Science.gov

Sample records for archaebacterium pyrococcus furiosus

  1. Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus

    SciTech Connect

    Brown, S.H.; Costantino, H.R.; Kelly, R.M. Univ. of Maryland, Baltimore )

    1990-07-01

    The hyperthermophilic archaebacterium Pyrococcus furiosus produces several amylolytic enzymes in response to the presence of complex carbohydrates in the growth medium. These enzyme activities, {alpha}-glucosidase, pullulanase, and {alpha}-amylase, were detected in both cell extracts and culture supernatants. All activities were characterized by temperature optima of at least 100{degree}C as well as a high degree of thermostability. The existence of this collection of activities in P. furiosus suggests that polysaccharide availability in its growth environment is a significant aspect of the niche from which it was isolated.

  2. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C.

    PubMed Central

    Costantino, H R; Brown, S H; Kelly, R M

    1990-01-01

    Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h. Images PMID:2163383

  3. Operon prediction in Pyrococcus furiosus

    PubMed Central

    Tran, Thao T.; Dam, Phuongan; Su, Zhengchang; Poole, Farris L.; Adams, Michael W. W.; Zhou, G. Tong; Xu, Ying

    2007-01-01

    Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data. PMID:17148478

  4. Pyrococcus furiosus strains and methods of using same

    DOEpatents

    Lipscomb, Gina L; Farkas, Joel Andrew; Adams, Michael W. W.; Westpheling, Janet

    2015-01-06

    Provided herein are methods for transforming a Pyrococcus furiosus with a polynucleotide. In one embodiment, the method includes contacting a P. furiosus with a polynucleotide under conditions suitable for uptake of the polynucleotide by the P. furiosus, and identifying transformants at a frequency of, for instance, at least 10.sup.3 transformants per microgram DNA. Also provided are isolated Pyrococcus furiosus having the characteristics of Pyrococcus furiosus COM1, and plasmids that include an origin of replication that functions in a Pyrococcus furiosus. The plasmid is stable in a recipient P. furiosus without selection for more than 100 generations and is structurally unchanged after replication in P. furiosus for more than 100 generations.

  5. Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium Pyrococcus furiosus†

    PubMed Central

    Blumentals, I. I.; Itoh, M.; Olson, G. J.; Kelly, R. M.

    1990-01-01

    Polysulfides formed through the breakdown of elemental sulfur or other sulfur compounds were found to be reduced to H2S by the hyperthermophilic archaebacterium Pyrococcus furiosus during growth. Metabolism of polysulfides by the organism was dissimilatory, as no incorporation of 35S-labeled elemental sulfur was detected. However, [35S]cysteine and [35S]methionine were incorporated into cellular protein. Contact between the organism and elemental sulfur is not necessary for metabolism. The sulfide generated from metabolic reduction of polysulfides dissociates to a strong nucleophile, HS−, which in turn opens up the S8 elemental sulfur ring. In addition to H2S, P. furiosus cultures produced methyl mercaptan in a growth-associated fashion. PMID:16348181

  6. Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus

    PubMed Central

    Negron, Leonardo; Patchett, Mark L.; Parker, Emily J.

    2011-01-01

    Dehydroquinate synthase (DHQS) catalyses the second step of the shikimate pathway to aromatic compounds. DHQS from the archaeal hyperthermophile Pyrococcus furiosus was insoluble when expressed in Escherichia coli but was partially solubilised when KCl was included in the cell lysis buffer. A purification procedure was developed, involving lysis by sonication at 30°C followed by a heat treatment at 70°C and anion exchange chromatography. Purified recombinant P. furiosus DHQS is a dimer with a subunit Mr of 37,397 (determined by electrospray ionisation mass spectrometry) and is active over broad pH and temperature ranges. The kinetic parameters are KM (3-deoxy-D-arabino-heptulosonate 7-phosphate) 3.7 μM and kcat 3.0 sec−1 at 60°C and pH 6.8. EDTA inactivates the enzyme, and enzyme activity is restored by several divalent metal ions including (in order of decreasing effectiveness) Cd2+, Co2+, Zn2+, and Mn2+. High activity of a DHQS in the presence of Cd2+ has not been reported for enzymes from other sources, and may be related to the bioavailability of Cd2+ for P. furiosus. This study is the first biochemical characterisation of a DHQS from a thermophilic source. Furthermore, the characterisation of this hyperthermophilic enzyme was carried out at elevated temperatures using an enzyme-coupled assay. PMID:21603259

  7. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus.

    PubMed

    Wu, Chang-Hao; McTernan, Patrick M; Walter, Mary E; Adams, Michael W W

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed. PMID:26543406

  8. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    PubMed Central

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed. PMID:26543406

  9. Structure of hyperthermophilic β-glucosidase from Pyrococcus furiosus

    PubMed Central

    Kado, Yuji; Inoue, Tsuyoshi; Ishikawa, Kazuhiko

    2011-01-01

    Three categories of cellulases, endoglucanases, cellobiohydrolases and β-glucosidases, are commonly used in the process of cellulose saccharification. In particular, the activity and characteristics of hyperthermophilic β-glucosidase make it promising in industrial applications of biomass. In this paper, the crystal structure of the hyperthermophilic β-glucosidase from Pyrococcus furiosus (BGLPf) was determined at 2.35 Å resolution in a new crystal form. The structure showed that there is one tetramer in the asymmetric unit and that the dimeric molecule exhibits a structure that is stable towards sodium dodecyl sulfate (SDS). The dimeric molecule migrated in reducing SDS polyacrylamide gel electrophoresis (SDS–PAGE) buffer even after boiling at 368 K. Energy calculations demonstrated that one of the two dimer interfaces acquired the largest solvation free energy. Structural comparison and sequence alignment with mesophilic β-glucosidase A from Clostridium cellulovorans (BGLACc) revealed that the elongation at the C-terminal end forms a hydrophobic patch at the dimer interface that might contribute to hyperthermostability. PMID:22139147

  10. Neutron diffraction studies on rubredoxin from Pyrococcus furiosus.

    PubMed

    Bau, Robert

    2004-01-01

    Single-crystal neutron diffraction data up to a resolution of 1.5 A have been collected at room temperature on two forms of rubredoxin using the BIX-3 diffractometer at the JRR-3 reactor of the Japan Atomic Energy Research Institute (JAERI). Rubredoxin is a small iron-sulfur redox protein with 53 amino acid residues, and the source of this particular protein is the hyperthermophile Pyrococcus furiosus, a microorganism that normally lives at temperatures near that of boiling water. Data were collected on crystals of the wild-type protein and on a mutant in which three of the residues have been replaced. In this paper we will be describing several sets of results arising from these high-resolution neutron structure determinations: (a) the H/D exchange pattern of the N-H bonds of the main backbone, which give information about which regions of the molecule are more exposed to solvent; (b) the orientations of some of the O-D bonds in the protein, information which is often not obtainable from X-ray results; (c) the structure and appearance of water molecules in the protein crystals; and (d) some structural features which may help rationalize the remarkable thermal stability of the wild-type protein from this intriguing microorganism PMID:14646139

  11. Structure of hyperthermophilic β-glucosidase from Pyrococcus furiosus.

    PubMed

    Kado, Yuji; Inoue, Tsuyoshi; Ishikawa, Kazuhiko

    2011-12-01

    Three categories of cellulases, endoglucanases, cellobiohydrolases and β-glucosidases, are commonly used in the process of cellulose saccharification. In particular, the activity and characteristics of hyperthermophilic β-glucosidase make it promising in industrial applications of biomass. In this paper, the crystal structure of the hyperthermophilic β-glucosidase from Pyrococcus furiosus (BGLPf) was determined at 2.35 Å resolution in a new crystal form. The structure showed that there is one tetramer in the asymmetric unit and that the dimeric molecule exhibits a structure that is stable towards sodium dodecyl sulfate (SDS). The dimeric molecule migrated in reducing SDS polyacrylamide gel electrophoresis (SDS-PAGE) buffer even after boiling at 368 K. Energy calculations demonstrated that one of the two dimer interfaces acquired the largest solvation free energy. Structural comparison and sequence alignment with mesophilic β-glucosidase A from Clostridium cellulovorans (BGLACc) revealed that the elongation at the C-terminal end forms a hydrophobic patch at the dimer interface that might contribute to hyperthermostability. PMID:22139147

  12. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    DOE PAGESBeta

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity’s growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus ,more » a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.« less

  13. Pyrococcus Furiosus Genome Supplementary Data from the Adams Laboratory at the University of Georgia

    DOE Data Explorer

    Adams, Michael W.W.; Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmitta; Zhou, J.

    The research in the Adams Laboratory focuses on the physiology of hyperthermophilic organisms with an emphasis on metal-containing enzymes in the hyperthermophilic marine archaeon Pyrococcus furiosus. Three of the many articles from this University of Georgia lab have supplementary materials that are available on the Adams Lab website. All three sets of data are Open Reading Frames (ORFs) used for DNA microarray experiments and the changes in signal intensities. The full citations for the three articles are: 1) Weinberg, M. V., Schut, G. J., Brehm, S., Datta, S. and Adams, M. W. W. (2005) Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol. 187, 336-348; 2) Schut, G. J., Brehm, S. D., Datta, S. and Adams, M. W. W. (2003) "Whole genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides" J. Bacteriol. 185, 3935-3947; Schut, G. J., Zhou, J. and Adams, M. W. W. (2001) "DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus evidence for a new type of sulfur-reducing enzyme" J. Bacteriol. 183, 7027-7036. Note that these articles are copyrighted by the Journal of Bacteriology.

  14. Characterization of the glycolytic enzyme enolase which is abundant in the hyperthermophilic archaeon, Pyrococcus furiosus

    SciTech Connect

    Peak, M.J.; Peak, J.G.; Stevens, F.J.; Blamey, J.; Mai, X.; Zhou, Z.H.; Adams, M.W.W.

    1993-12-31

    High enolase activity, as measured by the conversion of 2-phosphoglycerate to phosphoenolphyruvate, was found in the cytoplasm of Pyrococcus (an anaerobic, hyperthermophilic archaeon that grows optimally at 100{degree}C). In this organism, the enzyme probably functions in a sugar fermentation pathway. The enzyme was purified to homogeneity. It had a temperature optimum of >90 {degree}C, and a pH optimum of 8.1. The enzyme was extremely thermostable with a half time for inactivation at 100{degree}C of 40 min. In contrast, an enolase from yeast was inactivated in 1 min at 88{degree}C. Both the P. furiosus and yeast enzymes required a metal ion for activity, but whereas the yeast enzyme has an absolute requirement for Mg{sup ++} the P. furiosus enolase was equally active in the presence of Mn{sup ++}. Both enzymes were competitively inhibited by citrate. P. furiosus enolase, as for mesophilic enolases, probably has a homodimeric structure with subunit M{sub r} greater than 45,000. A highly conserved sequence of eight amino acids in the N-terminal region was found in enolases from P. furiosus and a wide range of other organisms including bacteria, yeast, birds, and mammals.

  15. Characterization of UDP amino sugars as major phosphocompounds in the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Ramakrishnan, V; Teng, Q; Adams, M W

    1997-01-01

    The archaeon Pyrococcus furiosus is a strictly anaerobic heterotroph that grows optimally at 100 degrees C by the fermentation of carbohydrates. It is known to contain high concentrations of novel intracellular solutes such as beta-mannosylglycerate and di-myo-inositol 1,1'-phosphate (DIP) (L. O. Martins and H. Santos, Appl. Environ. Microbiol. 61:3299-3303, 1995). Here, 31P nuclear magnetic resonance (NMR) spectroscopy was used to show that this organism also accumulates another type of phospho compound, as revealed by a major multiplet signal in the pyrophosphate region. The compounds were purified from cell extracts of P. furiosus by anion-exchange and gel filtration chromatographic procedures and were structurally analyzed by 1H, 13C, and 31P NMR spectroscopy. They were identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine. Unambiguous characterizations and complete assignments of 1H and 13C resonances from such sugars have not been previously reported. In vitro 31P NMR spectroscopic analyses showed that, in contrast to DIP, which is maintained at a constant intracellular concentration (approximately 32 mM) throughout the growth phase of P. furiosus, the UDP amino sugars accumulated (to approximately 14 mM) only during the late log phase. The possible biochemical roles of these compounds in P. furiosus are discussed. PMID:9045806

  16. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus.

    PubMed

    Schut, Gerrit J; Lipscomb, Gina L; Nguyen, Diep M N; Kelly, Robert M; Adams, Michael W W

    2016-01-01

    Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na(+)/H(+) antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na(+) motive force that is used to conserve energy by a Na(+)-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms. PMID:26858706

  17. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    PubMed Central

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; Kelly, Robert M.; Adams, Michael W. W.

    2016-01-01

    Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms. PMID:26858706

  18. Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus

    DOE PAGESBeta

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; Kelly, Robert M.; Adams, Michael W. W.

    2016-01-29

    In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificialmore » chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.« less

  19. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.

    PubMed

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S; Wolterbeek, Hubert Th; van Loosdrecht, Mark C M; Hagen, Wilfred R

    2015-06-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes (32)P and (76)As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water. PMID:25817554

  20. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain.

    PubMed

    Meagher, Martin; Enemark, Eric J

    2016-07-01

    The crystal structure of the N-terminal domain of the Pyrococcus furiosus minichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation. PMID:27380371

  1. Functional reconstitution and characterization of Pyrococcus furiosus RNase P

    PubMed Central

    Tsai, Hsin-Yue; Pulukkunat, Dileep K.; Woznick, Walter K.; Gopalan, Venkat

    2006-01-01

    RNase P, which catalyzes the magnesium-dependent 5′-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyroccocus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its kcat and a 170-fold decrease in Km. In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P. PMID:17053064

  2. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-12-01

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule.

  3. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase*

    PubMed Central

    Chandrayan, Sanjeev K.; McTernan, Patrick M.; Hopkins, R. Christopher; Sun, Junsong; Jenney, Francis E.; Adams, Michael W. W.

    2012-01-01

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production. PMID:22157005

  4. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  5. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    PubMed Central

    Yuan, Hui; Peng, Li; Han, Zhong; Xie, Juan-Juan; Liu, Xi-Peng

    2015-01-01

    Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms. PMID:26441878

  6. Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites.

    PubMed

    Yang, Sung-Jae; Min, Byoung-Chul; Kim, Young-Wan; Jang, Sang-Mok; Lee, Byong-Hoon; Park, Kwan-Hwa

    2007-09-01

    Pyrococcus furiosus thermostable amylase (TA) is a cyclodextrin (CD)-degrading enzyme with a high preference for CDs over maltooligosaccharides. In this study, we investigated the roles of four residues (His414, Gly415, Met439, and Asp440) in the function of P. furiosus TA by using site-directed mutagenesis and kinetic analysis. A variant form of P. furiosus TA containing two mutations (H414N and G415E) exhibited strongly enhanced alpha-(1,4)-transglycosylation activity, resulting in the production of a series of maltooligosaccharides that were longer than the initial substrates. In contrast, the variant enzymes with single mutations (H414N or G415E) showed a substrate preference similar to that of the wild-type enzyme. Other mutations (M439W and D440H) reversed the substrate preference of P. furiosus TA from CDs to maltooligosaccharides. Relative substrate preferences for maltoheptaose over beta-CD, calculated by comparing k(cat)/K(m) ratios, of 1, 8, and 26 for wild-type P. furiosus TA, P. furiosus TA with D440H, and P. furiosus TA with M439W and D440H, respectively, were found. Our results suggest that His414, Gly415, Met439, and Asp440 play important roles in substrate recognition and transglycosylation. Therefore, this study provides information useful in engineering glycoside hydrolase family 13 enzymes. PMID:17630303

  7. Bioenergetic studies of sulfur reduction in the hyperthermophilic archaebacteria Pyrodictium brockii and Pyrococcus furiosus

    SciTech Connect

    Schicho, R.N.

    1992-01-01

    The central focus of this work was the investigation of the central energy generating pathways of two hyperthermophilic sulfidogenic archaebacteria, Pyrodictium brockii and Pyrococcus furiosus. A potential application of these organisms in the desulfurization of coals was investigated. An effective ;means of removing elemental sulfur (S[degrees]) was developed. Analytical and processing applications are discussed. The rates of sulfur removal by the hyperthermophiles were 5 fold those measured of the mesophile, Thiobacillus thiooxidans. The primary energy generating pathway of Pyrodicutium brockii has been termed hydrogen-sulfur autotrophy and is characterized by the oxidation of H[sub 2] and reduction of S[degrees]. The goals of this part of the work were to quantify the stoichiometry of this organism and to estimate Y[sub s[sup MAX

  8. Comparative Analysis of Barophily-Related Amino Acid Content in Protein Domains of Pyrococcus abyssi and Pyrococcus furiosus

    PubMed Central

    Yafremava, Liudmila S.; Di Giulio, Massimo; Caetano-Anollés, Gustavo

    2013-01-01

    Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least ~3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code. PMID:24187517

  9. Molecular and biochemical characterization of the ADP-dependent phosphofructokinase from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Tuininga, J E; Verhees, C H; van der Oost, J; Kengen, S W; Stams, A J; de Vos, W M

    1999-07-23

    Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-dependent glucokinase, the corresponding gene as well as a related open reading frame were detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but did not reveal significant homology with those of other known sugar kinases. The ADP-dependent phosphofructokinase was purified and characterized. The oxygen-stable protein had a native molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It had a specific activity of 88 units/mg at 50 degrees C and a pH optimum of 6.5. As phosphoryl group donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The K(m) values for fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of the phosphofructokinase, raising the K(m) for ADP to 0.34 and 0.41 mM, respectively. PMID:10409652

  10. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.

    PubMed

    Bredberg, K; Persson, J; Christiansson, M; Stenberg, B; Holst, O

    2001-01-01

    The anaerobic sulfur-reducing archaeon Pyrococcus furiosus was investigated regarding its capacity to desulfurize rubber material. The microorganism's sensitivity towards common rubber elastomers and additives was tested and several were shown to be toxic to P. furiosus. The microorganism was shown to utilize sulfur in vulcanized natural rubber and an increase in cell density was obtained when cultivated in the presence of spent tire rubber. Ethanol-leached cryo-ground tire rubber treated with P. furiosus for 10 days was vulcanized together with virgin rubber material (15% w/w) and the mechanical properties of the resulting material were determined. The increase in the stress at break value and the decrease in swell ratio and stress relaxation rate obtained for material containing microbially treated rubber (compared to untreated material) show the positive effects of microbial desulfurization on rubber. PMID:11234957

  11. Identification of membrane proteins in the hyperthermophilic archaeon Pyrococcus furiosus using proteomics and prediction programs.

    SciTech Connect

    Holden, J. F.; Poole, F. L.; Tollaksen, S. L.; Giometti, C. S.; Lim, H.; Yates, J. R.; Adams, M. W. W.; Biosciences Division; Univ. of Georgia; The Scnpps Research Inst.

    2001-01-01

    Cell-free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D-gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal-peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane-spanning a-helices (TSEG, SOSUI, and PRED-TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane-associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane-spanning {beta}-sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane-protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs' inability to recognize certain membrane-related proteins, such as subunits associated with membrane complexes and porin-type proteins.

  12. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens.

    PubMed

    Wang, Ping; Wang, Peili; Tian, Jian; Yu, Xiaoxia; Chang, Meihui; Chu, Xiaoyu; Wu, Ningfeng

    2016-01-01

    Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca(2+) for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h. PMID:26916714

  13. Preliminary neutron crystallographic analysis of selectively CH3-protonated, deuterated rubredoxin from Pyrococcus furiosus

    SciTech Connect

    Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew; Myles, Dean A A

    2008-01-01

    Neutron crystallography is used to locate hydrogen atoms in biological materials and can distinguish between negatively scattering hydrogen and positively scattering deuterium substituted positions in isomorphous neutron structures. Recently, Hauptman and Langs (2003) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering hydrogen atoms in the structure. Selective labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of hydrogen to deuterium atoms can be precisely controlled. We have applied methyl-selective labeling protocols to introduce (1H-delta methyl)-leucine and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here we report on the production, crystallization, and preliminary neutron analysis of the selectively CH3-protonated, deuterated PfRd sample, which provided a high quality neutron data set extending to 1.75 resolution at the new LADI-III instrument at the Insititut Laue-Langevin. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of hydrogen atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.

  14. Complete saccharification of β-glucan using hyperthermophilic endocellulase and β-glucosidase from Pyrococcus furiosus.

    PubMed

    Kataoka, Misumi; Ishikawa, Kazuhiko

    2014-01-01

    Hyperthermophilic cellulase is an industrially important enzyme for biomass saccharification at high temperature. Two hyperthermophilic cellulases from the hyperthermophile Pyrococcus furiosus, endocellulase (EGPf) and β-glucosidase (BGLPf), exhibit optimal activity at 90-105 °C and a combination of two enzymes can hydrolyze a wide range of β-linked substrates. EGPf cleaves the β(1→4) bond of various substrates containing either only the β(1→4) linkage or β(1→3),(1→4) mixed-linkages. In contrast, BGLPf preferentially hydrolyzes the β(1→3) linkage over the β(1→4) linkage of disaccharides. β-Glucans are polysaccharides of D-glucose monomers formed by β(1→3),(1→4) mixed-linkage bonds. They occur most commonly as cellulose in plants, in the bran of cereal grains, the cell wall of baker's yeast, and in certain fungi, mushrooms, and bacteria. We reveal that β-glucan can be completely degraded to glucose at high temperature with a combination of EGPf and BGLPf. PMID:25209501

  15. Multiple crystal forms of N,N'-diacetylchitobiose deacetylase from Pyrococcus furiosus.

    PubMed

    Nakamura, Tsutomu; Niiyama, Mayumi; Hashimoto, Wakana; Ida, Kurumi; Abe, Manabu; Morita, Junji; Uegaki, Koichi

    2015-06-01

    Native N,N'-diacetylchitobiose deacetylase from Pyrococcus furiosus (Pf-Dac) and its selenomethionine derivative (Se-Pf-Dac) were crystallized and analyzed in the presence and absence of cadmium ion. The four crystal structures fell into three different crystal-packing groups, with the cadmium-free Pf-Dac and Se-Pf-Dac belonging to the same space group, with homologous unit-cell parameters. The crystal structures in the presence of cadmium contained distorted octahedral cadmium complexes coordinated by three chlorides, two O atoms and an S or Se atom from the N-terminal methionine or selenomethionine, respectively. The N-terminal cadmium complex was involved in crystal contacts between symmetry-related molecules through hydrogen bonding to the N-termini. While all six N-termini of Se-Pf-Dac were involved in cadmium-complex formation, only two of the Pf-Dac N-termini participated in complex formation in the Cd-containing crystal, resulting in different crystal forms. These differences are discussed in light of the higher stability of the Cd-Se bond than the Cd-S bond. This work provides an example of the contribution of cadmium towards determining protein crystal quality and packing depending on the use of the native protein or the selenomethionine derivative. PMID:26057790

  16. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus

    PubMed Central

    Shiraishi, Miyako; Ishino, Sonoko; Yamagami, Takeshi; Egashira, Yuriko; Kiyonari, Shinichi; Ishino, Yoshizumi

    2015-01-01

    DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3′ from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5′ from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea. PMID:25694513

  17. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens

    PubMed Central

    Wang, Ping; Wang, Peili; Tian, Jian; Yu, Xiaoxia; Chang, Meihui; Chu, Xiaoyu; Wu, Ningfeng

    2016-01-01

    Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h. PMID:26916714

  18. A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus

    SciTech Connect

    Dillard, Bret D.; Demick, Jonathan M.; Adams, Michael W.W.; Lanzilotta, William N.

    2011-09-06

    High-resolution crystal structures of Pyrococcus furiosus rubrerythrin (PfRbr) in the resting (all-ferrous) state and at time points following exposure of the crystals to hydrogen peroxide are reported. This approach was possible because of the relativity slow turnover of PfRbr at room temperature. To this end, we were able to perform time-dependent peroxide treatment of the fully reduced enzyme, under strictly anaerobic conditions, in the crystalline state. In this work we demonstrate, for the first time, that turnover of a thermophilic rubrerythrin results in approximately 2-{angstrom} movement of one iron atom in the diiron site from a histidine to a carboxylate ligand. These results confirm that, despite the domain-swapped architecture, the hyperthermophilic rubrerythrins also utilize the classic combination of iron sites together with redox-dependent iron toggling to selectively reduce hydrogen peroxide over dioxygen. In addition, we have identified previously unobserved intermediates in the reaction cycle and observed structural changes that may explain the enzyme precipitation observed for the all-iron form of PfRbr upon oxidation to the all-ferric state.

