution for head and neck cancers with associated supraclavicular lymph node treatment were imaged with in-room CT-on-rails during the course of their treatments. This allowed for the establishment of a true record of the actual shoulder position during selected treatment fractions. Then, a full VMAT plan and a plan with VMAT arcs superior to the shoulder and a static anteroposterior field inferiorly were copied onto the patients' weekly image sets. The average one-dimensional shoulder motion was generally within 10 mm of the simulated position, with some notable exceptions. The standard deviation in week-to-week shoulder position relative to simulation was 4.3 mm and 4.2 mm in the SI and AP dimensions, respectively. The average nodal target mean dose across all fractions sampled was within 5% of planned for all patients and both plans. Similarly, the average D95 for the nodal target was within 5% of planned across all fractions sampled, with the single exception of the full VMAT plan for one patient. In most cases, the standard deviation in both target mean dose and D95 was smaller with the VMAT+static AP field plan than it was with the full VMAT plan. PMID:26218996

  17. Range Front Faulting and Ancestral Cascades Arc Magmatism in the Central Sierra Nevada at 10 Ma: Onset of Basin and Range Extension or Sierran Root Delamination?

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Busby, C. J.; Putirka, K.; Gans, P.

    2004-12-01

    Miocene Stanislaus Fm (Busby et al., 2003; Rood et al., 2004). At Sonora Peak, an angular unconformity exists between the Mehrten Fm and the overlying Table Mountain Latite flows of the Stanislaus Fm. Exposures of subvertical fault planes restricted to the Mehrten Fm show shallowly-plunging lineations and Riedel shears that suggest dextral deformation. Such dextral strike-slip motion on faults as old as 10 Ma may record the birth of the Walker Lane fault zone in the region. Our new field, 40Ar/39Ar, and geochemical data indicate a rapid change in the structural and geochemical setting of the Sonora Pass area at 10.25+/-0.06 Ma coeval with eruption of the Table Mountain Latite flows. This was followed by large-volume eruptions of high-K quartz latite (Eureka Valley Tuff) between 9.30+/-0.03 Ma and 9.16+/-0.03 Ma. Latitic volcanism was both preceded by andesitic arc volcanism, as young as 10.10+/-0.06 Ma, and followed by andesitic arc volcanism at 7.12+/-0.06 Ma. Latitic volcanism at 10.25 Ma cannot be attributed to a slab window because the triple junction was located well to the south of Sonora Pass at that time. We speculate that the latites erupted during a phase of rapid extension in an arc otherwise dominated by andesitic volcanism, perhaps indicating the initiation of Basin and Range faulting or the delamination of the Sierra Nevada batholithic root.

  18. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  19. Poster — Thur Eve — 31: Dosimetric Effect of Respiratory Motion on RapidArc Lung SBRT Treatment Delivered by TrueBeam Linear Accelerator

    SciTech Connect

    Jiang, Runqing; Zhan, Lixin; Osei, Ernest

    2014-08-15

    Volumetric modulated arc therapy (VMAT) allows fast delivery of stereotactic radiotherapy. However, the discrepancies between the calculated and delivered dose distributions due to respiratory motion and dynamic multileaf collimators (MLCs) interplay are not avoidable. The purpose of this study is to investigate RapidArc lung SBRT treatment delivered by the flattening filter-free (FFF) beam and flattened beam with Varian TrueBeam machine. CIRS Dynamic Thorax Phantom with in-house made lung tumor insertion was CT scanned both in free breathing and 4DCT. 4DCT was used to determine the internal target volume. The free breathing CT scan was used for treatment planning. A 5 mm margin was given to ITV to generate a planning target volume. Varian Eclipse treatment planning was used to generate RapidArc plans based on the 6 MV flattened beam and 6MV FFF beam. The prescription dose was 48 Gy in 4 fractions. At least 95% of PTV was covered by the prescribed dose. The RapidArc plans with 6 MV flattened beam and 6MV FFF beam were delivered with Varian TrueBeam machine. The dosimetric measurements were performed with Gafchromic XR-RV3 film, which was placed in the lung tumor insertion. The interplay between the dynamic MLC-based delivery of VMAT and the respiratory motion of the tumor degraded target coverage and created undesired hot or cold dose spots inside the lung tumor. Lung SBRT RapidArc treatments delivered by the FFF beam of TrueBeam linear accelerator is superior to the flattened beam. Further investigation will be performed by Monte Carlo simulation.

  20. Response of long, flexible cantilever beams applied root motions. [spacecraft structures

    NASA Technical Reports Server (NTRS)

    Fralich, R. W.

    1976-01-01

    Results are presented for an analysis of the response of long, flexible cantilever beams to applied root rotational accelerations. Maximum values of deformation, slope, bending moment, and shear are found as a function of magnitude and duration of acceleration input. Effects of tip mass and its eccentricity and rotatory inertia on the response are also investigated. It is shown that flexible beams can withstand large root accelerations provided the period of applied acceleration can be kept small relative to the beam fundamental period.

  1. [Endodontics in motion: new concepts, materials and techniques 4. Root canal disinfection in 2015].

    PubMed

    van der Waal, S V; de Soet, J J

    2015-12-01

    Apical periodontitis is an inflammatory response around the root tip of a tooth to microbial infection of the root canal system. Therefore, disinfection of the root canal system is the most important aim of root canal treatment. There are various mechanical and chemical ways to clean and disinfect. Most methods, however, cannot be relied upon to fully decontaminate in all cases. There are problems, for example, with the proper concentrations of disinfectant agents, like sodium hypochlorite. But the more recent agents, like ethylenediaminetetraacetic acid, calcium hydroxide or antibiotic pastes also have disadvantages, which are mostly a result of poor access of the irrigant to the biofilm bacteria in the affected root canals. Currently, a new strategy with a modified salt solution is under investigation that offers the prospect of being used as a root canal irrigant. At this moment the preferred treatment still seems to be to remove infected tissue as much as possible and to create access for irrigation procedures. The best results are achieved with 1-2% sodium hypochlorite as a disinfectant, possibly alternating with ethylenediaminetetraacetic acid as a cleansing agent. There is no scientific evidence for the successful use of calcium hydroxide. PMID:26665204

  2. Rigid motions: Action-angles, relative cohomology and polynomials with roots on the unit circle

    NASA Astrophysics Data System (ADS)

    Françoise, J.-P.; Garrido, P. L.; Gallavotti, G.

    2013-03-01

    Revisiting canonical integration of the classical solid near a hyperbolic or elliptic uniform rotation, normal canonical coordinates p, q are constructed so that the Hamiltonian becomes a function ("normal form") of x+ = pq or of x- = p2 + q2: the two cases are treated simultaneously distinguishing them, respectively, by a label a = ±, in terms of various power series with coefficients which are shown to be polynomials in a variable r^2_a depending on the inertia moments. The normal forms are derived via the analysis of a relative cohomology problem and shown to be obtainable without reference to the construction of the normal coordinates via elliptic integrals (unlike the derivation of the normal coordinates p, q). Results and conjectures also emerge about the properties of the above polynomials and the location of their roots. In particular a class of polynomials with all roots on the unit circle arises.

  3. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Rao Min; Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  4. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10‑3 s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  5. SU-E-T-389: Effect of Interfractional Shoulder Motion On Low Neck Nodal Targets for Patients Treated Using Volume Modulated Arc Therapy (VMAT)

    SciTech Connect

    Casey, K; Wong, P; Tung, S

    2014-06-01

    Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.

  6. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  7. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  8. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries

    NASA Astrophysics Data System (ADS)

    Oliver, Mike; Gladwish, Adam; Staruch, Robert; Craig, Jeff; Gaede, Stewart; Chen, Jeff; Wong, Eugene

    2008-11-01

    Respiratory gated radiation therapy allows for a smaller margin expansion for the planning target volume (PTV) to account for respiratory induced motion and is emerging as a common method to treat lung and liver tumors. We investigated the dosimetric effect of free motion and gated delivery for intensity modulated arc therapy (IMAT) with experimental measurements and Monte Carlo simulations. The impact of PTV margin and duty cycle for gated delivery is studied with Monte Carlo simulations. A motion phantom is used for this study. Two sets of contours were drawn on the mid-inspiration CT scan of this motion phantom. For each set of contours, an IMAT plan to be delivered with constant dose rate was created. The plans were generated on a CT scan of the phantom in the static condition with 3 mm PTV margin and applied to the motion phantom under four conditions: static, full superior-inferior (SI) motion (A = 1 cm, T = 4 s) and gating conditions (25% and 50% duty cycles) with full SI motion. A 6 by 15 cm piece of radiographic film was placed in the sagittal plane of the phantom and then irradiated under all measurement conditions. Film calibration was performed with a step-wedge method to convert optical density to dose. Gated IMAT delivery was first validated in 2D by comparing static film with that from gating and full motion. A previously verified simulation tool for IMRT that takes the log files from the multileaf collimator (MLC) controller and the gating system were adapted to simulate the delivered IMAT treatment for full 3D dosimetric analysis. The IMAT simulations were validated against the 2D film measurements. The resultant IMAT simulations were evaluated with dose criteria, dose-volume histograms and 3D gamma analysis. We validated gated IMAT deliveries when we compared the static film with the one from gating using 25% duty cycle using 2D gamma analysis. Within experimental and setup uncertainties, film measurements agreed with their corresponding simulated

  9. Influence of Copper Vapor on Low-Voltage Circuit Breaker Arcs During Stationary and Moving States

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Rong, Mingzhe; Wu, Yi; Xu, Tiejun; Sun, Zhiqiang

    2008-06-01

    The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a “double vortex" near the electrodes.

  10. Polar motion

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.

    1973-01-01

    Tracking of the Beacon Explorer-C satellite by a precision laser system was used to measure the polar motion and solid earth tide. The tidal perturbation of satellite latitude is plotted as variation in maximum latitude in seconds of arc on earth's surface as a function of the date, and polar motion is shown by plotting the variation in latitude of the laser in seconds of arc along the earth's surface as a function of date

  11. The nature of fluctuations in a double arc argon-nitrogen plasma jet

    SciTech Connect

    Tu Xin; Yan Jianhua; Yu Liang; Cen, Kefa; Cheron, Bruno

    2007-09-24

    The dynamic behavior of the double arc argon-nitrogen plasma jet is investigated by combined means of the fast Fourier transform, correlation function, and Wigner distribution. The restrike mode is identified as the fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which indicates that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the power supply undulation and both arc roots motion on the anode channels. It is further found that the double anode torch could inhibit and reduce the restrike phenomenon.

  12. The tectonics of Cyprus Arc: a model of complex continental collision

    NASA Astrophysics Data System (ADS)

    Mart, Y.; Ryan, W.

    2003-04-01

    Cyprus Arc is an arcuate depression that wraps the southern reaches of Cyprus in the easternmost Mediterranean Sea. The tectonic regime that constrains Cyprus Arc is generally considered to be that of collision between northward moving Africa and southward moving Eurasia, and the Arc is the site where a Tethyan lithospheric toe off NE Africa is being subducted northward under the Anatolian sub-plate. Evidence to this process is the subduction of Eratosthenes Seamount, located 100 km south of Cyprus, the northern section of which is down-faulted as it subsides toward the Arc. Since Eratosthenes Seamount is rooted in continental lithosphere, and the Troodos ophiolite in southern Cyprus is an oceanic crust, the convergence of Africa and Anatolia along Cyprus Arc was considered a prime example of ongoing obduction. However, abundant GPS evidence shows that Anatolia is moving not southwards but westwards, and the rate of displacement exceeds 20 mm/yr, which is approximately 20 times faster than the rate of the northwards motion of Africa. Earthquakes reflect that composite dynamic model along Cyprus Arc, and compressional, extensional and strike-slip crustal motion co-occur along Cyprus Arc. Seismic reflection profiles show that the structural layout of the eastern segment of Cyprus Arc, from Hecataeus Plateau to Hatay region, is transtensional, emphasizing the prominence of the westwards motion of Anatolia. This composite pattern of the motion of the tectonic plates in the easternmost Mediterranean suggests that the slow northward motion of Africa leads indeed to subduction along Cyprus Arc, but this subduction is not counteracted, because Anatolia is moving much faster westwards. This dynamic setup of plate motion accounts for the composite pattern of earthquake distribution, and is compatible with large lateral displacements along strike of subduction zones and collisional fronts.

  13. Westward extension of the Levantine Basin to the Eratosthenes Seamount and the Cyprus Arc - no evidence for strike-slip motion

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2013-04-01

    The Eastern Mediterranean represents a complex pattern of micro plates. A side by side distribution of diverse tectonic situations like collision, subduction, obduction and shear makes this area a very interesting spot on earth. Whereas subduction of Neo-Tethys oceanic crust is still ongoing at the Hellenic Arc, a collision occurred eastward when the Eratosthenes Seamount (ESM) entered the Cyprus Arc. If subduction is still active further east towards the Syrian coast remains unclear. The collision related deformation of the ESM and the adjacent Levantine Basin will be discussed in this paper. We present a new set of 2D multichannel seismic data, acquired in 2010 with the RV Maria S Merian, which is a dense line grid with NW-SE and NE-SW trending profiles crossing the ESM and the western part of the Levantine Basin south of Cyprus. We show first results of the profiles that were processed up to Pre-Stack Depth Migration. Based on the dense line grid with distances of not more than 5 nautical miles, we picked the key horizons in the Levantine Basin and generated reliable 3D-grids of the horizons. With this dense line grid, it was possible to trace the western extension of the Levantine Basin sometimes also referred to as Baltim Hecataeus Line (BHL), which is a fault lineament of Mesozoic age separating the Levantine Basin from the ESM. This extension is observed on every NW-SE and NE-SW trending profile and we were able to trace it even further north and south of the ESM. The BHL is believed to be reactivated as a linear sinistral transform fault that compensates the northward motion of the African-Arabian plate with respect to the blocked ESM. With our data we can show that the western extension of the Levantine Basin does not coincide with a sinistral transform fault and that it is rather a normal fault with a meandering NNE-SSW trending strike.

  14. Protolith age and deformation history of high grade metamorphic rocks from the roots of a continental magmatic arc: the Central Gneiss Complex, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    MacLeod, D.; Pearson, D. M.

    2014-12-01

    The Central Gneiss Complex, located in western British Columbia, preserves mid and lower crustal igneous and metasedimentary rocks that yield insight into deformational and thermal processes at the roots of a continental magmatic arc. The complex primarily consists of gneiss interpreted as a volcanic sequence with calcareous interlayers and lesser clastic metasedimentary rocks. Cretaceous U-Pb zircon ages from granulite-facies equivalent rocks in the core of the complex hint at rapid burial following deposition. However, a Permian or older crinoid fossil found in one locality (Hill, 1985) requires the presence of some late Paleozoic or early Mesozoic material. A new U-Pb zircon age (313±5 Ma; LA-ICPMS) from ~10 km west of this fossil locality is interpreted to record volcanism. We also conducted focused structural and geochronological analysis at higher structural levels in the northeastern Central Gneiss Complex to positively identify sedimentary lithologies with which to document the early structural history of the complex prior to early Cenozoic rapid exhumation. In this area, a subhorizontal shear zone forms the boundary between mainly clastic metasedimentary rocks and the widespread metavolcanic and carbonate rocks where an important stretched pebble conglomerate has been previously documented. In the footwall of the shear zone, flattening fabrics transition structurally upward into E-W trending stretching lineations, lineation-parallel isoclinal fold axes, and boudinage that record E-W stretching and major shear strain near the contact. S-C fabrics and shear bands yield a top to the east sense of shear. Where observed, a shallowly dipping, ~15 m thick zone of cataclasite forms the lithologic contact and overprints the shear zone. Sills and dikes record ongoing but localized magmatism throughout deformation and steep NE striking brittle normal faults crosscut all features. Ongoing work will further constrain the protolith age of these rocks, the timing of

  15. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  16. [Endodontics in motion: new concepts, materials and techniques 3. The role of irrigants during root canal treatment].

    PubMed

    van der Sluis, L W M

    2015-10-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems. PMID:26465016

  17. Petrology and tectonic significance of gabbros, tonalites, shoshonites, and anorthosites in a late Paleozoic arc-root complex in the Wrangellia Terrane, southern Alaska

    SciTech Connect

    Beard, J.S. ); Barker, F. )

    1989-11-01

    Plutonic rocks intrusive into the late Paleozoic Tetelna Formation of southern Alaska are the underpinnings of the late Paleozoic Skolai arc of the Wrangellia Terrane. There are four groups of intrusive rocks within the Skolai arc: (1) Gabbro-diorite plutons that contain gabbroic to anorthositic cumulates along with a differentiated series of gabbros and diorites of basaltic to andesitic composition; (2) Silicic intrusions including tonalite, granodiorite, and granite; (3) Monzonitic to syenitic plutonic rocks of the Ahtell complex and related dikes and sills; (4) Fault-bounded bytownite anorthosite of uncertain age and association. These anorthosites may be related to post-Skolai, Nikolai Greenstone magmatism. The silicic rocks yield discordant U-Pb zircon ages of 290-320 Ma (early to late Pennsylvanian). The monzonitic rocks of the Ahtell complex have shoshonitic chemistry. Similar shoshonitic rocks are widespread in both the Wrangellia terrane and the neighboring Alexander terrane and intrude the contact between the two. In modern oceanic arcs, shoshonitic rocks are typically associated with tectonic instability occurring during the initial stages of subduction or just prior to or during termination or flip of an established subduction zone. The nature of any tectonic instability which may have led to the cessation of subduction in the Skolai arc is unclear. Possibilities include collision of the arc with a ridge, an oceanic plateau, another arc, or a continental fragment. One possibility is that the shoshonitic magmatism marks the late Paleozoic amalgamation of Wrangellia and the Alexander terrane. The scarcity of arc rocks predating the shoshonites in the Alexander terrane supports this possibility, but structural corroboration is lacking.

  18. An In Vitro Comparative Study of Intracanal Fluid Motion and Wall Shear Stress Induced by Ultrasonic and Polymer Rotary Finishing Files in a Simulated Root Canal Model

    PubMed Central

    Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James

    2012-01-01

    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software. PMID:22461994

  19. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Ma, Ruiguang; Wu, Yi; Sun, Hao; Niu, Chunping; Rong, Mingzhe

    2012-02-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  20. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Cuijpers, Johan P.; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-01

    Purpose: To study the dosimetric impact of relatively short-duration intrafraction shifts during a single fraction of RapidArc delivery for vertebral stereotactic body radiation therapy (SBRT) using flattened (FF) and flattening filter-free (FFF) beams. Methods and Materials: The RapidArc plans, each with 2 to 3 arcs, were generated for 9 patients using 6-MV FF and 10-MV FFF beams with maximum dose rates of 1000 and 2400 MU/min, respectively. A total of 1272 plans were created to estimate the dosimetric consequences in target and spinal cord volumes caused by intrafraction shifts during one of the arcs. Shifts of 1, 2, and 3 mm for periods of 5, 10, and 30 seconds, and 5 mm for 5 and 10 seconds, were modelled during a part of the arc associated with high doses and steep dose gradients. Results: For FFF plans, shifts of 2 mm over 10 seconds and 30 seconds could increase spinal cord D{sub max} by up to 6.5% and 13%, respectively. Dosimetric deviations in FFF plans were approximately 2-fold greater than in FF plans. Reduction in target coverage was <1% for 83% and 96% of the FFF and FF plans, respectively. Conclusion: Even short-duration intrafraction shifts can cause significant dosimetric deviations during vertebral SBRT delivery, especially when using very high dose rate FFF beams and when the shift occurs in that part of the arc delivering high doses and steep gradients. The impact is greatest on the spinal cord and its planning-at-risk volume. Accurate and stable patient positioning is therefore required for vertebral SBRT.

  1. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  2. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  3. Influence of motion pattern on apical transportation and centering ability of WaveOne single-file technique in curved root canals

    PubMed Central

    Naseri, Mandana; Paymanpour, Payam; Kangarloo, Ali; Haddadpur, Sahar; Dianat, Omid; Ketabi, Mohammad Ali

    2016-01-01

    Background: The aim of this study was to evaluate apical transportation and centering ability of single-file instruments, WaveOne primary, with full rotation versus reciprocation movement using cone-beam computed tomography (CBCT) analysis in curved mesiobuccal (MB) root canal of human mandibular molars. Materials and Methods: Thirty MB canals of mandibular molars were randomly divided into two groups according to the instrument motion (n = 15): Group 1, reciprocation/WaveOne primary; Group 2, continuous rotation/WaveOne primary. After preparation, the amount of apical transportation and centering ability were assessed by evaluating pre- and post-instrumentation CBCT scans in three section (1, 3, and 5 mm from apical foramen). Statistical analysis of the data was performed using Mann-Whitney U-test and Friedman test (α = 0.05). Results: There was no statistically significant difference between two experimental groups in terms of apical transportation and centering ratio at 1, 3, and 5 mm from apical foramen (P > 0.05). Conclusion: Apical transportation and centering ability of WaveOne primary reciprocating instrument did not significantly differ between two motion patterns. PMID:26962310

  4. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  5. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer. PMID:22843367

  6. Record Of Both Tectonic Related Vertical Motions and Global Sea Level Rise by Marine Terraces along an Active Arc Volcano. Example of Basse-Terre, Lesser Antilles (French West-Indies).

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Moysan, M.; Graindorge, D.; Jean-Frederic, L.; Philippon, M. M.; Marcaillou, B.; Léticée, J. L.

    2015-12-01

    Volcano-tectonic history of the Caribbean plate provides direct insight onto the dynamic of the North American Plate westward subduction. Basse-Terre Island is a volcanic chain that belongs to the Lesser Antilles active volcanic arc with a southward decreasing age of volcanism from 3 Ma to present day.We investigate records of vertical motion along Basse-Terre through a morphostructural analysis of the Pleistocene-Holocene shallow-water carbonate platforms and associated terraces that surround Basse-Terre Island. This study is based on new high-resolution bathymetric and dense seismic data acquired during the GEOTREF oceanographic survey (2015, February). Our bathymetric and topographic Digital Terrain Model together with the "Litto3D" Lidar data (IGN/SHOM) images the island topography and the platform bathymetry to a depth of 200m with horizontal and vertical resolutions of 5m and ~cm respectively. This detailed study highlights the morphostructure of terraces built during the last transgression in order to identify and quantify their vertical motions. We analyze inherited morphology and structures of the forearc that affect the platform to discuss effects of the regional tectonics context. A particular emphasis is put on the influence of the NW-SE arc parallel transtensive Montserrat-Bouillante fault system onto the platform geometry. At last, the distribution of Basse-Terre terraces is compared with terraces distribution around other Lesser Antilles island and the Bahamas stable margin platform. We aim at discriminating the influence of the Pleistocene global sea-level rise from the one of tectonic vertical deformations.

  7. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  8. Preliminary results, Central Gneiss Complex of the Coast Range batholith, southeastern Alaska: the roots of a high-K, calc-alkaline arc?

    USGS Publications Warehouse

    Barker, F.; Arth, Joseph G.

    1984-01-01

    The Central Gneiss Complex (CGC) of the Coast Range batholith is the oldest unit of the batholith east of Ketchikan, Alaska, being dated by the zircon UPb method (by T.W. Stern) at 128-140 Ma. Heterogeneous, layered, commonly migmatitic, orthogneiss of hornblende-biotite quartz diorite, tonalite, quartz monzodiorite and granodiorite compositions (IUGS terminology) form the major part of the CGC. These gneisses show a range of 50-65% SiO2 and are high in Al2O3 (c. 15-19%), K2O (1.5-4%) and Sr (800-900 ppm). Most major elements show coherent, typically magmatic trends with SiO2. La and Rb show maxima at ??? 58% SiO2. Initial 87Sr/86Sr ratios are relatively high and range from 0.7052 to 0.7066. Wallrocks of the CGC are mostly metagraywacke, pelite and metavolcanic rocks at amphibolite facies; they are geochemically dissimilar to the CGC. Major and minor elements of the CGC are very similar to those of high-K orogenic, calc-alkaline andesitic suites. The CGC may have formed largely by fractionation of mantle-derived, high AlKSr basaltic liquid in an ascending diapir, having hornblende, plagioclase, and biotite as major precipitating phases. The CGC probably represents the plutonic equivalent of a continental-margin or Andean arc that formed when the Taku terrane of the Insular belt on the west collided with the previously emplaced (but also allochthonous) Stikine terrane on the east in Late Jurassic or Early Cretaceous time. ?? 1984.

  9. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  10. Improving the Mach number capabilities of arc driven shock tubes

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Santiago, J.; I, L.

    1980-01-01

    New systematic trends in one of the performance parameters of pressure loaded arc driven shock tubes have been determined. For a given configuration, the Mach number increases with the cube root of capacitor energy; however, the initial driver gas pressure is relatively unimportant. A qualitative model based on the assumption of Joule-preheating by the arc discharge is discussed.

  11. The dependence of transpolar arc location on IMF By: a comparison of two large transpolar arc datasets

    NASA Astrophysics Data System (ADS)

    Kullen, Anita; Fear, Rob; Milan, Steve

    2014-05-01

    It is well-known that transpolar arc occurrence and motion depends strongly on the interplanetary magnetic field (IMF). The dawn-duskward motion of these arcs is strongly controlled by the IMF By component. Fear and Milan (2012) showed that not only the transpolar arc motion but also the dawn-duskward displacement of the original nightside connection point depends on the direction of IMF By. The best correlations between IMF By and location of transpolar arc nighside connection point was found for a 3-4 hour time delay between these. The results of their study are here reinvestigated using a similar dataset by Kullen et al. (2002) covering another time period. The analysis of the results shows several interesting features. It confirms many of the statistical results in the Fear and Milan (2012) study. However, the best correlation between IMF By and transpolar arc location is found to be with IMF conditions 1-2 hours before the arc occurs. Furthermore, one class of transpolar arcs (bending arcs, splitting from dawn- or dusk oval side around 21 and 3 UT) shows no correlation with IMF By at all. This indicates, bending arcs may form in a different way. A possible connection between bending transpolar arcs and dayside flux transfer events is investigated with help of ionospheric plasma flow patterns using SuperDARN data.

  12. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  13. Process characteristics of fibre-laser-assisted plasma arc welding

    NASA Astrophysics Data System (ADS)

    Mahrle, A.; Schnick, M.; Rose, S.; Demuth, C.; Beyer, E.; Füssel, U.

    2011-08-01

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  14. Analysis of optical perturbations of the SLC arcs

    SciTech Connect

    Weng, W.T.; Sands, M.

    1987-01-01

    This paper establishes the analytical framework in solving optical pertubations in a transport line in general and the SLC Arc specifically. The Formulation presented here is applicable to any transport system in a straightforward way. The equations of motion of a perturbed betatron function and dispersion function are presented. Sources of field errors for the SLC Arc system are discussed. Magnitudes of pertubations to the optical functions for the SLC Arc are estimated. (JDH)

  15. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  16. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  17. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10–20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  18. Motion artifact on computed tomography scan suggesting an unstable 3-column spine injury: case report of a "near miss" root cause of unneeded surgery

    PubMed Central

    2013-01-01

    Background Polytrauma patients often present with altered mental status, thus making clinical examination challenging. Due to its reliability for detecting traumatic injuries to the spine, computed tomography (CT) is generally the imaging study of choice when the mechanism of injury and/or preliminary exam suggests spinal injury. However, motion artifact may lead to false diagnoses. Case report A 19-year-old intoxicated female involved in a high-speed motor vehicle crash suffered multiple spine, head, chest, and abdominal injuries. CT scan also suggested an unstable three column ligamentous injury at L2-3. Preparations were made for surgery the following morning, by which time her mental status had improved. She was re-examined in the operating room prior to induction by anesthesia and no focal lumbar pain or tenderness was detected. Imaging was further reviewed and motion artifact at the L2-3 level was noted. The surgery was cancelled. Conclusion Motion artifact mimicked an unstable three column ligamentous injury at the L2-3 level. Findings on CT scan should always be correlated to physical exam in order to avoid wrongful surgical intervention. PMID:24274703

  19. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  20. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  1. Roots Revisited.

    ERIC Educational Resources Information Center

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  2. Dynamic electron arc radiotherapy (DEAR): a feasibility study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-01

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm2 and 3×10 cm2 for a 15×15 cm2 applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min-1). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  3. Philippine Sea Slab and South-Ryukyu Arc Sliver Accommodation of Arc-Continent Collision East of Taiwan

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Theunissen, T.; Font, Y.; Schnurle, P.; Lee, C.; Liu, C.

    2011-12-01

    The southern termination of the Ryukyu arc-trench system underwent a complex polyphased and extremely rapid tectonic evolution during the last 5 to 8 My. At first, the relative motion of the Philippine Sea plate (PSP) has changed about 5 My ago from a northward to a northwestward motion relative to Eurasia. Secondly, the Ryukyu trench has propagated from east to west during the same time period resulting in a tectonic inversion along the former passive margin of the South China Sea into the active margin of the S-Ryukyu trench. Thirdly, the convergence rate along the neo-formed S-Ryukyu trench dramatically increased from 8 to 13 cm/yr since at least 2 My when the Southern Okinawa Trough (SOT) started to rift. At the same time, the oceanic subduction of the South China Sea beneath the northern Manila arc progressively evolved into a continental subduction of the Chinese platform at the origin of the Taiwan orogen. The timing of these various kinematic and tectonic events should have been recorded in the deformed sedimentary basins and fold-and-thrust belts in the region. Unfortunately, a large part is now below the sea-level and no or a few age constraints are available. The recent joint project between Taiwan-USA & France (TAIGER & ACTS) gave us the opportunity to considerably increase the resolution of the seismic imagery around the island and especially in the most highly deformed area east of Taiwan along the S-Ryukyu forearc. We already knew that the seismic activity focussed in this region but we ignored how the converging plates deformed. We can now argue that the PSP strongly deforms in the vicinity of its deep interaction with the root of the Taiwan orogen. The north-dipping PSP slab buckles and tears along two diverging directions with a down-faulted part subducting beneath the SOT.

  4. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  5. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  6. [Arc welder's lung].

    PubMed

    Molinari, Luciana; Alvarez, Clarisa; Semeniuk, Guillermo B

    2010-01-01

    Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ. PMID:21163741

  7. On the causes of back-arc spreading

    NASA Astrophysics Data System (ADS)

    Hynes, A.; Mott, J.

    1985-06-01

    Addition of the spreading rates in the back-arc basins of the Lau Basin Havre Trough and the Mariana Trough to the absolute motions of the Indian and Philippine plates, respectively, provides an estimate of the absolute motion of the Tonga-Kermadec and Mariana trenches. The trenches are moving toward the Pacific Basin for all absolute-motion models. Back-arc spreading is considered an unlikely cause for the trench motion, given the seismic evidence for poor coupling at the trenches. Thus, the cause of spreading at these arcs must rest at least partly with motion of the lower plate. Rollback due to negative buoyancy is rejected as a cause for this motion because it fails to explain the recent onset of the spreading. No-net-torque reference frames for 5 and 10 Ma indicate that the rate of subduction of the Pacific plate at each of these arcs may have increased by 2 3 cm/yr between 5 and 10 Ma, providing support for the model of Furlong et al., in which back-arc spreading is initiated by adjustment of the slab profile to a change in subduction rate.

  8. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  9. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  10. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  11. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  12. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  13. Trajectory Modulated Arc Therapy: A Fully Dynamic Delivery With Synchronized Couch and Gantry Motion Significantly Improves Dosimetric Indices Correlated With Poor Cosmesis in Accelerated Partial Breast Irradiation

    SciTech Connect

    Liang, Jieming; Atwood, Todd; Eyben, Rie von; Fahimian, Benjamin; Chin, Erika; Horst, Kathleen; Otto, Karl; Hristov, Dimitre

    2015-08-01

    Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives and constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.

  14. Square Root +

    ERIC Educational Resources Information Center

    Frederiksen, John G.

    1969-01-01

    A rational presentation of the so-called long division method for extracting the square root of a number. Diagrams are used to show relationship of this technique to the binomial theorem. Presentation exposes student to many facets of mathematics in addition to the mechanics of funding square root and cube root. Geometry, algebraic statements,…

  15. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  16. Investigations on the radially free full circle arc

    NASA Astrophysics Data System (ADS)

    Tiller, W.

    1981-07-01

    The hypothesis that the steady state of a magnetically deflected arc is determined by the equilibrium of the thermodynamic and the magnetohydrodynamic forces is experimentally investigated. An argon arc, burning between two horizontal plane-parallel, insulating plates, bent circularly by its own and an external magnetic field, provided the well-defined conditions by giving a stationary, radially free, full circle arc for the experimental investigation. The local temperature distributions in the arc cross-section were detected spectroscopically as functions of the arc current and the arc radius or curvature. The mass flow field in the arc was determined using basic equations of conservation of energy, mass, and charge, and the known transport parameters of argon at atmospheric pressure. The results represented as a stream line graph, show a symmetric quadruple whirl instead of the expected double whirl, suggested to be due to experimental conditions. The equilibrium of heating and cooling mechanisms inside a curved arc and the relative motion of mass and arc were demonstrated. Experimental and theoretical data are in good agreement.

  17. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  18. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  19. Episodicity in back-arc tectonic regimes

    NASA Astrophysics Data System (ADS)

    Clark, Stuart R.; Stegman, Dave; Müller, R. Dietmar

    2008-12-01

    The evolution of back-arc basins is tied to the development of the dynamics of the subduction system they are a part of. We present a study of back-arc basins and model their development by implementing 3D time-dependant computer models of subduction including an overriding plate. We define three types of episodicity: pseudo-, quasi- and hyper-episodicity, and find evidence of these in nature. Observations of back-arc basin ages, histories of spreading, quiescence and compression in the overriding plate give us an understanding of the time-development of these subduction zones and back-arc basins. Across the globe today, a number of trenches are advancing—the Izu-Bonin Trench, the Mariana Trench, the Japan Trench, the Java-Sunda Trench and the central portion of the Peru-Chile Trench (the Andes subduction zone). The Izu-Bonin, Mariana and Japan all have established back-arc basins, while the others have documented episodes of spreading, quiescence, compression or a combination of these. The combination of advancing and retreating trench motion places these subduction zones in the category of hyper-episodicity. Quasi-episodicity, in which the back-arc shifts between phases of rifting, spreading and quiescence, is the dominant form of episodic back-arc development in the present. We find this type of episodicity in models for which the system is dynamically consistent—that we have allowed the subducting plate's velocity to be determined by the sinking slabs' buoyancy. Quasi- and hyper-episodicity are only found in subduction zones with relatively high subducting plate velocities, between 6 and 9 cm/year. Finally, those subduction zones for which the subducting plate is moving slowly, such as in the Mediterranean or the Scotia Sea, experience only pseudo-episodicity, where the spreading moves linearly towards the trench but often does so in discrete ridge-jump events.

  20. Investigation and control of dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet

    NASA Astrophysics Data System (ADS)

    Krowka, J.; Rat, V.; Coudert, J. F.

    2013-12-01

    The uncontrolled arc plasma instabilities in suspension plasma spraying or solution precursor plasma spraying cause non-homogeneous plasma treatments of material during their flight and also on coatings during their formation. This paper shows that the arc motion in dc plasma torches mainly originates in two main modes of oscillation (Helmholtz and restrike modes). The emphasis is put on the restrike mode in which the time component is extracted after building up and applying a numerical filter to raw arc voltage signals. The dependence of re-arcing events on experimental parameters is analysed in the frame of a phenomenological restrike model. It is shown that when the restrike frequency reaches the Helmholtz one, both modes are locked together and a pulsed arc jet is generated.

  1. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    low-voltage circuit breakers, metal vapour is formed by evaporation of the electrodes (runners) and the splitter plates, and can have a major influence on the dynamics of arc motion. While the influence of metal vapour on arcs is now understood in general terms, there are many unresolved questions. Areas in which improvements and new insights are required include: diagnostic techniques for measurements of arc properties in the presence of metal vapour, and understanding of the possible deviations from local thermodynamic equilibrium and their influence on such measurements; measurements of the influence of metal vapour in circuit breakers, in which the arc occurs within a solid enclosure, and in gas-metal arc welding, in which the formation of metal droplets and arc instabilities can disrupt standard techniques; determination of the concentration of metal vapour species in different types of arcs; understanding of the relative importance of the different effects of metal vapour (such as increased radiation and electrical conductivity, and the rapid influx of relatively cold gas) on the arc for different configurations; the influence of metal vapour on the electrode boundary and sheath regions; the treatment of radiative and mass transport in computational models; understanding and treatment of the vaporization, condensation and nucleation of metal species, and methods of incorporation of these processes in computational models. In this cluster issue, many of these and related issues are addressed. The twelve contributions cover gas-metal arc welding, gas-tungsten arc welding and low-voltage circuit breakers, and include both experimental and computational studies, in some cases with striking results. A review of the influence of metal vapour in welding arcs is followed by three accounts of spectroscopic measurements of gas-metal arc welding, which are difficult to perform and until recently have rarely been attempted. The application of spectroscopic techniques to

  2. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  3. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  4. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  5. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  6. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  7. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  8. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  9. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  10. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  11. Experimental Harmonic Motion

    NASA Astrophysics Data System (ADS)

    Searle, G. F. C.

    2014-05-01

    1. Elementary theory of harmonic motion; 2. Experimental work in harmonic motion; Experiment 1. Determination of g by a simple pendulum; Experiment 2. Harmonic motion of a body suspended by a spring; Experiment 3. Harmonic motion of a rigid body suspended by a torsion wire; Experiment 4. Study of a system with variable moment of inertia; Experiment 5. Dynamical determination of ratio of couple to twist for a torsion wire; Experiment 6. Comparison of the moments of inertia of two bodies; Experiment 7. Experiment with a pair of inertia bars; Experiment 8. Determination of the moment of inertia of a rigid pendulum; Experiment 9. Experiment on a pendulum with variable moment of inertia; Experiment 10. Determination of g by a rigid pendulum; Experiment 11. Pendulum on a yielding support; Experiment 12. Determination of the radius of curvature of a concave mirror by the oscillations of a sphere rolling in it; Experiment 13. Determination of g by the oscillations of a rod rolling on a cylinder; Experiment 14. Study of a vibrating system with two degrees of freedom; Note 1. On the vibration of a body suspended from a light spring; Note 2. Periodic time of a pendulum vibrating through a finite arc; Note 3. Periodic time for finite motion; Note 4. Periodic times of a pendulum with two degrees of freedom.

  12. Geometric and dosimetric accuracy of dynamic tumor-tracking conformal arc irradiation with a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Shiinoki, Takehiro; Sawada, Akira; Kokubo, Masaki

    2014-03-15

    Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measured position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.

  13. The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation

    NASA Technical Reports Server (NTRS)

    Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.

    2002-01-01

    Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.

  14. The ring arcs of Neptune

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1991-01-01

    After the corotation resonance with an exterior satellite proved inapplicable to the Neptune ring arc confinement, a search for other mechanisms settled on the possible influence of Neptune's magnetic field. The areas of greater optical depth around the ring are much dustier than the low optical depth regions. These particles reside in a plasma; therefore, they must carry some charge. The components of Neptune's magnetic field on the equator at the radius of the ring arcs as a function of Neptunian longitude are shown. The components are those of an offset tilted dipole model. Although the dipole model is probably not a good approximation so close to the planet, the magnitude of the field that is given is probably close to the actual value. The possible importance of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic force to the central gravitation attraction with the field strength of B = 0.01 gauss at the ring distance. A preferred position in the orbit for magnetically perturbed particles seems to require a commensurability between the rotation of the planet and the motion of the particle in the orbit. The period of rotation is assumed to be that of the radio bursts at 16.11 hours. However, without a model for the radio emission, one cannot be absolutely sure. Jupiter's decametric radiation depends on Io's orbital position as well as the rotation, so a synodic periodicity might be appropriate. But the latter radiation is highly directed, whereas Neptune's was seen all along the spacecraft trajectory on the 16.11 hour schedule, i.e., with no shifts in phase relative to a fixed longitude on the planet. The ring orbital period is 10.536 hours which is not commensurate with the rotation period. If the 16.11 hours is interpreted as a synodic period between the rotation and a satellite motion, the closest rotation periods to 16 hours

  15. Roots and Root Function: Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of current issues related to water management, ecohydrology, and climate change are giving impetus to new research aimed at understanding roots and their functioning. Current areas of research include: use of advanced imaging technologies such as Magnetic Resonance Imaging to observe roots...