  19. Cloning, expression, and molecular characterization of the gene encoding an extremely thermostable [4Fe-4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Heltzel, A; Smith, E T; Zhou, Z H; Blamey, J M; Adams, M W

    1994-01-01

    The gene for ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, sequenced, and expressed in Escherichia coli. The coding region confirmed the determined amino acid sequence. Putative archaeon-type transcriptional regulatory elements were identified. The fdxA gene appears to be an independent transcriptional unit. Recombinant ferredoxin was indistinguishable from the protein purified from P. furiosus in its thermal stability and in the potentiometric and spectroscopic properties of its [4Fe-4S] cluster. PMID:8045914

  20. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts.

    PubMed

    Näther, Daniela J; Rachel, Reinhard; Wanner, Gerhard; Wirth, Reinhard

    2006-10-01

    Pyrococcus furiosus ("rushing fireball") was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100 degrees C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces. PMID:16980494

  1. Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states.

    PubMed

    Yeh, A P; Hu, Y; Jenney, F E; Adams, M W; Rees, D C

    2000-03-14

    Superoxide reductase (SOR) is a blue non-heme iron protein that functions in anaerobic microbes as a defense mechanism against reactive oxygen species by catalyzing the reduction of superoxide to hydrogen peroxide [Jenney, F. E., Jr., Verhagen, M. F. J. M., Cui, X. , and Adams, M. W. W. (1999) Science 286, 306-309]. Crystal structures of SOR from the hyperthermophilic archaeon Pyrococcus furiosus have been determined in the oxidized and reduced forms to resolutions of 1.7 and 2.0 A, respectively. SOR forms a homotetramer, with each subunit adopting an immunoglobulin-like beta-barrel fold that coordinates a mononuclear, non-heme iron center. The protein fold and metal center are similar to those observed previously for the homologous protein desulfoferrodoxin from Desulfovibrio desulfuricans [Coelho, A. V., Matias, P., Fülöp, V., Thompson, A., Gonzalez, A., and Carrondo, M. A. (1997) J. Bioinorg. Chem. 2, 680-689]. Each iron is coordinated to imidazole nitrogens of four histidines in a planar arrangement, with a cysteine ligand occupying an axial position normal to this plane. In two of the subunits of the oxidized structure, a glutamate carboxylate serves as the sixth ligand to form an overall six-coordinate, octahedral coordinate environment. In the remaining two subunits, the sixth coordination site is either vacant or occupied by solvent molecules. The iron centers in all four subunits of the reduced structure exhibit pentacoordination. The structures of the oxidized and reduced forms of SOR suggest a mechanism by which superoxide accessibility may be controlled and define a possible binding site for rubredoxin, the likely physiological electron donor to SOR. PMID:10704199

  2. Relationship between Glycosyl Hydrolase Inventory and Growth Physiology of the Hyperthermophile Pyrococcus furiosus on Carbohydrate-Based Media

    PubMed Central

    Driskill, Lance E.; Kusy, Kevin; Bauer, Michael W.; Kelly, Robert M.

    1999-01-01

    Utilization of a range of carbohydrates for growth by the hyperthermophile Pyrococcus furiosus was investigated by examining the spectrum of glycosyl hydrolases produced by this microorganism and the thermal labilities of various saccharides. Previously, P. furiosus had been found to grow in batch cultures on several α-linked carbohydrates and cellobiose but not on glucose or other β-linked sugars. Although P. furiosus was not able to grow on any nonglucan carbohydrate or any form of cellulose in this study (growth on oat spelt arabinoxylan was attributed to glucan contamination of this substrate), significant growth at 98°C occurred on β-1,3- and β-1,3–β-1,4-linked glucans. Oligosaccharides generated by digestion with a recombinant laminarinase derived from P. furiosus were the compounds that were most effective in stimulating growth of the microorganism. In several cases, periodic addition of β-glucan substrates to fed-batch cultures limited adverse thermochemical modifications of the carbohydrates (i.e., Maillard reactions and caramelization) and led to significant increases (as much as two- to threefold) in the cell yields. While glucose had only a marginally positive effect on growth in batch culture, the final cell densities nearly tripled when glucose was added by the fed-batch procedure. Nonenzymatic browning reactions were found to be significant at 98°C for saccharides with degrees of polymerization (DP) ranging from 1 to 6; glucose was the most labile compound on a mass basis and the least labile compound on a molar basis. This suggests that for DP of 2 or greater protection of the nonreducing monosaccharide component may be a factor in substrate availability. For P. furiosus, carbohydrate utilization patterns were found to reflect the distribution of the glycosyl hydrolases which are known to be produced by this microorganism. PMID:10049838

  3. A thermostable hybrid cluster protein from Pyrococcus furiosus: effects of the loss of a three helix bundle subdomain.

    PubMed

    Overeijnder, Marieke L; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2009-06-01

    Pyrococcus furiosus hybrid cluster protein (HCP) was expressed in Escherichia coli, purified, and characterized. This is the first archaeal and thermostable HCP to be isolated. Compared with the protein sequences of previously characterized HCPs from mesophiles, the protein sequence of P. furiosus HCP exhibits a deletion of approximately 13 kDa as a single amino acid stretch just after the N-terminal cysteine motif, characteristic for class-III HCPs from (hyper)thermophilic archaea and bacteria. The protein was expressed as a thermostable, soluble homodimeric protein. Hydroxylamine reductase activity of P. furiosus HCP showed a K(m) value of 0.40 mM and a k(cat) value of 3.8 s(-1) at 70 degrees C and pH 9.0. Electron paramagnetic resonance spectroscopy showed evidence for the presence of a spin-admixed, S = 3/2 [4Fe-4S](+) cubane cluster and of the hybrid cluster. The cubane cluster of P. furiosus HCP is presumably coordinated by a CXXC-X(7)-C-X(5)-C motif close to the N-terminus, which is similar to the CXXC-X(8)-C-X(5)-C motif of the Desulfovibrio desulfuricans and Desulfovibrio vulgaris HCPs. Amino acid sequence alignment and homology modeling of P. furiosus HCP reveal that the deletion results in a loss of one of the two three-helix bundles of domain 1. Clearly the loss of one of the three-helix bundles of domain 1 does not diminish the hydroxylamine reduction activity and the incorporation of the iron-sulfur clusters. PMID:19241093

  4. Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media.

    PubMed

    Driskill, L E; Kusy, K; Bauer, M W; Kelly, R M

    1999-03-01

    Utilization of a range of carbohydrates for growth by the hyperthermophile Pyrococcus furiosus was investigated by examining the spectrum of glycosyl hydrolases produced by this microorganism and the thermal labilities of various saccharides. Previously, P. furiosus had been found to grow in batch cultures on several alpha-linked carbohydrates and cellobiose but not on glucose or other beta-linked sugars. Although P. furiosus was not able to grow on any nonglucan carbohydrate or any form of cellulose in this study (growth on oat spelt arabinoxylan was attributed to glucan contamination of this substrate), significant growth at 98 degrees C occurred on beta-1,3- and beta-1,3-beta-1,4-linked glucans. Oligosaccharides generated by digestion with a recombinant laminarinase derived from P. furiosus were the compounds that were most effective in stimulating growth of the microorganism. In several cases, periodic addition of beta-glucan substrates to fed-batch cultures limited adverse thermochemical modifications of the carbohydrates (i.e., Maillard reactions and caramelization) and led to significant increases (as much as two- to threefold) in the cell yields. While glucose had only a marginally positive effect on growth in batch culture, the final cell densities nearly tripled when glucose was added by the fed-batch procedure. Nonenzymatic browning reactions were found to be significant at 98 degrees C for saccharides with degrees of polymerization (DP) ranging from 1 to 6; glucose was the most labile compound on a mass basis and the least labile compound on a molar basis. This suggests that for DP of 2 or greater protection of the nonreducing monosaccharide component may be a factor in substrate availability. For P. furiosus, carbohydrate utilization patterns were found to reflect the distribution of the glycosyl hydrolases which are known to be produced by this microorganism. PMID:10049838

  5. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGESBeta

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits.he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes.he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids.he β -subunit determined preference for adenine or guanine nucleotides.he GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes.ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of thehermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  6. Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Adams, Michael W. W.; Holden, James F.; Menon, Angeli Lal; Schut, Gerrit J.; Grunden, Amy M.; Hou, Chun; Hutchins, Andrea M.; Jenney, Francis E.; Kim, Chulhwan; Ma, Kesen; Pan, Guangliang; Roy, Roopali; Sapra, Rajat; Story, Sherry V.; Verhagen, Marc F. J. M.

    2001-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100°C by the fermentation of peptides and carbohydrates. Growth of the organism was examined in media containing either maltose, peptides (hydrolyzed casein), or both as the carbon source(s), each with and without elemental sulfur (S0). Growth rates were highest on media containing peptides and S0, with or without maltose. Growth did not occur on the peptide medium without S0. S0 had no effect on growth rates in the maltose medium in the absence of peptides. Phenylacetate production rates (from phenylalanine fermentation) from cells grown in the peptide medium containing S0 with or without maltose were the same, suggesting that S0 is required for peptide utilization. The activities of 14 of 21 enzymes involved in or related to the fermentation pathways of P. furiosus were shown to be regulated under the five different growth conditions studied. The presence of S0 in the growth media resulted in decreases in specific activities of two cytoplasmic hydrogenases (I and II) and of a membrane-bound hydrogenase, each by an order of magnitude. The primary S0-reducing enzyme in this organism and the mechanism of the S0 dependence of peptide metabolism are not known. This study provides the first evidence for a highly regulated fermentation-based metabolism in P. furiosus and a significant regulatory role for elemental sulfur or its metabolites. PMID:11133967

  7. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus

    PubMed Central

    Chang, Michelle M.; Imperiali, Barbara; Eichler, Jerry; Guan, Ziqiang

    2015-01-01

    In all three domains of life, N-glycosylation begins with the assembly of glycans on phosphorylated polyisoprenoid carriers. Like eukaryotes, archaea also utilize phosphorylated dolichol for this role, yet whereas the assembled oligosaccharide is transferred to target proteins from dolichol pyrophosphate in eukaryotes, archaeal N-linked glycans characterized to date are derived from a dolichol monophosphate carrier, apart from a single example. In this study, glycan-charged dolichol phosphate from the hyperthermophile Pyrococcus furiosus was identified and structurally characterized. Normal and reverse phase liquid chromatography-electrospray ionization mass spectrometry revealed the existence of dolichol phosphate charged with the heptasaccharide recently described in in vitro studies of N-glycosylation on this species. As with other described archaeal dolichol phosphates, the α- and ω-terminal isoprene subunits of the P. furiosus lipid are saturated, in contrast to eukaryal phosphodolichols that present only a saturated α-position isoprene subunit. Interestingly, an additional 1-4 of the 12-14 isoprene subunits comprising P. furiosus dolichol phosphate are saturated, making this lipid not only the longest archaeal dolichol phosphate described to date but also the most highly saturated. PMID:26098850

  8. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli.

    PubMed Central

    Zwickl, P; Fabry, S; Bogedain, C; Haas, A; Hensel, R

    1990-01-01

    The glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei (optimal growth temperature, 100 to 103 degrees C) was purified to homogeneity. This enzyme was strictly phosphate dependent, utilized either NAD+ or NADP+, and was insensitive to pentalenolactone like the enzyme from the methanogenic archaebacterium Methanothermus fervidus. The enzyme exhibited a considerable thermostability, with a 44-min half-life at 100 degrees C. The amino acid sequence of the glyceraldehyde-3-phosphate dehydrogenase from P. woesei was deduced from the nucleotide sequence of the coding gene. Compared with the enzyme homologs from mesophilic archaebacteria (Methanobacterium bryantii, Methanobacterium formicicum) and an extremely thermophilic archaebacterium (Methanothermus fervidus), the primary structure of the P. woesei enzyme exhibited a strikingly high proportion of aromatic amino acid residues and a low proportion of sulfur-containing residues. The coding gene of P. woesei was expressed at a high level in Escherichia coli, thus providing an ideal basis for detailed structural and functional studies of that enzyme. Images PMID:2165475

  9. Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Cheng, T. C.; Ramakrishnan, V.; Chan, S. I.

    1999-01-01

    A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number

  10. Purification, crystallization and preliminary X-ray diffraction studies of the soluble domain of the oligosaccharyltransferase STT3 subunit from the thermophilic archaeon Pyrococcus furiosus

    SciTech Connect

    Igura, Mayumi; Maita, Nobuo; Obita, Takayuki; Kamishikiryo, Jun; Maenaka, Katsumi; Kohda, Daisuke

    2007-09-01

    The C-terminal soluble domain of the catalytic subunit (STT3) of the oligosaccharyltransferase from P. furiosus was purified and crystallized. A native crystal and a SeMet derivative have been analyzed using X-ray diffraction. Oligosaccharyltransferase catalyzes the transfer of preassembled oligosaccharides onto asparagine residues in nascent polypeptide chains. The STT3 subunit is thought to bear the catalytic site. The C-terminal domain of the STT3 protein of Pyrococcus furiosus was expressed in Escherichia coli cells. STT3 protein prepared from two different sources, the soluble fraction and the inclusion bodies, produced crystals that diffracted to 2.7 Å. During crystallization screening, cocrystals of P. furiosus STT3 with an E. coli 50S ribosomal protein, L7/L12, were accidentally obtained. This cross-species interaction is not biologically relevant, but may be used to design a built-in polypeptide substrate for the STT3 crystals.

  11. Purification and characterization of two functional forms of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus

    SciTech Connect

    Halio, S.B.; Bauer, M.W.; Kelley, R.M.

    1997-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100{degrees}C by the fermentation of peptides and carbohydrates. From this organism, An intracellular protease was purified, previously designated PfpI (P. furiosus protease I). The protease contains exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 {+-} 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 {+-} 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was {approximately}85{degrees}C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98{degrees}C in 1% sodium dodecyl sulfate for 24 h at 95 to 100{degrees}C, designated PfpI-H, was {approximately}100{degrees}C. Moreover, the half-life of activity of PfpI-C1 at 98{degrees}C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamination of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0.5 mM) were found to extend the half-life of PfpI-C1 activity towards AAF-MCA by up to 2.5-fold at 90{degrees}C, suggesting that compatible solutes play an important role in the in vivo function of this protease. 43 refs., 6 figs., 2 tabs.

  12. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. PMID:24860091

  13. An In Silico Approach for Characterization of an Aminoglycoside Antibiotic-Resistant Methyltransferase Protein from Pyrococcus furiosus (DSM 3638)

    PubMed Central

    Oany, Arafat Rahman; Jyoti, Tahmina Pervin; Ahmad, Shah Adil Ishtiyaq

    2014-01-01

    Pyrococcus furiosus is a hyperthermophilic archaea. A hypothetical protein of this archaea, PF0847, was selected for computational analysis. Basic local alignment search tool and multiple sequence alignment (MSA) tool were employed to search for related proteins. Both the secondary and tertiary structure prediction were obtained for further analysis. Three-dimensional model was assessed by PROCHECK and QMEAN6 programs. To get insights about the physical and functional associations of the protein, STRING network analysis was performed. Binding of the SAM (S-adenosyl-l-methionine) ligand with our protein, fetched from an antibiotic-related methyltransferase (PDB code: 3P2K: D), showed high docking energy and suggested the function of the protein as methyltransferase. Finally, we tried to look for a specific function of the proposed methyltransferase, and binding of the geneticin bound to the eubacterial 16S rRNA A-site (PDB code: 1MWL) in the active site of the PF0847 gave us the indication to predict the protein responsible for aminoglycoside antibiotic resistance. PMID:24683305

  14. DNA targeting by the type I-G and type I-A CRISPR–Cas systems of Pyrococcus furiosus

    PubMed Central

    Elmore, Joshua; Deighan, Trace; Westpheling, Jan; Terns, Rebecca M.; Terns, Michael P.

    2015-01-01

    CRISPR–Cas systems silence plasmids and viruses in prokaryotes. CRISPR–Cas effector complexes contain CRISPR RNAs (crRNAs) that include sequences captured from invaders and direct CRISPR-associated (Cas) proteins to destroy corresponding invader nucleic acids. Pyrococcus furiosus (Pfu) harbors three CRISPR–Cas immune systems: a Cst (Type I-G) system with an associated Cmr (Type III-B) module at one locus, and a partial Csa (Type I-A) module (lacking known invader sequence acquisition and crRNA processing genes) at another locus. The Pfu Cmr complex cleaves complementary target RNAs, and Csa systems have been shown to target DNA, while the mechanism by which Cst complexes silence invaders is unknown. In this study, we investigated the function of the Cst as well as Csa system in Pfu strains harboring a single CRISPR–Cas system. Plasmid transformation assays revealed that the Cst and Csa systems both function by DNA silencing and utilize similar flanking sequence information (PAMs) to identify invader DNA. Silencing by each system specifically requires its associated Cas3 nuclease. crRNAs from the 7 shared CRISPR loci in Pfu are processed for use by all 3 effector complexes, and Northern analysis revealed that individual effector complexes dictate the profile of mature crRNA species that is generated. PMID:26519471

  15. Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity.

    PubMed

    Wang, Fanghua; Lai, Linhui; Liu, Yanhua; Yang, Bo; Wang, Yonghua

    2016-01-01

    Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn(2+) ions, next was Co(2+) and Ni(2+) ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity. PMID:27248999

  16. Structures of the Signal Recognition Particle Receptor From the Archaeon Pyrococcus Furiosus: Implications for the Targeting Step at the Membrane

    SciTech Connect

    Egea, P.F.; Tsuruta, H.; Leon, G.P.de; Napetschnig, J.; Walter, P.; Stroud, R.M.

    2009-05-18

    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP {center_dot} magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP {center_dot} SR targeting complexes.

  17. Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Covalent Immobilization

    PubMed Central

    Branco, Roberta V.; Gutarra, Melissa L. E.; Freire, Denise M. G.; Almeida, Rodrigo V.; Palomo, Jose M.

    2015-01-01

    A recombinant thermostable lipase (Pf2001Δ60) from the hyperthermophilic Archaeon Pyrococcus furiosus (PFUL) was immobilized by hydrophobic interaction on octyl-agarose (octyl PFUL) and by covalent bond on aldehyde activated-agarose in the presence of DTT at pH = 7.0 (one-point covalent attachment) (glyoxyl-DTT PFUL) and on glyoxyl-agarose at pH 10.2 (multipoint covalent attachment) (glyoxyl PFUL). The enzyme's properties, such as optimal temperature and pH, thermostability, and selectivity, were improved by covalent immobilization. The highest enzyme stability at 70°C for 48 h incubation was achieved for glyoxyl PFUL (around 82% of residual activity), whereas glyoxyl-DTT PFUL maintained around 69% activity, followed by octyl PFUL (27% remaining activity). Immobilization on glyoxyl-agarose improved the optimal temperature to 90°C, while the optimal temperature of octyl PFUL was 70°C. Also, very significant changes in activity with different substrates were found. In general, the covalent bond derivatives were more active than octyl PFUL. The E value also depended substantially on the derivative and the conditions used. It was observed that the reaction of glyoxyl-DTT PFUL using methyl mandelate as a substrate at pH 7 presented the best results for enantioselectivity (E = 22) and enantiomeric excess (ee (%) = 91). PMID:25839031

  18. Characterization of the Recombinant Thermostable Lipase (Pf2001) from Pyrococcus furiosus: Effects of Thioredoxin Fusion Tag and Triton X-100

    PubMed Central

    Alquéres, Sylvia Maria Campbell; Branco, Roberta Vieira; Freire, Denise Maria Guimarães; Alves, Tito Lívio Moitinho; Martins, Orlando Bonifácio; Almeida, Rodrigo Volcan

    2011-01-01

    In this work, the lipase from Pyrococcus furiosus encoded by ORF PF2001 was expressed with a fusion protein (thioredoxin) in Escherichia coli. The purified enzymes with the thioredoxin tag (TRX−PF2001Δ60) and without the thioredoxin tag (PF2001Δ60) were characterized, and various influences of Triton X-100 were determined. The optimal temperature for both enzymes was 80°C. Although the thioredoxin presence did not influence the optimum temperature, the TRX−PF2001Δ60 presented specific activity twice lower than the enzyme PF2001Δ60. The enzyme PF2001Δ60 was assayed using MUF-acetate, MUF-heptanoate, and MUF-palmitate. MUF-heptanoate was the preferred substrate of this enzyme. The chelators EDTA and EGTA increased the enzyme activity by 97 and 70%, respectively. The surfactant Triton X-100 reduced the enzyme activity by 50% and lowered the optimum temperature to 60°C. However, the thermostability of the enzyme PF2001Δ60 was enhanced with Triton X-100. PMID:21760993

  19. Neutron crystallographic study on rubredoxin from Pyrococcus furiosus by BIX-3, a single-crystal diffractometer for biomacromolecules.

    PubMed

    Kurihara, Kazuo; Tanaka, Ichiro; Chatake, Toshiyuki; Adams, Michael W W; Jenney, Francis E; Moiseeva, Natalia; Bau, Robert; Niimura, Nobuo

    2004-08-01

    The structure of a partially deuterated rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus, an organism that grows optimally at 100 degrees C, was determined by using the neutron single-crystal diffractometer dedicated for biological macromolecules (BIX-3) at the JRR-3M reactor of the Japan Atomic Energy Research Institute. Data were collected at room temperature up to a resolution of 1.5 A, and the completeness factor of the data set was 81.9%. The model contains 306 H and 50 D atoms. A total of 37 hydration water molecules were identified, with 15 having all three atoms fully located and the remaining D2O molecules partially defined. The model has been refined to final agreement factors of R = 18.6% and Rfree = 21.7%. Several orientations of the O-D bonds of side chains, whose assignments from x-ray data were previously ambiguous, were clearly visible in the neutron structure. Although most backbone N-H bonds had undergone some degree of H/D exchange throughout the rubredoxin molecule, 5 H atom positions still had distinctly negative (H) peaks. The neutron Fourier maps clearly showed the details of an extensive set of H bonds involving the ND3+ terminus that may contribute to the unusual thermostability of this molecule. PMID:15272083

  20. Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity

    PubMed Central

    Wang, Fanghua; Lai, Linhui; Liu, Yanhua; Yang, Bo; Wang, Yonghua

    2016-01-01

    Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn2+ ions, next was Co2+ and Ni2+ ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity. PMID:27248999

  1. Purification and Characterization of Two Functional Forms of Intracellular Protease PfpI from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Halio, S. B.; Bauer, M. W.; Mukund, S.; Adams, M.; Kelly, R. M.

    1997-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100(deg)C by the fermentation of peptides and carbohydrates. From this organism, we have purified to homogeneity an intracellular protease, previously designated PfpI (P. furiosus protease I) (S. B. Halio, I. I. Blumentals, S. A. Short, B. M. Merrill, and R. M. Kelly, J. Bacteriol. 178:2605-2612, 1996). The protease contains a single subunit with a molecular mass of approximately 19 kDa and exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 (plusmn) 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 (plusmn) 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was (symbl)85(deg)C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98(deg)C in 1% sodium dodecyl sulfate for 24 h at 95 to 100(deg)C (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1255-1262, 1990), designated PfpI-H, was (symbl)100(deg)C. Moreover, the half-life of activity of PfpI-C1 at 98(deg)C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamidation of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0

  2. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    SciTech Connect

    Adams, Michael W.; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  3. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus

    PubMed Central

    2013-01-01

    Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization. PMID:24053641

  4. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.

    PubMed

    Anderson, Janet S; Hernández, Griselda; Lemaster, David M

    2008-06-10

    The exchange rates of the static solvent-accessible amide hydrogens of Pyrococcus furiosus rubredoxin range from near the diffusion-limited rate to a billion-fold slower for the non-hydrogen-bonded Val 38 (eubacterial numbering). Hydrogen exchange directly monitors the kinetic acidity of the peptide nitrogen. Electrostatic solvation free energies were calculated by Poisson-Boltzmann methods for the individual peptide anions that form during the hydroxide-catalyzed exchange reaction to examine how well the predicted thermodynamic acidities match the experimentally determined kinetic acidities. With the exception of the Ile 12 amide, the differential exchange rate constant for each solvent-exposed amide proton that is not hydrogen bonded to a backbone carbonyl can be predicted within a factor of 6 (10 (0.78)) root-mean-square deviation (rmsd) using the CHARMM22 electrostatic parameter set and an internal dielectric value of 3. Under equivalent conditions, the PARSE parameter set yields a larger rmsd value of 1.28 pH units, while the AMBER parm99 parameter set resulted in a considerably poorer correlation. Either increasing the internal dielectric value to 4 or reducing it to a value of 2 significantly degrades the quality of the prediction. Assigning the excess charge of the peptide anion equally between the peptide nitrogen and the carbonyl oxygen also reduces the correlation to the experimental data. These continuum electrostatic calculations were further analyzed to characterize the specific structural elements that appear to be responsible for the wide range of peptide acidities observed for these solvent-exposed amides. The striking heterogeneity in the potential at sites along the protein-solvent interface should prove germane to the ongoing challenge of quantifying the contribution that electrostatic interactions make to the catalytic acceleration achieved by enzymes. PMID:18479148

  5. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus.