  16. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  17. ALICE—ARC integration

    NASA Astrophysics Data System (ADS)

    Anderlik, C.; Gregersen, A. R.; Kleist, J.; Peters, A.; Saiz, P.

    2008-07-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites.

  18. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  19. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    NASA Astrophysics Data System (ADS)

    Draut, Amy E.; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc-continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. 'Forward-facing' collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a 'backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry and tectonic

  20. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    SciTech Connect

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved.

  1. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  2. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  3. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  4. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  5. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  6. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  7. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  8. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  9. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  10. Evolution of magnetically rotating arc into large area arc plasma

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong

    2015-06-01

    An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

  11. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    SciTech Connect

    Feng, Dingyu; Xiu, Shixin Wang, Yi; Liu, Gang; Zhang, Yali; Bi, Dongli

    2015-10-15

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.

  12. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Saleeby, Jason B.; Bergantz, George

    2015-05-01

    Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere. The best-studied examples are found along the western margin of the Americas. They are Earth's largest sites of intermediate magmatism. They are long lived (tens to hundreds of millions of years) and spatially complex; their location migrates laterally due to a host of tectonic causes. Episodes of crustal and lithospheric thickening alternating with periods of root foundering produce cyclic vertical changes in arcs. The average plutonic and volcanic rocks in these arcs straddle the compositional boundary between an andesite and a dacite, very similar to that of continental crust; about half of that comes from newly added mafic material from the mantle. Arc products of the upper crust differentiated from deep crustal (>40 km) residual materials, which are unstable in the lithosphere. Continental arcs evolve into stable continental masses over time; trace elemental budgets, however, present challenges to the concept that Phanerozoic arcs are the main factories of continental crust.

  13. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  14. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  15. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  16. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  17. Root canal

    MedlinePlus

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  18. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  19. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  20. The fractal nature of vacuum arc cathode spots

    SciTech Connect

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  1. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity. PMID:23482171

  2. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  3. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  4. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  5. Geologic implications of great interplate earthquakes along the Aleutian arc

    SciTech Connect

    Ryan, H.F.; Scholl, D.W.

    1993-12-01

    We present new marine geophysical observations and synthesize previous geologic interpretations of the Aleutian arc to show that the epicenters of these great thrust-type earthquakes coincide with upper plate segments of the arc characterized by a coherent forearc structural fabric. We propose that variations in upper plate structural strength and mobility affect the mechanical properties of the interplate thrust zone and need to be considered in localizing interplate asperities. Forearc tectonic segmentaion associated with the partitioning of strike-slip and thrust motions may exert long-term controls on the rates of seismic moment release.

  6. Sensitivity analysis of physics and planning SmartArc parameters for single and partial arc VMAT planning.

    PubMed

    Yang, Kai; Yan, Di; Tyagi, Neelam

    2012-01-01

    We investigate the sensitivity of various physics and planning SmartArc parameters to generate single and partial arc VMAT plans with equivalent or better plan quality as IMRT. Patients previously treated with step-and-shoot IMRT for several treatment sites were replanned using SmartArc. These treatment sites included head and neck, prostate, lung, and spine. Effect of various physics and planning SmartArc parameters, such as continuous vs. binned dose rate, dynamic leaf gap, leaf speed, maximum delivery time, number of arcs, and control point spacing, were investigated for Elekta Axesse and Synergy linacs. Absolute dose distribution was measured by using the ArcCHECK 3D cylindrical diode array. For all cases investigated, plan metrics such as conformity indices and dose homogeneity indices increased, while plan QA decreased with increasing leaf speed. Leaf speed had a significant impact on the segment size for low dose per fractionation cases. Constraining leaf motion to a lower speed not only avoids tiny large leaf travel and low-dose rate value, but also achieves better PTV coverage (defined as the volume receiving prescription dose) with less total MUs. Maximum delivery time, the number of arcs, and the spacing of control points all had similar effects as the leaf motion constraint on dose rate and segment size. The maximum delivery time had a significant effect on the optimization, acting as a hard constraint. Increasing the control point spacing from 2 to 6 degrees increased the PTV coverage, but reduced the absolute dose gamma passing rate. Plans generated using continuous and binned dose rate modes did not show any difference in the quality and the delivery for the Elekta machines. Dosimetric analysis with a 3D cylindrical QA phantom resulted in 93.6%-99.3% of detectors with a gamma index (3%/2 mm) < 1 for all cases. PMID:23149771

  7. Treatment planning for volumetric modulated arc therapy

    SciTech Connect

    Bedford, James L.

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  8. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  9. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    PubMed Central

    Sun, Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang, Deshan; Li, H. Harold

    2010-01-01

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam’s eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors. PMID:21302768

  10. Intraoceanic Arc Tectonic and Sedimentary Processes: Translation from Modern Activity to Ancient Records

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Clift, P. D.

    2013-12-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are used to reconstruct paleogeography, plate motion, collision and accretion events, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records after arc-continent collision is complicated by preservation of evidence for some processes and loss of evidence for others. We examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of oceanic subduction zones. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. ';Forward-facing' collision can accrete an oceanic arc onto either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In ';backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern oceanic subduction zones implies that valuable records of arc processes are commonly destroyed even before collision with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of

  11. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  12. Circular motion

    NASA Astrophysics Data System (ADS)

    Newton, Isaac; Henry, Richard Conn

    2000-07-01

    An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.

  13. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  14. Pythium Root Rot (and Feeder Root Necrosis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium species cause a number of diseases on corn. Among the Pythium diseases, root rot presents the least conspicuous aboveground symptoms. Broadly defined, root rot also includes feeder root necrosis. At least 16 species of Pythium are known to cause root rot of corn. These include P. acanthicu...

  15. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  16. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  17. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H.

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  18. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Ding, Juwen; Yang, Fei; Dong, Delong; Rong, Mingzhe; Xu, Dan

    2016-05-01

    In this paper, a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB). The distributions of pressure, temperature, gas flow and current density of the arc plasma in the arc region are calculated, and the factors influencing the commutation process are analyzed according to the calculated results. Based on the airflow in the arc chamber, the causes of arc commutation asynchrony and the back commutation are investigated. It indicates that a reasonable contact space design is crucial to a successful arc commutation process. To verify the simulation results, the influence of contact space on arc voltage and arc commutation is tested. This research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303) and National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and Science and Technology Project Through Grid State Corporation (No. SGSNKYOOKJJS1501564)

  19. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  20. Scintillation Arcs: Probing Turbulence and Structure in the ISM

    NASA Astrophysics Data System (ADS)

    Stinebring, Daniel R.

    2006-12-01

    Multi-path scattering through inhomogeneities in the interstellar medium causes many related effects. In this review, I concentrate on the phenomenon of scintillation arcs, which are parabolic patterns in the secondary spectrum caused by interference between different angular components of the scatter-broadened image of a pulsar. Scintillation arcs are now fairly well understood. The measured curvature of the arc, together with proper motion and distance information about the pulsar, can be used to determine the location of thin scattering screens along the line of sight to the object. Some recent work of this type is presented. The puzzle of substructure in the power distribution of scintillation arcs is poorly understood, however, and is commented on as an open puzzle. In particular, some inferred physical structures in the ISM are small scale (˜ 1 AU) and over-dense with respect to the background medium. Finally, an application of scintillation arc studies to the correction of high-precision pulsar timing is presented.

  1. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  3. Asteroid Motions

    NASA Astrophysics Data System (ADS)

    Sykes, Mary V.; Moynihan, P. Daniel

    1996-12-01

    Equations are derived which describe the apparent motion of an asteroid traveling on an elliptical orbit in geocentric ecliptic coordinates. At opposition, the equations are identical to those derived by Bowellet al. (Bowell, E., B. Skiff, and L. Wasserman 1990. InAsteroids, Comets, Meteors III(C.-I. Lagerkvist, M. Rickman, B. A. Lindblad, and M. Lindgren, Eds.), pp. 19-24. Uppsala Universitet, Uppsala, Sweden). These equations can be an important component in the optimization of search strategies for specific asteroid populations based on their apparent motions relative to other populations when observed away from opposition.

  4. An arc-sequencing algorithm for intensity modulated arc therapy

    SciTech Connect

    Shepard, D. M.; Cao, D.; Afghan, M. K. N.; Earl, M. A.

    2007-02-15

    Intensity modulated arc therapy (IMAT) is an intensity modulated radiation therapy delivery technique originally proposed as an alternative to tomotherapy. IMAT uses a series of overlapping arcs to deliver optimized intensity patterns from each beam direction. The full potential of IMAT has gone largely unrealized due in part to a lack of robust and commercially available inverse planning tools. To address this, we have implemented an IMAT arc-sequencing algorithm that translates optimized intensity maps into deliverable IMAT plans. The sequencing algorithm uses simulated annealing to simultaneously optimize the aperture shapes and weights throughout each arc. The sequencer enforces the delivery constraints while minimizing the discrepancies between the optimized and sequenced intensity maps. The performance of the algorithm has been tested for ten patient cases (3 prostate, 3 brain, 2 head-and-neck, 1 lung, and 1 pancreas). Seven coplanar IMAT plans were created using an average of 4.6 arcs and 685 monitor units. Additionally, three noncoplanar plans were created using an average of 16 arcs and 498 monitor units. The results demonstrate that the arc sequencer can provide efficient and highly conformal IMAT plans. An average sequencing time of approximately 20 min was observed.

  5. Arcing and its role in PFC erosion and dust production in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Chrobak, C. P.; Doerner, R. P.; Krasheninnikov, S. I.; Moyer, R. A.; Umstadter, K. R.; Wampler, W. R.; Wong, C. P. C.

    2013-07-01

    Two types of arc tracks are observed on the plasma-facing components (PFCs) in DIII-D. "Unmagnetized" random walk tracks are produced during glow discharges; they are rare and have no importance for PFC erosion but may degrade diagnostic mirrors. "Magnetized" scratch-like type II tracks are produced by unipolar arcs during plasma operations; they are formed by "retrograde BxJ" motion of the cathode spot and are roughly perpendicular to the local magnetic field. Type II arcs cause measurable erosion of graphite, but based on the evidence available they are relatively small contributors to the total erosion of carbon in DIII-D compared to other mechanisms such as physical and chemical sputtering and ablation from leading edges. Erosion by arcing of tungsten films deposited on graphite samples was observed in Divertor Material Evaluation System (DiMES) experiments. New DiMES experiments aimed at time-resolved arc measurements are proposed.

  6. Enthalpy modulation of a laminar pulsed nitrogen arc jet: time-resolved diagnostics and model

    NASA Astrophysics Data System (ADS)

    Rat, V.; Krowka, J.; Coudert, J. F.

    2015-08-01

    In most studies, plasma spraying of liquid feedstock for ceramic coating elaboration requires limiting the arc motion to obtain stable plasma and to favour homogeneous treatment of nanomaterials. In this chapter, an alternative approach is proposed and consists of using a pulsed arc jet modulating the specific enthalpy in time. The momentum and heat transfers can be controlled provided a synchronous injection of materials is associated with it. The rotational temperatures of the nitrogen arc jet are measured by means of time-resolved optical emission spectroscopy synchronized with the arc voltage. The enthalpy modulation ratio (hmax/hmin) is shown to be close to 2.68. A simplified model of the dynamics of heat transfers is used to interpret diagnostics and highlights a time delay between arc voltage and enthalpy at the nozzle exit due to the characteristic time of heat transfers and residence time of plasma.

  7. Interplanetary magnetic field dependency of stable Sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Valladares, C. E.; Carlson, H. C., Jr.; Fukui, K.

    1994-01-01

    This is the first analysis, using a statistically significant data set, of the morphological dependence of the presence, orientation, and motion of stable sun-aligned polar cap arcs upon the vector interplanetary magnetic field (IMF). For the one winter season analyzed we had 1392 all-sky 630.0-nm images of 2-min resolution containing a total of 150 polar cap arcs, all with corresponding values of the IMF as measured by International Monitoring Platform (IMP) 8 or International Sun Earth Explorer (ISEE) 2. After demonstrating an unbiased data set with smooth normal distributions of events versus the dimensions of time, space, and IMF component, we examine IMF dependencies of the properties of the optical arcs. A well-defined dependence for B(sub z) is found for the presence/absence of stable Sun-aligned polar cap arcs. Consistent with previous statistical studies, the probability of observing polar cap aurora steadily increases for larger positive values of B(sub z), and linearly decreases when B(sub z) becomes more negative. The probability of observing Sun-aligned arcs within the polar cap is determined to vary sharply as a function of the arc location; arcs were observed 40% of the time on the dawnside and only 10% on the duskside. This implies an overall probability of at least 40% for the whole polar cap. 20% of the arcs were observed during 'southward IMF conditions,' but in fact under closer inspection were found to have been formed under northward IMF conditions; these 'residual' positive B(sub z) arcs ha d a delayed residence time in the polar cap of about what would be expected after a north to south transition of B(sub z). A firm dependence on B(sub y) is also found for both the orientation and the dawn-dusk direction of motion of the arcs. All the arcs are Sun-aligned to a first approximation, but present deviations from this orientation, depending primarily upon the location of the arc in corrected geomagnetic (CG) coordinates. The arcs populating the

  8. Neptune's ring arcs: VLT/NACO near-infrared observations and a model to explain their stability

    NASA Astrophysics Data System (ADS)

    Renner, S.; Sicardy, B.; Souami, D.; Carry, B.; Dumas, C.

    2014-03-01

    Context. Neptune's incomplete ring arcs have been stable since their discovery in 1984 although these structures should be destroyed in a few months through differential Keplerian motion. Regular imaging data are needed to address the question of the arc stability. Aims: We present the first NACO observations of Neptune's ring arcs taken at 2.2 μm (Ks band) with the Very Large Telescope in August 2007, and propose a model for the arc stability based on co-orbital motion. Methods: The images were aligned using the ephemerides of the satellites Proteus and Triton and were suitably co-added to enhance ring or satellite signals. Resonance theory and N-body simulations were used to model the arcs' confinement. Results: We derive accurate mean motion values for the arcs and Galatea and confirm the mismatch between the arcs' position and the location of the 42:43 corotation inclination resonance. We propose a new confinement mechanism where small co-orbital satellites in equilibrium trap ring arc material. We constrain the masses and locations of these hypothetical co-orbital bodies. Collected at the European Southern Observatory, Paranal, Chile - 079.C-0682.

  9. Commissioning of Volumetric Modulated Arc Therapy (VMAT)

    SciTech Connect

    Bedford, James L. Warrington, Alan P.

    2009-02-01

    Purpose: Volumetric modulated arc therapy (VMAT) involves the simultaneous use of dynamic multileaf collimator (DMLC) techniques and gantry arcing; appropriate quality assurance is therefore required. This article describes the development and implementation of procedures for commissioning VMAT on a commercial linear accelerator (Elekta PreciseBeam VMAT with MLCi and Beam Modulator heads). Materials and Methods: Tests for beam flatness and symmetry at the variable dose rates required for VMAT were performed. Multileaf collimator (MLC) calibration was investigated using dynamic prescriptions. The cumulative dose delivered by a sliding window aperture was measured and compared with calculated values. Rotational accuracy was evaluated using dynamic prescriptions which required accurate correlated motion of both gantry and MLC leaves. Finally, measured and calculated dose distributions for complete VMAT treatment plans were compared and evaluated. Results: Beam symmetry was found to be better than 3% down to dose rates of 75 MU/min. MLC calibration provided continuity of dose at match planes of better than 4%, which was comparable to interleaf leakage effects. Integrated sliding window doses were within 3% of those calculated. Tests for rotational accuracy showed uniformity of peripheral dose mostly within {+-}4% of local control point dose, or approximately {+-}0.2% of total central dose. A two-arc prostate case showed an absolute dose difference between calculations and measurements of less than 3%, with gamma (3% and 3 mm) of better than 95%. Conclusions: VMAT has been successfully commissioned and has been introduced into clinical use. The Elekta DMLC has also been shown to be suitable for sliding window delivery.

  10. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  11. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  12. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  13. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets

    SciTech Connect

    Roa, Dante E.; Schiffner, Daniel C.; Zhang Juying; Dietrich, Salam N.; Kuo, Jeffrey V.; Wong, Jason; Ramsinghani, Nilam S.; Al-Ghazi, Muthana S.A.L.

    2012-10-01

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI{sub RTOG}), homogeneity index (HI{sub RTOG}), inverse Paddick Conformity Index (PCI), D{sub mean} and D5-D95. OAR sparing was analyzed in terms of D{sub max} and D{sub mean}. Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times {+-} SD for IMRT and 1-arc and 2-arc treatments were 10.5 {+-} 7.3, 2.6 {+-} 1.6, and 3.0 {+-} 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery

  14. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  15. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow

    SciTech Connect

    Zhao, Tian-Liang; Liu, Jing-Lin; Li, Xiao-Song; Liu, Jin-Bao; Song, Yuan-Hong; Xu, Yong; Zhu, Ai-Min

    2014-05-15

    An annular-mode gliding arc discharge powered by a 50 Hz alternating current (ac) supply was studied in a vortex flow of dry and humid air. Its temporal evolution characteristics were investigated by electrical measurement, temporally resolved imaging, and temporally resolved optical emission spectroscopic measurements. Three discharge stages of arc-ignition, arc-gliding, and arc-extinction were clearly observed in each half-cycle of the discharge. During the arc-gliding stage, the intensity of light emission from the arc root at the cathode was remarkably higher than that at other areas. The spectral intensity of N{sub 2}(C{sup 3}Π{sub u}−B{sup 3}Π{sub g}) during the arc-ignition stage was much higher than that during the arc-gliding stage, which was contrary to the temporal evolutions of spectral intensities for N{sub 2}{sup +}(B{sup 2}Σ{sub u}{sup +}−X{sup 2}Σ{sub g}{sup +}) and OH(A{sup 2}Σ{sup +}−X{sup 2}Π{sub i}). Temporally resolved vibrational and rotational temperatures of N{sub 2} were also presented and decreased with increasing the water vapor content.

  16. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  17. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  18. Arc spot grouping: An entanglement of arc spot cells

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-01

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  19. The ALMA Regional Centers (ARC)

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Hibbard, J.; Okumura, S. K.; Braatz, J.

    2011-04-01

    ALMA is an international facility, a partnership between Europe, East Asia, and North America, in cooperation with the Republic of Chile. As such, ALMA will serve a worldwide community of astronomers. To interface with the geographically distributed user community, the partners have established three ALMA Regional Centers, or ARCs. The ARCs provide the primary gateway to ALMA for the user community. The ARCs are staffed by scientists with expertise in radio astronomy and interferometry, and their purpose is to work with the community of astronomers to maximize the scientific productivity of the telescope.

  20. Plasma arc welding torch having means for vortexing plasma gas exiting the welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A plasma arc welding torch is described wherein a plasma gas is directed through the body of the welding torch and out of the body across the tip of the welding electrode disposed at the forward end of the body. The plasma gas is provided with a vortexing motion prior to exiting the body by a vortex motion imparting member which is mounted in an orifice housing member and carried in the forward portion of the torch body. The orifice housing member is provided with an orifice of an predetermined diameter through which the electric arc and the plasma gas exits.

  1. Asymptotic Solutions of Detonation Propagation in a 2D Circular Arc.

    NASA Astrophysics Data System (ADS)

    Short, Mark; Meyer, Chad; Quirk, James

    2015-11-01

    The large pressure of the product gas generated by detonating high explosives causes lateral motion of the explosive at the material interface between the explosive and its confinement. In turn, this leads to streamline divergence and curvature of the detonation front (typically in a divergent fashion). The propagation of a detonation front in a given geometry depends on the amount of curvature generated. Here we describe an asymptotic analysis of detonation propagation in a 2D circular arc, examining dependencies of the motion on the size of the inner and outer arc radii, and the relation between the detonation velocity and curvature for different types of explosive.

  2. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  3. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  4. Theoretical motions of hydrofoil systems

    NASA Technical Reports Server (NTRS)

    Imlay, Frederick H

    1948-01-01

    Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.