    PubMed

    Havarushka, Nastassia; Fischer-Schrader, Katrin; Lamkemeyer, Tobias; Schwarz, Guenter

    2014-01-01

    Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT) by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB) has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface. PMID:24465852

  6. Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus

    PubMed Central

    Evans, Steven J.; Fogg, Mark J.; Mamone, Anthony; Davis, Maria; Pearl, Laurence H.; Connolly, Bernard A.

    2000-01-01

    Polymerases from the Pol-I family which are able to efficiently use ddNTPs have demonstrated a much improved performance when used to sequence DNA. A number of mutations have been made to the gene coding for the Pol-II family DNA polymerase from the archaeon Pyrococcus furiosus with the aim of improving ddNTP utilisation. ‘Rational’ alterations to amino acids likely to be near the dNTP binding site (based on sequence homologies and structural information) did not yield the desired level of selectivity for ddNTPs. However, alteration at four positions (Q472, A486, L490 and Y497) gave rise to variants which incorporated ddNTPs better than the wild type, allowing sequencing reactions to be carried out at lowered ddNTP:dNTP ratios. Wild-type Pfu–Pol required a ddNTP:dNTP ratio of 30:1; values of 5:1 (Q472H), 1:3 (L490W), 1:5 (A486Y) and 5:1 (Y497A) were found with the four mutants; A486Y representing a 150-fold improvement over the wild type. A486, L490 and Y497 are on an α-helix that lines the dNTP binding groove, but the side chains of the three amino acids point away from this groove; Q472 is in a loop that connects this α-helix to a second long helix. None of the four amino acids can contact the dNTP directly. Therefore, the increased selectivity for ddNTPs is likely to arise from two factors: (i) small overall changes in conformation that subtly alter the nucleotide triphosphate binding site such that ddNTPs become favoured; (ii) interference with a conformational change that may be critical both for the polymerisation step and discrimination between different nucleotide triphosphates. PMID:10666444

  7. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA

    PubMed Central

    Lai, Stella M.; Lai, Lien B.; Foster, Mark P.; Gopalan, Venkat

    2014-01-01

    The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis. PMID:25361963

  8. Structural Basis of Thermal Stability of the Tungsten Cofactor Synthesis Protein MoaB from Pyrococcus furiosus

    PubMed Central

    Havarushka, Nastassia; Fischer-Schrader, Katrin; Lamkemeyer, Tobias; Schwarz, Guenter

    2014-01-01

    Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT) by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB) has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15°C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50°C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface. PMID:24465852

  9. Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Geng, Xing-Min; Liu, Xiang; Ji, Mikyoung; Hoffmann, William A.; Grunden, Amy; Xiang, Qiu-Yun J.

    2016-01-01

    Production of reactive oxygen species (ROS) can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR) is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP) was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA), and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR. PMID:26858741

  10. Expression, purification, crystallization and preliminary crystallographic analysis of a stand-alone RAM domain with hydrolytic activity from the hyperthermophile Pyrococcus furiosus

    SciTech Connect

    Agapay, Ramelito C.; Savvides, Savvas N.; Van Driessche, Gonzalez; Devreese, Bart; Van Beeumen, Jozef; Jongejan, Jaap A. Hagen, Wilfred R.

    2005-10-01

    A P. furiosus stand-alone RAM domain with hydrolytic activity has been cloned and expressed in E. coli. The purified protein was crystallized alone and with EPNP and PMSF, producing crystals that yield diffraction data to resolutions of 2.8, 2.2 and 2.8 Å, respectively. The RAM domain is one of several ligand-binding modules present in prokaryotes that are presumed to regulate the transcription of specific genes. To date, no hydrolytic activity has been reported for such modules. Curiously, a stand-alone RAM domain in Pyrococcus furiosus was isolated during a screen for hydrolytic activity against chromogenic esters. The gene encoding this protein was cloned and expressed in Escherichia coli and crystallized after a single purification step. X-ray diffraction data from the crystals were obtained to a resolution of 2.8 Å using a conventional X-ray source. The cocrystallization of the recombinant protein with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNP) and phenylmethylsulfonyl fluoride (PMSF) produced crystals that yielded data to 2.2 and 2.8 Å, respectively, using synchrotron radiation. Both the untreated and EPNP-treated crystals crystallize isomorphously in space group C2 and contain three dimers in the asymmetric unit. The PMSF-treated crystals also belong to this space group and have almost identical packing density, but show dramatically different unit-cell parameters.

  11. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts.

    PubMed

    Shin, Kyung-Chul; Nam, Hyun-Koo; Oh, Deok-Kun

    2013-11-27

    The hydrolytic activity of the recombinant β-glucosidase from Pyrococcus furiosus for the flavanone glycoside hesperidin was optimal at pH 5.5 and 95 °C in the presence of 0.5% (v/v) dimethyl sulfoxide (DMSO) and 0.1% (w/v) Tween 40 with a half-life of 88 h, a Km of 1.6 mM, and a kcat of 68.4 1/s. The specific activity of the enzyme for flavonoid glycosides followed the order hesperidin > neohesperidin > naringin > narirutin > poncirin > diosmin > neoponcirin > rutin. The specific activity for flavanone was higher than that for flavone or flavonol. DMSO at 10% (v/v) was used to increase the solubility of flavanone glycosides as substrates. The enzyme completely converted flavanone glycosides (1 g/L) to flavanone aglycones and disaccharides via one-step reaction. The major flavanone in grapefruit peel, grapefruit pulp, or orange peel extract was naringin (47.5 mg/g), naringin (16.6 mg/g), or hesperidin (18.2 mg/g), respectively. β-Glucosidase from P. furiosus completely converted naringin and narirutin in 100% (w/v) grapefruit peel extract to 22.5 g/L naringenin after 12 h, with a productivity of 1.88 g L(-1) h(-1); naringin and narirutin in 100% (w/v) grapefruit pulp extract to 8.1 g/L naringenin after 9 h, with a productivity of 0.90 g L(-1) h(-1); and hesperidin in 100% (w/v) orange peel extract to 9.0 g/L hesperetin after 9 h, with a productivity of 1.00 g L(-1) h(-1). The conversion yields, concentrations, and productivities of flavanone aglycones in this study are the highest among those obtained from citrus extracts. Thus, this enzyme may be useful for the industrial hydrolysis of flavanone glycosides in citrus extracts. PMID:24188428

  12. Stoichiometric complex formation by proliferating cell nuclear antigen (PCNA) and its interacting protein: purification and crystallization of the DNA polymerase and PCNA monomer mutant complex from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Matsumiya, Shigeki; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2006-03-01

    A stable stoichiometric complex of archaeal DNA polymerase with proliferating cell nuclear antigen (PCNA) was formed using a PCNA monomer mutant and the complex was successfully crystallized. Replicative DNA polymerase interacts with processivity factors, the β-subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA-interacting protein (PIP) motif at the C-terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 Å resolution using synchrotron radiation. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 225.3, b = 123.3, c = 91.3 Å.

  13. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor.

    PubMed

    Ma, K; Schicho, R N; Kelly, R M; Adams, M W

    1993-06-01

    Microorganisms growing near and above 100 degrees C have recently been discovered near shallow and deep sea hydrothermal vents. Most are obligately dependent upon the reduction of elemental sulfur (S0) to hydrogen sulfide (H2S) for optimal growth, even though S0 reduction readily occurs abiotically at their growth temperatures. The sulfur reductase activity of the anaerobic archaeon Pyrococcus furiosus, which grows optimally at 100 degrees C by a metabolism that produces H2S if S0 is present, was found in the cytoplasm. It was purified anaerobically and was shown to be identical to the hydrogenase that had been previously purified from this organism. Both S0 and polysulfide served as substrates for H2S production, and the S0 reduction activity but not the H2-oxidation activity was enhanced by the redox protein rubredoxin. The H2-oxidizing and S0-reduction activities of the enzyme also showed different responses to pH, temperature, and inhibitors. This bifunctional "sulfhydrogenase" enzyme can, therefore, dispose of the excess reductant generated during fermentation using either protons or polysulfides as the electron acceptor. In addition, purified hydrogenases from both hyperthermophilic and mesophilic representatives of the archaeal and bacterial domains were shown to reduce S0 to H2S. It is suggested that the function of some form of ancestral hydrogenase was S0 reduction rather than, or in addition to, the reduction of protons. PMID:8389482

  14. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner.

    PubMed

    Amero, Carlos D; Boomershine, William P; Xu, Yiren; Foster, Mark

    2008-11-11

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5'-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentrations, four protein subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30, and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha-helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step toward understanding structure-function relationships of the archaeal RNase P holoenzyme. PMID:18922021

  15. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.

    PubMed

    Sharma, Prerna; Guptasarma, Purnananda

    2015-05-01

    Triose phosphate isomerases (TIMs) are considered to be 'kinetically perfect' enzymes, limited in their activity only by the rates of diffusion of substrate and product molecules. Most studies conducted thus far have been on mesophile-derived TIMs. Here, we report studies of two extremophile-derived TIMs produced in Escherichia coli: (i) TonTIM, sourced from the genome of the thermophile archaeon, Thermococcus onnurineus, and (ii) PfuTIM, sourced from the genome of the hyperthermophile archaeon, Pyrococcus furiosus (PfuTIM). Although these enzymes are presumed to have evolved to function optimally at temperatures close to the boiling point of water, we find that TonTIM and PfuTIM display second-order rate-constants of activity (k(cat)/K(m) values) comparable to mesophile-derived TIMs, at 25 °C. At 90 °C, TonTIM and PfuTIM reach maximum velocities of reaction of ∼ 10(6)-10(7) μmol/s/mg, and display k(cat)/K(m) values in the range of ∼ 10(10)-10(11) M(-1) s(-1), which are three orders of magnitude higher than those reported for mesophile TIMs. Further, the two enzymes display no signs of having undergone any structural unfolding at 90 °C. Such enzymes could thus probably be called 'super-perfect' enzymes. PMID:25824038

  16. Exploitation of the S-layer self-assembly system for site directed immobilization of enzymes demonstrated for an extremophilic laminarinase from Pyrococcus furiosus

    PubMed Central

    Tschiggerl, Helga; Breitwieser, Andreas; de Roo, Guy; Verwoerd, Theo; Scḧaffer, Christina; Sleytr, Uwe B.

    2015-01-01

    A fusion protein based on the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and the enzyme laminarinase (LamA) from Pyrococcus furiosus was designed and overexpressed in Escherichia coli. Due to the construction principle, the S-layer fusion protein fully retained the self-assembly capability of the S-layer moiety, while the catalytic domain of LamA remained exposed at the outer surface of the formed protein lattice. The enzyme activity of the S-layer fusion protein monolayer obtained upon recrystallization on silicon wafers, glass slides and different types of polymer membranes was determined colorimetrically and related to the activity of sole LamA that has been immobilized with conventional techniques. LamA aligned within the S-layer fusion protein lattice in a periodic and orientated fashion catalyzed twice the glucose release from the laminarin polysaccharide substrate in comparison to the randomly immobilized enzyme. In combination with the good shelf-life and the high resistance towards temperature and diverse chemicals, these novel composites are regarded a promising approach for site-directed enzyme immobilization. PMID:18035441

  17. Crystallization and preliminary X-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus

    SciTech Connect

    Matias, Pedro M.; Tatur, Jana; Carrondo, Maria Arménia; Hagen, Wilfred R.

    2005-05-01

    Ferritin from P. furiosus crystallizes in space group C222{sub 1}, with unit-cell parameters a = 258.1, b = 340.1, c = 266.5 Å and 36 monomers in the asymmetric unit, corresponding to one and a half 24-mers. Crystals of the title protein have been produced and preliminary structural analysis has been carried out. The crystals belong to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 258.1, b = 340.1, c = 266.5 Å. The protein forms a 24-mer of 20 kDa subunits, which assemble with 432 non-crystallographic symmetry. A total of 36 monomers are found in the asymmetric unit, corresponding to one and a half 24-mers.

  18. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor

    SciTech Connect

    Ma, K.; Adams, M.W.W. ); Schicho, R.N. ); Kelly, R.M. )

    1993-06-01

    Microorganisms growing near and above 100[degrees]C have recently been discovered near shallow and deep sea hydrothermal vents. Most are obligately dependent upon the reduction of elemental sulfur (S[sup 0]) to hydrogen sulfide (H[sub 2]S) for optimal growth, even though S[sup 0] reduction readily occurs abiotically at their growth temperatures. The sulfur reductase activity of the anaerobic archaeon Pyrococcus furiosus, which grows optimally at 100[degrees]C by a metabolism that produces H[sub 2]S if S[sup 0] is present, was found in the cytoplasm. It was purified anaerobically and was shown to be identical to the hydrogenase that had been previously purified from this organism. Both S[sup 0] and polysulfide served as substrates for H[sub 2]S production, and the S[sub 0] reduction activity but not the H[sub 2]-oxidation activity was enhanced by the redox protein rubredoxin. The H[sub 2]-oxidizing and S[sup 0]-reduction activities of the enzyme also showed different responses to pH, temperature, and inhibitors. This bifunctional [open quotes]sulfhydrogenase[close quotes] enzyme can, therefore, dispose of the excess reductant generated during fermentation using either protons or polysulfides as the electron acceptor. In addition, purified hydrogenases from both hyperthermophilic and mesophilic representatives of the archaeal and bacterial domains were shown to reduce S[sup 0] to H[sub 2]S. It is suggested that the function of some form of ancestral hydrogenase was S[sup 0] reduction rather than, or in addition, to the reduction of protons. 33 refs., 4 figs., 2 tabs.

  19. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

    PubMed

    Tan, Ming-Liang; Bizzarri, Anna Rita; Xiao, Yuming; Cannistraro, Salvatore; Ichiye, Toshiko; Manzoni, Cristian; Cerullo, Giulio; Adams, Michael W W; Jenney, Francis E; Cramer, Stephen P

    2007-03-01

    We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins. PMID:17204331

  20. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction

    PubMed Central

    Elshawadfy, Ashraf M.; Keith, Brian J.; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A.

    2014-01-01

    The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms. PMID:24904539

  1. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA

    PubMed Central

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure. PMID:27214207

  2. Dynamics of the [4Fe-4S] Cluster in Pyrococcus furiosus D14C Ferredoxin via Nuclear Resonance Vibrational and Resonance Raman Spectroscopies, Force Field Simulations, and Density Functional Theory Calculations

    PubMed Central

    Mitra, Devrani; Pelmenschikov, Vladimir; Guo, Yisong; Case, David A.; Wang, Hongxin; Dong, Weibing; Tan, Ming-Liang; Ichiye, Toshiko; Jenney, Francis E.; Adams, Michael W. W.; Yoda, Yoshitaka; Zhao, Jiyong; Cramer, Stephen P.

    2011-01-01

    We have used 57Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal mode assignments, we recorded the NRVS of D14C ferredoxin samples with 36S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains: (Ph4P)2[Fe4S4Cl4]. Several distinct regions of NRVS intensity are identified, ranging from `protein' and torsional modes below 100 cm−1, through bending and breathing modes near 150 cm−1, to strong bands from Fe-S stretching modes between 250 cm−1 and ~400 cm−1. The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The 57Fe partial vibrational densities of states (PVDOS) for the oxidized samples were interpreted by normal mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe4S4]2+/1+ redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins. PMID:21500788

  3. Solution Structure of an Archaeal RNase P Binary Protein Complex. Formation of the 30-kDa Complex Between Pyrococcus furiosus RPP21 and RPP29 is Accompanied by Coupled Protein Folding, and Highlights Critical Features for Protein-Protein and Protein-RNA Interactions

    PubMed Central

    Xu, Yiren; Amero, Carlos D.; Pulukkunat, Dileep K.; Gopalan, Venkat; Foster, Mark P.

    2009-01-01

    RNase P is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg2+-dependent 5’ maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from one in bacteria to nine or ten in eukarya. The archaeal RPR is associated with at least four RPPs, which function in pairs (RPP21–RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus (Pfu) RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21–RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme. PMID:19733182

  4. Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.

    PubMed

    Theriot, Casey M; Du, Xuelian; Tove, Sherry R; Grunden, Amy M

    2010-08-01

    Prolidase isolated from the hyperthermophilic archaeon Pyrococcus furiosus has potential for application for decontamination of organophosphorus compounds in certain pesticides and chemical warfare agents under harsh conditions. However, current applications that use an enzyme-based cocktail are limited by poor long-term enzyme stability and low reactivity over a broad range of temperatures. To obtain a better enzyme for OP nerve agent decontamination and to investigate structural factors that influence protein thermostability and thermoactivity, randomly mutated P. furiosus prolidases were prepared by using XL1-red-based mutagenesis and error-prone PCR. An Escherichia coli strain JD1 (lambdaDE3) (auxotrophic for proline [DeltaproA] and having deletions in pepQ and pepP dipeptidases with specificity for proline-containing dipeptides) was constructed for screening mutant P. furiosus prolidase expression plasmids. JD1 (lambdaDE3) cells were transformed with mutated prolidase expression plasmids and plated on minimal media supplemented with 50 muM Leu-Pro as the only source of proline. By using this positive selection, Pyrococcus prolidase mutants with improved activity over a broader range of temperatures were isolated. The activities of the mutants over a broad temperature range were measured for both Xaa-Pro dipeptides and OP nerve agents, and the thermoactivity and thermostability of the mutants were determined. PMID:20422176

  5. Polyadenylated RNA isolated from the archaebacterium Halobacterium halobium

    SciTech Connect

    Brown, J.W.; Reeve, J.N.

    1986-05-01

    Polyadenylated (poly(A)/sup +/) RNA has been isolated from the halophilic archaebacterium Halobacterium halobium by binding, at 4/sup 0/C, to oligo(dT)-cellulose. H. halobium contains approximately 12 times more poly(A) per unit of RNA than does the methanogenic archaebacterium Methanococcus vannielii. The 3' poly(A) tracts in poly(A)/sup +/ RNA molecules are approximately twice as long (average length of 20 nucleotides) in H. halobium as in M. vannielii. In both archaebacterial species, poly(A)/sup +/ RNAs are unstable.

  6. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli.

    PubMed

    Peng, Shuaiying; Chu, Zhongmei; Lu, Jianfeng; Li, Dongxiao; Wang, Yonghong; Yang, Shengli; Zhang, Yi

    2016-05-01

    The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA. PMID:26862080

  7. Cloning, expression, purification, crystallization and preliminary X-ray diffraction data of the Pyrococcus horikoshii RadA intein

    PubMed Central

    Lyskowski, Andrzej; Oeemig, Jesper S.; Jaakkonen, Anniina; Rommi, Katariina; DiMaio, Frank; Zhou, Dongwen; Kajander, Tommi; Baker, David; Wlodawer, Alexander; Goldman, Adrian; Iwaï, Hideo

    2011-01-01

    The RadA intein from the hyperthermophilic archaebacterium Pyrococcus horikoshii was cloned, expressed and purified for subsequent structure determination. The protein crystallized rapidly in several conditions. The best crystals, which diffracted to 1.75 Å resolution, were harvested from drops consisting of 0.1 M HEPES pH 7.5, 3.0 M NaCl and were cryoprotected with Paratone-N before flash-cooling. The collected data were processed in the orthorhombic space group P212121, with unit-cell parameters a = 58.1, b = 67.4, c = 82.9 Å. Molecular replacement with Rosetta using energy- and density-guided structure optimization provided the initial solution, which is currently under refinement. PMID:21543876

  8. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    SciTech Connect

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  9. Features for instantaneous emissions of low-level infrared signals of glucokinase enzyme from Pyrococcus furiosus.

    PubMed

    Torres, Sergio; Mella, Héctor; Reyes, Claudio; Meza, Pablo; Gallardo, Maria J; Staforelli, Juan P

    2015-03-10

    A noncontact infrared (IR) imaging-based methodology and signal recovery tools are applied on an enzyme reaction as a test target. The method is implemented by a long-wave (8-12 μm) IR microbolometer imaging array and a germanium-based IR optical vision. The reaction is carried out by the glucokinase, which produces a rapid exothermal release of energy that is weak, and, even worse, the IR video captured by the uncooled microbolometer detector is affected by spatial and temporal noise with specific complexities. Hitherto, IR-based signal recovery tools have worked with a standard acquisition frequency, which is clearly beyond the time scale of a real scenario. The implications of this (and similar) rapid reactions motivate the designs of a signal recovery method using prior information of the processes to extract and quantify the spontaneity of the enzymatic reaction in a three-dimensional (space and time) single and noncontact online measurement. PMID:25968383

  10. Energy metabolism of a thermoacidophilic archaebacterium,Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Wakagi, Takayoshi; Oshima, Tairo

    1987-09-01

    To elucidate the phylogenic status of the archaebacterium and mechanisms of acidophily, membrane bound ATPase, cytochromes and NADH dehydrogenase of a thermoacidophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Typea cytochrome was found in the membrane. The organism was sensitive to cyanide and azide, and though cytochromec is lacking in this organism, these respiratory poisons inhibited a terminal oxidase, when assayed with cytochromec from other sources. NADH dehydrogenase was highly purified from the crude extract of the cells. The enzyme was able to transfer electrons from NADH to caldariellaquinone, a unique benzothiophenequinone in the genusSulfolobus. Thus, the enzyme is a possible member of the respiratory chain. Membrane fraction contained two types of ATPase, one was active at neutral pH and slightly activated by sulfate; the other was an acid apyrase and inhibited by sulfate. Typical characteristics of F0F1ATPase could not be found in these enzymes. These results suggest that (1) the thermoacidophilic archaebacteria are phylogenically distant from both eubacteria and eukaryotes, (2) the archaebacterial thermoacidophiles can be classified in a different subgroup from methanogens and extreme halophiles, and (3) in spite of the aerobic nature of the organism, the energy yielding mechanisms appear quite unique, when compared to those of other aerobes and mitochondria.

  11. Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Giardina, P; de Biasi, M G; de Rosa, M; Gambacorta, A; Buonocore, V

    1986-01-01

    Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substrate specificity and oxidation rate depend on the coenzyme present; when NAD+ is used, the enzyme binds and oxidizes specifically sugars presenting equatorial orientation of hydroxy groups at C-2, C-3 and C-4. The Mr of the native enzyme is 124,000 and decreases to about 60,000 in the presence of 6 M-guanidinium chloride and to about 30,000 in the presence of 5% (w/v) SDS. The enzyme shows maximal activity at pH 9, 77 degrees C and 20 mM-Mg2+, -Mn2+ or -Ca2+ and is fairly stable in the presence of chaotropic agents and water-miscible organic solvents such as methanol or acetone. PMID:3827812

  12. Highly thermostable RadA protein from the archaeon Pyrococcus woesei enhances specificity of simplex and multiplex PCR assays.

    PubMed

    Stefanska, Aleksandra; Gaffke, Lidia; Kaczorowska, Anna-Karina; Plotka, Magdalena; Dabrowski, Slawomir; Kaczorowski, Tadeusz

    2016-05-01

    The radA gene of the hyperthermophilic archaeon Pyrococcus woesei (Thermococcales) was cloned and overexpressed in Escherichia coli. The 1050-bp gene codes for a 349-amino-acid polypeptide with an M r of 38,397 which shows 100 % positional amino acid identity to Pyrococcus furiosus RadA and 27.1 % to the E. coli RecA protein. Recombinant RadA was overproduced in Escherichia coli as a His-tagged fusion protein and purified to electrophoretic homogeneity using a simple procedure consisting of ammonium sulfate precipitation and metal-affinity chromatography. In solution RadA exists as an undecamer (11-mer). The protein binds both to ssDNA and dsDNA. RadA has been found to be highly thermostable, it remains almost unaffected by a 4-h incubation at 94 °C. The addition of the RadA protein to either simplex or multiplex PCR assays, significantly improves the specificity of DNA amplification by eliminating non-specific products. Among applications tested the RadA protein proved to be useful in allelic discrimination assay of HADHA gene associated with long-chain 3-hydroxylacyl-CoA dehydrogenase deficiency that in infancy may lead to hypotonia, serious heart and liver problems and even sudden death. PMID:26337425

  13. Calditol tetraether lipids of the archaebacterium Sulfolobus solfataricus. Biosynthetic studies.

    PubMed Central

    Nicolaus, B; Trincone, A; Esposito, E; Vaccaro, M R; Gambacorta, A; De Rosa, M

    1990-01-01

    Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed. PMID:2109600

  14. Chromosome map of the thermophilic archaebacterium Thermococcus celer

    NASA Technical Reports Server (NTRS)

    Noll, K. M.; Woese, C. R. (Principal Investigator)

    1989-01-01

    A physical map for the chromosome of the thermophilic archaebacterium Thermococcus celer Vu13 has been constructed. Thirty-four restriction endonucleases were tested for their ability to generate large restriction fragments from the chromosome of T. celer. Of these, the enzymes NheI, SpeI, and XbaI yielded the fewest fragments when analyzed by pulsed-field electrophoresis. NheI and SpeI each gave 5 fragments, while XbaI gave 12. The size of the T. celer chromosome was determined from the sum of the apparent sizes of restriction fragments derived from single and double digests by using these enzymes and was found to be 1,890 +/- 27 kilobase pairs. Partial and complete digests allowed the order of all but three small (less than 15 kilobase pairs) fragments to be deduced. These three fragments were assigned positions by using hybridization probes derived from these restriction fragments. The positions of the other fragments were confirmed by using hybridization probes derived in the same manner. The positions of the 5S, 16S, and 23S rRNA genes as well as the 7S RNA gene were located on this map by using cloned portions of these genes as hybridization probes. The 5S rRNA gene was localized 48 to 196 kilobases from the 5' end of the 16S gene. The 7S RNA gene was localized 190 to 504 kilobases from the 3' end of the 23S gene. These analyses demonstrated that the chromosome of T. celer is a single, circular DNA molecule. This is the first such demonstration of the structure of an archaebacterial chromosome.