  5. ARC syndrome in preterm baby.

    PubMed

    Elmeery, A; Lanka, K; Cummings, J

    2013-10-01

    A preterm female infant born of 32 weeks gestational age was presenting with musculoskeletal abnormalities, and cholestasis that later on resolved. Later on, she developed renal tubular acidosis (RTA), poor weight gain, unexplained intermittent fever and recurrent spontaneous bleeding episodes. ARC is an acronym that stands for arthrogryposis, renal dysfunction and cholestasis. ARC syndrome is a rare disorder that is difficult to diagnose and is associated with poor outcomes. We present a case of ARC syndrome in an infant with a history of failure to thrive, early cholestasis and RTA. There are many unique features about this case that should add to our understanding of this genetic condition. To our knowledge this is the first identified case of ARC syndrome in a preterm infant. Although the specific mutation found in our patient has not been reported previously, the type and location of this mutation is consistent with our genetic understanding of this disorder. PMID:24071963

  6. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  7. Arc-heater performance research

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Durgapal, Prabha

    1994-01-01

    The tasks performed can be divided into the following categories: an analysis of the electric arc phenomena, especially near the electrodes; a parametric study of arcjet performance by means of a computer code (ARCFLO) and verification with experimental data where possible; the development of a data acquisition system to collect the above experimental data using Ames arc-jets; and a study of the critical components (electrodes and constrictor disks) and suggestions of how to improve their performance.

  8. Tracking Motions Of Manually Controlled Welding Torches

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Gangl, Ken

    1996-01-01

    Techniques for measuring motions of manually controlled welding torches undergoing development. Positions, orientations, and velocities determined in real time during manual arc welding. Makes possible to treat manual welding processes more systematically so manual welds made more predictable, especially in cases in which mechanical strengths and other properties of welded parts highly sensitive to heat inputs and thus to velocities and orientations of welding torches.

  9. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Berger, J.; Burg, J.-P.

    2012-04-01

    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F <10 %) near the solidus produces trondhjemitic melt and garnet granulites residue. The latter has composition very close to that of igneous precursors but is characterized by contrasted physical properties (density: 3.2-3.3, Vp: 6.9-7.4 km/s). Higher partial melting degrees (F: 10-20 %) lead to the formation of anorthositic melts in equilibrium with garnet-clinopyroxene-rutile residues (density: up to 3.45, Vp: up to 7.7 km/s). These melts are rich in

  10. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited

    USGS Publications Warehouse

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.

    2007-01-01

    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  11. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  12. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  13. A simple kinetic theory of auroral arc scales

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.

    1986-01-01

    A kinetic theory of the origins of the auroral arc scale spectrum is presented in this paper. The conceptual basis of the theory is current conservation in a turbulent plasma at the magnetospheric equatorial region in which a field-aligned current is generated and the local electrostatic potential structure is forced to adjust to the presence of the field-aligned current. This simple model uses an ad hoc Ohm's law relationship between the perpendicular current and the perpendicular electric field, but with a negative conductance in the generator region so that J(perpendicular) x E(perpendicular) is less than 0. An exact solution of a simple model of the concept yields a bistatic auroral generator for which multiple-arc formation is predicted if the field-aligned current exceeds a critical value. The predicted scale spectrum is inversely proportional to the square root of the field-aligned current strength spectrum.

  14. Optimization, delivery and evaluation of intensity modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Oliver, Michael R.

    Intensity modulated arc therapy (IMAT) is a radiation therapy technique whereby the shape of the cone beam of radiation changes as it rotates around the patient. This is in contrast to other more commonly delivered forms of advanced radiation therapy, Intensity Modulated Radiation Therapy (IMRT) or helical tomotherapy. IMRT is a radiation technique where a patient is treated with a cone beam of radiation from a number of fixed beam directions, where the shapes and weights of the radiation beams are varied and tomotherapy is treated with a fan beam of radiation that follows a helical trajectory. In this thesis two aspects of IMAT were investigated: optimization of treatment plans and delivery of plans in conjunction with and without respiratory motion management. Optimization of IMAT deliveries consisted of two studies. In the first study, an algorithm that uses dosimetric ray tracing to set multi-leaf collimator (MLC) positions then directly optimizes the MLC positions to create IMAT treatment plans with only beam shape variations was developed and tested in three phantom studies and a clinical case. The second study investigated variable angular dose rate deliveries to a concave target and assessed the optimization strategy including arc initialization strategy, angular sampling and delivery efficiency. IMAT delivery with and without respiratory gated radiation delivery was studied with dose measurement using radiographic film in a motion phantom. In addition, simulations based on delivered log files were used to confirm that motion management for IMAT is effective and within dosimetric tolerances. As a pilot test, plans from IMRT and tomotherapy for partial breast irradiation were first studied, comparing them to conventional treatments. An IMAT plan was generated for one patient, demonstrating feasibility and was compared with IMRT and tomotherapy. This thesis has introduced a new IMAT optimization algorithm with and without variable angular dose rate, applied

  15. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution. PMID:20545181

  16. Current interruption limit and resistance of the self-similar electric arc

    NASA Astrophysics Data System (ADS)

    Christen, Thomas; Seeger, Martin

    2005-05-01

    A model for the axially blown cylindrical arc is derived. In contrast to earlier theories, the model is gauge invariant with respect to energy, which is crucial for investigating current interruption. We determine from our model the dependence of the maximum interruptible current rate, (dI/dt)L, on the pressure, on the parallel capacitance, and on the line impedance for an SF6 arc. (dI/dt)L scales, approximately independent of the gas type, with the square root of the pressure. The arc resistance, at current zero with current rate equal to (dI/dt)L, is pressure independent. As a consequence, the arc resistance at current zero can serve as a figure of merit for the interruption performance of gas circuit breakers.

  17. Three-dimensional, Time-Resolved, Intrafraction Motion Monitoring Throughout Stereotactic Liver Radiation Therapy on a Conventional Linear Accelerator

    SciTech Connect

    Worm, Esben S.; Høyer, Morten; Fledelius, Walter; Poulsen, Per R.

    2013-05-01

    Purpose: To investigate the time-resolved 3-dimensional (3D) internal motion throughout stereotactic body radiation therapy (SBRT) of tumors in the liver using standard x-ray imagers of a conventional linear accelerator. Methods and Materials: Ten patients with implanted gold markers received 11 treatment courses of 3-fraction SBRT in a stereotactic body-frame on a conventional linear accelerator. Two pretreatment and 1 posttreatment cone-beam computed tomography (CBCT) scans were acquired during each fraction. The CBCT projection images were used to estimate the internal 3D marker motion during CBCT acquisition with 11-Hz resolution by a monoscopic probability-based method. Throughout the treatment delivery by conformal or volumetric modulated arc fields, simultaneous MV portal imaging (8 Hz) and orthogonal kV imaging (5 Hz) were applied to determine the 3D marker motion using either MV/kV triangulation or the monoscopic method when marker segmentation was unachievable in either MV or kV images. The accuracy of monoscopic motion estimation was quantified by also applying monoscopic estimation as a test for all treatments during which MV/kV triangulation was possible. Results: Root-mean-square deviations between monoscopic estimations and triangulations were less than 1.0 mm. The mean 3D intrafraction and intrafield motion ranges during liver SBRT were 17.6 mm (range, 5.6-39.5 mm) and 11.3 mm (2.1-35.5mm), respectively. The risk of large intrafraction baseline shifts correlated with intrafield respiratory motion range. The mean 3D intrafractional marker displacement relative to the first CBCT was 3.4 mm (range, 0.7-14.5 mm). The 3D displacements exceeded 8.8 mm 10% of the time. Conclusions: Highly detailed time-resolved internal 3D motion was determined throughout liver SBRT using standard imaging equipment. Considerable intrafraction motion was observed. The demonstrated methods provide a widely available approach for motion monitoring that, combined with motion

  18. A role for actin arcs in the leading edge advance of migrating cells

    PubMed Central

    Burnette, Dylan T.; Manley, Suliana; Sengupta, Prabuddha; Sougrat, Rachid; Davidson, Michael W.; Kachar, Bechara; Lippincott-Schwartz, Jennifer

    2013-01-01

    The migration of epithelial cells requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using a combination of live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion when myosin II redistributes to the cell edge and condenses the lamellipodial-actin into an arc-like bundle (i.e., actin arc) parallel to the edge. The newly formed actin arc moves rearward and couples to focal adhesions as it enters the lamella. We propose net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thus serves as a structural element underlying the temporal and spatial connection between the lamellipodium and lamella to drive directed cell motion. PMID:21423177

  19. Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul

    2015-09-01

    In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

  20. Improvements of the welding performance of plasma arcs by a superimposed fibre laser beam

    NASA Astrophysics Data System (ADS)

    Mahrle, Achim; Rose, Sascha; Schnick, Michael; Pinder, Thomas; Beyer, Eckhard; Füssel, Uwe

    2012-03-01

    Details and results of experimental investigations of a laser-supported plasma arc welding process are presented. The particular feature of the realized experimental set-up is the coaxial arrangement of a single-mode fibre laser beam through a hollow tungsten electrode in combination with a modified plasma welding torch. The analysis of the welding capabilities of the combined laser-arc source comprises high-speed video recordings of the arc shape and size, corresponding simultaneous measurements of the arc voltage as well as an evaluation of the resultant weld seam geometries. Results of welding trials on different types of steel and aluminum alloys are discussed. The corresponding investigations reveal that a fibre laser beam with a wavelength of 1.07 microns can have a crucial impact on the arc and welding characteristics for both categories of materials even at very low laser power output levels. Beneficial effects are especially observed with high welding speeds. In that particular case the arc root and therefore arc column can be substantially stabilized and guided by the laser-induced hot spot.

  1. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  2. Arc-cathode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Heberlein, J.

    1992-01-01

    Insufficient electrode life and uncertainties in that life are major problems hampering the development in many plasma application areas which make use of plasma torches, arc heaters, and arc jet thrusters. In spite of a considerable amount of work published dealing with arc-cathode phenomena, our present understanding is still incomplete because different physical phenomena dominate for different combinations of experimental parameters. The objective of our present research project is to gain a better understanding of the behavior of arc-cathode surface interaction over a wide range of parameters, and furthermore to develop guidelines for better thermal design of the electrode and the selection of materials. This report will present the research results and progress obtained on the arc-cathode interaction studies at the University of Minnesota. It includes results which have been obtained under programs other than the NASA funded program. Some of the results have been submitted in an informal interim progress report, and all of the results have been presented in a seminar during a visit to the NASA Lewis Research Center on October 16, 1992.

  3. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1993-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  4. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Dailey, J. R. (Inventor); Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1995-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  5. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  6. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  7. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  8. Subduction initiation at relic arcs

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Gurnis, Michael

    2015-09-01

    Although plate tectonics is well established, how a new subduction zone initiates remains controversial. Based on plate reconstruction and recent ocean drilling within the Izu-Bonin-Mariana, we advance a new geodynamic model of subduction initiation (SI). We argue that the close juxtaposition of the nascent plate boundary with relic oceanic arcs is a key factor localizing initiation of this new subduction zone. The combination of thermal and compositional density contrasts between the overriding relic arc, and the adjacent old Pacific oceanic plate promoted spontaneous SI. We suggest that thermal rejuvenation of the overriding plate just before 50 Ma caused a reduction in overriding plate strength and an increase in the age contrast (hence buoyancy) between the two plates, leading to SI. The computational models map out a framework in which rejuvenated relic arcs are a favorable tectonic environment for promoting subduction initiation, while transform faults and passive margins are not.

  9. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  10. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    The kinematics of intra-arc shear zones play a key role in the secondary shaping of orogenic arcs such as the Calabrian Arc (central Mediterranean). Comparison of the Neogene structural development of the Petilia-Rizzuto Fault Zone and the basement structure of the bordering Sila massif reveals that the fault zone is the surface expression of a deep NW-SE trending sinistral crustal oblique shear zone. This shear zone continues over a length of more than 130 km across the northern segment of the Calabrian Arc and shows a post-Eocene sinistral displacement of about 50 km. The late Neogene forearc basin development and syndepositional tectonics along the fault zone are reconstructed in great detail by analyzing the middle Miocene-Recent tectonic sequence stratigraphy. A strike-slip cycle can be recognized whereby the subsequent activity of Riedel shears, tensional faults, and P shears, positive flower structures and principle displacement wrench faults, can accurately be traced in time. Observed phenomena are discussed in terms of the activity of a conjugate system of oblique thrust zones within the growing accretionary complex. The evolution of special types of thrust belt basins is illustrated. These include oblique thin-skinned pull-apart basins, oblique rhomboidal "harmonica" basins, and "detached slab" basins (new terms introduced here), evolving one into the other. A new feature illustrated is the recurrent basin inversion which generated passive roof duplexes through back-shear motion and out-of-sequence thrusting along the wedge. The fault patterns and the style of inversion tectonics imply an E-W directed axis of effective compressive stress in this part of the arc. This resulted from an interaction of (1) local E-W directed compression related to a differential displacement of two parallel segments of the arc (generated by the migration to the southeast of the Calabrian Arc and opening of the Tyrrhenian backarc basin); (2) alternating NW-SE directed

  11. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system. PMID:23591887

  12. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  13. Plasma irregularities associated with a morning discrete auroral arc - Radar interferometer observations and theory

    NASA Technical Reports Server (NTRS)

    Providakes, J.; Farley, D. T.; Swartz, W. E.; Riggin, D.

    1985-01-01

    A description is given of E region auroral plasma irregularities associated with an intense auroral morning arc observed over Fort Churchill by radar. The observations are compared with data from an all-sky camera (ASC) operated at Fort Churchill by the National Research Council of Canada. The particular event described was chosen because of the rapid variation in structure and motion of the arc as it traveled through the radar beam. The horizontal vector electron drift velocity and electric field along the poleward boundary of the morning discrete auroral arc was successfully measured with a radar interferometer. This instrument provided information concerning the temporal and spatial structure of the electrostatic plasma turbulence in the arc. The observations are described.

  14. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  15. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  16. Unzipping of the volcano arc, Japan

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Smoot, N. C.; Rubin, M.

    1984-02-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin.

  17. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  18. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  19. The variable polarity plasma arc welding process: Characteristics and performance

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  20. Paleomagnetic Evidence for Significant Rotations Within the Aleutian Island Arc.

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Krutikov, L.

    2006-12-01

    Present-day motion of the Pacific plate relative to the North American plate changes along the Aleutian arc from normal convergence in the east to transform motion in the west. It was postulated by Geist et al. (Tectonics 7, 327-341, 1988) that strain partitioning could result in tectonic segmentation of the lithosphere, caused by increasing obliquity of plate convergence and characterized by clockwise rotation and westward translation of discrete blocks. Their analysis of the present day morphology and tectonic setting of the western half of the arc suggests the presence of rotated blocks, and implies that the rotation is ongoing. Published high-quality paleomagnetic data from the far western end of the arc show rotations that are compatible with this model. This result is based on rocks of Eocene (Bering and Medny Islands) and Miocene (Shemya Island) age, thus the magnetically observed rotations could have occurred at any time since their origin. New paleomagnetic and geochronologic data from Miocene age volcanic rocks on Amchitka Island also indicate clockwise rotation at some time since the rocks were formed (13.8+/-0.2 Ma). However, two other high-quality paleomagnetic data sets from Eocene/Oligocene aged sediments from the eastern part of the arc (Atka and Umnak Islands) are significantly rotated in the same clockwise sense as the western end. Since plate convergence at these two eastern sites has been roughly normal since mid-Eocene time, strain partitioning related to oblique convergence is unlikely to be the cause of the rotation. Models involving rotation of the entire island arc to explain the similarity in magnitude and sense of the rotations seen in the paleomagnetic data require large relative latitude changes between the two ends of the arc. Though possible, such a model would put serious constraints on scenarios for the tectonic development of the Bering Sea Plate required to accommodate the degree of rotation suggested by the data. The answer may

  1. Polar motion from laser tracking of artificial satellites.

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Kolenkiewicz, R.; Plotkin, H. H.; Johnson, T. S.; Dunn, P. J.

    1972-01-01

    Measurements of the range to the Beacon Explorer C spacecraft from a single laser tracking system at Goddard Space Flight Center have been used to determine the change in latitude of the station arising from polar motion. A precision of 0.03 arc second was obtained for the latitude during a 5-month period in 1970.

  2. Arc track resistant polymers for space applications

    NASA Technical Reports Server (NTRS)

    Haghighat, Ross

    1995-01-01

    The properties and test methods of aorimide polymers, kapton, and fep teflon are given in table format. Graphic depiction of an atomic oxygen resistance comparison, arc track resistance set-up and arc incident vs. propagation are given.

  3. Arc restrike in the rail accelerator

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1989-01-01

    One of the causes of the degradation in rail accelerator performance is the formation of a secondary arc. Experimental evidence of arc restrike and the subsequent growth of this secondary arc is presented. A simple analytical treatment of arc restrike is developed in terms of breakdown of residual vapor atoms. It is found that after the passage of the primary arc, the bore volume contains a large number of residual neutral vapor atoms. If the density of these atoms is in excess of the critical density, then for a certain length of time the condition exists in the bore for the formation of a secondary arc. Evaporation of atoms from the bore surfaces cannot provide a sufficient number of atoms for an arc restrike. A likely source of the high residual atom density is the leakage of a portion of the ablated material that is added to the trailing edge of the primary arc.

  4. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  5. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  6. Rotating Drive for Electrical-Arc Machining

    NASA Technical Reports Server (NTRS)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  7. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  8. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  9. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  10. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  11. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  12. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  13. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  14. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  15. Armillaria root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  16. BLACK ROOT ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black Root Rot Prepared by G. S. Abawi, Revised by L.E. Hanson Black root rot is caused by Thielaviopsis basicola (syn. Chalara elegans). The pathogen is widely distributed, can infect more than 130 plant species in 15 families, and causes severe black root rot diseases in ornamentals and crops suc...

  17. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  18. Crustal structure of the Caribbean-northeastern South America arc-continent collision zone

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Mann, Paul; Escalona, Alejandro; Aitken, Trevor J.

    2008-08-01

    We present the results of a 568-km-long regional wide-angle seismic profile conducted in the southeastern Caribbean that crosses an active island arc, a remnant arc, two basins possibly floored by oceanic crust, an allochthonous terrane of forearc affinity, and the passive margin of northern South America. The velocity structures of the Late Cretaceous Aves Ridge remnant arc and Miocene and younger Lesser Antilles arc are remarkably similar, which implies that magmatic processes have remained moderately steady over time. Crustal thickness is ˜26 km at the Aves Ridge and ˜24 km at the Lesser Antilles arc. In comparison to the Izu-Bonin and Aleutian arcs, the Lesser Antilles arc is thinner and has no evidence for a lower crustal cumulate layer, which is consistent with the estimated low magma production rates of the Lesser Antilles arc. Crustal thickness beneath the Grenada and Tobago basins is 4-10 km, and the velocity structure suggests that these basins could be floored by oceanic crust. A decrease of ˜1 km/s in average seismic velocity of the upper crust is observed from NW to SE across the North Coast fault zone; we argue that this marks the suture between the far-traveled Caribbean arc and the passive margin of the South American continent. Current strike-slip motion between the Caribbean and South American plates is located ˜30 km to the south, and thus material originally deposited on the South American passive margin has now been transferred to the Caribbean plate.

  19. The arcs of the Western Alps and the Northern Apennines: an updated view

    NASA Astrophysics Data System (ADS)

    Laubscher, Hans P.