  15. Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures

    PubMed Central

    Theriot, Casey M.; Semcer, Rebecca L.; Shah, Saumil S.; Grunden, Amy M.

    2011-01-01

    Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases. PMID:22162664

  16. Improving the catalytic activity of hyperthermophilic Pyrococcus horikoshii prolidase for detoxification of organophosphorus nerve agents over a broad range of temperatures.

    PubMed

    Theriot, Casey M; Semcer, Rebecca L; Shah, Saumil S; Grunden, Amy M

    2011-01-01

    Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases. PMID:22162664

  17. Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription.

    PubMed Central

    Hethke, C; Bergerat, A; Hausner, W; Forterre, P; Thomm, M

    1999-01-01

    Cell-free transcription of archaeal promoters is mediated by two archaeal transcription factors, aTBP and TFB, which are orthologues of the eukaryotic transcription factors TBP and TFIIB. Using the cell-free transcription system described for the hyperthermophilic Archaeon Pyrococcus furiosus by Hethke et al., the temperature limits and template topology requirements of archaeal transcription were investigated. aTBP activity was not affected after incubation for 1 hr at 100 degrees. In contrast, the half-life of RNA polymerase activity was 23 min and that of TFB activity was 3 min. The half-life of a 328-nt RNA product was 10 min at 100 degrees. Best stability of RNA was observed at pH 6, at 400 mm K-glutamate in the absence of Mg(2+) ions. Physiological concentrations of K-glutamate were found to stabilize protein components in addition, indicating that salt is an important extrinsic factor contributing to thermostability. Both RNA and proteins were stabilized by the osmolyte betaine at a concentration of 1 m. The highest activity for RNA synthesis at 95 degrees was obtained in the presence of 1 m betaine and 400 mm K-glutamate. Positively supercoiled DNA, which was found to exist in Pyrococcus cells, can be transcribed in vitro both at 70 degrees and 90 degrees. However, negatively supercoiled DNA was the preferred template at all temperatures tested. Analyses of transcripts from plasmid topoisomers harboring the glutamate dehydrogenase promoter and of transcription reactions conducted in the presence of reverse gyrase indicate that positive supercoiling of DNA inhibits transcription from this promoter. PMID:10430563

  18. Crystallization and preliminary X-ray crystallographic analysis of a conserved domain in plants and prokaryotes from Pyrococcus horikoshii OT3

    SciTech Connect

    Lin, Linyen; Nakano, Hiroaki; Uchiyama, Susumu; Fujimoto, Satoru; Matsunaga, Sachihiro; Nakamura, Shota; Kobayashi, Yuji; Ohkubo, Tadayasu; Fukui, Kiichi

    2005-04-01

    A plant- and prokaryote-conserved domain (PPC) has been crystallized. The crystal diffracted to 1.7 Å resolution and belonged to space group P6{sub 3}22. A plant- and prokaryote-conserved domain (PPC) has previously been found in AT-hook motif nuclear localized protein 1 (AHL1) localized in the nuclear matrix of Arabidopsis thaliana (AtAHL1). AtAHL1 has a DNA-binding function. Mutation analyses of AtAHL1 has previously revealed that the hydrophobic region of the PPC domain is essential for its nuclear localization. In this study, the PPC of the hyperthermophilic archaebacterium Pyrococcus horikoshii (PhPPC) was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the hexagonal space group P6{sub 3}22, with unit-cell parameters a = b = 53.69, c = 159.2 Å. Data were obtained at 100 K, with diffraction being observed to a resolution of 1.7 Å. A complete data set from crystals of the SeMet-substituted protein was also obtained.

  19. Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Londei, P; Teixidò, J; Acca, M; Cammarano, P; Amils, R

    1986-01-01

    The large ribosomal subunit of the extremely thermoacidophilic archaebacterium Sulfolobus solfataricus has been reconstituted from the completely dissociated RNA and proteins by a two-step incubation procedure at high temperatures. Successful reconstitution requires a preliminary incubation of the ribosomal components for 45 min at 65 degrees C, followed by a second heat-treatment at 80 degrees C for 60 min. Structural reassembly depends upon high concentrations of K+ (300-400 mM) and Mg2+ (20-40 mM) ions. In addition, complete recovery of subunit function stringently requires the presence of a polyamine, thermine (or spermine). The reconstituted archaebacterial subunits are essentially indistinguishable from the native ones by a number of structural and functional criteria. Images PMID:3083401

  20. Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Lanter, J. M.; Woese, C. R.

    1983-01-01

    The sequence of the 16S ribosomal RNA (rRNA) from the archaebacterium Halobacterium volcanii has been determined by DNA sequencing methods. The archaebacterial rRNA is similar to its eubacterial counterpart in secondary structure. Although it is closer in sequence to the eubacterial 16S rRNA than to the eukaryotic 16S-like rRNA, the H. volcanii sequence also shows certain points of specific similarity to its eukaryotic counterpart. Since the H. volcanii sequence is closer to both the eubacterial and the eukaryotic sequences than these two are to one another, it follows that the archaebacterial sequence resembles their common ancestral sequence more closely than does either of the other two versions.

  1. Some Biochemical Properties of an Acido-Thermophilic Archae-Bacterium Sulfolobus Acidocaldarius

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Ohba, Masayuki; Wagaki, Takayoshi

    1984-12-01

    To elucidate the phylogenic status of archaebacteria, some basic cellular components of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Poly(A) containing RNA was present in the cells, and performed the role of mRNA in a cell-free extract of reticulocyte or the archaebacteria. Poly(A) containing RNA was also found in other archaebacterial cells. The absence of cap structure was suggested in these RNAs. The cell-free protein synthesis using the archaebacterial extract was inhibited by anisomycin, a specific inhibitor for eukaryotic ribosomes. Two unique membrane-bound ATPases were detected. Based on resistance to H+-ATPase inhibitors, these enzymes seemed not to be F0F1-ATPase.

  2. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  3. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12

    SciTech Connect

    Trent, J.D.; Osipiuk, J.; Pinkau, T. )

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70{degrees}C culture at the lethal temperature of 92{degrees}C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88{degrees}C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  4. The Evolution of Energy-Transducing Systems. Studies with an Extremely Halophilic Archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1997-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of bacteria, chloroplasts and mitochondria (1). Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaea (formerly called archaebacteria) are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution (2). From studies of members of all three major groups of archaea, the halophiles, methanogens and thermoacidophiles, it emerged that they possess a membrane ATPase, which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complex, and possibly a deduction of events during the early evolution of energy-transducing systems.

  5. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides.

    PubMed Central

    Zillig, W; Holz, I; Janekovic, D; Klenk, H P; Imsel, E; Trent, J; Wunderl, S; Forjaz, V H; Coutinho, R; Ferreira, T

    1990-01-01

    The hyperthermophilic peptide-fermenting sulfur archaebacterium Hyperthermus butylicus was isolated from the sea floor of a solfataric habitat with temperatures of up to 112 degrees C on the coast of the island of São Miguel, Azores. The organism grows at up to 108 degrees C, grows optimally between 95 and 106 degrees C at 17 g of NaCl per liter and pH 7.0, utilizes peptide mixtures as carbon and energy sources, and forms H2S from elemental sulfur and molecular hydrogen as a growth-stimulating accessory energy source but not by sulfur respiration. The same fermentation products, CO2, 1-butanol, acetic acid, phenylacetic acid, and a trace of hydroxyphenylacetic acid, are formed both with and without of S0 and H2. Its ether lipids, the absence of a mureine sacculus, the nature of the DNA-dependent RNA polymerase, and phylogenetic classification by DNA-rRNA cross-hybridization characterize H. butylicus as part of a novel genus of the major branch of archaebacteria comprising the orders Thermoproteales and Sulfolobales, representing a particularly long lineage bifurcating with the order Sulfolobales above the branching off of the genus Thermoproteus and distinct from the genera Desulfurococcus and Pyrodictium. Images PMID:2113915

  6. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1992-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of eubacteria, chloroplasts, and mitochondria. Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaebacteria are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution. From studies of members of all three major groups of archaebacteria - the halophiles, methanogens, and thermoacidophiles - it emerged that they possess a membrane ATPase which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. Amino acid sequences of critical regions of the enzyme were to be determined, as well as immunoreactions of single subunits in the search for common epitopes. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complexes, and possibly deduction of events during the early evolution of energy-transducing systems.

  7. A Self-compartmentalizing Hexamer Serine Protease from Pyrococcus Horikoshii

    PubMed Central

    Menyhárd, Dóra K.; Kiss-Szemán, Anna; Tichy-Rács, Éva; Hornung, Balázs; Rádi, Krisztina; Szeltner, Zoltán; Domokos, Klarissza; Szamosi, Ilona; Náray-Szabó, Gábor; Polgár, László; Harmat, Veronika

    2013-01-01

    Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated “check-in” system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states. PMID:23632025

  8. Cover preference of the Carolina madtom (Noturus furiosus), an imperiled, endemic southeastern stream fish

    USGS Publications Warehouse

    Midway, S.R.; Aday, D.D.; Kwak, T.J.; Gross, K.

    2010-01-01

    In a laboratory setting, we investigated cover preference of the Carolina madtom (Noturus furiosus), an imperiled, endemic southeastern USA stream fish. Fish were tested individually and given 24 hours to make a selection from four cover options, including rock, leaf pack, mussel shell, and an artificial cover unit. Among 30 trials, Carolina madtom preferred the artificial cover unit, selecting it 63% of the time. Rock was selected 23% of the time, and leaf pack 13%. Mussel shells were not selected during any trial.

  9. Cover preference of the Carolina madtom (Noturus furiosus), an imperiled, indemic southeastern stream fish

    USGS Publications Warehouse

    Midway, S.R.; Aday, D.D.; Kwak, Thomas J.; Gross, K.

    2010-01-01

    In a laboratory setting, we investigated cover preference of the Carolina madtom (Noturus furiosus), an imperiled, endemic southeastern USA stream fish. Fish were tested individually and given 24 hours to make a selection from four cover options, including rock, leaf pack, mussel shell, and an artificial cover unit. Among 30 trials, Carolina madtom preferred the artificial cover unit, selecting it 63% of the time. Rock was selected 23% of the time, and leaf pack 13%. Mussel shells were not selected during any trial.

  10. Bacterial start site prediction.

    PubMed

    Hannenhalli, S S; Hayes, W S; Hatzigeorgiou, A G; Fickett, J W

    1999-09-01

    With the growing number of completely sequenced bacterial genes, accurate gene prediction in bacterial genomes remains an important problem. Although the existing tools predict genes in bacterial genomes with high overall accuracy, their ability to pinpoint the translation start site remains unsatisfactory. In this paper, we present a novel approach to bacterial start site prediction that takes into account multiple features of a potential start site, viz., ribosome binding site (RBS) binding energy, distance of the RBS from the start codon, distance from the beginning of the maximal ORF to the start codon, the start codon itself and the coding/non-coding potential around the start site. Mixed integer programing was used to optimize the discriminatory system. The accuracy of this approach is up to 90%, compared to 70%, using the most common tools in fully automated mode (that is, without expert human post-processing of results). The approach is evaluated using Bacillus subtilis, Escherichia coli and Pyrococcus furiosus. These three genomes cover a broad spectrum of bacterial genomes, since B.subtilis is a Gram-positive bacterium, E.coli is a Gram-negative bacterium and P. furiosus is an archaebacterium. A significant problem is generating a set of 'true' start sites for algorithm training, in the absence of experimental work. We found that sequence conservation between P. furiosus and the related Pyrococcus horikoshii clearly delimited the gene start in many cases, providing a sufficient training set. PMID:10446249

  11. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure.

    PubMed

    Prakash, Satya; Sundd, Monica; Guptasarma, Purnananda

    2014-01-01

    Pyrococcus furiosus rubredoxin (PfRd), a small, monomeric, 53 residues-long, iron-containing, electron-transfer protein of known structure is sometimes referred to as being the most structurally-stable protein known to man. Here, using a combination of mutational and spectroscopic (CD, fluorescence, and NMR) studies of differently made holo- and apo-forms of PfRd, we demonstrate that it is not the presence of iron, or even the folding of the PfRd chain into a compact well-folded structure that causes holo-PfRd to display its extraordinary thermal stability, but rather the correct iron binding-guided packing of certain residues (specifically, Trp3, Phe29, Trp36, and also Tyr10) within a tight aromatic cluster of six residues in PfRd's hydrophobic core. Binding of the iron atom appears to play a remarkable role in determining subtle details of residue packing, forcing the chain to form a hyper-thermally stable native structure which is kinetically stable enough to survive (subsequent) removal of iron. On the other hand, failure to bind iron causes the same chain to adopt an equally well-folded native-like structure which, however, has a differently-packed aromatic cluster in its core, causing it to be only as stable as any other ordinary mesophile-derived rubredoxin. Our studies demonstrate, perhaps for the very first time ever that hyperthermal stability in proteins can owe to subtle differences in residue packing vis a vis mesostable proteins, without there being any underlying differences in either amino acid sequence, or bound ligand status. PMID:24603898

  12. Analysis of the complete genome sequence of the archaeon Pyrococcus chitonophagus DSM 10152 (formerly Thermococcus chitonophagus).

    PubMed

    Papadimitriou, Konstantinos; Baharidis, Panagiotis K; Georgoulis, Anastasios; Engel, Marion; Louka, Maria; Karamolegkou, Georgia; Tsoka, Aggeliki; Blom, Jochen; Pot, Bruno; Malecki, Piotr; Rypniewski, Wojciech; Huber, Harald; Schloter, Michael; Vorgias, Constantinos

    2016-05-01

    Here we analyze the first complete genome sequence of Pyrococcus chitonophagus. The archaeon was previously suggested to belong to the Thermococcus rather than the Pyrococcus genus. Whole genome phylogeny as well as whole proteome comparisons using all available complete genomes in Thermococcales clearly showed that the species belongs to the Pyrococcus genus. P. chitonophagus was originally isolated from a hydrothermal vent site and it has been described to effectively degrade chitin debris, and therefore is considered to play a major role in the sea water ecology and metabolic activity of microbial consortia within hot sea water ecosystems. Indeed, an obvious feature of the P. chitonophagus genome is that it carries proteins showing complementary activities for chitin degradation, i.e. endo- and exo-chitinase, diacetylchitobiose deacetylase and exo-β-D glucosaminidase activities. This finding supports the hypothesis that compared to other Thermococcales species P. chitonophagus is adapted to chitin degradation. PMID:27016195

  13. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes

    PubMed Central

    Fukui, Toshiaki; Atomi, Haruyuki; Kanai, Tamotsu; Matsumi, Rie; Fujiwara, Shinsuke; Imanaka, Tadayuki

    2005-01-01

    The genus Thermococcus, comprised of sulfur-reducing hyperthermophilic archaea, belongs to the order Thermococcales in Euryarchaeota along with the closely related genus Pyrococcus. The members of Thermococcus are ubiquitously present in natural high-temperature environments, and are therefore considered to play a major role in the ecology and metabolic activity of microbial consortia within hot-water ecosystems. To obtain insight into this important genus, we have determined and annotated the complete 2,088,737-base genome of Thermococcus kodakaraensis strain KOD1, followed by a comparison with the three complete genomes of Pyrococcus spp. A total of 2306 coding DNA sequences (CDSs) have been identified, among which half (1165 CDSs) are annotatable, whereas the functions of 41% (936 CDSs) cannot be predicted from the primary structures. The genome contains seven genes for probable transposases and four virus-related regions. Several proteins within these genetic elements show high similarities to those in Pyrococcus spp., implying the natural occurrence of horizontal gene transfer of such mobile elements among the order Thermococcales. Comparative genomics clarified that 1204 proteins, including those for information processing and basic metabolisms, are shared among T. kodakaraensis and the three Pyrococcus spp. On the other hand, among the set of 689 proteins unique to T. kodakaraensis, there are several intriguing proteins that might be responsible for the specific trait of the genus Thermococcus, such as proteins involved in additional pyruvate oxidation, nucleotide metabolisms, unique or additional metal ion transporters, improved stress response system, and a distinct restriction system. PMID:15710748

  14. Analysis of drug resistance in the archaebacterium Methanococcus voltae with respect to potential use in genetic engineering

    SciTech Connect

    Possot, O.; Gernhardt, P.; Klein, A.; Sibold, L.

    1988-03-01

    The sensitivity of the methanogenic archaebacterium Methanococcus voltae to 12 inhibitors was tested in liquid medium. Four compounds appeared to be inhibitors of growth. Their MICs were as follows: pseudomonic acid, 0.1 ..mu..g/ml (0.19 ..mu..M); puromycin, 2 ..mu..g/ml (3.6 ..mu..M); methionine sulfoximine, 30 ..mu..g/ml (170 ..mu..M); and fusidic acid, 100 ..mu..g/ml (170 ..mu..M). On solid medium, the MICs were similar and the frequency of spontaneous resistance was found to be 5 x 10/sup -5/ (methionine sulfoximine), 10/sup -7/ (pseudomonic acid), and <10/sup -7/ (puromycin and fusidic acid). Pseudomonic acid was found to inhibit isoleucyl-tRNA synthetase activity as measured by the in vitro aminoacylation of M. voltae tRAN with L-(U-/sup 14/C) isoleucine. Fusidic acid and puromycin were shown to inhibit poly(U)-dependent polyphenylalanine synthesis in S30 extracts. Acetylpuromycin was inhibitory at much higher concentrations both in vivo and in vitro for M. voltae. Thus, the pac gene of Streptomyces alboniger, which is responsible for acetylation of puromycin and which conferred resistance to puromycin when introduced in eubacterian and eucaryotes, is a potential selective marker in gene transfer experiments with M. voltae. The latter was recently shown to be transformable. The same would be true for the cat gene of Tn9, which enodes resistance to fusidic acid in eubacteria in addition to resistance to chloramphenicol.

  15. Structural and functional exchangeability of 5 S RNA species from the eubacterium E.coli and the thermoacidophilic archaebacterium Sulfolobus solfataricus.

    PubMed Central

    Teixidò, J; Altamura, S; Londei, P; Amils, R

    1989-01-01

    The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures. Images PMID:2493632

  16. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii.

    PubMed

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  17. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    PubMed Central

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  18. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    NASA Astrophysics Data System (ADS)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-06-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  19. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein

    SciTech Connect

    O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.; O'Brien, Kathryn M.; Reitter, Julie N.; Mills, Kenneth V.

    2010-12-17

    Research highlights: {yields} The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. {yields} Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. {yields} The intein splices with Lys in place of the highly conserved penultimate His. {yields} The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled to ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.

  20. Pyrococcus horikoshii TET2 Peptidase Assembling Process and Associated Functional Regulation*

    PubMed Central

    Appolaire, Alexandre; Rosenbaum, Eva; Durá, M. Asunción; Colombo, Matteo; Marty, Vincent; Savoye, Marjolaine Noirclerc; Godfroy, Anne; Schoehn, Guy; Girard, Eric; Gabel, Frank; Franzetti, Bruno

    2013-01-01

    Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo. PMID:23696647

  1. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3.

    PubMed

    Okochi, Mina; Matsuzaki, Hiroki; Nomura, Tomoko; Ishii, Noriyuki; Yohda, Masafumi

    2005-04-01

    The group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 (PhCPN) and its functional cooperation with the cognate prefoldin were investigated. PhCPN existed as a homo-oligomer in a double-ring structure, which protected the citrate synthase of a porcine heart from thermal aggregation at 45 degrees C, and did the same on the isopropylmalate dehydrogenase (IPMDH) of a thermophilic bacterium, Thermus thermophilus HB8, at 90 degrees C. PhCPN also enhanced the refolding of green fluorescent protein (GFP), which had been unfolded by low pH, in an ATP-dependent manner. Unexpectedly, functional cooperation between PhCPN and Pyrococcus prefoldin (PhPFD) in the refolding of GFP was not observed. Instead, cooperation between PhCPN and PhPFD was observed in the refolding of IPMDH unfolded with guanidine hydrochloride. Although PhCPN alone was not effective in the refolding of IPMDH, the refolding efficiency was enhanced by the cooperation of PhCPN with PhPFD. PMID:15538645

  2. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-01

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  3. The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.

    SciTech Connect

    Sun, W.; Xu, X.; Pavlova, M.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Christendat, D.; Biosciences Division; Univ. of Toronto; Univ. Health Network

    2005-01-01

    The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This protein belongs to the Cluster of Orthologous Group 1092, and the presented crystal structure is the first representative structure of this protein family. Based on sequence and 3D structure analysis, we have made valuable functional insights that will facilitate further studies for characterizing this group of proteins. Specifically, we propose that PH1915 and its orthologs are rRNA- or tRNA-specific methyltransferases.

  4. Cloning, Expression, and Purification of Hyperthermophile α-Amylase from Pyrococcus woesei

    PubMed Central

    Ghasemi, Amir; Ghafourian, Sobhan; Vafaei, Sedighe; Mohebi, Reza; Farzi, Maryam; Taherikalani, Morovat; Sadeghifard, Nourkhoda

    2015-01-01

    Objectives In an attempt α-amylase gene from Pyrococcus woesei was amplified and cloned into a pTYB2 vector to generate the recombinant plasmid pTY- α-amylase. Methods Escherichia coli BL21 used as a host and protein expression was applied using IPTG. SDS-PAGE assay demonstrated the 100 kDa protein. Amylolytic activity of proteins produced by transformed E. coli cells was detected by zymography, and the rate of active α-amylase with and without the intein tag in both soluble conditions and as inclusion bodies solubilized by 4M urea were measured. Results Amylolytic activity of ∼185,000 U/L of bacterial culture was observed from the soluble form of the protein using this system. Conclusion These results indicate that this expression system was appropriate for the production of thermostable α-amylase. PMID:26835242

  5. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization.

    PubMed

    Menyhárd, Dóra K; Kiss-Szemán, Anna; Tichy-Rács, Éva; Hornung, Balázs; Rádi, Krisztina; Szeltner, Zoltán; Domokos, Klarissza; Szamosi, Ilona; Náray-Szabó, Gábor; Polgár, László; Harmat, Veronika

    2013-06-14

    Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states. PMID:23632025

  6. Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1.

    PubMed Central

    Adul Rahman, R N; Jongsareejit, B; Fujiwara, S; Imanaka, T

    1997-01-01

    The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activities. However, kinetic studies indicated that the enzyme possessed low biosynthetic activity, suggesting that the reaction was biased towards glutamate production. The optimum temperature for both activities was 60 degrees C, which was lower than the optimal growth temperature of KOD1. Recombinant KOD1 GlnA exhibited different optimum pHs depending on the reaction employed (pH 7.8 for the synthetase reaction and pH 7.2 for the transferase reaction). Of the various nucleoside triphosphates tested, GTP as well as ATP was involved in the synthetase reaction. PMID:9172372

  7. Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus.