    1988-01-01

    The arcs of the Western Alps and the Northern Apennines and the link between them are in the process of being investigated using the European Geotraverse and they have historically been interpreted in many different ways. New information, particularly geophysical, further constrains possible models. Both arcs have evolved in several stages. sometimes complexly interrelated and sometimes independent of each other. Compressional belts produced in these stages have either been of the "push-arc" type (indentation into a deformable mass) or the "pull-arc" type (backward migration of hinge of a subduction zone, leading to small extensional basins known as back-arc basins and "pores", with an arcuate mountain range on the subduction side). Extensional periods with the possible formation of pull-arcs in the Alps comprise the Gosau period between the Eo- and Meso-Alpine push-arc phases and the "Oligocene lull" period between the Meso- and the Neo-Alpine push-arc phases. In the Northern Apennines, remainders of the Meso-Alpine nappes were involved in Oligocene-Early Miocene pull-arc formation associated with spreading in the Balearic Sea, followed by push-arc formation particularly in the Middle Miocene and by renewed pull-arc formation from the latest Late Miocene to the present. During all of these developments, the Moho was modified by such processes as lithospheric stretching, asthenospheric intrusions, subhorizontal shearing and isostatic uplift. The present Moho configuration is consequently a collage of Moho patches formed at different intervals. Both push- and pull-arcs are laterally bounded by complementary strike-slip or transform zones. These too were modified in the course of history and their final geometry is consequently of a very complex nature. In the Alps for instance, the Insubric fault zone appears to have been the main dextral transform fault of the Neogene push-arc, until it was sinistrally kinked by the Giudicarie fault zone and probably deactivated

  20. Plasma arc welding Hp-9Ni-4Co-0.30C steel

    SciTech Connect

    Harwig, D.D.; Hunt, J.F.; Theus, G.J.

    1994-12-31

    The plasma arc welding process is used to fabricate the advanced solid rocket motor (ASRM) casing for the Space Shuttle. Plasma arc welding (PAW) was chosen because this process assures a full penetration root pass with the keyhole mode. The HP 9Ni-4Co-0.30C steel was chosen for the ASRM application because the material has excellent strength, toughness, and weldability. The minimum mechanical property requirements of the weldment are 190 ksi yield, 205 ksi ultimate, 8% elongation, 25% reduction in area and 90 ksi/in. fracture toughness. Therefore, a comprehensive development plan was performed to fully characterize plasma arc welding HP 9Ni-4Co-0.30 steel. The test technique systematically varied the essential plasma arc parameters: current, travel speed, plasma gas or wire feed speed while maintaining constant arc length and torch set-up conditions. This PWHT produced the best combination of strength, toughness, and acceptable residual stresses. Variations in land thickness, plasma gas flow rate, current, travel speed, and arc length were characterized by measuring weld bead shape geometry. The weld procedure was found to be tolerant to rather wide parameter variations.

  1. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  2. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  3. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  4. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  5. Measurement of transient force produced by a propagating arc magnetohydrodynamic plasma actuator in quiescent atmospheric air

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2015-10-01

    An experimental study was conducted on a magnetohydrodynamic plasma actuator consisting of two parallel, six inch long, copper electrodes flush mounted on an insulating ceramic plate. An electrical arc is generated by a  ∼1 kA current pulse at  ∼100 V across the electrodes. A self-induced Lorentz force drives the arc along the electrodes. The motion of the arc induces flow in the surrounding air through compression as well as entrainment, and generates a transient force, about  ∼4 ms in duration. Experiments were performed on a prototype actuator in quiescent atmospheric air to characterize the motion of the arc and the momentum transferred to the surrounding air. Measurements included transient force and total impulse generated by the actuator as well as the armature voltage and current. The arc shape and transit velocity were determined by high-speed imaging. A peak force of 0.4 N imparting an impulse of 0.68 mN-s was measured for a peak current of 1.2 kA. The force scaled with the square of the armature current and the impulse scaled linearly with the spent capacitor energy. The results provide insight into the mechanisms of body force generation and momentum transfer of a magnetohydrodynamic plasma actuator.

  6. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  7. Robotic Variable Polarity Plasma Arc (VPPA) welding

    NASA Astrophysics Data System (ADS)

    Jaffery, Waris S.

    1993-02-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  8. Crustal thickness and images of the lithospheric discontinuities in the Gibraltar arc and surrounding areas

    NASA Astrophysics Data System (ADS)

    Mancilla, Flor de Lis; Stich, Daniel; Morales, José; Martín, Rosa; Diaz, Jordi; Pazos, Antonio; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro; Harnafi, Mimoun; Gonzalez-Lodeiro, Francisco

    2015-12-01

    The Gibraltar arc and surrounding areas are a complex tectonic region and its tectonic evolution since Miocene is still under debate. Knowledge of its lithospheric structure will help to understand the mechanisms that produced extension and westward motion of the Alboran domain, simultaneously with NW-SE compression driven by Africa-Europe plates convergence. We perform a P-wave receiver function analysis in which we analyse new data recorded at 83 permanent and temporary seismic broad-band stations located in the South of the Iberian peninsula. These data are stacked and combined with data from a previous study in northern Morocco to build maps of thickness and average vP/vS ratio for the crust, and cross-sections to image the lithospheric discontinuities beneath the Gibraltar arc, the Betic and Rif Ranges and their Iberian and Moroccan forelands. Crustal thickness values show strong lateral variations in the southern Iberia peninsula, ranging from ˜19 to ˜46 km. The Variscan foreland is characterized by a relatively flat Moho at ˜31 km depth, and an average vP/vS ratio of ˜1.72, similar to other Variscan terranes, which may indicate that part of the lower crustal orogenic root was lost. The thickest crust is found at the contact between the Alboran domain and the External Zones of the Betic Range, while crustal thinning is observed southeastern Iberia (down to 19 km) and in the Guadalquivir basin where the thinning at the Iberian paleomargin could be still preserved. In the cross-sections, we see a strong change between the eastern Betics, where the Iberian crust underthrusts and couples to the Alboran crust, and the western Betics, where the underthrusting Iberian crust becomes partially delaminated and enters into the mantle. The structures largely mirror those on the Moroccan side where a similar detachment was observed in northern Morocco. We attribute a relatively shallow strong negative-polarity discontinuity to the lithosphere-asthenosphere boundary

  9. A Glove Box Enclosed Gas-Tungsten Arc Welding System

    SciTech Connect

    Reevr, E, M; Robino, C.V.

    1999-07-01

    This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

  10. Corrosion evaluation of stainless steel root weld shielding

    SciTech Connect

    Gorog, M.; Sawyer, L.A.

    1999-07-01

    The effect of five shielding methods for gas tungsten arc root pass welds, on the corrosion resistance of stainless steel was evaluated in two laboratory solutions. The first experiment was performed in 6% ferric chloride solution, a test designed to corrode stainless steel. The second experiment was performed in a simulated paper machine white water solution that contained hydrogen peroxide. Argon shielding produced excellent results by maintaining corrosion resistance in both solutions. Nitrogen purging and flux coated TIG rod techniques produced variable results. Paste fluxes and welding without shielding are not recommended for root protection. They performed very poorly with the welds corroding in both tests.

  11. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  12. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  13. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  14. The refractory painful arc syndrome.

    PubMed

    Watson, M

    1978-11-01

    Twenty-three patients with a severe refractory painful arc syndrome have been treated by excision of the outer end of the clavicle and division of the coracoacromial ligament through a deltoid-splitting approach. After a follow-up of more than six months all patients have been relieved of night pain. Six still have slight pain on movement, but the rest are symptom-free. PMID:711806

  15. Optimized Hybrid Megavoltage-Kilovoltage Imaging Protocol for Volumetric Prostate Arc Therapy

    SciTech Connect

    Liu Wu; Wiersma, Rodney D.; Xing Lei

    2010-10-01

    Purpose: To develop a real-time prostate position monitoring technique for modern arc radiotherapy through novel use of cine-megavoltage (MV) imaging, together with as-needed kilovoltage (kV) imaging. Methods and Materials: We divided the task of monitoring the intrafraction prostate motion into two steps for rotational deliveries: to detect potential target motion beyond a predefined threshold using MV images from different viewing angles by taking advantage of gantry rotation during arc therapy and to verify the displacement and determine whether intervention is needed using fiducial/tumor position information acquired from combined MV-kV imaging (by turning on the kV imager). A Varian Trilogy linear accelerator with an onboard kV imager was used to examine selected typical trajectories using a four-dimensional motion phantom. The performance of the algorithm was evaluated using phantom measurements and computer simulation for 536 Calypso-measured tracks from 17 patients. Results: Fiducial displacement relative to the MV beam was limited to within a range of 3 mm 99.9% of the time with <1 mm accuracy. On average, only {approx}0.5 intervention per arc delivery was needed to achieve this level of accuracy. Compared with other fluoroscopy-based tracking techniques, kV use was significantly reduced to an average of <15 times per arc delivery. Conclusion: By focusing the attention on detecting predefined abnormal motion (i.e., 'failure' detection) and using the inherent mechanism of gantry rotation during arc radiotherapy, the current approach provides high confidence regarding the prostate position in real time without the unwanted overhead of continuous or periodic kV imaging.

  16. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  17. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  18. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  19. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    SciTech Connect

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-02-15

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  20. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  1. Site-specific volumetric analysis of lung tumour motion

    NASA Astrophysics Data System (ADS)

    Pepin, Eric W.; Wu, Huanmei; Sandison, George A.; Langer, Mark; Shirato, Hiroki

    2010-06-01

    The treatment of lung cancer with radiation therapy is hindered by respiratory motion. Real-time adjustments to compensate for this motion are hampered by mechanical system latencies and imaging-rate restrictions. To better understand tumour motion behaviour for adaptive image-guided radiation therapy of lung cancer, the volume of a tumour's motion space was investigated. Motion data were collected by tracking an implanted fiducial using fluoroscopy at 30 Hz during treatment sessions. A total of 637 treatment fractions from 31 tumours were used in this study. For each fraction, data points collected from three consecutive breathing cycles were used to identify instantaneous tumour location. A convex hull was created over these data points, defining the tumour motion envelope. The study sought a correlation between the tumour location in the lung and the convex hull's volume and shape. It was found that tumours located in the upper apex had smaller motion envelopes (<50 mm3), whereas tumours located near the chest wall or diaphragm had larger envelopes (>70 mm3). Tumours attached to fixed anatomical structures had small motion spaces. Three general shapes described the tumour motion envelopes: 50% of motion envelopes enclosed largely 1D oscillation, 38% enclosed an ellipsoid path, 6% enclosed an arced path and 6% were of hybrid shape. This location-space correlation suggests it may be useful in developing a predictive model, but more work needs to be done to verify it.

  2. Displacement Partitioning, Boundary-Parallel Terrane Migration, and Arc-Parallel Extension in the Aleutian Islands Based on Structural Analysis and GPS Geodesy

    NASA Astrophysics Data System (ADS)

    Ave Lallemant, H. G.; Oldow, J. S.; Lewis, D. S.

    2001-12-01

    Structural analysis of the deformed rocks on several Aleutian Islands (Attu, Adak, Atka, and Unalaska) combined with published bathymetric and seismic reflection data support the existence of displacement partitioning along the Aleutian arc. Brittle structures are remarkably consistent among all islands studied and record arc-normal contraction, arc-parallel transcurrent motion, and arc-parallel extension. This process is still active as shown by earthquake-focal mechanisms and a GPS velocity field determined from five Aleutian Islands (Attu, Shemya, Adak, Atka, and Unalaska). GPS site velocities determined from campaigns in 1996, 1998, 1999, and 2000 increase from east to west along the island arc. Primary GPS sites on five islands were occupied for three-weeks each during two to four campaigns. In a North American reference frame the sites show a systematic increase in arc-parallel motion from Unalaska (4 mm/yr) in the east to Shemya (25 mm/yr) and Attu (31 mm/yr) in the west. Velocities for Adak and Atka near the center of the Aleutian arc are 10 mm/yr and 7 mm/yr, respectively and show a greater component of arc-normal displacement than sites at the eastern and western ends of the island chain. Secondary sites occupied for several days during alternating campaigns on Attu, Adak, and Unalaska have velocities consistent with the primary GPS sites for each island. On Atka, secondary site velocities record a significant divergence from the velocity of the primary site and indicate either transtensional deformation within the island or contamination of the primary site velocity by local strain accumulation. These results indicate that convergence between the North American and Pacific plates is partitioned into arc-normal and arc-parallel components. The arc-normal component causes shortening (thrusting and folding) along an axis oriented at a high-angle to the plate boundary and the arc-parallel component causes displacements along several arc

  3. Examining Rotational Ground Motion Induced by Tornados

    NASA Astrophysics Data System (ADS)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  4. ARC length control for plasma welding

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  5. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  6. Similar and Contrasting Response of Rifting and Transtension in the Gulf of California and Walker Lane to Preceding Arc Magmatism

    NASA Astrophysics Data System (ADS)

    Henry, C. D.; Faulds, J. E.

    2006-12-01

    The Gulf of California (GC) and Walker Lane (WL) have undergone strikingly similar development with strike- slip faulting following initial extension. They differ significantly in the amount of Pacific-North American plate motion taken up by each: essentially all relative motion in the GC and ~25% in the WL. In both areas, ancestral arc magmatism preceded and probably focused deformation, perhaps because heating and/or hydration weakened the lithosphere. However, differences in migration of the Rivera (RTJ) and Mendocino triple junctions (MTJ) related to differences in the orientation of plate boundaries determined how strike-slip faulting developed. Abrupt southward jumps in the RTJ led to abrupt cessation of magmatism over arc lengths of as much as 1000 km and initiation of east-northeast extension within the future GC. The best known jump was at ~13 Ma, but an earlier jump occurred at ~18 Ma. Arc magmatism has been best documented in Baja California, Sonora, and Nayarit, although Baja constituted the most-trenchward fringe of the ancestral arc. New and published data indicate that Sinaloa underwent a similar history of arc magmatism. The greatest volume of the arc immediately preceding RTJ jumps was probably in mainland Mexico. Arc magmatism shut off following these jumps, extension began in the future GC, and strike-slip faulting either followed or accompanied extension in the GC. In contrast, the MTJ migrated progressively northward. New and published data indicate magmatism generally shut off coincident with this retreat, but distinct nodes or zones of magmatism, presumably unrelated to subduction, persisted or initiated after arc activity ceased. We have suggested that the WL has grown progressively northward, following the retreating arc, and that the northern WL is its youngest part. However, the timing of initiation of strike-slip faulting in most of the WL is poorly known and controversial. Testing our hypothesis requires determining initiation and

  7. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  8. One Arc PMSM for telescope tracking system

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Zhang, Zhenchao; Wang, Daxing; Hu, Wei; Zhu, Zhenlian

    2008-07-01

    This paper explores one Arc PMSM for Direct Drive Telescope tracking system. By the Arc PMSM, we can very easily manufacture one direct drive system for large telescope. Direct drive system has many advantages over more traditionally used friction and rack/pinion drive. The advantages include high stiffness, no friction, easy alignment and low maintenance. The paper discusses the design process of the Arc PMSM, especially the methods to reduce the torque ripple.

  9. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  10. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  11. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  12. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  13. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  14. Electrode Evaporation Effects on Air Arc Behavior

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Li, Rui; Wu, Yi; Niu, Chunping

    2008-06-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  15. Impact of the arc length on GNSS analysis results

    NASA Astrophysics Data System (ADS)

    Lutz, Simon; Meindl, Michael; Steigenberger, Peter; Beutler, Gerhard; Sośnica, Krzysztof; Schaer, Stefan; Dach, Rolf; Arnold, Daniel; Thaller, Daniela; Jäggi, Adrian

    2016-04-01

    Homogeneously reprocessed combined GPS/GLONASS 1- and 3-day solutions from 1994 to 2013, generated by the Center for Orbit Determination in Europe (CODE) in the frame of the second reprocessing campaign REPRO-2 of the International GNSS Service, as well as GPS- and GLONASS-only 1- and 3-day solutions for the years 2009 to 2011 are analyzed to assess the impact of the arc length on the estimated Earth Orientation Parameters (EOP, namely polar motion and length of day), on the geocenter, and on the orbits. The conventional CODE 3-day solutions assume continuity of orbits, polar motion components, and of other parameters at the day boundaries. An experimental 3-day solution, which assumes continuity of the orbits, but independence from day to day for all other parameters, as well as a non-overlapping 3-day solution, is included into our analysis. The time series of EOPs, geocenter coordinates, and orbit misclosures, are analyzed. The long-arc solutions were found to be superior to the 1-day solutions: the RMS values of EOP and geocenter series are typically reduced between 10 and 40 %, except for the polar motion rates, where RMS reductions by factors of 2-3 with respect to the 1-day solutions are achieved for the overlapping and the non-overlapping 3-day solutions. In the low-frequency part of the spectrum, the reduction is even more important. The better performance of the orbits of 3-day solutions with respect to 1-day solutions is also confirmed by the validation with satellite laser ranging.

  16. The production of ion conics by oblique double layers. [of auroral arcs

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1984-01-01

    Magnetized test ions are subjected to acceleration through a numerically simulated oblique double layer in order to determine whether they emerge with velocity vectors aligned with or oblique to the ambient magnetic field. A criterion for oblique alignment, depending on the double-layer parameters and on the external magnetization, is obtained. When it is applied to observed and theoretical auroral double layers, this criterion predicts that accelerated heavy ions will be substantially less magnetic field aligned than will accelerated hydrogen ions, thus suggesting auroral double layers as a source of high-energy ion conics. Test particle simulations are also used to investigate the perpendicular heating of ions at low altitudes by the electric fields associated with moving auroral arcs. The rapid motion of small-scale structures in the arcs is suggested as a source of low-energy conical ion distributions, and the slow drifts of the entire arc forms are inferred to heat ionospheric ions.

  17. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  18. Effect of Different Vent Configurations on the Interruption Performance of Arc Chamber

    NASA Astrophysics Data System (ADS)

    Chen, Degui; Li, Xingwen; Dai, Ruicheng

    Gas flow in arc quenching chamber has an important effect on the interruption capability of low voltage circuit breakers. In this paper, based on a simplified model of arc chamber with a single break, which can be opened by the electro-dynamics repulsion force automatically, the effect of different vent configurations including middle vent and side vent on the interruption performance is investigated. First, the experiments are carried out to compare the different performance in the interruption process between middle vent type and side vent type. In addition, according to the experimental model, a 3-D magneto-hydrodynamic model was developed by adapting and modified the commercial computational fluid dynamics software FLUENT. The simulation results show the same trend in arc motion as explained in the experimental conclusions in theory.

  19. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  20. Cylindrocarpon root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cylindrocarpon root rot of alfalfa has been found sporadically in Canada and the northern United States. The etiology of this disease is not fully understood, but the priority for research has not been high because of its infrequent occurrence. The infected area of the root initially has a water-soa...

  1. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  2. Pythium Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium root rot is a disease that is found in agricultural and nursery soils throughout the United States and Canada. It is caused by several Pythium species, and the symptoms are typified by leaf or needle chlorosis, stunting, root rot, and plant death. The disease is favored by wet soils, overc...

  3. Root-knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although root-knot nematodes (Meloidogyne species) can reduce crop yields worldwide, methods for their identification are often difficult to implement. This review summarizes the diagnostic morphological and molecular features for distinguishing the ten major previously described root-knot nematode ...

  4. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family members with…

  5. Sugarbeet root aphid on postharvest root storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root aphid (SBRA), Pemphigus betae Doane, is a serious insect pest of sugarbeet in several North American sugarbeet production areas; however, it is rarely an economic pest in the Red River Valley (RRV). In 2012 and 2013, all RRV factory districts were impacted by SBRA outbreaks, and ...

  6. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc

  7. Neoproterozoic oceanic arc remnants in the Moroccan Anti-Atlas: reconstructing deep to shallow arc crustal sequence and tracking Pan-African subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Spagna, Paul; Watlet, Arnaud; Vandycke, Sara

    2015-04-01

    established that they were recrystallized under garnet-granulites P-T conditions (up to ~1000°C at 12 kbar). Preliminary geochemical data of hornblende-gabbros and garnet-bearing granulites portray similar trace geochemical signatures ((La/Sm)N: 0.8-1.6 ; (Nb/La) < 0.46) as studied paleo-arc complexes. These P-T results and new geochemical data argue that Asmlil mafic complex could represent a deep arc root comparable to the deep section of exposed oceanic arcs (i.e. Kohistan, Talkeetna, Amalaoulaou). We propose that Iriri and Asmlil units depict the deep-to-shallow sequence of a single Cryogenian oceanic arc (760-740 Ma), as discrete exposures along the southern edge of Anti-Atlas ophiolitic assemblages. Nevertheless, this primary arc has been likely broke up and intruded by subsequent hydrous arc-related magmas under medium- to high-grade P-T conditions (700 to 650 Ma). We interpret this period as an oceanic pre-collision stage when subduction geometry is intensively perturbed (c.g. composite subductions, polarity inversion), doping production of typical hydrous arc magma that intrudes original arc. This complex arc melange has been lastly accreted and sealed on the West African Craton margin.