    PubMed

    Henze, Manja; Merker, Dorothee; Elling, Lothar

    2016-01-01

    The potential of the hyperthermophilic β-glycosidase from Pyrococcus woesei (DSM 3773) for the synthesis of glycosides under microwave irradiation (MWI) at low temperatures was investigated. Transgalactosylation reactions with β-N-acetyl-d-glucosamine as acceptor substrate (GlcNAc-linker-tBoc) under thermal heating (TH, 85 °C) and under MWI at 100 and 300 W resulted in the formation of (Galβ(1,4)GlcNAc-linker-tBoc) as the main product in all reactions. Most importantly, MWI at temperatures far below the temperature optimum of the hyperthermophilic glycosidase led to higher product yields with only minor amounts of side products β(1,6-linked disaccharide and trisaccharides). At high acceptor concentrations (50 mM), transgalactosylation reactions under MWI at 300 W gave similar product yields when compared to TH at 85 °C. In summary, we demonstrate that MWI is useful as a novel experimental set-up for the synthesis of defined galacto-oligosaccharides. In conclusion, glycosylation reactions under MWI at low temperatures have the potential as a general strategy for regioselective glycosylation reactions of hyperthermophilic glycosidases using heat-labile acceptor or donor substrates. PMID:26861292

  8. Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deep-sea hydrothermal sulfide chimney on the Juan de Fuca Ridge.

    PubMed

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol; Park, Cheon-Seok

    2012-08-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na(+) gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complete genome sequence analysis results of Pyrococcus sp. ST04 and report the major findings from the genome annotation, with a focus on its saccharolytic and metabolite production potential. PMID:22843576

  9. Complete Genome Sequence of the Hyperthermophilic Archaeon Pyrococcus sp. Strain ST04, Isolated from a Deep-Sea Hydrothermal Sulfide Chimney on the Juan de Fuca Ridge

    PubMed Central

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F.; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol

    2012-01-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na+ gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complete genome sequence analysis results of Pyrococcus sp. ST04 and report the major findings from the genome annotation, with a focus on its saccharolytic and metabolite production potential. PMID:22843576

  10. Identification and Characterization of an Archaeal Kojibiose Catabolic Pathway in the Hyperthermophilic Pyrococcus sp. Strain ST04

    PubMed Central

    Jung, Jong-Hyun; Seo, Dong-Ho; Holden, James F.

    2014-01-01

    A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea. PMID:24391053

  11. Identification and characterization of an archaeal kojibiose catabolic pathway in the hyperthermophilic Pyrococcus sp. strain ST04.

    PubMed

    Jung, Jong-Hyun; Seo, Dong-Ho; Holden, James F; Park, Cheon-Seok

    2014-03-01

    A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea. PMID:24391053

  12. Substrate recognition of N,N'-diacetylchitobiose deacetylase from Pyrococcus horikoshii.

    PubMed

    Nakamura, Tsutomu; Yonezawa, Yasushige; Tsuchiya, Yuko; Niiyama, Mayumi; Ida, Kurumi; Oshima, Maki; Morita, Junji; Uegaki, Koichi

    2016-09-01

    Enzymes of carbohydrate esterase (CE) family 14 catalyze hydrolysis of N-acetyl groups at the non-reducing end of the N-acetylglucosamine (GlcNAc) residue of chitooligosaccharides or related compounds. N,N'-diacetylchitobiose deacetylase (Dac) belongs to the CE-14 family and plays a role in the chitinolytic pathway in archaea by deacetylating N,N'-diacetylchitobiose (GlcNAc2), which is the end product of chitinase. In this study, we revealed the structural basis of reaction specificity in CE-14 deacetylases by solving a crystal structure of Dac from Pyrococcus horikoshii (Ph-Dac) in complex with a novel reaction intermediate analog. We developed 2-deoxy-2-methylphosphoramido-d-glucose (MPG) as the analog of the tetrahedral oxyanion intermediate of the monosaccharide substrate GlcNAc. The crystal structure of Ph-Dac in complex with MPG demonstrated that Arg92, Asp115, and His152 side chains interact with hydroxyl groups of the glucose moiety of the non-reducing-end GlcNAc residue. The amino acid residues responsible for recognition of the MPG glucose moiety are spatially conserved in other CE-14 deacetylases. Molecular dynamics simulation of the structure of the Ph-Dac-GlcNAc2 complex indicated that the reducing GlcNAc residue is placed in a large intermolecular cleft and is not involved with specific interactions with the enzyme. This observation was consistent with results indicating that Ph-Dac displayed similar kinetic parameters for both GlcNAc and GlcNAc2. This study provides the structural basis of reaction-site specificity of Dac and related CE-14 enzymes. PMID:27456364

  13. Crystallization and preliminary X-ray analysis of a RecB-family nuclease from the archaeon Pyrococcus abyssi

    SciTech Connect

    Ren, Bin; Kuhn, Joëlle; Meslet-Cladiere, Laurence; Myllykallio, Hannu; Ladenstein, Rudolf

    2007-05-01

    A RecB-like nuclease from the archaeon Pyrococcus abyssi was expressed, purified and crystallized. The crystals belong to the orthorhombic space group C222{sub 1} with a = 81.5, b = 159.8, c = 100.8 Å, and a native data set was collected to 2.65 Å resolution. Nucleases are required to process and repair DNA damage in living cells. One of the best studied nucleases is the RecB protein, which functions in Escherichia coli as a component of the RecBCD enzyme complex that amends double-strand breaks in DNA. Although archaea do not contain the RecBCD complex, a RecB-like nuclease from Pyrococcus abyssi has been cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method using polyethylene glycol 8000 as the precipitant. The crystals belong to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 81.5, b = 159.8, c = 100.8 Å. Self-rotation function and native Patterson map calculations revealed that there is a dimer in the asymmetric unit with its local twofold axis running parallel to the crystallographic twofold screw axis. The crystals diffracted to about 2 Å and a complete native data set was collected to 2.65 Å resolution.

  14. A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope

    PubMed Central

    Canali, Elena; Bolchi, Angelo; Spagnoli, Gloria; Seitz, Hanna; Rubio, Ivonne; Pertinhez, Thelma A.; Müller, Martin; Ottonello, Simone

    2014-01-01

    Escherichia coli thioredoxin has been previously exploited as a scaffold for the presentation/stabilization of peptide aptamers as well as to confer immunogenicity to peptide epitopes. Here we focused on other key features of thioredoxin that are of general interest for the production of safer and more effective peptide immunogens, such as a high thermal stability, lack of cross-reactivity and a low-cost of production. We identified thioredoxin from the archaebacterium Pyrococcus furiosus (PfTrx) as a novel scaffold meeting all the above criteria. PfTrx is a highly thermostable and protease-resistant scaffold with a strong (poly)peptide solubilisation capacity. Anti-PfTrx antibodies did not cross-react with mouse, nor human thioredoxin. Untagged PfTrx bearing a previously identified HPV16-L2 peptide epitope was obtained in a >90% pure form with a one-step thermal purification procedure and effectively elicited the production of neutralizing anti-HPV antibodies. We thus propose PfTrx as a superior, general-purpose scaffold for the construction of safe, stable, and low-cost peptide immunogens. PMID:24751665

  15. The metabolism of hydrogen by extremely thermophilic bacteria

    SciTech Connect

    Adams, M.W.W.

    1991-01-01

    The novel archaebacterium, Pyrococcus furiosus, grows optimally at 100{degree}C by a fermentative metabolism and produces hydrogen (H{sub 2}). We have shown that this organism appears to ferment glucose and evolve H{sub 2} by a novel pathway. The following metalloenzymes and proteins involved in H{sub 2} metabolism have been purified and characterized: hydrogenase (NiFeS), ferredoxin (FeS), pyruvate ferredoxin oxidoreductase (FeS), and an new enzyme which contains tungsten, glyceraldehyde ferredoxin oxidoreductase (WFeS). A rubredoxin was also purified, and it and the ferredoxin have been sequenced. In addition, a second new enzyme has been identified, glucose ferredoxin oxidoreductase. These represent the first enzymes and proteins to be purified from any organism able to grow optimally above 90{degree}C. All are remarkably thermostable and show maximal catalytic activity >95{degree}C. The ferredoxin has several unique properties and is potentially an extremely thermostable model for the catalytic sites of a variety of mesophilic metalloenzymes. In addition, the FeS-containing enzymes, hydrogenase and pyruvate ferredoxin oxidoreductase, and a ferredoxin, have been purified from the most thermophilic eubacterium currently known, Thermotoga maritima. This organism grows up to 90{degree}C, also by fermentation. The hydrogenases of T. maritima and P. furiosus each have many unique properties in comparison with mesophilic hydrogenases, and both appear to contain new types of metal centers that are specifically adapted to catalyze H{sub 2} production at the extreme temperatures. Hydrogenase activity has also been measured in four other extremely thermophilic organisms, one of which is capable of growth at 120{degree}C. 1 fig.

  16. Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus

    PubMed Central

    Henze, Manja; Merker, Dorothee; Elling, Lothar

    2016-01-01

    The potential of the hyperthermophilic β-glycosidase from Pyrococcus woesei (DSM 3773) for the synthesis of glycosides under microwave irradiation (MWI) at low temperatures was investigated. Transgalactosylation reactions with β-N-acetyl-d-glucosamine as acceptor substrate (GlcNAc-linker-tBoc) under thermal heating (TH, 85 °C) and under MWI at 100 and 300 W resulted in the formation of (Galβ(1,4)GlcNAc-linker-tBoc) as the main product in all reactions. Most importantly, MWI at temperatures far below the temperature optimum of the hyperthermophilic glycosidase led to higher product yields with only minor amounts of side products β(1,6-linked disaccharide and trisaccharides). At high acceptor concentrations (50 mM), transgalactosylation reactions under MWI at 300 W gave similar product yields when compared to TH at 85 °C. In summary, we demonstrate that MWI is useful as a novel experimental set-up for the synthesis of defined galacto-oligosaccharides. In conclusion, glycosylation reactions under MWI at low temperatures have the potential as a general strategy for regioselective glycosylation reactions of hyperthermophilic glycosidases using heat-labile acceptor or donor substrates. PMID:26861292

  17. Purification, crystallization and preliminary crystallographic analysis of the vacuole-type ATPase subunit E from Pyrococcus horikoshii OT3

    SciTech Connect

    Lokanath, Neratur K.; Ukita, Yoko; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-01-01

    The E subunit of vacuole-type ATPase from P. horikoshii OT3 was overexpressed, purified and crystallized. The native crystals diffracted X-rays to 1.85 Å resolution. The vacuole-type ATPases in eukaryotic cells translocate protons across various biological membranes including the vacuolar membrane by consuming ATP molecules. The E subunit of the multisubunit complex V-ATPase from Pyrococcus horikoshii OT3, which has a molecular weight of 22.88 kDa, has been cloned, overexpressed in Escherichia coli, purified and crystallized by the microbatch method using PEG 4000 as a precipitant at 296 K. A data set to 1.85 Å resolution with 98.8% completeness and an R{sub merge} of 6.5% was collected from a single flash-cooled crystal using synchrotron radiation. The crystal belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.196, b = 55.317, c = 77.481 Å, and is most likely to contain one molecule per asymmetric unit.

  18. Overexpression, purification, crystallization and preliminary crystallographic studies of a hyperthermophilic adenylosuccinate synthetase from Pyrococcus horikoshii OT3

    PubMed Central

    Wang, Xiaoying; Akasaka, Ryogo; Takemoto, Chie; Morita, Satoshi; Yamaguchi, Machiko; Terada, Takaho; Shirozu, Mikako; Yokoyama, Shigeyuki; Chen, Shilin; Si, Shuyi; Xie, Yong

    2011-01-01

    Adenylosuccinate synthetase (AdSS) is a ubiquitous enzyme that catalyzes the first committed step in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP) in the purine-biosynthetic pathway. Although AdSS from the vast majority of organisms is 430–457 amino acids in length, AdSS sequences isolated from thermophilic archaea are 90–120 amino acids shorter. In this study, crystallographic studies of a short AdSS sequence from Pyrococcus horikoshii OT3 (PhAdSS) were performed in order to reveal the unusual structure of AdSS from thermophilic archaea. Crystals of PhAdSS were obtained by the microbatch-under-oil method and X-ray diffraction data were collected to 2.50 Å resolution. The crystal belonged to the trigonal space group P3212, with unit-cell parameters a = b = 57.2, c = 107.9 Å. There was one molecule per asymmetric unit, giving a Matthews coefficient of 2.17 Å3 Da−1 and an approximate solvent content of 43%. In contrast, the results of native polyacrylamide gel electrophoresis and analytical ultracentrifugation showed that the recombinant PhAdSS formed a dimer in solution. PMID:22139164

  19. Purification, crystallization and preliminary crystallographic analysis of RecA superfamily ATPase PH0284 from Pyrococcus horikoshii OT3

    SciTech Connect

    Bagautdinov, Bagautdin; Kunishima, Naoki

    2006-04-01

    RecA superfamily ATPase PH0284 from P. horikoshii OT3 was overexpressed, purified, crystallized and cocrystallized with ATP. Both crystal forms belong to the trigonal space group P3{sub 2}21 and diffract X-rays to 2.0 and 2.3 Å resolution, respectively. Circadian (daily) protein clocks are found in cyanobacteria, where a complex of the KaiA, KaiB and KaiC proteins generates circadian rhythms. The 28.09 kDa KaiC homologue PH0284 protein from Pyrococcus horikoshii OT3 was cloned and expressed and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data from the crystal were collected to 2.0 Å resolution using synchrotron radiation at 100 K. The crystal belongs to the trigonal space group P3{sub 2}21, with unit-cell parameters a = b = 96.06, c = 298.90 Å. Assuming the presence of one hexamer in the asymmetric unit gives a V{sub M} value of 2.36 Å{sup 3} Da{sup −1} and a solvent content of 47.9%. A cocrystal with ATP was prepared and a diffraction data set was collected at 2.3 Å resolution.

  20. Purification, crystallization and preliminary crystallographic analysis of archaeal 6-pyruvoyl tetrahydrobiopterin synthase homologue PH0634 from Pyrococcus horikoshii OT3.

    PubMed

    Bagautdinov, Bagautdin; Sugahara, Mitsuaki; Kunishima, Naoki

    2007-01-01

    6-Pyruvoyl tetrahydrobiopterin synthase (PTPS) catalyses the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of the three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. PH0634, a 13.51 kDa archaeal PTPS homologue from Pyrococcus horikoshii OT3, was overexpressed as native and selenomethionine-substituted protein and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data were collected to 2.1 A resolution from the native crystal using synchrotron radiation at 100 K. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 35.83, b = 95.71, c = 105.65 A. Threefold noncrystallographic symmetry was identified from self-rotation calculations. Assuming the presence of a trimer in the asymmetric unit, the solvent content is 45% (V(M) = 2.24 A3 Da(-1)). The selenomethionine-substituted crystal is isomorphous to the native crystal and diffracts X-rays to 2.9 A. PMID:17183164

  1. Purification, crystallization and preliminary crystallographic analysis of RecA superfamily ATPase PH0284 from Pyrococcus horikoshii OT3.

    PubMed

    Bagautdinov, Bagautdin; Kunishima, Naoki

    2006-04-01

    Circadian (daily) protein clocks are found in cyanobacteria, where a complex of the KaiA, KaiB and KaiC proteins generates circadian rhythms. The 28.09 kDa KaiC homologue PH0284 protein from Pyrococcus horikoshii OT3 was cloned and expressed and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data from the crystal were collected to 2.0 angstroms resolution using synchrotron radiation at 100 K. The crystal belongs to the trigonal space group P3(2)21, with unit-cell parameters a = b = 96.06, c = 298.90 angstroms. Assuming the presence of one hexamer in the asymmetric unit gives a V(M) value of 2.36 angstroms3 Da(-1) and a solvent content of 47.9%. A cocrystal with ATP was prepared and a diffraction data set was collected at 2.3 angstroms resolution. PMID:16582499

  2. Purification, crystallization and preliminary crystallographic analysis of archaeal 6-pyruvoyl tetrahydrobiopterin synthase homologue PH0634 from Pyrococcus horikoshii OT3

    SciTech Connect

    Bagautdinov, Bagautdin; Sugahara, Mitsuaki; Kunishima, Naoki

    2007-01-01

    An archaeal 6-pyruvoyl tetrahydrobiopterin synthase homologue from P. horikoshii OT3 was overexpressed as native and selenomethionine-substituted protein, purified and crystallized. The native and selenomethionine-derivative crystals are isomorphous and diffract X-rays to 2.1 and 2.9 Å resolution, respectively. 6-Pyruvoyl tetrahydrobiopterin synthase (PTPS) catalyses the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of the three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. PH0634, a 13.51 kDa archaeal PTPS homologue from Pyrococcus horikoshii OT3, was overexpressed as native and selenomethionine-substituted protein and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data were collected to 2.1 Å resolution from the native crystal using synchrotron radiation at 100 K. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 35.83, b = 95.71, c = 105.65 Å. Threefold noncrystallographic symmetry was identified from self-rotation calculations. Assuming the presence of a trimer in the asymmetric unit, the solvent content is 45% (V{sub M} = 2.24 Å{sup 3} Da{sup −1}). The selenomethionine-substituted crystal is isomorphous to the native crystal and diffracts X-rays to 2.9 Å.

  3. Purification, crystallization and preliminary crystallographic analysis of archaeal 6-pyruvoyl tetrahydrobiopterin synthase homologue PH0634 from Pyrococcus horikoshii OT3

    PubMed Central

    Bagautdinov, Bagautdin; Sugahara, Mitsuaki; Kunishima, Naoki

    2007-01-01

    6-Pyruvoyl tetrahydrobiopterin synthase (PTPS) catalyses the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of the three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. PH0634, a 13.51 kDa archaeal PTPS homologue from Pyrococcus horikoshii OT3, was overexpressed as native and selenomethionine-substituted protein and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data were collected to 2.1 Å resolution from the native crystal using synchrotron radiation at 100 K. The crystal belongs to the orthorhombic space group P212121, with unit-cell parameters a = 35.83, b = 95.71, c = 105.65 Å. Threefold noncrystallographic symmetry was identified from self-rotation calculations. Assuming the presence of a trimer in the asymmetric unit, the solvent content is 45% (V M = 2.24 Å3 Da−1). The selenomethionine-substituted crystal is isomorphous to the native crystal and diffracts X-rays to 2.9 Å. PMID:17183164

  4. Purification, crystallization and preliminary crystallographic analysis of the biotin-protein ligase from Pyrococcus horikoshii OT3.

    PubMed

    Bagautdinov, Bagautdin; Kuroishi, Chizu; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-02-01

    Biotin-protein ligase is an enzyme that catalyzes the ATP-dependent biotinylation of a specific lysine residue in acetyl-CoA carboxylase. The biotin-protein ligase from Pyrococcus horikoshii OT3 has been cloned, overexpressed and purified. Crystallization was performed by the microbatch method or the vapour-diffusion method using PEG 2000 as a precipitant at 295 K. X-ray diffraction data have been collected to 1.6 A resolution from a native crystal and to 1.55 A resolution from a selenomethionine-derivative crystal for multiple anomalous dispersion phasing using synchrotron radiation at 100 K. The native crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 38.601, b = 78.264, c = 70.147 A, beta = 101.48 degrees. Assuming a homodimer per asymmetric unit gives a VM value of 2.14 A3 Da(-1) and a solvent content of 42.5%. Cocrystals with biotin, ADP and biotinyl-5'-AMP were prepared and diffraction data sets were collected to 1.6, 1.6 and 1.45 A resolution, respectively. PMID:16510991

  5. Purification, crystallization and preliminary crystallographic analysis of the biotin–protein ligase from Pyrococcus horikoshii OT3

    PubMed Central

    Bagautdinov, Bagautdin; Kuroishi, Chizu; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-01-01

    Biotin–protein ligase is an enzyme that catalyzes the ATP-dependent biotinylation of a specific lysine residue in acetyl-CoA carboxylase. The biotin–protein ligase from Pyrococcus horikoshii OT3 has been cloned, overexpressed and purified. Crystallization was performed by the microbatch method or the vapour-diffusion method using PEG 2000 as a precipitant at 295 K. X-ray diffraction data have been collected to 1.6 Å resolution from a native crystal and to 1.55 Å resolution from a selenomethionine-derivative crystal for multiple anomalous dispersion phasing using synchrotron radiation at 100 K. The native crystal belongs to the monoclinic space group P21, with unit-cell parameters a = 38.601, b = 78.264, c  =  70.147 Å, β = 101.48°. Assuming a homodimer per asymmetric unit gives a V M value of 2.14 Å3 Da−1 and a solvent content of 42.5%. Cocrystals with biotin, ADP and biotinyl-5′-AMP were prepared and diffraction data sets were collected to 1.6, 1.6 and 1.45 Å resolution, respectively. PMID:16510991

  6. Purification, crystallization and preliminary crystallographic analysis of RecA superfamily ATPase PH0284 from Pyrococcus horikoshii OT3

    PubMed Central

    Bagautdinov, Bagautdin; Kunishima, Naoki

    2006-01-01

    Circadian (daily) protein clocks are found in cyanobacteria, where a complex of the KaiA, KaiB and KaiC proteins generates circadian rhythms. The 28.09 kDa KaiC homologue PH0284 protein from Pyrococcus horikoshii OT3 was cloned and expressed and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data from the crystal were collected to 2.0 Å resolution using synchrotron radiation at 100 K. The crystal belongs to the trigonal space group P3221, with unit-cell parameters a = b = 96.06, c = 298.90 Å. Assuming the presence of one hexamer in the asymmetric unit gives a V M value of 2.36 Å3 Da−1 and a solvent content of 47.9%. A cocrystal with ATP was prepared and a diffraction data set was collected at 2.3 Å resolution. PMID:16582499

  7. Cloning, purification, crystallization and preliminary crystallographic analysis of a penicillin-binding protein homologue from Pyrococcus abyssi

    SciTech Connect

    Delfosse, Vanessa; Hugonnet, Jean-Emmanuel; Sougakoff, Wladimir; Mayer, Claudine

    2005-11-01

    The crystallization of a hypothetical penicillin-binding protein from the archaeon P. abyssi in space group C2 by hanging-drop vapour diffusion is reported. The genome of the hyperthermophilic archaeon Pyrococcus abyssi contains a gene (pab0087) encoding a penicillin-binding protein (PBP) homologue. This sequence consists of 447 residues and shows significant sequence similarity to low-molecular-weight PBPs and class C β-lactamases. The Pab0087 protein was overexpressed, purified and crystallized. Diffraction data from two different crystal forms were collected to 2.7 and 2.0 Å resolution. Both crystals belong to space group C2, with unit-cell parameters a = 160.59, b = 135.74, c = 113.02 Å, β = 117.36° and a = 166.97, b = 131.25, c = 189.39 Å, β = 113.81°, respectively. The asymmetric unit contains four and eight molecules, respectively, with fourfold non-crystallographic symmetry.

  8. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  9. An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs

    PubMed Central

    Pluchon, Pierre-François; Fouqueau, Thomas; Crezé, Christophe; Laurent, Sébastien; Briffotaux, Julien; Hogrel, Gaëlle; Palud, Adeline; Henneke, Ghislaine; Godfroy, Anne; Hausner, Winfried; Thomm, Michael; Nicolas, Jacques; Flament, Didier

    2013-01-01

    In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes. PMID:24244547

  10. ADP-dependent 6-Phosphofructokinase from Pyrococcus horikoshii OT3: STRUCTURE DETERMINATION AND BIOCHEMICAL CHARACTERIZATION OF PH1645

    SciTech Connect

    Currie, Mark A.; Merino, Felipe; Skarina, Tatiana; Wong, Andrew H.Y.; Singer, Alexander; Brown, Greg; Savchenko, Alexei; Caniuguir, Andrés; Guixé, Victoria; Yakunin, Alexander F.; Jia, Zongchao

    2009-12-01

    Some hyperthermophilic archaea use a modified glycolytic pathway that employs an ADP-dependent glucokinase (ADP-GK) and an ADP-dependent phosphofructokinase (ADP-PFK) or, in the case of Methanococcus jannaschii, a bifunctional ADP-dependent glucophosphofructokinase (ADP-GK/PFK). The crystal structures of three ADP-GKs have been determined. However, there is no structural information available for ADP-PFKs or the ADP-GK/PFK. Here, we present the first crystal structure of an ADP-PFK from Pyrococcus horikoshii OT3 (PhPFK) in both apo- and AMP-bound forms determined to 2.0-{angstrom} and 1.9-{angstrom} resolution, respectively, along with biochemical characterization of the enzyme. The overall structure of PhPFK maintains a similar large and small {alpha}/{beta} domain structure seen in the ADP-GK structures. A large conformational change accompanies binding of phosphoryl donor, acceptor, or both, in all members of the ribokinase superfamily characterized thus far, which is believed to be critical to enzyme function. Surprisingly, no such conformational change was observed in the AMP-bound PhPFK structure compared with the apo structure. Through comprehensive site-directed mutagenesis of the substrate binding pocket we identified residues that were critical for both substrate recognition and the phosphotransfer reaction. The catalytic residues and many of the substrate binding residues are conserved between PhPFK and ADP-GKs; however, four key residues differ in the sugar-binding pocket, which we have shown determine the sugar-binding specificity. Using these results we were able to engineer a mutant PhPFK that mimics the ADP-GK/PFK and is able to phosphorylate both fructose 6-phosphate and glucose.

  11. Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: structural basis of biotin activation.

    PubMed

    Bagautdinov, Bagautdin; Kuroishi, Chizu; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-10-21

    Biotin protein ligase (EC 6.3.4.15) catalyses the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. The three-dimensional structure of biotin protein ligase from Pyrococcus horikoshii OT3 has been determined by X-ray diffraction at 1.6A resolution. The structure reveals a homodimer as the functional unit. Each subunit contains two domains, a larger N-terminal catalytic domain and a smaller C-terminal domain. The structural feature of the active site has been studied by determination of the crystal structures of complexes of the enzyme with biotin, ADP and the reaction intermediate biotinyl-5'-AMP at atomic resolution. This is the first report of the liganded structures of biotin protein ligase with nucleotide and biotinyl-5'-AMP. The structures of the unliganded and the liganded forms are isomorphous except for an ordering of the active site loop upon ligand binding. Catalytic binding sites are suitably arranged to minimize the conformational changes required during the reaction, as the pockets for biotin and nucleotide are located spatially adjacent to each other in a cleft of the catalytic domain and the pocket for biotinyl-5'-AMP binding mimics the combination of those of the substrates. The exact locations of the ligands and the active site residues allow us to propose a general scheme for the first step of the reaction carried out by biotin protein ligase in which the positively charged epsilon-amino group of Lys111 facilitates the nucleophilic attack on the ATP alpha-phosphate group by the biotin carboxyl oxygen atom and stabilizes the negatively charged intermediates. PMID:16169557

  12. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks.

    PubMed

    Orange, F; Westall, F; Disnar, J-R; Prieur, D; Bienvenu, N; Le Romancer, M; Défarge, Ch

    2009-09-01

    Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils. PMID:19656214

  13. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn

    PubMed Central

    Nolivos, Sophie; Carpousis, Agamemnon J.; Clouet-d'Orval, Béatrice

    2005-01-01

    The C/D guide RNAs predicted from the genomic sequences of three species of Pyrococcus delineate a family of small non-coding archaeal RNAs involved in the methylation of rRNA and tRNA. The C/D guides assemble into ribonucleoprotein (RNP) that contains the methyltransferase. The protein L7Ae, a key structural component of the RNP, binds to a Kink-turn (K-turn) formed by the C/D motif. The K-turn is a structure that consists of two RNA stems separated by a short asymmetric loop with a characteristic sharp bend (kink) between the two stems. The majority of the pyrococcal C/D guides contain a short 3 nt-spacer between the C′/D′ motifs. We show here that conserved terminal stem–loops formed by the C′/D′ motif of the Pyrococcus C/D RNAs are also L7Ae-binding sites. These stem–loops are related to the K-turn by sequence and structure, but they consist of a single stem closed by a terminal loop. We have named this structure the K-loop. We show that conserved non-canonical base pairs in the stem of the K-loop are necessary for L7Ae binding. For the C/D guides with a 3 nt-spacer we show that the sequence and length is also important. The K-loop could improve the stability of the C/D guide RNAs in Pyrococcal species, which are extreme hyperthermophiles. PMID:16293637

  14. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1.

    PubMed Central

    Yan, Z; Fujiwara, S; Kohda, K; Takagi, M; Imanaka, T

    1997-01-01

    The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit. PMID:9023959

  15. Isolation and Characterization of a Second Subunit of Molecular Chaperonin from Pyrococcus kodakaraensis KOD1: Analysis of an ATPase-Deficient Mutant Enzyme

    PubMed Central

    Izumi, Michi; Fujiwara, Shinsuke; Takagi, Masahiro; Kanaya, Shigenori; Imanaka, Tadayuki

    1999-01-01

    The cpkA gene encoding a second (α) subunit of archaeal chaperonin from Pyrococcus kodakaraensis KOD1 was cloned, sequenced, and expressed in Escherichia coli. Recombinant CpkA was studied for chaperonin functions in comparison with CpkB (β subunit). The effect on decreasing the insoluble form of proteins was examined by coexpressing CpkA or CpkB with CobQ (cobyric acid synthase from P. kodakaraensis) in E. coli. The results indicate that both CpkA and CpkB effectively decrease the amount of the insoluble form of CobQ. Both CpkA and CpkB possessed the same ATPase activity as other bacterial and eukaryal chaperonins. The ATPase-deficient mutant proteins CpkA-D95K and CpkB-D95K were constructed by changing conserved Asp95 to Lys. Effect of the mutation on the ATPase activity and CobQ solubilization was examined. Neither mutant exhibited ATPase activity in vitro. Nevertheless, they decreased the amount of the insoluble form of CobQ by coexpression as did wild-type CpkA and CpkB. These results implied that both CpkA and CpkB could assist protein folding for nascent protein in E. coli without requiring energy from ATP hydrolysis. PMID:10103287

  16. Expression, purification, crystallization and preliminary X-ray analysis of the KaiC-like protein PH0187 from the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    PubMed Central

    Kang, Hee-Jin; Kubota, Keiko; Miyazono, Ken-ichi; Tanokura, Masaru

    2011-01-01

    KaiC is the central protein in the circadian rhythm in cyanobacteria. The 28 kDa KaiC-like protein PH0187 from the hyperthermophilic archaeon Pyrococcus horikoshii was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of PH0187 were obtained using a reservoir solution consisting of 1.0 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic pH 5.3 (the final pH value of the reservoir solution was 4.8) and diffracted X-rays to 2.75 Å resolution. The crystal of PH0187 belonged to space group P6322, with unit-cell parameters a = b = 239.1, c = 106.5 Å. The crystal contained four PH0187 molecules in the asymmetric unit. PMID:21206047

  17. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3.

    PubMed

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-04-01

    Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein-protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPDeltaN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*-BCCPDeltaN76 and BPL**-BCCPDeltaN76 complexes as well as crystals of BPL*, BPL** and BCCPDeltaN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*-BCCPDeltaN76 and BPL**-BCCPDeltaN76 crystals were collected at 100 K to 2.7 and 2.0 A resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P2(1), with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 A, beta = 95.9 degrees . Assuming two subunits of the complex per asymmetric unit gives a V(M) value of 2.45 A(3) Da(-1) and a solvent content of 50%. PMID:17401210

  18. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3

    PubMed Central

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-01-01

    Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein–protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPΔN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*–BCCPΔN76 and BPL**–BCCPΔN76 complexes as well as crystals of BPL*, BPL** and BCCPΔN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals were collected at 100 K to 2.7 and 2.0 Å resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P21, with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 Å, β = 95.9°. Assuming two subunits of the complex per asymmetric unit gives a V M value of 2.45 Å3 Da−1 and a solvent content of 50%. PMID:17401210

  19. Identification and characterization of a thermostable bifunctional enzyme with phosphomannose isomerase and sugar-1-phosphate nucleotidylyltransferase activities from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3.

    PubMed

    Akutsu, Jun-ichi; Zhang, Zilian; Morita, Rihito; Kawarabayasi, Yutaka

    2015-11-01

    Mannosylglycerate is known as a compatible solute, and plays important roles for salinity adaptation and high temperature stability of microorganisms. In the gene cluster for the mannosylglycerate biosynthetic pathway predicted from the genomic data of Pyrococcus horikoshii OT3, the PH0925 protein was found as a putative bifunctional enzyme with phosphomannose isomerase (PMI) and mannose-1-phosphate guanylyltransferase (Man-1-P GTase) activities, which can synthesize GDP-mannose when accompanied by a phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme (PH0923). The recombinant PH0925 protein, expressed in E. coli, exhibited both expected PMI and Man-1-P GTase activities, as well as absolute thermostability; 95 °C was the optimum reaction temperature. According to the guanylyltransferase activity (GTase) of the PH0925 protein, it was found that the protein can catalyze glucose-1-phosphate (Glc-1-P) and glucosamine-1-phosphate (GlcN-1-P) in addition to Man-1-P. The analyses of C-terminus-truncated forms of the PH0925 protein indicated that sugar-1-phosphate nucleotidylyltransferase (Sugar-1-P NTase) activity was located in the region from the N-terminus to the 345th residue, and that the C-terminal 114 residue region of the PH0925 protein inhibited the Man-1-P GTase activity. Conversely, the PMI activity was abolished by deletion of the C-terminal 14 residues. This is the first report of a thermostable enzyme with both PMI and multiple Sugar-1-P NTase activities. PMID:26290359

  20. Comparative Physiological Studies on Hyperthermophilic Archaea Isolated from Deep-Sea Hot Vents with Emphasis on Pyrococcus Strain GB-D †

    PubMed Central

    Jannasch, Holger W.; Wirsen, Carl O.; Molyneaux, Stephen J.; Langworthy, Thomas A.

    1992-01-01

    Three new sulfur- or non-sulfur-dependent archaeal isolates, including a Pyrococcus strain, from Guaymas Basin hydrothermal vents (Gulf of California; depth, 2,010 m) were characterized and physiologically compared with four known hyperthermophiles, previously isolated from other vent sites, with an emphasis on growth and survival under the conditions particular to the natural habitat. Incubation under in situ pressure (200 atm [1 atm = 101.29 kPa]) did not increase the maximum growth temperature by more than 1°C for any of the organisms but did result in increases in growth rates of up to 15% at optimum growth temperatures. At in situ pressure, temperatures considerably higher than those limiting growth (i.e., > 105°C) were survived best by isolates with the highest maximum growth temperatures, but none of the organisms survived at temperatures of 150°C or higher for 5 min. Free oxygen was toxic to all isolates at growth range temperatures, but at ambient deep-sea temperature (3 to 4°C), the effect varied in different isolates, the non-sulfur-dependent isolate being the most oxygen tolerant. Hyperthermophiles could be isolated from refrigerated and oxygenated samples after 5 years of storage. Cu, Zn, and Pb ions were found to be toxic under nongrowth conditions (absence of organic substrate), with the non-sulfur-dependent isolate again being the most tolerant. PMID:16348799

  1. The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly

    PubMed Central

    Bagautdinov, Bagautdin

    2014-01-01

    CutA1 (copper tolerance A1) is a widespread cytoplasmic protein found in archaea, bacteria, plants and animals, including humans. In Escherichia coli it is implicated in divalent metal tolerance, while the mammalian CutA1 homologue has been proposed to mediate brain enzyme acetylcholinesterase activity and copper homeostasis. The X-ray structures of CutA1 from the thermophilic bacterium Thermus thermophilus (TtCutA1) with and without bound Na+ at 1.7 and 1.9 Å resolution, respectively, and from the hyperthermophilic archaeon Pyrococcus horikoshii (PhCutA1) in complex with Na+ at 1.8 Å resolution have been determined. Both are short and rigid proteins of about 12 kDa that form intertwined compact trimers in the crystal and solution. The main difference in the structures is a wide-type β-bulge on top of the TtCutA1 trimer. It affords a mechanism for lodging a single-residue insertion in the middle of β2 while preserving the interprotomer main-chain hydrogen-bonding network. The liganded forms of the proteins provide new structural information about the metal-binding sites and CutA1 assembly. The Na+–TtCutA1 structure unveils a dodecameric assembly with metal ions in the trimer–trimer interfaces and the lateral clefts of the trimer. For Na+–PhCutA1, the metal ion associated with six waters in an octahedral geometry. The structures suggest that CutA1 may contribute to regulating intracellular metal homeostasis through various binding modes. PMID:24699729

  2. The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly.

    PubMed

    Bagautdinov, Bagautdin

    2014-04-01

    CutA1 (copper tolerance A1) is a widespread cytoplasmic protein found in archaea, bacteria, plants and animals, including humans. In Escherichia coli it is implicated in divalent metal tolerance, while the mammalian CutA1 homologue has been proposed to mediate brain enzyme acetylcholinesterase activity and copper homeostasis. The X-ray structures of CutA1 from the thermophilic bacterium Thermus thermophilus (TtCutA1) with and without bound Na(+) at 1.7 and 1.9 Å resolution, respectively, and from the hyperthermophilic archaeon Pyrococcus horikoshii (PhCutA1) in complex with Na(+) at 1.8 Å resolution have been determined. Both are short and rigid proteins of about 12 kDa that form intertwined compact trimers in the crystal and solution. The main difference in the structures is a wide-type β-bulge on top of the TtCutA1 trimer. It affords a mechanism for lodging a single-residue insertion in the middle of β2 while preserving the interprotomer main-chain hydrogen-bonding network. The liganded forms of the proteins provide new structural information about the metal-binding sites and CutA1 assembly. The Na(+)-TtCutA1 structure unveils a dodecameric assembly with metal ions in the trimer-trimer interfaces and the lateral clefts of the trimer. For Na(+)-PhCutA1, the metal ion associated with six waters in an octahedral geometry. The structures suggest that CutA1 may contribute to regulating intracellular metal homeostasis through various binding modes. PMID:24699729

  3. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase

    PubMed Central

    Guelorget, Amandine; Roovers, Martine; Guérineau, Vincent; Barbey, Carole; Li, Xuan; Golinelli-Pimpaneau, Béatrice

    2010-01-01

    The S-adenosyl-l-methionine dependent methylation of adenine 58 in the T-loop of tRNAs is essential for cell growth in yeast or for adaptation to high temperatures in thermophilic organisms. In contrast to bacterial and eukaryotic tRNA m1A58 methyltransferases that are site-specific, the homologous archaeal enzyme from Pyrococcus abyssi catalyzes the formation of m1A also at the adjacent position 57, m1A57 being a precursor of 1-methylinosine. We report here the crystal structure of P. abyssi tRNA m1A57/58 methyltransferase (PabTrmI), in complex with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine in three different space groups. The fold of the monomer and the tetrameric architecture are similar to those of the bacterial enzymes. However, the inter-monomer contacts exhibit unique features. In particular, four disulfide bonds contribute to the hyperthermostability of the archaeal enzyme since their mutation lowers the melting temperature by 16.5°C. His78 in conserved motif X, which is present only in TrmIs from the Thermococcocales order, lies near the active site and displays two alternative conformations. Mutagenesis indicates His78 is important for catalytic efficiency of PabTrmI. When A59 is absent in tRNAAsp, only A57 is modified. Identification of the methylated positions in tRNAAsp by mass spectrometry confirms that PabTrmI methylates the first adenine of an AA sequence. PMID:20483913

  4. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3

    SciTech Connect

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-04-01

    A truncated form of biotin carboxyl carrier protein containing the C-terminal half fragment (BCCPΔN76) and the biotin protein ligase (BPL) with the mutation R48A (BPL*) or the double mutation R48A K111A (BPL**) were successfully cocrystallized in the presence of ATP and biotin. The BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals belong to space group P2{sub 1} and diffract X-rays to 2.7 and 2.0 Å resolution, respectively. Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein–protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPΔN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*–BCCPΔN76 and BPL**–BCCPΔN76 complexes as well as crystals of BPL*, BPL** and BCCPΔN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals were collected at 100 K to 2.7 and 2.0 Å resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P2{sub 1}, with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 Å, β = 95.9°. Assuming two subunits of the complex per asymmetric unit gives a V{sub M} value of 2.45 Å{sup 3} Da{sup −1} and a solvent content of 50%.

  5. Expression, high-pressure refolding, purification, crystallization and preliminary X-ray analysis of a novel single-strand-specific 3′–5′ exonuclease PhoExo I from Pyrococcus horikoshii OT3

    PubMed Central

    Miyazono, Ken-ichi; Tsutsumi, Kanae; Ishino, Yoshizumi; Tanokura, Masaru

    2014-01-01

    PhoExo I is a single-strand-specific 3′–5′ exonuclease from Pyrococcus horikoshii OT3 and is thought to be involved in a Thermococcales-specific DNA-repair pathway. The recombinant PhoExo I protein was produced as inclusion bodies in Escherichia coli cells. Solubilization of the inclusion bodies was performed by the high-pressure refolding method and highly purified protein was subjected to crystallization by the sitting-drop vapour-diffusion method at 20°C. A crystal of PhoExo I was obtained in a reservoir solution consisting of 0.1 M Tris–HCl pH 8.9, 27% PEG 6000 and diffracted X-rays to 1.52 Å resolution. The crystal of PhoExo I belonged to space group H32, with unit-cell parameters a = b = 112.07, c = 202.28 Å. The crystal contained two PhoExo I molecules in the asymmetric unit. PMID:25084386

  6. Expression, high-pressure refolding, purification, crystallization and preliminary X-ray analysis of a novel single-strand-specific 3'-5' exonuclease PhoExo I from Pyrococcus horikoshii OT3.

    PubMed

    Miyazono, Ken-ichi; Tsutsumi, Kanae; Ishino, Yoshizumi; Tanokura, Masaru

    2014-08-01

    PhoExo I is a single-strand-specific 3'-5' exonuclease from Pyrococcus horikoshii OT3 and is thought to be involved in a Thermococcales-specific DNA-repair pathway. The recombinant PhoExo I protein was produced as inclusion bodies in Escherichia coli cells. Solubilization of the inclusion bodies was performed by the high-pressure refolding method and highly purified protein was subjected to crystallization by the sitting-drop vapour-diffusion method at 20°C. A crystal of PhoExo I was obtained in a reservoir solution consisting of 0.1 M Tris-HCl pH 8.9, 27% PEG 6000 and diffracted X-rays to 1.52 Å resolution. The crystal of PhoExo I belonged to space group H32, with unit-cell parameters a = b = 112.07, c = 202.28 Å. The crystal contained two PhoExo I molecules in the asymmetric unit. PMID:25084386

  7. Hydrogen/sulfur metabolism in the hyperthermophilic archaebacterium Pyrodictium brockii

    SciTech Connect

    Maier, R.J.

    1990-03-01

    The mechanisms by which hyperthermophilic archaebacteria grow and carry out metabolic functions at elevated temperatures have yet to be determined. Progress along these lines requires some understanding of the roles that molecular hydrogen and elemental sulfur play in their metabolism. The objectives of the work proposed here include developing an understanding of the metabolic characteristics of, and the enzymes involved in, hydrogen/sulfur transformation by hyperthermophilic archaebacteria. Efforts will focus primarily on the autotrophic bacterium, Pyrodictium brockii, which has a reported optimum growth temperature (105{degree}C) in pure culture. Biochemical and genetic characterization of enzymes involved in hydrogen/sulfur transformations for these organisms will be pursued. These include the H{sub 2}-activating hydrogenase enzyme, a ubiquinone, a c-type cytochrome, and the S-reducing complex. Comparisons of the biochemical and genetic properties of these electron transport components will be made with mesophilic counterparts. Characterization of both purified hydrogenase and the cloned hydrogenase gene will receive a major research effort. The long-term goal is to understand the biochemical basis of extreme thermophily.

  8. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  9. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  10. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus.

    PubMed

    Hess, D; Krüger, K; Knappik, A; Palm, P; Hensel, R

    1995-10-01

    The gene coding for the 3-phosphoglycerate kinase (EC 2.7.2.3) of Pyrococcus woesei was cloned and sequenced. The gene sequence comprises 1230 bp coding for a polypeptide with the theoretical M(r) of 46,195. The deduced protein sequence exhibits a high similarity (46.1% and 46.6% identity) to the other known archaeal 3-phosphoglycerate kinases of Methanobacterium bryantii and Methanothermus fervidus [Fabry, S., Heppner, P., Dietmaier, W. & Hensel, R. (1990) Gene 91, 19-25]. By comparing the 3-phosphoglycerate kinase sequences of the mesophilic and the two thermophilic Archaea, trends in thermoadaptation were confirmed that could be deduced from comparisons of glyceraldehyde-3-phosphate dehydrogenase sequences from the same organisms [Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. (1990) J. Bacteriol. 172, 4329-4338]. With increasing temperature the average hydrophobicity and the portion of aromatic residues increases, whereas the chain flexibility as well as the content in chemically labile residues (Asn, Cys) decreases. To study the phenotypic properties of the 3-phosphoglycerate kinases from thermophilic Archaea in more detail, the 3-phosphoglycerate kinase genes from P. woesei and M. fervidus were expressed in Escherichia coli. Comparisons of kinetic and molecular properties of the enzymes from the original organisms and from E. coli indicate that the proteins expressed in the mesophilic host are folded correctly. Besides their higher thermostability according to their origin from hyperthermophilic organisms, both enzymes differ from their bacterial and eucaryotic homologues mainly in two respects. (a) The 3-phosphoglycerate kinases from P. woesei and M. fervidus are homomeric dimers in their native state contrary to all other known 3-phosphoglycerate kinases, which are monomers including the enzyme from the mesophilic Archaeum M. bryantii. (b) Monovalent cations are essential for the activity of both archaeal enzymes with K+ being significantly more

  11. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report

    SciTech Connect

    Kelly, R.M.

    1999-03-01

    This project focuses on physiological and bioenergetic characteristics of two representative hyperthermophilic archaea: Thermococcus litoralis (T{sub opt} 88 C) and Pyrococcus furiosus (T{sub opt} 98 C). Both are obligately anaerobic heterotrophs which grow in the presence or absence of reducible sulfur compounds. T. litoralis was studied in relation to information previously developed for P. furiosus: effect of sulfur reduction on bioenergetics, preferred fermentation patterns, tungsten requirement, etc. A defined medium was developed for T. litoralis consisting of amino acids, vitamins and nucleotides. This serves as the basis for continuous culture studies probing metabolic response to media changes. P. furiosus and T. litoralis have also been found to produce a polysaccharide in the presence of maltose and yeast extract. The composition and chemical structure of this polysaccharide was investigated as well as the metabolic motivation for its production. A novel and, perhaps, primitive intracellular proteolytic complex (previously designated as protease S66) in P. furiosus was isolated and the gene encoding the subunit of the complex was cloned, sequenced and the protease expressed in active form in Eschericia coli. Among other issues, the role of this complex in protein turnover and stress response was examined in the context of this organism in addition to comparing it to other complexes in eubacterial and eukaryotic cells. Biochemical characteristics of the protease have been measured in addition to examining other proteolytic species in P. furiosus.

  12. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  13. A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involves in hydrogen production from pyruvate

    SciTech Connect

    Smith, E.T.; Blamey, J.; Zhou, Z.Z.; Adams, M.W.W.

    1995-05-30

    The hyperthomophilic bacterium Thermotoga maritima and the hyperthermolic archaeon Pyrococcus furiosus grow optimally at 80{degrees} and 100{degrees}C, respectively, by the fermentation of carbohydrates to organic acids, CO{sub 2}, and H{sub 2}. Pyruvate is a major source of reductant for H{sub 2} production during fermentation, and pyruvate ferredoxin oxidoreductase (POR), a 4Fe-type ferredoxin, and hydrogenase have been previously purified from both species. P. furiosus utilizes copper-iron-containing POR and a nickel-iron-containing hydrogenase, whereas the POR of T. maritima lacks copper and its hydrogenase lacks nickel. For all four enzymes and for the two ferredoxins, we have determined their reproduction potentials (E{degrees}` and, where possible, thermodynamic parameters associated with electron transfer {Delta}S{degrees} and {Delta}H{degrees}), using differential pulse voltammetry at temperatures ranging from 25 to 95{degrees}C. 55 refs., 7 fig., 2 tabs.

  14. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  15. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    PubMed

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus. PMID:27014866

  16. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Durovic, P; Kutay, U; Schleper, C; Dennis, P P

    1994-01-01

    A commonly used laboratory Sulfolobus strain has been unambiguously identified as Sulfolobus acidocaldarius DSM639. The 5S rRNA gene from this strain was cloned and sequenced. It differs at 17 of 124 positions from the identical 5S rRNA sequences from Sulfolobus solfataricus and a strain apparently misidentified as S. acidocaldarius. Analysis of the transcripts from the 5S rRNA gene failed to identify any precursor extending a significant distance beyond the 5' or 3' boundary of the 5S rRNA-coding sequence. This result suggests that the primary transcript of the 5S rRNA gene corresponds in length (within 1 or 2 nucleotides) to the mature 5S rRNA sequence found in 50S ribosomal subunits. Images PMID:8288546

  17. Analysis of thermally-stable electron transport factors from the hyperthermophilic archaebacterium Pyrodictium brockii. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    The mechanisms by which hyperthermophilic archaebacteria grow and carry out metabolic functions at elevated temperatures have yet to be determined. The objective of this work is to develop an understanding of the metabolic characteristics of, and the electron transport enzymes involved in, hydrogen/sulfur transformation by hyperthermophilic archaebacteria. Efforts focus on the autotrophic H{sub 2}-oxidizing bacterium, Pyrodictium brockii which has an optimum growth temperature of 105{degrees}C. Biochemical and genetic characterization of enzymes involved in hydrogen oxidizing electron transport pathway. These including investigating the role of the membrane lipids in protecting the hydrogenase enzyme from thermal inactivation, characterization of a quinone and a c-type cytochrome, and analysis of the topology in the membrane in the net energy generating components are reported. The long-term goal is to understand some of the factors contributing to the biochemical basis of extreme thermophily.