  8. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  9. Static imaging of motion: motion texture

    NASA Astrophysics Data System (ADS)

    Arimura, Koichi

    1992-05-01

    This paper describes how motion segmentation can be achieved by analyzing of a single static image that is created from a series of picture frames. The key idea is motion imaging; in other words, motion is expressed in static images by integrating, frame after frame, the spatiotemporal fluctuations of the gradient gray level at each local area. This tends to create blurred or attached line images (images with lines that show the path of movement of an object through space) on moving objects. We call this 'motion texture'. We computed motion texture images based on the animation of a natural scene and on a number of computer synthesized animations containing groups of moving objects (random dots). Moreover, we applied two different texture analyses to the motion textured images for segmentation: a texture analysis based on the local homogeneity of gray level gradation in similarly textured regions and another based on the structural feature of gray level gradation in motion texture. Experiments showed that subjective visual impressions of segmentation were quite different for these animations. The texture segmentation described here successfully grouped moving objects coincident to subjective impressions. In our random dot animations, the density of the basic motion vectors extracted from each pair of successive frames was set at a constant to compensate for the dot grouping effect based on the vector density. The dot appearance period (lifetime) is varied across the animations. In a long lifetime random dot animation, region boundaries can be more clearly perceived than in a short one. The different impressions may be explained by analyzing the motion texture elements, but can not always be represented successfully using the motion vectors between two successive frames whose density is set at a constant between the animations with the different lifetime.

  10. Modernization of the control system and the electrical equipment of DSV vacuum arc furnaces

    NASA Astrophysics Data System (ADS)

    Dednev, A. A.; Kisselman, M. A.; Nekhamin, S. M.; Kalinin, V. I.; Koshelev, Yu. N.

    2010-06-01

    The results of modernizing one of the DSV-3.2-G1 arc furnaces at OAO Elektrostal’ Metallurgical Works are presented. New automatic control system ACS DSV-3.2 with functions of maintenance, control, and correction of the main technical parameters of vacuum arc remelting is created. The electric furnace is equipped with a modern visual control system for a heat and a unique inert gas (helium) supply system. The rod motion drive is replaced by a modern drive with frequency control of its motion velocity. New control cabinet and desk made of modern elements are mounted. Melting of a pilot series of EP-718 alloy ingots supports the high quality and reliability of the new control systems.

  11. Opening of the Grenada back-arc Basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene

    NASA Astrophysics Data System (ADS)

    Bouysse, Philippe

    1988-06-01

    Geological and geophysical data indicate that the Grenada Basin was presumably created, during the Paleocene, by sundering of a proto-Eastern Caribbean arc into a remnant arc to the west (Aves Swell) and an active arc to the east (Lesser Antilles Ridge). Grenada Basin spreading is thought to have been penecontemporaneous with the creation of the Yucatan Basin located at the opposite side of the Caribbean Sea. I suggest that a continuous Mesozoic Caribbean Arc (M.C.A.), including the Greater Antilles, the Aves-Lesser Antilles system, and the Aruba-Blanquilla Chain (Netherland-Venezuelan Antilles), was initiated in the Pacific, probably about 130-120 Ma ago. Its arrival in front of, and its subsequent motion inside the Central Atlantic ("Tethyan") seaway caused the opening of both Yucatan and Grenada basins which occurred at the two initial points of contact with the North and South American cratons. In contrast to the style of many other island arcs, this back-arc spreading event occurred only once in the long history of the M.C.A. The Lesser Antilles appear to be the oldest currently active intra-oceanic island arc.

  12. Dynamic Electrode Forces in Gas Metal Arc Welding.

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence Anthony

    In gas metal arc welding, a low-voltage electric -arc plasma is maintained between a work-piece and a wire electrode, both of which are melted by the arc. This thesis examines the dynamic forces that affect the detachment of molten metal drops from the consumable wire electrode. Unlike drops falling from a water faucet, the drops in gas metal arc welding experience strong magnetic forces generated by the interaction of the welding current with its own magnetic field. An extensive set of clear high-speed motion images of metal drops detaching from a welding electrode was collected under a wide variety of conditions. The images are used to measure the surface tension of steel as it is found in a gas metal arc welding plasma. Impulse-response oscillations of pendent molten steel drops are also measured. A derivation of the magnetic forces acting on necking drops is performed. Numerical computations of these forces are performed by using shapes fitted to high -speed images of molten steel drops as they are ejected from the electrode by magnetic forces during short-duty -cycle current pulsing. A dynamic model of drop detachment is developed and used to study the competition between the retaining surface tension force and other forces (magnetic, gravitational, and inertial). Simulations performed with this model are compared with extensive measurements of constant-current welding images and with limited measurements of pulsed -current welding images. The comparisons indicate that the experimental magnetic forces are much less potent than the calculated magnetic forces when welding-current transients are not present. A hypothesis is advanced that internal flows are able to develop under the relatively quiescent conditions that exist during drop development in constant -current welding. An apparatus was constructed to axially vibrate the electrode as it is consumed. Experiments using inertial forces to induce drop detachment are shown. Comparisons of experimental

  13. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  14. The arc of Buhler: special considerations when performing pancreaticoduodenectomy.

    PubMed

    Kageyama, Yumiko; Kokudo, Takashi; Amikura, Katsumi; Miyazaki, Yoshihiro; Takahashi, Amane; Sakamoto, Hirohiko

    2016-12-01

    A 74-year-old female was diagnosed as having a carcinoma of the papilla of Vater. Preoperative computed tomography showed stenosis of the celiac trunk and an enlarged artery arising from the superior mesenteric artery (SMA) joining the root of the splenic artery. Since this artery communicated with the SMA and the celiac trunk, independently of the gastroduodenal and dorsal pancreatic arteries, it was considered to be the arc of Buhler (AOB). The arterial blood flow to the liver, spleen, and stomach appeared to depend on the AOB, such that AOB preservation was considered to be essential. A subtotal stomach-preserving pancreaticoduodenectomy with preservation of the AOB was thus performed. Although AOB is a relatively infrequent type of arterial communication between the SMA and the celiac trunk, it needs to be preserved during pancreaticoduodenectomy when celiac trunk stenosis is present. PMID:26951124

  15. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  16. Spinarc gas tungsten arc torch holder

    NASA Technical Reports Server (NTRS)

    Brace, D. F.; Crockett, J. L.

    1970-01-01

    Semiautomatic welding torch enables operator to control arc length, torch angle, and spring tension when welding small diameter aluminum tubing. Tungsten is preset for the weld to make arc initiation easier and to eliminate searching for the joint through a dark welding lens.

  17. Copper coating specification for the RHIC arcs

    SciTech Connect

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  18. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  19. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  20. Purification of tantalum by plasma arc melting

    SciTech Connect

    Dunn, P.S.; Korzekwa, D.R.

    1999-10-26

    Purification of tantalum by plasma arc melting is disclosed. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  1. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  2. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  3. Guiding Center Motion

    SciTech Connect

    Blank, H.J. de

    2004-03-15

    The motion of charged particles in slowly varying electromagnetic fields is analyzed. The strength of the magnetic field is such that the gyro-period and the gyro-radius of the particle motion around field lines are the shortest time and length scales of the system. The particle motion is described as the sum of a fast gyro-motion and a slow drift velocity.

  4. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  5. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects. PMID:10842616

  6. Sensor Control of Robot Arc Welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1983-01-01

    The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.

  7. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  8. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  9. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  10. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  11. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    NASA Astrophysics Data System (ADS)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  12. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  13. Three-dimensional modeling of the plasma arc in arc welding

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hu, J.; Tsai, H. L.

    2008-11-01

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  14. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories.

    PubMed

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  15. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    NASA Astrophysics Data System (ADS)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  16. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  17. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  18. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  19. The Ophiolite - Oceanic Fore-Arc Connection

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Pearce, J. A.; Stern, R. J.; Ishizuka, O.; Petronotis, K. E.

    2014-12-01

    Miyashiro (1973, EPSL) put forward the hypothesis that many ophiolites are generated in subduction zone settings. More recently, ophiolitic sequences including MORB-like basalts underlying boninites or other subduction-related rock types have been linked to near-trench spreading during subduction infancy (e.g., Stern and Bloomer, 1992, GSA Bull.; Shervais, 2001, G-cubed; Stern et al., 2012, Lithos.). These contentions were given strong support by the results of Shinkai 6500 diving in the Izu-Bonin-Mariana (IBM) fore-arc (e.g., Reagan et al., 2010, G-cubed; Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL). Based on widely spaced dives and grab sampling at disbursed dive stops, these studies concluded that the most abundant and most submerged volcanic rocks in the IBM fore-arc are MORB-like basalts (fore-arc basalts or FAB), and that these basalts appear to be part of a crustal sequence of gabbro, dolerite, FAB, boninite, and normal arc lavas overlying depleted peridotite. This ophiolitic sequence was further postulated to make up most or all of the IBM fore-arc from Guam to Japan, with similar magmatic ages (52 Ma FAB to 45 Ma arc) north to south, reflecting a western-Pacific wide subduction initiation event. At the time of this writing, IODP Expedition 352 is about to set sail, with a principal goal of drilling the entire volcanic sequence in the Bonin fore-arc. This drilling will define the compositional gradients through the volcanic sequence associated with subduction initiation and arc infancy, and test the hypothesized oceanic fore-arc - ophiolite genetic relationship. A primary goal of this expedition is to illustrate how mantle compositions and melting processes evolved during decompression melting of asthenosphere during subduction initiation to later flux melting of depleted mantle. These insights will provide important empirical constraints for geodynamic models of subduction initiation and early arc development.

  20. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  1. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  2. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  3. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  4. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  5. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful. PMID:24405950

  6. Motion discrimination of throwing a baseball using forearm electrical impedance

    NASA Astrophysics Data System (ADS)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  7. Roots in plant ecology.

    PubMed

    Cody, M L

    1986-09-01

    In 1727 the pioneer vegetation scientist Stephen Hales realized that I much that was of importance to his subject material took place below on ground. A good deal of descriptive work on plant roots and root systems was done in the subsequent two centuries; in crop plants especially, the gross morphology of root systems was well known by the early 20th century. These descriptive studies were extended to natural grasslands by Weaver and his associates and to deserts by Cannon by the second decade of this century, but since that time the study of subterranean growth form appears to have lapsed, as a recent review by Kummerow indicates. Nevertheless, growth form is an important aspect of plant ecology, and subterranean growth form is especially relevant to the study of vegetation in and areas (which is the main subject of this commentary). Moreover, there is a real need for more research to be directed towards understanding plant root systems in general. PMID:21227785

  8. Grass Rooting the System

    ERIC Educational Resources Information Center

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  9. Reading with Roots

    ERIC Educational Resources Information Center

    Gibson, Margaret I.

    1986-01-01

    Recommends a method of teaching Russian vocabulary that focuses on new words in context and on their structure: root, prefix, suffix, sound changes, and borrowings. Sources for teachers are given in the bibliography. (LMO)

  10. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  11. The phenomenology of rooting.

    PubMed

    Kerievsky, Bruce Stephen

    2010-09-01

    This paper examines the attractions of passionate involvement in wanting particular outcomes, which is popularly known as rooting. The author's lifelong personal experience is the source of his analysis, along with the insights provided by spiritual literature and especially the work of Dr. Thomas Hora, with whom the author studied for 30 years. The phrase "choiceless awareness," utilized by J. Krishnamurti, and attained via meditation, is seen as the means of transcending a rooting mode of being in the world. PMID:20165983

  12. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  13. Modeling root reinforcement using root-failure Weibull survival function

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Giadrossich, F.; Cohen, D.

    2013-03-01

    Root networks contribute to slope stability through complicated interactions that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamic of root turnover, the quantification of root reinforcement on steep slope is challenging and consequently the calculation of slope stability as well. Although the considerable advances in root reinforcement modeling, some important aspect remain neglected. In this study we address in particular to the role of root strength variability on the mechanical behaviors of a root bundle. Many factors may contribute to the variability of root mechanical properties even considering a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw). The results show that, for both laboratory and field datasets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the tensile force and the elasticity of the roots are the most important equations, as well as the root distribution. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root reinforcement for

  14. Discovering hierarchical motion structure.

    PubMed

    Gershman, Samuel J; Tenenbaum, Joshua B; Jäkel, Frank

    2016-09-01

    Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical motion perception holds that the visual system performs a "vector analysis" of moving objects, decomposing them into common and relative motions. However, this theory does not specify how to resolve ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector analysis and show that it can account for classic results from dot motion experiments, as well as new experimental data. Our theory takes a step towards understanding how moving scenes are parsed into objects. PMID:25818905

  15. Gravisensing in flax roots - results from STS-107

    NASA Astrophysics Data System (ADS)

    Hasenstein, K. H.; Scherp, P.; Ma, Z.

    The goal of the experiment "magnetophoretic induction of curvature in roots" (MICRO) on STS-107 was the induction of curvature in roots by high-gradient magnetic fields (HGMF) in microgravity. The scientific objectives included investigating the growth/curvature pattern in response to a HGMF, the determination of amyloplasts as gravisensing/curvature-inducing structures, and a study of the effects of HGMF and microgravity on the plant cytoskeleton. Flax seeds were germinated in orbit in specially designed seed cassettes. The seeds were oriented so that the emerging roots grew away from the cassette. The magnetic system consisted of ferro-magnetic wedges, magnetized by permanent NdFeB magnets (coercivity > 32k Oe). The HGMF that results from the transition from the high magnetic field density at the wedge tips to air repels diamagnetic amyloplasts. As a result of the previously demonstrated internal displacement of the amyloplasts, the roots were expected to curve as if gravistimulated. Despite successful germination (>90%), the growth rate of the seedlings was significantly lower than comparable controls. Despite the slower growth rate, root curvature was enhanced and initiated earlier than in ground controls. The results indicate that microgravity-grown roots exhibit higher sensitivity for the HGMF than ground controls. The enhanced sensitivity of root curvature in microgravity suggests that the root gravisensing system responds to the displacement of amyloplasts. In the absence of gravity, the higher sensitivity might result from intracellular motion, which in microgravity is likely to be stronger than on the ground.

  16. Subduction, back-arc spreading and global mantle flow

    NASA Technical Reports Server (NTRS)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  17. Towards a theory for Neptune's arc rings

    SciTech Connect

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-08-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus. 15 references.

  18. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  19. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  20. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  1. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  2. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  3. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  4. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-05-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  5. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-04-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  6. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  7. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  8. The Global Array of Primitve Arc Melts

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  9. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  10. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  11. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  12. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-02-01

    azimuthal velocity of the anode melting pool for arc current 12.5 kA root-mean-square (rms) is larger than that for 17.5 kA (rms), which is likely to be caused by the thinner liquid layer, and also a smaller melting pool mass of 12.5 kA.

  13. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  14. Physical and Chemical Variations During Episodic Behavior of Mesozoic Cordilleran Arcs

    NASA Astrophysics Data System (ADS)

    Paterson, S. R.; Kirsch, M.; Cao, W.

    2015-12-01

    Models of episodic or cyclic behavior in Mesozoic Cordilleran continental arcs often examine broad patterns based on a single event or cycle. However, our comparison of multiple events/cycles both in single arc segments and in multiple, along-strike segments over ~15,000 km indicate that significant variations occur. For example during the three flare-ups peaking at ~225, ~161, and ~98 Ma in the Sierran segment, magma addition rates (MARs) indicate that the Triassic flare-up produced 3 times and the Cretaceous ~7 times as much magma as the Jurassic and 100 to 1000 times more magma than during lulls. Isostatic modeling combining arc shortening + MARs thus results in small roots/surface elevations in the Jurassic and Triassic and a large root/surface elevation during the Cretaceous. Age-constrained geochemical data in the Mesozoic Sierra Nevada show both general and specific flare-up versus lull trends. General trends during flare-ups include decrease in ɛNdi median values, and an increase to higher median values of SiO2, 87Sr/86Sri, Sr/Y, and (Sm/Yb)n. However these median values vary dramatically from one flare-up/lull episode to the next. For example the change in 87Sr/86Sri, Sr/Y, (Sm/Yb)n during flare-ups and lulls is not as pronounced for the Triassic and Jurassic events compared to the Cretaceous. And the Early Cretaceous displays unusually high median values in Sr/Y and (Sm/Yb)n. These patterns draw attention to a potential correlation between MARs and geochemical patterns. Although MARs are largely unavailable for other arc segments, along-strike, arc segment comparisons of zircon age spectra indicate flare-up periodicity of ~60-80 Ma over variable spatial scales ranging up to ~6000 km. Variations occur in all of the above geochemical measurements in both general and specific flare-up trends. Our results suggest that driving mechanisms for flare-ups/lulls vary along this Mesozoic arc and that second order effects vary between flare-ups and arc segments.

  15. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Fuessel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2011-06-01

    Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

  16. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  17. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  18. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  19. ATLAS DDM integration in ARC

    NASA Astrophysics Data System (ADS)

    Behrmann, G.; Cameron, D.; Ellert, M.; Kleist, J.; Taga, A.

    2008-07-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous resources in several countries and yet must present a single access point for all data stored within the centre. The middleware framework used in NDGF differs significantly from other Grids, specifically in the way that all data movement and registration is performed by services outside the worker node environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF.

  20. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  1. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  2. Laboratory arc furnace features interchangeable hearths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  3. Magneto-plasma-dynamic arc thruster

    NASA Technical Reports Server (NTRS)

    Burkhart, J. A. (Inventor)

    1973-01-01

    The performance of a magnetoplasmadynamic arc thruster, in the 600 to 2,100 seconds specific impulse range, was improved by locating its cathode in the exhaust beam downstream of the anode and main propellant injection point.

  4. ARC syndrome: an expanding range of phenotypes

    PubMed Central

    Eastham, K; McKiernan, P; Milford, D; Ramani, P; Wyllie, J; van't, H; Lynch, S; Morris, A

    2001-01-01

    AIM—To describe the clinical phenotype in infants with ARC syndrome, the association of arthrogryposis, renal tubular acidosis, and cholestasis.
METHODS—The medical records for six patients with ARC syndrome were reviewed, presenting over 10 years to three paediatric referral centres.
RESULTS—All patients had the typical pattern of arthrogryposis. Renal Fanconi syndrome was present in all but one patient, who presented with nephrogenic diabetes insipidus. Although all patients had severe cholestasis, serum γ glutamyltransferase values were normal. Many of our patients showed dysmorphic features or ichthyosis. All had recurrent febrile illnesses, diarrhoea, and failed to thrive. Blood films revealed abnormally large platelets.
CONCLUSIONS—ARC syndrome exhibits notable clinical variability and may not be as rare as previously thought. The association of Fanconi syndrome, ichthyosis, dysmorphism, jaundice, and diarrhoea has previously been reported as a separate syndrome: our observations indicate that it is part of the ARC spectrum.

 PMID:11668108

  5. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  6. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems. PMID:24630073

  7. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  8. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  9. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  10. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  11. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  12. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  13. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  14. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  15. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  16. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  17. Metal Vapor Arcing Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  18. Hybrid Laser-Arc Welding Tanks Steels

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O.

    2016-04-01

    The results investigate hybrid laser-arc welding of high strength steels using design responsible metallic construction and the highest strength body of vehicles. Welds from modern high strength steels grade Hardox 400, Hardox 450, Armox 600T and AB were created. High power fiber laser LS-15 with output 15 kW and arc rectifier VDU - 1500 DC were used in the experiment. Results of the metallographic research and mechanical tests are presented.

  19. 1981N1 - A Neptune arc?

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    An object in the vicinity of Neptune detected in 1981 by simultaneous stellar occultation measurements at observatories near Tucson, Arizona, was interpreted as a new Neptune satellite. A reinterpretation suggests that it may have instead been a Neptune arc similar to one observed in 1984. The 1981 object, however, did not occult the star during simultaneous observations at Flagstaff, Arizona. This result constrains possible arc geometries.

  20. TH-C-BRD-08: Reducing the Effect of Respiratory Motion On the Delivered Dose in Proton Therapy Through Proper Field Angle Selection

    SciTech Connect

    Matney, J; Park, P; Court, L; Zhu, X; Li, H; Mohan, R; Liu, W; Dong, L

    2014-06-15

    Purpose: This work investigated a novel planning strategy of selecting radiotherapy beam angles that minimizes the change in water equivalent thickness (dWET) during respiration in order to reduce the effects of respiratory motion in passively scattered proton therapy (PSPT). Methods: In a clinical trial treating locally-advanced lung cancer with proton therapy, 2–4 co-planar beams were previously selected by dosimetrists in the design of physician-approved PSPT treatment plans. The authors identified a cohort of patients in which respiratory motion affected the planned PSPT dose delivery. For this cohort, this work analyzed dWET during respiration over a 360 degree arc of potential treatment angles around the patient: the dWET was defined as the difference in WET between the full-exhale (T50) and full-inhale (T0) phases of the simulation 4DCT. New PSPT plans were redesigned by selecting new beam angles that demonstrated significant reduction in the value of dWET. Between the T50 and T0 phases, the root-mean-square deviation of dose and the change in dose-volume histogram curves (dAUC) for anatomical structures were calculated to compare the original to dWET reduction plans. Results: To date, three plans were retrospectively redesigned based on dWET analysis. In the dWET reduction plan, the root mean square dose (T50-T0) was reduced by 15–35% and the DVH dAUC values were reduced by more than 60%.The PSPT plans redesigned by selecting appropriate field angles to minimize dWET demonstrated less dosimetric variation due to respiration. Conclusion: We have introduced the use of a new metric to quantify respiratory motion in proton therapy: dWET. The use of dWET allows us to minimize the impact of respiratory motion of the entire anatomy in the beam path. This work is a proof of principle that dWET could suggest field angles in proton therapy that are more robust to the effects of respiratory motion.

  1. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  2. Structure of an energetic narrow discrete arc

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.

    1990-01-01

    Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.

  3. Dynamics of a discrete auroral arc

    NASA Technical Reports Server (NTRS)

    Bruening, K.; Goertz, C. K.

    1986-01-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  4. Klystron Gun Arcing and Modulator Protection

    SciTech Connect

    Gold, S

    2004-05-04

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc.

  5. Dynamics of a discrete auroral arc

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1986-06-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  6. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  7. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  8. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  9. Recent ARC developments: Through modularity to interoperability

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Cameron, D.; Dóbé, P.; Ellert, M.; Frågåt, T.; Grønager, M.; Johansson, D.; Jönemo, J.; Kleist, J.; Kočan, M.; Konstantinov, A.; Kónya, B.; Márton, I.; Möller, S.; Mohn, B.; Nagy, Zs; Nilsen, J. K.; Ould Saada, F.; Qiang, W.; Read, A.; Rosendahl, P.; Roczei, G.; Savko, M.; Skou Andersen, M.; Stefán, P.; Szalai, F.; Taga, A.; Toor, S. Z.; Wäänänen, A.

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  10. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  11. Exit fluence analysis using portal dosimetry in volumetric modulated arc therapy

    PubMed Central

    Sukumar, Prabakar; Padmanaban, Sriram; Rajasekaran, Dhanabalan; Kannan, Muniyappan; Nagarajan, Vivekanandan

    2012-01-01

    Aim In measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors. Background The use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom. Materials and methods The quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose. Results The maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU. Conclusion It is found from this study that the variation due to patient anatomy and interfraction organ motion is significant. PMID:24377034

  12. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (<15) and moderate 206Pb/204Pb (>19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a

  13. The integrated motion measurement simulation for SOFIA

    NASA Astrophysics Data System (ADS)

    Kaswekar, Prashant; Greiner, Benjamin; Wagner, Jörg

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy SOFIA consists of a B747-SP aircraft, which carries aloft a 2.7-meter reflecting telescope. The image stability goal for SOFIA is 0:2 arc-seconds rms. The performance of the telescope structure is affected by elastic vibrations induced by aeroacoustic and suspension disturbances. Active compensation of such disturbances requires a fast way of estimating the structural motion. Integrated navigation systems are examples of such estimation systems. However they employ a rigid body assumption. A possible extension of these systems to an elastic structure is shown by different authors for one dimensional beam structures taking into account the eigenmodes of the structural system. The rigid body motion as well as the flexible modes of the telescope assembly, however, are coupled among the three axes. Extending a special mathematical approach to three dimensional structures, the aspect of a modal observer based on integrated motion measurement is simulated for SOFIA. It is in general a fusion of different measurement methods by using their benefits and blinding out their disadvantages. There are no mass and stillness properties needed directly in this approach. However, the knowledge of modal properties of the structure is necessary for the implementation of this method. A finite-element model is chosen as a basis to extract the modal properties of the structure.

  14. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  15. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  16. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Lee, C.; Manga, M.

    2012-12-01

    The position of active volcanism relative to the trench in arcs depends on melt focusing processes within the mantle wedge and the geometric parameters of subduction. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where backarc extension dominates, exhibit a more stationary front in time relative to the trench. In addition, crustal indices of magmatism as measured by the ratio of trace elements La/Yb or isotopes 87}Sr/{86Sr covary with arc front migration (e.g., Haschke et al., 2002). Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust. Thickening proceeds through intrusive as well as extrusive volcanism, modulated by tectonics and surface erosion. Migration rate is set by the mantle melt flux into the crust, which decreases as thickening occurs. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop an analytic model of this process that produces migration rates consistent with published data and explains arc fronts that do not move (dominated by extension, such as in the case of intra-oceanic arcs). We present new geochemical and age data from the Peninsular Ranges Batholith that are also consistent with

  17. Stachbotrys Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stachybotrys root rot is caused by Stachybotrys chartarum, a cellulytic saprophytic hyphomycete fungus. The pathogen produces mycotoxins including a host of immunosupressant compounds for human and is one of the causes of the "sick building syndrome." Although S. chartarum is rarely known as a plan...

  18. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  19. "Roots": Medium and Message.

    ERIC Educational Resources Information Center

    Kinnamon, Keneth

    A national telephone survey indicated that audiences rated the television production of "Roots" positively in terms of the following: realistic portrayal of the people and the times; relevance for contemporary race relations; perceived emotional effect; and increased understanding of the psychology of black people. However, a comparison of the…

  20. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  1. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3) "Improving Secondary…

  2. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  3. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  4. SIRTF/IRS cryogenic grating drive mechanism (ARC second positioning at 4 K)

    NASA Technical Reports Server (NTRS)

    Kubitschek, Michael J.

    1991-01-01

    The requirements, design, and test results of a grating drive mechanism for the Infrared Spectrograph (IRS) science instrument on the proposed superfluid helium-cooled Space Infrared Telescope Facility (SIRTF) are described. The IRS grating drive mechanism, tested in the fall of 1989, satisfied all performance requirements in vacuum at 4 K. Measured mechanism performance included: 1.4 arc sec root-mean-square (rms) error positioning resolution; 2.2 arc sec rms position repeatability error, less than 10 millijoules/deg dissipated power; and 170 deg angular range of travel. Mechanisms that precisely position optical elements at very low cryogenic temperatures (at/below 4 K) are vital to the operating success of a number of proposed infrared scientific instruments like those in SIRTF.

  5. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  6. The effect of iron vapor on electron density of hyperbaric arc plasma

    SciTech Connect

    Ogawa, Yoji

    1993-12-31

    In the hyperbaric arc welding, the arc characteristics are very strongly affected by the local density of iron vapor, because of its lower ionization potential compared with those of the components of shielding gas for hyperbaric welding such as argon and helium. The set of Saha-Eggert equations which include the ionization of iron vapor is solved from the assumption of local thermodynamic equilibrium. Particle densities of argon-helium mixed shielding gas which is contaminated by iron vapor are calculated for temperatures between 3,000 and 30,000 K and pressures between 0.1 and 100 atmospheres (0.01 and 10 MPa). The results show that electron densities at relatively low temperature are increased by iron vapor, and the amount is directly proportional to the square root of contaminated coefficient of iron vapor in the shielding gas. The effect of component ratios of argon and helium on electron densities is also considered in detail.

  7. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  8. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  9. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  10. Body Motion and Graphing.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy

    1998-01-01

    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  11. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  12. Motion through Syntactic Frames

    ERIC Educational Resources Information Center

    Feist, Michele I.

    2010-01-01

    The introduction of (Talmy, 1985), (Talmy, 1985) and (Talmy, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the…

  13. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of nature,…

  14. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  15. Naive Theories of Motion.

    ERIC Educational Resources Information Center

    McCloskey, Michael

    Everyday life provides individuals with countless opportunities for observing and interacting with objects in motion. Although everyone presumably has some sort of knowledge about motion, it is by no means clear what form(s) this knowledge may take. The research described in this paper determined what sorts of knowledge are in fact acquired…

  16. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  17. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  18. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  19. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  20. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  1. Brownian motion goes ballistic

    NASA Astrophysics Data System (ADS)

    Florin, Ernst-Ludwig

    2012-02-01

    It is the randomness that is considered the hallmark of Brownian motion, but already in Einstein's seminal 1905 paper on Brownian motion it is implied that this randomness must break down at short time scales when the inertia of the particle kicks in. As a result, the particle's trajectories should lose its randomness and become smooth. The characteristic time scale for this transition is given by the ratio of the particle's mass to its viscous drag coefficient. For a 1 μm glass particle in water and at room temperature, this timescale is on the order of 100 ns. Early calculations, however, neglected the inertia of the liquid surrounding the particle which induces a transition from random diffusive to non-diffusive Brownian motion already at much larger timescales. In this first non-diffusive regime, particles of the same size but with different densities still move at almost the same rate as a result of hydrodynamic correlations. To observe Brownian motion that is dominated by the inertia of the particle, i.e. ballistic motion, one has to observe the particle at significantly shorter time scales on the order of nanoseconds. Due to the lack of sufficiently fast and precise detectors, such experiments were so far not possible on individual particles. I will describe how we were able to observe the transition from hydrodynamically dominated Brownian motion to ballistic Brownian motion in a liquid. I will compare our data with current theories for Brownian motion on fast timescales that take into account the inertia of both the liquid and the particle. The newly gained ability to measure the fast Brownian motion of an individual particle paves the way for detailed studies of confined Brownian motion and Brownian motion in heterogeneous media. [4pt] [1] Einstein, A. "Uber die von der molekularkinetischen Theorie der W"arme geforderte Bewegung von in ruhenden Fl"ussigkeiten suspendierten Teilchen. Ann. Phys. 322, 549--560 (1905). [0pt] [2] Lukic, B., S. Jeney, C

  2. Cortical motion deafness.

    PubMed

    Ducommun, Christine Y; Michel, Christoph M; Clarke, Stephanie; Adriani, Michela; Seeck, Margitta; Landis, Theodor; Blanke, Olaf

    2004-09-16

    The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG. PMID:15363389

  3. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  4. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  5. Fine root turnover: a story of root production and root phenology

    NASA Astrophysics Data System (ADS)

    McCormack, M. L.; Adams, T. S.; Smithwick, E. A.; Eissenstat, D. M.

    2012-12-01

    Fine root turnover in terrestrial ecosystems partially controls carbon flow from plants into soils as well the amount of roots available for nutrient and water uptake. However, we have poor understanding of basic patterns and variability in fine root turnover. We address this shortfall through the use of a heuristic model and analysis of a multi-year minirhizotron dataset exploring the impacts of fine root phenology and production on fine root turnover rates across 12 temperate tree species in a common garden experiment. The heuristic model allowed us to calculate fine root turnover given different patterns of root production and different fine root lifespans. Using the model we found that patterns of phenology characterized by a single, concentrated peak resulted in slower calculated root turnover rates while broader and bi-modal production patterns resulted in faster turnover rates. For example, for roots with median lifespans of 91 days, estimates of root turnover increased from 1.5 yr-1 to 4.0 yr-1 between the pattern of concentrated root production and the pattern with root production spread equally throughout the year. Turnover rates observed in the common garden ranged from 0.75 yr-1 to 1.33 yr-1 and 0.93 yr-1 to 2.14 yr-1 when calculated as annual production divided by maximum standing root crop or average standing root crop, respectively. Turnover varied significantly across species and interannual variability in root production and turnover was high. Patterns of root phenology observed at the common garden included concentrated root production in late spring as well as several examples of bi-modal and broader patterns of root production with roots produced across spring, summer and fall. Overall, both phenology and total root production impacted estimates of root turnover, particularly for short-lived fine roots with median lifespans of less than one year. Our results suggest that better understanding fine root phenology and production will improve our

  6. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  7. Gas Metal Arc Welding and Flux-Cored Arc Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    These instructional materials are designed to improve instruction in Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW). The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and…

  8. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  9. Deep inside a neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali)

    NASA Astrophysics Data System (ADS)

    Berger, Julien; Caby, Renaud; Liégeois, Jean-Paul; Mercier, Jean-Claude C.; Demaiffe, Daniel

    2011-10-01

    We show here that the Amalaoulaou complex, in the Pan-African belt of West Africa (Gourma, Mali), corresponds to the lower and middle sections of a Neoproterozoic intra-oceanic arc. This complex records a 90-130-Ma-long evolution of magmatic inputs and differentiation above a subducting oceanic slab. Early c. 793 Ma-old metagabbros crystallised at lower crustal or uppermost mantle depths (25-30 km) and have geochemical characteristic of high-alumina basalts extracted from a depleted mantle source slightly enriched by slab-derived sedimentary components ((La/Sm)N < 1; ɛNd: +5.4-6.2; 87Sr/86Sr: 0.7027-0.7029). In response to crustal thickening, these mafic rocks were recrystallised into garnet-granulites (850-1,000°C; 10-12 kbar) and subject to local dehydration-melting reactions, forming trondhjemititic leucosomes with garnet-clinopyroxene-rutile residues. Slightly after the granulitic event, the arc root was subject to strong HT shearing during partial exhumation (detachment faults/rifting or thrusting), coeval with the emplacement of spinel- and garnet-pyroxenite dykes crystallised from a high-Mg andesitic parental magma. Quartz and hornblende-gabbros (700-660 Ma) with composition typical of hydrous volcanic rocks from mature arcs ((La/Sm)N: 0.9-1.8; ɛNd: +4.6 to +5.2; 87Sr/86Sr: 0.7028-0.7031) were subsequently emplaced at mid-arc crust levels (~15 km). Trace element and isotopic data indicate that magmas tapped a depleted mantle source significantly more enriched in oceanic sedimentary components (0.2%). Exhumation occurred either in two stages (700-660 and 623 Ma) or in one stage (623 Ma) with a final exhumation of the arc root along cold P-T path (550°C, 6-9 kbar; epidote-amphibolite and greenschist facies conditions) during the main Pan-African collision event (620-580 Ma). The composition of magmas forming the Cryogenian Amalaoulaou arc and the processes leading to intra-arc differentiation are strikingly comparable to those observed in the deep section

  10. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  11. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  12. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  13. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  14. Wet melting along the Tonga Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.

    2010-12-01

    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  15. The Physiology of Adventitious Roots.

    PubMed

    Steffens, Bianka; Rasmussen, Amanda

    2016-02-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  16. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  17. BROADBAND PHOTOMETRY OF 105 GIANT ARCS: REDSHIFT CONSTRAINTS AND IMPLICATIONS FOR GIANT ARC STATISTICS

    SciTech Connect

    Bayliss, Matthew B.

    2012-01-10

    We measure the photometric properties of 105 giant arcs that were identified in systematic searches for galaxy-cluster-scale strong lenses in the Second Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. The cluster lenses span 0.2 < z{sub l} < 1.2 in redshift, with a median z-bar{sub l}=0.58. Using broadband color criteria we sort the entire arc sample into redshift bins based on u-g and g-r colors, and also r-z colors for the {approx}90% of arcs that have z-band data. This analysis yields broad redshift constraints with 71{sup +5}{sub -4%} of the arcs at z {>=} 1.0, 64{sup +6}{sub -4%} at z {>=} 1.4, 56{sup +5}{sub -4%} at z {>=} 1.9, and 21{sup +4}{sub -2%} at z {>=} 2.7. The remaining 29{sup +03}{sub -5%} have z < 1. The inferred median redshift is z-bar{sub s}= 2.0{+-}0.1, in good agreement with a previous determination from a smaller sample of brighter arcs (g {approx}< 22.5). This agreement confirms that z{sub s} = 2.0 {+-} 0.1 is the typical redshift for giant arcs with g {approx}< 24 that are produced by cluster-scale strong lenses and that there is no evidence for strong evolution in the redshift distribution of arcs over a wide range of g-band magnitudes (20 {<=} g {<=}24). Establishing that half of all giant arcs are at z {approx}> 2 contributes significantly toward relieving the tension between the number of arcs observed and the number expected in a {Lambda}CDM cosmology, but there is considerable evidence to suggest that a discrepancy persists. Additionally, this work confirms that forthcoming large samples of giant arcs will supply the observational community with many magnified galaxies at z {approx}> 2.

  18. Gas Arcs in Comet Hyakutake: Revisited

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  19. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2005-03-15

    Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.

  20. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  1. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  2. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  3. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  4. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  5. Vertical Arc for ILC Low Emittance Transport

    SciTech Connect

    Tenenbaum, P.; Woodley, M.; /SLAC

    2005-06-07

    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

  6. Atypical Integration of Motion Signals in Autism Spectrum Conditions

    PubMed Central

    Robertson, Caroline E.; Martin, Alex; Baker, Chris I.; Baron-Cohen, Simon

    2012-01-01

    Vision in Autism Spectrum Conditions (ASC) is characterized by enhanced perception of local elements, but impaired perception of global percepts. Deficits in coherent motion perception seem to support this characterization, but the roots and robustness of such deficits remain unclear. We aimed to investigate the dynamics of the perceptual decision-making network known to support coherent motion perception. In a series of forced-choice coherent motion perception tests, we parametrically varied a single stimulus dimension, viewing duration, to test whether the rate at which evidence is accumulated towards a global decision is atypical in ASC. 40 adult participants (20 ASC) performed a classic motion discrimination task, manually indicating the global direction of motion in a random-dot kinematogram across a range of coherence levels (2–75%) and stimulus-viewing durations (200–1500 ms). We report a deficit in global motion perception at short viewing durations in ASC. Critically, however, we found that increasing the amount of time over which motion signals could be integrated reduced the magnitude of the deficit, such that at the longest duration there was no difference between the ASC and control groups. Further, the deficit in motion integration at the shortest duration was significantly associated with the severity of autistic symptoms in our clinical population, and was independent from measures of intelligence. These results point to atypical integration of motion signals during the construction of a global percept in ASC. Based on the neural correlates of decision-making in global motion perception our findings suggest the global motion deficit observed in ASC could reflect a slower or more variable response from the primary motion area of the brain or longer accumulation of evidence towards a decision-bound in parietal areas. PMID:23185249

  7. OCT Motion Correction

    NASA Astrophysics Data System (ADS)

    Kraus, Martin F.; Hornegger, Joachim

    From the introduction of time domain OCT [1] up to recent swept source systems, motion continues to be an issue in OCT imaging. In contrast to normal photography, an OCT image does not represent a single point in time. Instead, conventional OCT devices sequentially acquire one-dimensional data over a period of several seconds, capturing one beam of light at a time and recording both the intensity and delay of reflections along its path through an object. In combination with unavoidable object motion which occurs in many imaging contexts, the problem of motion artifacts lies in the very nature of OCT imaging. Motion artifacts degrade image quality and make quantitative measurements less reliable. Therefore, it is desirable to come up with techniques to measure and/or correct object motion during OCT acquisition. In this chapter, we describe the effect of motion on OCT data sets and give an overview on the state of the art in the field of retinal OCT motion correction.

  8. Hairy roots are more sensitive to auxin than normal roots

    PubMed Central

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  9. Hairy roots are more sensitive to auxin than normal roots.

    PubMed

    Shen, W H; Petit, A; Guern, J; Tempé, J

    1988-05-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  10. Root canal retained restorations: 3. Root-face attachments.