  18. Analysis of thermally-stable electron transport factors from the hyperthermophilic archaebacterium Pyrodictium brockii

    SciTech Connect

    Not Available

    1992-09-01

    The mechanisms by which hyperthermophilic archaebacteria grow and carry out metabolic functions at elevated temperatures have yet to be determined. The objective of this work is to develop an understanding of the metabolic characteristics of, and the electron transport enzymes involved in, hydrogen/sulfur transformation by hyperthermophilic archaebacteria. Efforts focus on the autotrophic H{sub 2}-oxidizing bacterium, Pyrodictium brockii which has an optimum growth temperature of 105{degrees}C. Biochemical and genetic characterization of enzymes involved in hydrogen oxidizing electron transport pathway. These including investigating the role of the membrane lipids in protecting the hydrogenase enzyme from thermal inactivation, characterization of a quinone and a c-type cytochrome, and analysis of the topology in the membrane in the net energy generating components are reported. The long-term goal is to understand some of the factors contributing to the biochemical basis of extreme thermophily.

  19. Immunochemical identification of three proteinic determinants on the archaebacterium Methanococcus vannielii by monoclonal antibodies

    SciTech Connect

    de Macario, E.C.; Macario, A.J.L.; Magarinos, M.C.

    1983-01-01

    Archaebacteria evolved independently from Eubacteria and Eukaryotes and present unique biochemical features. One group, the methanogens, show a variety of cell-walls paralleling their own evolutionary diversity. Chemical analyses revealed proteins in the cell-wall of Methanococcacea but no murein or pseudomurein. Immunochemical studies were begun using a panel of monoclonal antibodies against M. vannielii SB and quantitative micro-immunoenzymatic methods developed for this purpose. Direct binding and inhibition-blocking assays using sugars and aminosugars also indicated absence of these residues in the SB's cell-wall. Three antibodies, however, recognized three different antigenic determinants involving amino acids: Lys, Phe and Thr (antibody 5A); Ser, Try and Tyr (antibody 5B); and Arg, Lys and Phe (antibody 5F). Each site was recognized by one antibody only, and vice versa. These results agree with those provided by well established chemical methods and support the notion that SB possesses a peculiar cell-wall with proteins only. The data also show the resolution power and reliability of monoclonal probes for structural analysis of the bacterial envelope.

  20. The rhodopsin-like pigments of halobacteria - Light-energy and signal transducers in an archaebacterium

    NASA Technical Reports Server (NTRS)

    Stoeckenius, W.

    1985-01-01

    Three, small retinylidene proteins observed in halobacteria are described. The characteristics of bacteriorhodopsin (bR), which is synthesized during low O2 tension and intense illumination, and the role of bR in the cyclic photoreactions that translocate protons are examined. The detected light-driven chloride influx pigment, halorhodopsin (hR), is also capable of light-driven ion translocation; the hR transport reactions which are chloride dependent and involve isomerization are studied. The sensory photosystem of halobacteria and the receptor functions of the retinal pigment slow rhodopsin are discussed. The similarity of the choromphore structure and photoreactions, and the evolutionary relation between halobacteria and animal pigments are considered.

  1. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  2. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila

    SciTech Connect

    Sowers, K.R.; Gunsalus, R.P.

    1988-02-01

    The authors report the ability of Mesthanosarcina thermophila TM-1 to adapt and grow in media containing NaCl concentrations of 0.005 to 1.2 M. When adapted to marine NaCl concentrations, this species ceased to produce the heteropolysaccharide outer layer typically formed by species of nonmarine origin. Concomitant with this adaptation, M. thermophila ceased to grow as multicellular aggregates and existed solely in single-cell form. The sodium ion concentration was critical for the adaptation process, although magnesium ion appeared to contribute to the cell wall stability of single cells. The results suggest that these archaebacteria possess regulatory systems that enable them to adapt to environments with a wide range of saline concentrations.

  3. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1991-01-01

    The halobacterial ATPase was labeled with C-14-dicyclohexylcarbodiimide and subunit 2 of the enzyme was prepared by electroelution. Subunit 2 was cleaved by several chemical and enzymatic procedures for further preparation of peptides. Immunoreactions (Western blotting) of halobacterial membranes were performed with an antiserum against subunit A of the vacuolar ATPase from Neurospora crassa. A 85 K band (subunit 1) from the membranes of H saccharovorum and from two halobacterial isolates, which were isolated from Permian salt sediments, reacted strongly with the antiserum. The ATPase from the latter isolates resembled the ATPase from H saccharovorum, but had a higher content of acidic amino acids. If it can be verified that the age of the bacterial isolates is in the same range as when deposition of salt occurred, an extremely interesting system for the study of evolutionary questions would be available, since the salt-embedded bacteria presumably did not undergo mutational and selectional events.

  4. Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei.

    PubMed

    Southam, G; Kalmokoff, M L; Jarrell, K F; Koval, S F; Beveridge, T J

    1990-06-01

    In high (45 mM)-phosphate medium, Methanospirillum hungatei strains GP1 and JF1 grew as very long, nonmotile chains of cells that did not possess flagella. However, growth in lower (3 or 30 mM)-phosphate medium resulted in the production of mostly single cells and short chains that were motile by means of two polar tufts of flagella, which transected the multilayered terminal plug of the cell. Electron microscopy of negatively stained whole mounts revealed a flagellar filament diameter of approximately 10 nm. Flagellar filaments were isolated from either culture fluid or concentrated cell suspensions that were subjected to shearing. Flagellar filaments were sensitive to treatment with both Triton X-100 and Triton X-114 at concentrations as low as 0.1% (vol/vol). The filaments of both strains were composed of two flagellins of Mr 24,000 and 25,000. However, variations in trace element composition of the medium resulted in the production of a third flagellin in strain JF1. This additional flagellin appeared as a ladderlike smear on sodium dodecyl sulfate-polyacylamide gels with a center of intensity of Mr 35,000 and cross-reacted with antisera produced from filaments containing only the Mr-24,000 and -25,000 flagellins. On sodium dodecyl sulfate-polyacrylamide gels, all flagellins stained by the thymol-sulfuric acid and Alcian blue methods, suggesting that they were glycosylated. This was further supported by chemical deglycosylation of the strain JF1 flagellins, which resulted in a reduction in their apparent molecular weight on sodium dodecyl sulfate-polyacylamide gels. Heterologous reactions to sera raised against the flagella from each strain were limited to the Mr-24,000 flagellins. PMID:2345143

  5. Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Wolfe, R. S.; Balch, W. E.; Holzer, G.; Fox, G. E.; Oro, J.

    1978-01-01

    Gas chromatographic and mass- and infrared-spectrometric techniques are used to assay the lipids of a thermophilic chemolithotroph, Methanobacterium thermoautotrophicum. Of the chloroform-soluble lipids, 79% are polar and 21% non-polar. Attention is given to the detection of squalene and hydrosqualene derivatives, which, coupled with 16S r-RNA sequence homologies, indicate that the extreme halophiles and the methanogens share a common ancestor.

  6. Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei.

    PubMed Central

    Southam, G; Kalmokoff, M L; Jarrell, K F; Koval, S F; Beveridge, T J

    1990-01-01

    In high (45 mM)-phosphate medium, Methanospirillum hungatei strains GP1 and JF1 grew as very long, nonmotile chains of cells that did not possess flagella. However, growth in lower (3 or 30 mM)-phosphate medium resulted in the production of mostly single cells and short chains that were motile by means of two polar tufts of flagella, which transected the multilayered terminal plug of the cell. Electron microscopy of negatively stained whole mounts revealed a flagellar filament diameter of approximately 10 nm. Flagellar filaments were isolated from either culture fluid or concentrated cell suspensions that were subjected to shearing. Flagellar filaments were sensitive to treatment with both Triton X-100 and Triton X-114 at concentrations as low as 0.1% (vol/vol). The filaments of both strains were composed of two flagellins of Mr 24,000 and 25,000. However, variations in trace element composition of the medium resulted in the production of a third flagellin in strain JF1. This additional flagellin appeared as a ladderlike smear on sodium dodecyl sulfate-polyacylamide gels with a center of intensity of Mr 35,000 and cross-reacted with antisera produced from filaments containing only the Mr-24,000 and -25,000 flagellins. On sodium dodecyl sulfate-polyacrylamide gels, all flagellins stained by the thymol-sulfuric acid and Alcian blue methods, suggesting that they were glycosylated. This was further supported by chemical deglycosylation of the strain JF1 flagellins, which resulted in a reduction in their apparent molecular weight on sodium dodecyl sulfate-polyacylamide gels. Heterologous reactions to sera raised against the flagella from each strain were limited to the Mr-24,000 flagellins. Images PMID:2345143

  7. The purification and subunit structure of a membrane-bound ATPase from the Archaebacterium Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Kristjansson, Hordur; Altekar, Wijaya

    1987-01-01

    The procedure for the isolation and 70-fold purification of membrane-bound cold-sensitive ATPase from Halobacterium saccharovorum is described. Upon exposure to cold, the enzyme dissociates into two major subunits, I (87 kDa) and II (60 kDa), and two minor subunits, III (29 kDa) and IV (20 kDa). The stoichiometry of the enzyme is proposed to be I2.II2.III.IV; the molecular mass of such a complex would be 343 kDa, which is in good agreement with the value of 350 kDa obtained by gel filtration. The structure of the ATPase from H. saccharovorum makes it unlike any previously described ATPase.

  8. Redox-Promoting Protein Motions in Rubredoxin

    SciTech Connect

    Myles, Dean A A; He, Junhong; Meilleur, Flora; Weiss, Kevin L; Agarwal, Pratul K; Borreguero Calvo, Jose M; Barthes, Mariette; Brown, Craig; Herwig, Kenneth W

    2011-01-01

    Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This manuscript reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf), by neutron scattering and computational simulations. The changes in motion have been explored in connection to their role in promoting reduction of the Fe+3 ion which is responsible for the electron transfer function of RdPf. Just above the dynamical transition temperature of 220 K which marks the onset of significant anharmonic motions of the protein, the computer simulations show both a significant reorientation of the average electrostatic force experienced by the Fe+3 ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated which dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of Pyrococcus furiosus, computer simulations show that three anharmonic modes involving two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe+3 ion and include displacements which allow solvent access to the ion. The low-frequency, high amplitude motions of these residues at low temperatures may be precursors of the high temperature, anharmonic motions necessary for protein function.

  9. Stabilization of Enzymes against Thermal Stress and Freeze-Drying by Mannosylglycerate

    PubMed Central

    Ramos, A.; Raven, N.; Sharp, R. J.; Bartolucci, S.; Rossi, M.; Cannio, R.; Lebbink, J.; Van Der Oost, J.; De Vos, W. M.; Santos, H.

    1997-01-01

    2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The thermostabilities of alcohol dehydrogenases from P. furiosus and Bacillus stearothermophilus and of glutamate dehydrogenases from Thermotoga maritima and Clostridium difficile were improved to a significant extent when enzyme solutions were incubated at supraoptimal temperatures in the presence of 2-O-(beta)-mannosylglycerate, but no effect on the thermostability of glutamate dehydrogenase from P. furiosus was detected. On the other hand, there was a remarkable effect on the thermal stabilities of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and bovine liver glutamate dehydrogenase, which were used as model systems to evaluate stabilization of enzymes of mesophilic origin. For all of the enzymes examined and at the highest temperatures tested, 2-O-(beta)-mannosylglycerate was a better thermoprotectant than trehalose. The stabilizing effect exerted by 2-O-(beta)-mannosylglycerate on enzymes suggests a role for this compound as a protein thermostabilizer under physiological conditions. 2-O-(beta)-Mannosylglycerate was also effective in the protection of enzymes against stress imposed by freeze-drying, with its protecting effect being similar to or better than that exerted by trehalose. The data show 2-O-(beta)-mannosylglycerate to be a potential enzyme stabilizer in biotechnological applications. PMID:16535713

  10. Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation

    SciTech Connect

    Basen, M; Sun, JS; Adams, MWW

    2012-02-24

    Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100 degrees C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [T-opt] of 78 degrees C) controlled by a "cold shock" promoter that is upregulated when cells are transferred from 98 degrees C to 72 degrees C. At 98 degrees C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72 degrees C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100 degrees C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100 degrees C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter

  11. Microbial metalloproteomes explored using MIRAGE.

    PubMed

    Sevcenco, Ana-Maria; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2012-09-01

    Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer an overview of the research involving Metal Isotope native RadioAutography in Gel Electrophoresis (MIRAGE), a powerful new method to visualize and study the proteome of a particular metal ion. MIRAGE involves four steps: i) labelling of target proteins with a radioisotope; ii) separation of intact holo-proteins using native isoelectric focusing (1D) combined with Blue Native PAGE (2D); iii) spot visualization and quantification using autoradiography; and iv) protein identification by tandem mass spectrometry. MIRAGE Investigations of the soluble Cu, Zn, and Fe metalloproteomes of Escherichia coli, and of the soluble Mo and W proteomes of the hyperthermophilic archaeon Pyrococcus furiosus are reviewed. PMID:22976984

  12. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    SciTech Connect

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  13. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily.

    PubMed

    Hopfner, K P; Karcher, A; Shin, D S; Craig, L; Arthur, L M; Carney, J P; Tainer, J A

    2000-06-23

    To clarify the key role of Rad50 in DNA double-strand break repair (DSBR), we biochemically and structurally characterized ATP-bound and ATP-free Rad50 catalytic domain (Rad50cd) from Pyrococcus furiosus. Rad50cd displays ATPase activity plus ATP-controlled dimerization and DNA binding activities. Rad50cd crystal structures identify probable protein and DNA interfaces and reveal an ABC-ATPase fold, linking Rad50 molecular mechanisms to ABC transporters, including P glycoprotein and cystic fibrosis transmembrane conductance regulator. Binding of ATP gamma-phosphates to conserved signature motifs in two opposing Rad50cd molecules promotes dimerization that likely couples ATP hydrolysis to dimer dissociation and DNA release. These results, validated by mutations, suggest unified molecular mechanisms for ATP-driven cooperativity and allosteric control of ABC-ATPases in DSBR, membrane transport, and chromosome condensation by SMC proteins. PMID:10892749

  14. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation.

    PubMed

    Buller, Andrew R; Brinkmann-Chen, Sabine; Romney, David K; Herger, Michael; Murciano-Calles, Javier; Arnold, Frances H

    2015-11-24

    Enzymes in heteromeric, allosterically regulated complexes catalyze a rich array of chemical reactions. Separating the subunits of such complexes, however, often severely attenuates their catalytic activities, because they can no longer be activated by their protein partners. We used directed evolution to explore allosteric regulation as a source of latent catalytic potential using the β-subunit of tryptophan synthase from Pyrococcus furiosus (PfTrpB). As part of its native αββα complex, TrpB efficiently produces tryptophan and tryptophan analogs; activity drops considerably when it is used as a stand-alone catalyst without the α-subunit. Kinetic, spectroscopic, and X-ray crystallographic data show that this lost activity can be recovered by mutations that reproduce the effects of complexation with the α-subunit. The engineered PfTrpB is a powerful platform for production of Trp analogs and for further directed evolution to expand substrate and reaction scope. PMID:26553994

  15. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  16. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Watanabe, Masahiro; Ishikawa, Kazuhiko

    2014-01-01

    One of the β-glucosidases from Pyrococcus furiosus (BGLPf) is found to be a hyperthermophilic tetrameric enzyme that can degrade cellooligosaccharides. Recently, the crystal structures of the tetrameric and dimeric forms were solved. Here, a new monomeric form of BGLPf was constructed by removing the C-terminal region of the enzyme and its crystal structure was solved at a resolution of 2.8 Å in space group P1. It was discovered that the mutant enzyme forms a unique dodecameric structure consisting of two hexameric rings in the asymmetric unit of the crystal. Under biological conditions, the mutant enzyme forms a monomer. This result helps explain how BGLPf has attained its oligomeric structure and thermostability. PMID:25005077

  17. Synthesis of β-Branched Tryptophan Analogues Using an Engineered Subunit of Tryptophan Synthase.

    PubMed

    Herger, Michael; van Roye, Paul; Romney, David K; Brinkmann-Chen, Sabine; Buller, Andrew R; Arnold, Frances H

    2016-07-13

    We report that l-threonine may substitute for l-serine in the β-substitution reaction of an engineered subunit of tryptophan synthase from Pyrococcus furiosus, yielding (2S,3S)-β-methyltryptophan (β-MeTrp) in a single step. The trace activity of the wild-type β-subunit on this substrate was enhanced more than 1000-fold by directed evolution. Structural and spectroscopic data indicate that this increase is correlated with stabilization of the electrophilic aminoacrylate intermediate. The engineered biocatalyst also reacts with a variety of indole analogues and thiophenol for diastereoselective C-C, C-N, and C-S bond-forming reactions. This new activity circumvents the 3-enzyme pathway that produces β-MeTrp in nature and offers a simple and expandable route to preparing derivatives of this valuable building block. PMID:27355405

  18. The Mode of Cell Wall Growth in Selected Archaea Is Similar to the General Mode of Cell Wall Growth in Bacteria as Revealed by Fluorescent Dye Analysis ▿ †

    PubMed Central

    Wirth, Reinhard; Bellack, Annett; Bertl, Markus; Bilek, Yvonne; Heimerl, Thomas; Herzog, Bastian; Leisner, Madeleine; Probst, Alexander; Rachel, Reinhard; Sarbu, Christina; Schopf, Simone; Wanner, Gerhard

    2011-01-01

    The surfaces of 8 bacterial and 23 archaeal species, including many hyperthermophilic Archaea, could be stained using succinimidyl esters of fluorescent dyes. This allowed us for the first time to analyze the mode of cell wall growth in Archaea by subculturing stained cells. The data obtained show that incorporation of new cell wall material in Archaea follows the pattern observed for Bacteria: in the coccoid species Pyrococcus furiosus incorporation was in the region of septum formation while for the rod-shaped species Methanopyrus kandleri and Methanothermus sociabilis, a diffuse incorporation of cell wall material over the cell length was observed. Cell surface appendages like fimbriae/pili, fibers, or flagella were detectable by fluorescence staining only in a very few cases although their presence was proven by electron microscopy. Our data in addition prove that Alexa Fluor dyes can be used for in situ analyses at temperatures up to 100°C. PMID:21169435

  19. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  20. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  1. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry. PMID:25187685

  2. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    SciTech Connect

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  3. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  4. A First Analysis of Metallome Biosignatures of Hyperthermophilic Archaea

    PubMed Central

    Cameron, Vyllinniskii; House, Christopher H.; Brantley, Susan L.

    2012-01-01

    To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i) cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii) a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry. PMID:23243390

  5. A new crystal form of a hyperthermophilic endocellulase

    SciTech Connect

    Kataoka, Misumi; Ishikawa, Kazuhiko

    2014-06-18

    The hyperthermostable endocellulase from P. furiosus was crystallized at pH 5.5. The new crystal form has symmetry consistent with space group C2 and exhibits a structure different from that of the protein crystallized at pH 9.0. The hyperthermophilic glycoside hydrolase family endocellulase 12 from the archaeon Pyrococcus furiosus (EGPf; Gene ID PF0854; EC 3.2.1.4) catalyzes the hydrolytic cleavage of the β-1,4-glucosidic linkage in β-glucan in lignocellulose biomass. A crystal of EGPf was previously prepared at pH 9.0 and its structure was determined at an atomic resolution of 1.07 Å. This article reports the crystallization of EGPf at the more physiologically relevant pH of 5.5. Structure determination showed that this new crystal form has the symmetry of space group C2. Two molecules of the enzyme are observed in the asymmetric unit. Crystal packing is weak at pH 5.5 owing to two flexible interfaces between symmetry-related molecules. Comparison of the EGPf structures obtained at pH 9.0 and pH 5.5 reveals a significant conformational difference at the active centre and in the surface loops. The interfaces in the vicinity of the flexible surface loops impact the quality of the EGPf crystal.

  6. Crystal Structure and Function of 5-Formaminoimidazole-4-carboxamide Ribonucleotide Synthetase from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, Yang; White, Robert H.; Ealick, Steven E.

    2008-08-06

    Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.

  7. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    PubMed

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis. PMID:27333783

  8. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  9. Active-site models for complexes of quinolinate synthase with substrates and intermediates

    SciTech Connect

    Soriano, Erika V.; Zhang, Yang; Colabroy, Keri L.; Sanders, Jennie M.; Settembre, Ethan C.; Dorrestein, Pieter C.; Begley, Tadhg P.; Ealick, Steven E.

    2013-09-01

    Structural studies of quinolinate synthase suggest a model for the enzyme–substrate complex and an enzyme–intermediate complex with a [4Fe–4S] cluster. Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel β-sheet flanked by four α-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe–4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005 ▶), J. Biol. Chem.280, 26645–26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe–4S] cluster, prior to cluster assembly.

  10. Redox-Promoting Protein Motions in Rubredoxin

    SciTech Connect

    Borreguero Calvo, Jose M; He, Junhong; Meilleur, Flora; Weiss, Kevin L; Myles, Dean A A; Herwig, Kenneth W; Agarwal, Pratul K

    2011-01-01

    Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This study reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf). Computational modeling allows detailed investigations of protein motions as a function of temperature, and neutron scattering experiments are used to compare to computational results. Just above the dynamical transition temperature which marks the onset of significant anharmonic motions of the protein, the computational simulations show both a significant reorientation of the average electrostatic force experienced by the coordinated Fe{sup 3+} ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated and dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of P. furiosus, simulations show that three anharmonic modes including motions of two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe{sup 3+} ion. The motions of these residues undergo displacements which may facilitate solvent access to the ion.

  11. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide

    SciTech Connect

    Keller, MW; Schut, GJ; Lipscomb, GL; Menon, AL; Iwuchukwu, IJ; Leuko, TT; Thorgersen, MP; Nixon, WJ; Hawkins, AS; Kelly, RM; Adams, MWW

    2013-04-09

    Microorganisms can be engineered to produce useful. products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100 degrees C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73 degrees C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30 degrees C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.

  12. Fundamental Studies of Recombinant Hydrogenases

    SciTech Connect

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  13. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    PubMed Central

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5′-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. PMID:27001046

  14. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    PubMed

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeonPyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as themismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated fromPyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog fromThermococcus kodakarensisclearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. PMID:27001046

  15. Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid.

    PubMed

    Esakova, Olga A; Silakov, Alexey; Grove, Tyler L; Saunders, Allison H; McLaughlin, Martin I; Yennawar, Neela H; Booker, Squire J

    2016-06-15

    Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity. PMID:27224840

  16. Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus.

    PubMed Central

    Weil, C F; Cram, D S; Sherf, B A; Reeve, J N

    1988-01-01

    A 6-kilobase-pair (kbp) region of the genome of the extremely thermophilic arachaebacterium Methanothermus fervidus which encodes the alpha, beta, and gamma subunit polypeptides of component C of methyl coenzyme M reductase was cloned and sequenced. Genes encoding the beta (mcrB) and gamma (mcrG) subunits were separated by two open reading frames (designated mcrC and mcrD) which encode unknown gene products. The M. fervidus genes were preceded by ribosome-binding sites, separated by short A + T-rich intergenic regions, contained unexpectedly few NNC codons, and exhibited inflexible codon usage at some locations. Sites of transcription initiation and termination flanking the mcrBDCGA cluster of genes in M. fervidus were identified. The sequences of the genes, the encoded polypeptides, and transcription regulatory signals in M. fervidus were compared with the functionally equivalent sequences from two mesophilic methanogens (Methanococcus vannielii and Methanosarcina barkeri) and from a moderate thermophile (Methanobacterium thermoautotrophicum Marburg). The amino acid sequences of the polypeptides encoded by the mcrBCGA genes in the two thermophiles were approximately 80% identical, whereas all other pairs of these gene products contained between 50 and 60% identical amino acid residues. The mcrD gene products have diverged more than the products of the other mcr genes. Identification of highly conserved regions within mcrA and mcrB suggested oligonucleotide sequences which might be developed as hybridization probes which could be used for identifying and quantifying all methanogens. Images PMID:3170483

  17. Characterization of the L11, L1, L10 and L12 equivalent ribosomal protein gene cluster of the halophilic archaebacterium Halobacterium cutirubrum.