    PubMed

    Dummer, P M; Edmunds, D H; Gidden, J R

    1990-10-01

    It has been common practice for many years to use retained roots to provide support and stability for partial or full dentures. The retention of such overdentures is greatly enhanced if the remaining roots are modified and restored with posts and root-face attachments. The final article in this series on root canal retained restorations classifies and describes some of the root-face attachments currently available, and also describes a number of prefabricated post systems with integral overdenture attachments. Guidelines for clinical and laboratory procedures are given. PMID:2097234

  11. The IMF dependence of the local time of transpolar arcs

    NASA Astrophysics Data System (ADS)

    Fear, R.; Milan, S. E.

    2011-12-01

    Transpolar arcs or polar cap arcs are auroral features which are observed within the polar cap. They occur predominantly during intervals of northward IMF (Berkey et al., 1976). There is mixed evidence for IMF BY control of the local time at which the arcs initially form; Gussenhoven (1982) found that polar cap arcs formed preferentially post-midnight when BY < 0 (evaluated over 1 or 2 hours preceding the start of the arc) and pre-midnight when BY > 0, whereas Valladares et al (1991) found no clear dependency. The only previous statistical study of globally-imaged transpolar arcs (Kullen et al., 2002) found differing results for moving and non-moving arcs, concluding that three different models were required to identify (i) moving arcs, (ii) stationary arcs near the dawn/dusk portion of the main oval, and (iii) stationary arcs in the midnight sector. In this presentation, we show the results of a statistical study of 131 transpolar arcs observed by the FUV cameras on the IMAGE satellite between June 2000 and September 2005. We find that arcs tend to form following the same dependency on BY as identified by Gussenhoven (1982), whether moving or not. We find that the correlation between the magnetic local time at which the arc forms and the IMF BY component is relatively weak if the IMF is only averaged over the hour preceding the arc formation, but becomes stronger if the IMF is evaluated between 1 and 4 hours before the arc first forms. This is consistent with the timescale that is expected for newly-opened magnetospheric flux to reach the magnetotail plasma sheet (Dungey, 1961; Milan et al., 2007), and is therefore consistent with the suggestion that transpolar arcs map to the plasma sheet. We suggest that the similar dependence of stationary and moving arcs on the IMF BY component might imply that it is possible to explain both types of arc in terms of a single mechanism.

  12. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  13. Motion Recognition and Modifying Motion Generation for Imitation Robot Based on Motion Knowledge Formation

    NASA Astrophysics Data System (ADS)

    Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.

  14. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  15. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  16. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  17. Springback in root gravitropism.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation. PMID:11537456

  18. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  19. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  20. Neotectonic evolution of the Anaximander Mountains at the junction of the Hellenic and Cyprus arcs

    NASA Astrophysics Data System (ADS)

    ten Veen, Johan H.; Woodside, John M.; Zitter, Tiphaine A. C.; Dumont, Jean F.; Mascle, Jean; Volkonskaia, Anna

    2004-10-01

    evidence of strike-slip deformation. Close examination of newly calculated predicted relative plate motions between Africa (from NUVEL-1A) and Anatolia (from GPS measurements) indicates that plate motion vectors change rapidly at the junction between the Hellenic and Cyprus arcs because of the close proximity to the pole of Anatolian rotation. These calculations indicate that along both the eastern Hellenic Arc and the western Cyprus arcs (the Florence Rise), the relative motion between the Anatolian and African plates is sinistral. On the southern Florence Rise, deformation is characterized by pure left-lateral faulting, whereas farther northwest, in the eastern Anaximander Mountains, the component of strike-slip decreases. Although arc-normal convergence predicts the occurrence of thrust faulting, southwestward trench retreat also causes an extension internal to this outer-arc domain, such that the preexisting N120°E-striking thrust faults of the Aksu phase have been reactivated as normal to oblique normal faults during the Pliocene and Quaternary. The observed sinistral faulting on faults striking N70°E in the western mountains is consistent with the relative plate motion along the eastern Hellenic Arc and merges with the extensional domain in the eastern mountains.

  1. Along-arc and inter-arc variations in volcanic gas CO2/S signature

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Robidoux, Philippe; Fischer, Tobias

    2015-04-01

    Improving the current estimates of the global volcanic arc CO2 output requires a more accurate knowledge of the volcanic gas CO2/S ratio signature of each individual arc segment. This, when multiplied by sulphur (S) productivity of each arc segment (derived by either studies on melt inclusions or UV-based gas measurements), could in principle yield the individual arc CO2 output and, by summation, the global arc CO2 output. Unfortunately, the process is complicated, among others, by the limited volcanic gas dataset we have available, particularly for poorly explored, but potentially highly productive arc segments (Indonesia, Papua New Guinea, etc). We here review the currently available dataset of CO2/S ratios in the volcanic gas literature, and combine this with novel gas observations (partially obtained using the currently expanding DCO-DECADE Multi-GAS network) to provide experimental evidence for the existence of substantial variations in volcanic gas chemistry along individual arc segments, and from one arc segment to another. In Central America [1], for instance, we identify distinct volcanic gas CO2/S (molar) ratio signatures for magmatic volatiles in Nicaragua (~3), Costa Rica (~0.5-1.0) and El Salvador (~1.0), which we ascribe to variable extents of sedimentary carbon addition to a MORB-type (Costa Rica-like) mantle wedge. Globally, volcanic gas CO2/S ratios are typically found to be low (~1.0) in arc segments (e.g., Japan, Kuril-Kamchatka, Chile) where small amount of limestones enter the slab; whilst larger slab/crustal carbon contributions typically correspond to higher CO2/S ratio signatures for gases of other arcs, such as Indonesia (~4.0) or Italy (6 to 9). We find that CO2/S ratios of arc gases positively correlate with Ba/La and U/Th ratios in the corresponding magmas, these trace-element ratios being thought as petrological proxies for the addition slab-fluids to the magma generation zone. This relation implies a dominant slab-derivation of carbon

  2. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion.

    PubMed

    Sharp, Warren D; Clague, David A

    2006-09-01

    The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chain's trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion. PMID:16946069

  3. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  4. Recovery of motion parameters from distortions in scanned images

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1997-01-01

    Scanned images, such as those produced by the scanning-laser ophthalmoscope (SLO), show distortions when there is target motion. This is because pixels corresponding to different image regions are acquired sequentially, and so, in essence, are slices of different snapshots. While these distortions create problems for image registration algorithms, they are potentially useful for recovering target motion parameters at temporal frequencies above the frame rate. Stetter, Sendtner and Timberlake measured large distortions in SLO images to recover the time course of rapid horizontal saccadic eye movements. Here, this work is extended with the goal of automatically recovering small eye movements in two dimensions. Eye position during the frame interval is modeled using a low dimensional parametric description, which in turn is used to generate predicted distortions of a reference template. The input image is then registered to the distorted template using normalized cross correlation. The motion parameters are then varied, and the correlation recomputed, to find the motion which maximizes the peak value of the correlation. The location and value of the correlation maximum are determined with sub-pixel precision using biquadratic interpolation, yielding eye position resolution better than 1 arc minute. This method of motion parameter estimation is tested using actual SLO images as well as simulated images. Motion parameter estimation might also be applied to individual video lines in order to reduce pipeline delays for a near real-time system.

  5. Study on Expansion Process of EDM Arc Plasma

    NASA Astrophysics Data System (ADS)

    Natsu, Wataru; Shimoyamada, Mayumi; Kunieda, Masanori

    In order to understand the phenomena of electrical discharge machining (EDM), the characteristics of transition arc plasma in EDM were investigated. The arc plasma was directly observed with a high speed video camera. In addition, to learn more about arc plasma expansion, plasma temperature was measured by spectroscopy. The arc plasma temperature was obtained by measuring the radiant fluxes of two different wavelengths from the arc plasma and applying the line pair method. Furthermore, a new expansion model for EDM arc plasma was proposed based on the observations, and validated by comparing experimental and computed results of the discharge crater.

  6. The discharge mechanism of the high-temperature arc

    NASA Technical Reports Server (NTRS)

    Busz-Peuckert, G.; Finkelnburg, W.

    1984-01-01

    The mechanism of the high temperature Ar arc is interpreted considering those essential points in which it deviates from the known arcs based on earlier measurements and experiments. The following points are discussed individually: the charge carrier balance, the energy balance, the volt amp characteristics, and the difference between high temperature arcs in Ar and N. Besides the volt amp characteristic of a 10 mm long arc in Ar between 10 and 200 amp, the anode fall, cathode fall, and arc gradient were obtained with the aid of probes. The difference between Ar and N arcs are attributed to variations of the heat conditions and electrical conditions at different temperatures of the gas.

  7. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  8. APPARATUS AND METHOD FOR ARC WELDING

    DOEpatents

    Noland, R.A.; Stone, C.C.

    1960-05-10

    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  9. Dynamic Discharge Arc Driver. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Slapnicar, P. I.

    1975-01-01

    A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.

  10. Photoelectric detection electric arc in energetic arrangements

    NASA Astrophysics Data System (ADS)

    Leks, Jan

    2001-08-01

    The evolution of photoelectric converter, fiber optics and integrated circuits, in particular optic detectors, increases area of applying of the industrial measuring and control systems that used IR detectors. One of the more important is optic detection of electric arc in industrial energetic arrangements. That kind of detection is sure, easy to apply in existing industrial apparatus a d it is cheaper than another way of detection. Additionally optic detection of electric arc is safety for attendance persons and may work on computer system. The article presents an example of circuit with semiconductor IR photoelectric detector to detection of electric arc and points at the most important questions which should be taken into consideration in designing instruments like described one.

  11. Effects of Vibrotactile Feedback on Human Learning of Arm Motions

    PubMed Central

    Bark, Karlin; Hyman, Emily; Tan, Frank; Cha, Elizabeth; Jax, Steven A.; Buxbaum, Laurel J.; Kuchenbecker, Katherine J.

    2015-01-01

    Tactile cues generated from lightweight, wearable actuators can help users learn new motions by providing immediate feedback on when and how to correct their movements. We present a vibrotactile motion guidance system that measures arm motions and provides vibration feedback when the user deviates from a desired trajectory. A study was conducted to test the effects of vibrotactile guidance on a subject’s ability to learn arm motions. Twenty-six subjects learned motions of varying difficulty with both visual (V), and visual and vibrotactile (VVT) feedback over the course of four days of training. After four days of rest, subjects returned to perform the motions from memory with no feedback. We found that augmenting visual feedback with vibrotactile feedback helped subjects reduce the root mean square (rms) angle error of their limb significantly while they were learning the motions, particularly for 1DOF motions. Analysis of the retention data showed no significant difference in rms angle errors between feedback conditions. PMID:25486644

  12. Magnesium isotope geochemistry in arc volcanism

    PubMed Central

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  13. Nonlinear identification of the total baroreflex arc.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2015-12-15

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This "Uryson" model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. PMID:26354845

  14. Magnesium isotope geochemistry in arc volcanism.

    PubMed

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  15. Magnesium isotope geochemistry in arc volcanism

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from ‑0.25 to ‑0.10, in contrast to the narrow range that characterizes the mantle (‑0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid‑mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  16. A demonstration of motion base design alternatives for the National Advanced Driving Simulator

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony

    1992-01-01

    A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.

  17. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  18. Projectile Motion Details.

    ERIC Educational Resources Information Center

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  19. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  20. Dizziness and Motion Sickness

    MedlinePlus

    ... special tests of eye motion after warm or cold water or air is used to stimulate the ... Get enough fluids Treat infections, including ear infections, colds, flu, sinus congestion, and other respiratory infections If ...

  1. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  2. Limited range of motion

    MedlinePlus

    ... loss of motion. Some of these disorders include: Cerebral palsy Congenital torticollis Muscular dystrophy Stroke or brain injury ... Rheumatology and musculoskeletal problems. In: Rakel RE, Rakel DP, eds. Textbook of Family Medicine . 8th ed. Philadelphia, ...

  3. Commissioning and quality assurance of Dynamic WaveArc irradiation.

    PubMed

    Sato, Sayaka; Miyabe, Yuki; Takahashi, Kunio; Yamada, Masahiro; Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Yokota, Kenji; Kaneko, Shuji; Mizowaki, Takashi; Monzen, Hajime; Hiraoka, Masahiro

    2015-01-01

    A novel three-dimensional unicursal irradiation technique "Dynamic WaveArc" (DWA), which employs simultaneous and continuous gantry and O-ring rotation during dose delivery, has been implemented in Vero4DRT. The purposes of this study were to develop a commissioning and quality assurance procedure for DWA irradiation, and to assess the accuracy of the mechanical motion and dosimetric control of Vero4DRT. To determine the mechanical accuracy and the dose accuracy with DWA irradiation, 21 verification test patterns with various gantry and ring rotational directions and speeds were generated. These patterns were irradiated while recording the irradiation log data. The differences in gantry position, ring position, and accumulated MU (EG, ER, and EMU, respectively) between the planned and actual values in the log at each time point were evaluated. Furthermore, the doses delivered were measured using an ionization chamber and spherical phantom. The constancy of radiation output during DWA irradiation was examined by comparison with static beam irradiation. The mean absolute error (MAE) of EG and ER were within 0.1° and the maximum error was within 0.2°. The MAE of EMU was within 0.7 MU, and maximum error was 2.7 MU. Errors of accumulated MU were observed only around control points, changing gantry, and ring velocity. The gantry rotational range, in which EMU was greater than or equal to 2.0 MU, was not greater than 3.2%. It was confirmed that the extent of the large differences in accumulated MU was negligibly small during the entire irradiation range. The variation of relative output value for DWA irradiation was within 0.2%, and this was equivalent to conventional arc irradiation with a rotating gantry. In conclusion, a verification procedure for DWA irradiation was designed and implemented. The results demonstrated that Vero4DRT has adequate mechanical accuracy and beam output constancy during gantry and ring rotation. PMID:26103177

  4. Ion source based on the cathodic arc

    DOEpatents

    Sanders, D.M.; Falabella, S.

    1994-02-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  5. Barriers to flashover discharge arcs on Teflon

    NASA Technical Reports Server (NTRS)

    Gossland, M.; Balmain, K. G.

    1982-01-01

    The effect of various barriers (empty gap, copper, Mylar, and nickel mesh) on the probability of simultaneous arc discharging of two physically separated pieces of electron-beam-charged Teflon was studied. For the empty gap barrier, it was found that simultaneous discharges rarely occur when the separation between the samples is greater than approximately 0.4 times the length of their common edge when this length is of the order of 1 cm. Evidence suggests that electromagnetic fields play a larger role than electrons in influencing the occurrence of simultaneous arc discharges.

  6. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  7. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  8. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  9. Arc jet tests of metallic TPS materials.

    NASA Technical Reports Server (NTRS)

    Centolanzi, F. J.; Zimmerman, N. B.; Probst, H. B.; Lowell, C. E.

    1971-01-01

    Seven thoria dispersed nickel base alloys and one cobalt base alloy, candidates for the Metallic Thermal Protection System for the Space Shuttle Vehicle, were tested simultaneously in an arc jet at a nominal test temperature of 1366 deg K (2000 deg F) and pressure of 0.01 atmospheres. The degradation of the materials after 50 one half-hour cycles in the arc jet simulating Space Shuttle entry conditions was determined utilizing techniques including X-ray diffraction, metallography, and electron beam microprobe.

  10. Ion source based on the cathodic arc

    DOEpatents

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  11. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  12. Coupled transverse motion

    SciTech Connect

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  13. Patterns of seismogenesis for giant plate-boundary earthquakes in island-arc-type subduction systems

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2006-12-01

    The global record of giant earthquake occurrence in subduction zones during the instrumental and historical eras is woefully short; only about 16 events with magnitudes above 8.4 are reasonably well documented since 1700. We find no examples of giant (M > 8.4) interplate thrust events and/or wide-ranging tsunamis sourced in the classic island arcs with fast backarc spreading (Bonin, Marianas, Tonga-Kermadec, Vanuatu, and South Scotia). The Sumatra-Andaman Earthquake of 2004 (SAE) ruptured a sector of the INDIA-BURMA subduction boundary and evidently had no known historical antecedents, suggesting that the return time may be many centuries to millennia and consistent with low convergence rates. Moreover, the persistence of rupture to the north in the weakly volcanic Nicobar/Andaman sector gives one pause to reflect on the assumption that island arcs, especially those with active back-arc spreading such as the Marianas, do not produce great interplate- thrust earthquakes. The Andaman/Nicobar subduction segment is an unusual island arc. Only two arc volcanoes occur between the convergent plate boundary west of the Andamans and the backarc ridge/transform system to the east. Backarc spreading in the Andaman/ Nicobar segment is unusual because the NNW spreading directions are nearly parallel to the trench/deformation-front as do the INDIA-BURMA plate motions across it. This geometry suggests that arc-normal extension, trench migration and associated slab normal motions may not mechanically decouple this subduction system. The Nicobar sector of the rupture for the 2004 event is roughly 200 km wide judging from the aftershock distribution; a distribution that persists to the east under the Nicobar Islands, suggesting that the plate-boundary dip is very shallow in that latitude range. If this is correct, then the down-dip limitation on seismogenic slip set by serpentinized forearc mantle (Hyndman et al., 2003) may not control rupture width as it apparently does for many

  14. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen

    2012-04-01

    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  15. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  16. Arcing Model of a Disconnector and its Effect on VFTO

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Wang, Na; Xu, Jianyuan

    2013-07-01

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations.

  17. Mandibular Reconstruction Based on the Concept of Double Arc Reconstruction.

    PubMed

    Sarukawa, Shunji; Noguchi, Tadahide; Kamochi, Hideaki; Sunaga, Ataru; Uda, Hirokazu; Nishino, Hiroshi; Sugawara, Yasushi

    2015-09-01

    The natural mandible has 2 arcs, the marginal arc and the occlusal arc. The marginal arc is situated along the lower margin of the mandible and affects the contour of the lower third of the face. The occlusal arc is situated along the dental arc and affects the stability of prosthodontics. The gap between these 2 arcs widens in the molar area. Our developed concept of "double arc reconstruction" involves making these 2 arcs for the reconstructed mandible. For the double-barrel fibula reconstruction, 2 bone segments are used to make both arcs. For reconstructions using the iliac crest, the double arc is made by inclination of the top of the bone graft toward the lingual side. Ten patients underwent double arc reconstruction: 2 underwent reconstruction with the double-barrel fibula, and 8 underwent reconstruction with the iliac crest. Four patients had a removable denture prosthesis, 1 had an osseointegrated dental implant, and 5 did not require further prosthodontic treatment. The shape of the reconstructed mandible after double arc reconstruction resembles the native mandible, and masticatory function is good with the use of a dental implant or removable denture prosthesis, or even without prosthodontics. PMID:26335321

  18. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1984-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occassionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  19. Control of Arabidopsis Root Development

    PubMed Central

    Petricka, Jalean J.; Winter, Cara M.; Benfey, Philip N.

    2013-01-01

    The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root. PMID:22404466

  20. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment

    PubMed Central

    Bedford, James L.; Fast, Martin F.; Nill, Simeon; McDonald, Fiona M.A.; Ahmed, Merina; Hansen, Vibeke N.; Oelfke, Uwe

    2015-01-01

    Background and purpose The latency of a multileaf collimator (MLC) tracking system used to overcome respiratory motion causes misalignment of the treatment beam with respect to the gross tumour volume, which may result in reduced target coverage. This study investigates the magnitude of this effect. Material and methods Simulated superior–inferior breathing motion was used to construct histograms of isocentre offset with respect to the gross tumour volume (GTV) for a variety of tracking latencies. Dose distributions for conformal volumetric modulated arc therapy (VMAT) arcs were then calculated at a range of offsets and summed according to these displacement histograms. The results were verified by delivering the plans to a Delta4 phantom on a motion platform. Results In the absence of an internal target margin, a tracking latency of 150 ms reduces the GTV D95% by approximately 2%. With a margin of 2 mm, the same drop in dose occurs for a tracking latency of 450 ms. Lung V13Gy is unaffected by a range of latencies. These results are supported by the phantom measurements. Conclusions Assuming that internal motion can be modelled by a rigid translation of the patient, MLC tracking of conformal VMAT can be effectively accomplished in the absence of an internal target margin for substantial breathing motion (4 s period and 20 mm peak–peak amplitude) so long as the system latency is less than 150 ms. PMID:26277856