    PubMed Central

    Shimmin, L C; Dennis, P P

    1989-01-01

    We have cloned and characterized a 5.2 kb fragment of genomic Halobacterium cutirubrum DNA encoding two potential proteins of unknown function (ORF and NAB) and four proteins which are equivalent to the L11, L1, L10 and L12 ribosomal proteins of Escherichia coli (L11e, L1e, L10e and L12e). The ribosomal protein genes are clustered in the same order as that in E. coli although the transcription pattern differs. Transcripts characterized include (i) abundant monocistronic L11e and tricistronic L1e-L10e-L12e transcripts; (ii) less abundant bicistronic NAB-L11e and monocistronic NAB transcripts and (iii) a very rare ORF monocistronic transcript. The consensus sequence in the promoter region is TTCGA ... 4-10 nucleotides ... TTAA ... 25-26 nucleotides ... initiation site; termination generally occurs on poly(T) tracts following GC-rich regions. Poly(T) tracts in the sense strands within coding regions are notably absent; this is probably related to their participation in transcription termination and to the fact that these ribosomal protein genes are highly expressed and stoichiometrically balanced. In the third position of the codons G or C is utilized 87% of the time. The 74 nt long untranslated leader of the L1e-L10e-L12e transcript contains a region that has a sequence and structure almost identical to a region within the binding domain for the L1e protein in 23S rRNA and highly similar to the E. coli L11-L1 mRNA leader sequence that has been implicated in autogenous translational regulation. Other transcripts are initiated at or adjacent to the ATG translation initiation codon. Images PMID:2743981

  18. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  19. Organization and nucleotide sequences of ten ribosomal protein genes from the region equivalent to the S10 operon in the archaebacterium, Halobacterium halobium.

    PubMed

    Miyokawa, T; Urayama, T; Shimooka, K; Itoh, T

    1996-08-01

    A determination was made of the nucleotide sequence of the 7340-bp region of a ribosomal protein gene cluster of Halobacterium halobium, which is equivalent to the S10 operon of Escherichia coli. The sequence was analyzed with the codonpreference program deduced from the halobacterial codon usage table that showed a very high GC content of the third codon position. The sequence was comprised of a string of 13 tightly linked ORFs. Most of the ORFs were homologous with ribosomal protein genes (ORF1-ORF2-rpl3-rpl4-rpl23--rpl2- rps19-rpl22-rps3-rpl29-ORF11-rps17-r pl14). The 13-gene string was preceded by three putative AT-rich promoter sequences. The order of the genes in H. halobium essentially agreed with that of the corresponding genes of E. coli (S10-operon), except for certain deletions or insertions of additional protein genes. PMID:8876975

  20. A c Subunit with Four Transmembrane Helices and One Ion (Na+)-binding Site in an Archaeal ATP Synthase

    PubMed Central

    Mayer, Florian; Leone, Vanessa; Langer, Julian D.; Faraldo-Gómez, José D.; Müller, Volker

    2012-01-01

    The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na+-DCCD competition experiments revealed only one binding site for DCCD and Na+, indicating that the mature c subunit of this A1AO ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na+-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na+-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na+-specific under in vivo conditions, comparable with the Na+-dependent V1VO ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na+-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A1AO ATP synthases. PMID:23007388

  1. Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.

    PubMed

    Nishima, Wataru; Mizukami, Wataru; Tanaka, Yoshiki; Ishitani, Ryuichiro; Nureki, Osamu; Sugita, Yuji

    2016-03-29

    Bacterial pathogens or cancer cells can acquire multidrug resistance, which causes serious clinical problems. In cells with multidrug resistance, various drugs or antibiotics are extruded across the cell membrane by multidrug transporters. The multidrug and toxic compound extrusion (MATE) transporter is one of the five families of multidrug transporters. MATE from Pyrococcus furiosus uses H(+) to transport a substrate from the cytoplasm to the outside of a cell. Crystal structures of MATE from P. furiosus provide essential information on the relevant H(+)-binding sites (D41 and D184). Hybrid quantum mechanical/molecular mechanical simulations and continuum electrostatic calculations on the crystal structures predict that D41 is protonated in one structure (Straight) and, both D41 and D184 protonated in another (Bent). All-atom molecular dynamics simulations suggest a dynamic equilibrium between the protonation states of the two aspartic acids and that the protonation state affects hydration in the substrate binding cavity and lipid intrusion in the cleft between the N- and C-lobes. This hypothesis is examined in more detail by quantum mechanical/molecular mechanical calculations on snapshots taken from the molecular dynamics trajectories. We find the possibility of two proton transfer (PT) reactions in Straight: the 1st PT takes place between side-chains D41 and D184 through a transient formation of low-barrier hydrogen bonds and the 2nd through another H(+) from the headgroup of a lipid that intrudes into the cleft resulting in a doubly protonated (both D41 and D184) state. The 1st PT affects the local hydrogen bond network and hydration in the N-lobe cavity, which would impinge on the substrate-binding affinity. The 2nd PT would drive the conformational change from Straight to Bent. This model may be applicable to several prokaryotic H(+)-coupled MATE multidrug transporters with the relevant aspartic acids. PMID:27028644

  2. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential.

    PubMed

    Cota, Junio; Corrêa, Thamy L R; Damásio, André R L; Diogo, José A; Hoffmam, Zaira B; Garcia, Wanius; Oliveira, Leandro C; Prade, Rolf A; Squina, Fabio M

    2015-01-25

    Beta-glucosidases (BGLs) are enzymes of great potential for several industrial processes, since they catalyze the cleavage of glucosidic bonds in cellobiose and other short cellooligosaccharides. However, features such as good stability to temperature, pH, ions and chemicals are required characteristics for industrial applications. This work aimed to provide a comparative biochemical analysis of three thermostable BGLs from Pyrococcus furiosus and Thermotoga petrophila. The genes PfBgl1 (GH1 from P. furiosus), TpBgl1 (GH1 from T. petrophila) and TpBgl3 (GH3 from T. petrophila) were cloned and proteins were expressed in Escherichia coli. The purified enzymes are hyperthermophilic, showing highest activity at temperatures above 80°C at acidic (TpBgl3 and PfBgl1) and neutral (TpBgl1) pHs. The BGLs showed greatest stability to temperature mainly at pH 6.0. Activities using a set of different substrates suggested that TpBgl3 (GH3) is more specific than GH1 family members. In addition, the influence of six monosaccharides on BGL catalysis was assayed. While PfBgl1 and TpBgl3 seemed to be weakly inhibited by monosaccharides, TpBgl1 was activated, with xylose showing the strongest activation. Under the conditions tested, TpBgl1 showed the highest inhibition constant (Ki=1100.00mM) when compared with several BGLs previously characterized. The BGLs studied have potential for industrial use, specifically the enzymes belonging to the GH1 family, due to its broad substrate specificity and weak inhibition by glucose and other saccharides. PMID:25102284

  3. Cloning, expression, and purification of the general stress protein YhbO from Escherichia coli.

    PubMed

    Abdallah, Jad; Kern, Renee; Malki, Abderrahim; Eckey, Viola; Richarme, Gilbert

    2006-06-01

    We cloned, expressed, and purified the Escherichia coli yhbO gene product, which is an amino acid sequence homolog to the Bacillus subtilis general stress protein 18 (the yfkM gene product), the Pyrococcus furiosus intracellular protease PfpI, and the human Parkinson disease protein DJ-1. The gene coding for YhbO was generated by amplifying the yhbO gene from E. coli by polymerase chain reaction. It was inserted into the expression plasmid pET-21a, under the transcriptional control of the bacteriophage T7 promoter and lac operator. A BL21 (DE3) E. coli strain transformed with the YhbO-expression vector, pET-21a-yhbO, accumulates large amounts of a soluble protein with a molecular mass of 20 kDa in SDS-PAGE that matches the expected YhbO molecular weight. YhbO was purified to homogeneity by ion exchange chromatography and hydroxyapatite chromatography, and its identity was confirmed by N-terminal sequencing and mass spectrometry analysis. The native protein exists in monomeric, trimeric, and hexameric forms. We also report a strong sequence homology between YhbO and the general stress protein YfkM (64% identities), which suggests that YhbO is a stress protein, and a strong structural homology between YhbO and the Pyrococcus horikoshii intracellular protease PhpI. We could not, however, detect any proteolytic or peptidolytic activity of YhbO, using classical biochemical substrates. PMID:16380269

  4. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    PubMed

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  5. Maltose Metabolism in the Hyperthermophilic Archaeon Thermococcus litoralis: Purification and Characterization of Key Enzymes

    PubMed Central

    Xavier, Karina B.; Peist, Ralf; Kossmann, Marina; Boos, Winfried; Santos, Helena

    1999-01-01

    Maltose metabolism was investigated in the hyperthermophilic archaeon Thermococcus litoralis. Maltose was degraded by the concerted action of 4-α-glucanotransferase and maltodextrin phosphorylase (MalP). The first enzyme produced glucose and a series of maltodextrins that could be acted upon by MalP when the chain length of glucose residues was equal or higher than four, to produce glucose-1-phosphate. Phosphoglucomutase activity was also detected in T. litoralis cell extracts. Glucose derived from the action of 4-α-glucanotransferase was subsequently metabolized via an Embden-Meyerhof pathway. The closely related organism Pyrococcus furiosus used a different metabolic strategy in which maltose was cleaved primarily by the action of an α-glucosidase, a p-nitrophenyl-α-d-glucopyranoside (PNPG)-hydrolyzing enzyme, producing glucose from maltose. A PNPG-hydrolyzing activity was also detected in T. litoralis, but maltose was not a substrate for this enzyme. The two key enzymes in the pathway for maltose catabolism in T. litoralis were purified to homogeneity and characterized; they were constitutively synthesized, although phosphorylase expression was twofold induced by maltodextrins or maltose. The gene encoding MalP was obtained by complementation in Escherichia coli and sequenced (calculated molecular mass, 96,622 Da). The enzyme purified from the organism had a specific activity for maltoheptaose, at the temperature for maximal activity (98°C), of 66 U/mg. A Km of 0.46 mM was determined with heptaose as the substrate at 60°C. The deduced amino acid sequence had a high degree of identity with that of the putative enzyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (66%) and with sequences of the enzymes from the hyperthermophilic bacterium Thermotoga maritima (60%) and Mycobacterium tuberculosis (31%) but not with that of the enzyme from E. coli (13%). The consensus binding site for pyridoxal 5′-phosphate is conserved in the T. litoralis

  6. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    SciTech Connect

    Nelson, Karen E.

    2005-10-14

    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  7. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste.

    PubMed

    Hensley, Sarah A; Moreira, Emily; Holden, James F

    2016-01-01

    Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L(-1) at rates of 5-36 fmol H2 cell(-1) h(-1) on 0.5% (wt vol(-1)) maltose, 0.5% (wt vol(-1)) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L(-1) of medium when grown on up to 70% (vol vol(-1)) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L(-1) of medium when grown on 0.1-10% (wt vol(-1)) spent brewery grain while P. furiosus produced < 1 mmol of H2 L(-1). Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different growth

  8. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste

    PubMed Central

    Hensley, Sarah A.; Moreira, Emily; Holden, James F.

    2016-01-01

    Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L−1 at rates of 5–36 fmol H2 cell−1 h−1 on 0.5% (wt vol−1) maltose, 0.5% (wt vol−1) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L−1 of medium when grown on up to 70% (vol vol−1) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L−1 of medium when grown on 0.1–10% (wt vol−1) spent brewery grain while P. furiosus produced < 1 mmol of H2 L−1. Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different

  9. Comparative analysis of the catalytic components in the archaeal dye-linked L-proline dehydrogenase complexes.

    PubMed

    Kawakami, Ryushi; Noguchi, Chiaki; Higashi, Marie; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2013-04-01

    Two types of hetero-oligomeric dye-linked L-proline dehydrogenases (α4β4 and αβγδ types) are expressed in the hyperthermophilic archaea belonging to Thermococcales. In both enzymes, the β subunit (PDHβ) is responsible for catalyzing L-proline dehydrogenation. The genes encoding the two enzyme types form respective clusters that are completely conserved among Pyrococcus and Thermococcus strains. To compare the enzymatic properties of PDHβs from α4β4- and αβγδ-type enzyme complexes, eight PDHβs (four of each type) from Pyrococcus furiosus DSM3638, Pyrococcus horikoshii OT-3, Thermococcus kodakaraensis KOD1 JCM12380 and Thermococcus profundus DSM9503 were expressed in Escherichia coli cells and purified to homogeneity using one-step Ni-chelating chromatography. The α4β4-type PDHβs showed greater thermostability than most of the αβγδ-type PDHβs: the former retained more than 80 % of their activity after heating at 70 °C for 20 min, while the latter showed different thermostabilities under the same conditions. In addition, the α4β4-type PDHβs utilized ferricyanide as the most preferable electron acceptor, whereas αβγδ-type PDHβs preferred 2, 6-dichloroindophenol, with one exception. These results indicate that the differences in the enzymatic properties of the PDHβs likely reflect whether they were from an αβγδ- or α4β4-type complex, though the wider divergence observed within αβγδ-type PDHβs based on the phylogenetic analysis may also be responsible for their inconsistent enzymatic properties. By contrast, differences in the kinetic parameters among the PDHβs did not reflect the complex type. Interestingly, the k cat value for free α4β4-type PDHβ from P. horikoshii was much larger than the value for the same subunit within the α4β4-complex. This indicates that the isolated PDHβ could be a useful element for an electrochemical system for detection of L-proline. PMID:22752365

  10. Crystallization and preliminary X-ray diffraction studies of a hyperthermophilic Rieske protein variant (SDX-triple) with an engineered rubredoxin-like mononuclear iron site

    SciTech Connect

    Iwasaki, Toshio Kounosu, Asako; Ohmori, Daijiro; Kumasaka, Takashi

    2006-10-01

    A hyperthermophilic archaeal Rieske iron–sulfur protein (sulredoxin) variant, SDX-triple (H44I/A45C/H64C), having a rationally designed rubredoxin-like mononuclear iron site in place of a Rieske [2Fe–2S] centre, has been crystallized. The P1 crystals of the SDX-triple variant diffract to 1.63 Å resolution using synchrotron radiation. In place of the Rieske [2Fe–2S] cluster, an archetypal mononuclear iron site has rationally been designed into a hyperthermophilic archaeal Rieske [2Fe–2S] protein (sulredoxin) from Sulfolobus tokodaii by three residue replacements with reference to the Pyrococcus furiosus rubredoxin sequence. The resulting sulredoxin variant, SDX-triple (H44I/A45C/H64C), has been purified and crystallized by the hanging-drop vapour-diffusion method using 65%(v/v) 2-methyl-2,4-pentanediol, 0.025 M citric acid and 0.075 M sodium acetate trihydrate pH 4.3. The crystals diffract to 1.63 Å resolution and belong to the triclinic space group P1, with unit-cell parameters a = 43.56, b = 76.54, c = 80.28 Å, α = 88.12, β = 78.82, γ = 73.46°. The asymmetric unit contains eight protein molecules.

  11. Development of Novel Sugar Isomerases by Optimization of Active Sites in Phosphosugar Isomerases for Monosaccharides

    PubMed Central

    Yeom, Soo-Jin; Kim, Yeong-Su

    2013-01-01

    Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases. PMID:23204422

  12. Enzymatic production of hydrogen from glucose

    SciTech Connect

    Woodward, J.; Mattingly, S.M.

    1995-06-01

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP{sup +} requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H{sub 2}ase) which catalyzes the evolution of H{sub 2}. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H{sub 2}ase yielding 17% of theoretical maximum expected. The cofactor NADP{sup +} for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally stable enzymes are underway.

  13. Structural Determinant for Switching between the Polymerase and Exonuclease Modes in the PCNA-Replicative DNA Polymerase Complex

    NASA Astrophysics Data System (ADS)

    Nishida, Hirokazu; Mayanagi, Kouta; Ishino, Yoshizumi; Morikawa, Kosuke

    Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with a cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction. Electron microscopy analyses confirmed that this complex structure exists among the multiple functional configurations in solution. Together with data from mutational analyses, this structural study indicated that the novel interaction between a stretched loop of PCNA and the PfuPol Thumb domain is quite important, in addition to the authentic PCNA-polymerase recognition site (PIP box). A comparison of the present structures with the previously reported structures of polymerases complexed with DNA suggested that the second interaction site plays a crucial role in switching between the polymerase and exonuclease modes, by stabilizing only the polymerase mode. This proposed mechanism of fidelity control of replicative DNA polymerases was supported by experiments, in which a mutation within the second interaction site caused an enhancement in the exonuclease activity in the presence of PCNA.

  14. PCNA is involved in the EndoQ-mediated DNA repair process in Thermococcales.

    PubMed

    Shiraishi, Miyako; Ishino, Sonoko; Yoshida, Kotaro; Yamagami, Takeshi; Cann, Isaac; Ishino, Yoshizumi

    2016-01-01

    To maintain genome integrity for transfer to their offspring, and to maintain order in cellular processes, all living organisms have DNA repair systems. Besides the well-conserved DNA repair machineries, organisms thriving in extreme environments are expected to have developed efficient repair systems. We recently discovered a novel endonuclease, which cleaves the 5' side of deoxyinosine, from the hyperthermophilic archaeon, Pyrococcus furiosus. The novel endonuclease, designated as Endonulcease Q (EndoQ), recognizes uracil, abasic site and xanthine, as well as hypoxanthine, and cuts the phosphodiester bond at their 5' sides. To understand the functional process involving EndoQ, we searched for interacting partners of EndoQ and identified Proliferating Cell Nuclear Angigen (PCNA). The EndoQ activity was clearly enhanced by addition of PCNA in vitro. The physical interaction between the two proteins through a PIP-motif of EndoQ and the toroidal structure of PCNA are critical for the stimulation of the endonuclease activity. These findings provide us a clue to elucidate a unique DNA repair system in Archaea. PMID:27150116

  15. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  16. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation

    PubMed Central

    Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng

    2015-01-01

    H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. PMID:26206671

  17. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I

    PubMed Central

    Miyazono, Ken-ichi; Ishino, Sonoko; Tsutsumi, Kanae; Ito, Tomoko; Ishino, Yoshizumi; Tanokura, Masaru

    2015-01-01

    Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3′-5′ exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides. Here, we report the structural basis for the cleavage mechanism of this novel exonuclease family. A structural analysis of PhoExo I, the homologous enzyme from P. horikoshii OT3, showed that PhoExo I utilizes an RNase H-like active site and possesses a 3′-OH recognition site ∼9 Å away from the active site, which enables cleavage at every two nucleotides. Analyses of the heterotrimeric and monomeric PhoExo I activities showed that trimerization is indispensable for its processive cleavage mechanism, but only one active site of the trimer is required. PMID:26138487

  18. Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Properties

    PubMed Central

    Välimäki, Salla; Mikkilä, Joona; Liljeström, Ville; Rosilo, Henna; Ora, Ari; Kostiainen, Mauri A.

    2015-01-01

    Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol) methyl ether methacrylate) linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS), and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc Fm3¯m) Bravais lattice where lattice parameter a = 18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion. PMID:25950765

  19. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  20. Crystal structure of Argonaute and its implications for RISC slicer activity.

    PubMed

    Song, Ji-Joon; Smith, Stephanie K; Hannon, Gregory J; Joshua-Tor, Leemor

    2004-09-01

    Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage. PMID:15284453

  1. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw; Susanti, Dwi; Porat, I.; Hooper, Sean; Lykidis, A; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla L.; Saunders, Elizabeth H; Han, Cliff; Land, Miriam L; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William; Woese, Carl; Bristow, James; Kyrpides, Nikos C

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  2. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  3. ATP half-sites in RadA and RAD51 recombinases bind nucleotides.

    PubMed

    Marsh, May E; Scott, Duncan E; Ehebauer, Matthias T; Abell, Chris; Blundell, Tom L; Hyvönen, Marko

    2016-05-01

    Homologous recombination is essential for repair of DNA double-strand breaks. Central to this process is a family of recombinases, including archeal RadA and human RAD51, which form nucleoprotein filaments on damaged single-stranded DNA ends and facilitate their ATP-dependent repair. ATP binding and hydrolysis are dependent on the formation of a nucleoprotein filament comprising RadA/RAD51 and single-stranded DNA, with ATP bound between adjacent protomers. We demonstrate that truncated, monomeric Pyrococcus furiosus RadA and monomerised human RAD51 retain the ability to bind ATP and other nucleotides with high affinity. We present crystal structures of both apo and nucleotide-bound forms of monomeric RadA. These structures reveal that while phosphate groups are tightly bound, RadA presents a shallow, poorly defined binding surface for the nitrogenous bases of nucleotides. We suggest that RadA monomers would be constitutively bound to nucleotides in the cell and that the bound nucleotide might play a structural role in filament assembly. PMID:27419043

  4. Organic Solutes in Hyperthermophilic Archaea

    PubMed Central

    Martins, L. O.; Huber, R.; Huber, H.; Stetter, K. O.; Da Costa, M. S.; Santos, H.

    1997-01-01

    We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate and (beta)-mannosylglycerate, Methanothermus fervidus accumulated cyclic-2,3-bisphosphoglycerate and (beta)-mannosylglycerate, while the only solute detected in Pyrodictium occultum was di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate. Methanopyrus kandleri accumulated large concentrations of cyclic-2,3-bisphosphoglycerate. On the other hand, Archaeoglobus fulgidus accumulated three phosphorylated solutes; prominent among them was a compound identified as di-glycerol-phosphate. This solute increased in concentration as the salinity of the medium and the growth temperature were raised, suggesting that this compound serves as a general stress solute. Di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate accumulated at supraoptimal temperature only. The relationship between the accumulation of unusual solutes and high temperatures is also discussed. PMID:16535556

  5. The Achilles' Heel of "Ultrastable" Hyperthermophile Proteins: Submillimolar Concentrations of SDS Stimulate Rapid Conformational Change, Aggregation, and Amyloid Formation in Proteins Carrying Overall Positive Charge.

    PubMed

    Khan, Javed M; Sharma, Prerna; Arora, Kanika; Kishor, Nitin; Kaila, Pallavi; Guptasarma, Purnananda

    2016-07-19

    Low concentrations (<3.0 mM) of the anionic surfactant sodium dodecyl sulfate (SDS) have been shown to induce the formation of amyloid fibers in more than 20 different mesophile-derived proteins in the cationic state. It is not known whether SDS has similar effects on hyperthermophile-derived proteins, which are otherwise thought to be "ultrastable" and inordinately resistant to structural perturbations at room temperature. Here, we show that low (<4.5 mM) concentrations of SDS rapidly induce the formation of aggregates and amyloid fibers in five different ultrastable Pyrococcus furiosus proteins in the cationic state. We also show that amyloid formation is accompanied by the development of a characteristic, negative circular dichroism band at ∼230 nm. These effects are not seen if the proteins have a net negative charge or when higher concentrations of SDS are used (which induce helix formation instead). Our results appear to reveal a potential weakness or "Achilles' heel" in ultrastable proteins from hyperthermophiles. They also provide very strong support for the view that SDS initially interacts with proteins through electrostatic interactions, and not hydrophobic interactions, eliciting similar effects entirely regardless of protein molecular weight, or structural features such as quaternary structure or tertiary structural stability. PMID:27331826

  6. An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics

    PubMed Central

    Vandemoortele, Giel; Staes, An; Gonnelli, Giulia; Samyn, Noortje; De Sutter, Delphine; Vandermarliere, Elien; Timmerman, Evy; Gevaert, Kris; Martens, Lennart; Eyckerman, Sven

    2016-01-01

    The use of protein tagging to facilitate detailed characterization of target proteins has not only revolutionized cell biology, but also enabled biochemical analysis through efficient recovery of the protein complexes wherein the tagged proteins reside. The endogenous use of these tags for detailed protein characterization is widespread in lower organisms that allow for efficient homologous recombination. With the recent advances in genome engineering, tagging of endogenous proteins is now within reach for most experimental systems, including mammalian cell lines cultures. In this work, we describe the selection of peptides with ideal mass spectrometry characteristics for use in quantification of tagged proteins using targeted proteomics. We mined the proteome of the hyperthermophile Pyrococcus furiosus to obtain two peptides that are unique in the proteomes of all known model organisms (proteotypic) and allow sensitive quantification of target proteins in a complex background. By combining these ’Proteotypic peptides for Quantification by SRM’ (PQS peptides) with epitope tags, we demonstrate their use in co-immunoprecipitation experiments upon transfection of protein pairs, or after introduction of these tags in the endogenous proteins through genome engineering. Endogenous protein tagging for absolute quantification provides a powerful extra dimension to protein analysis, allowing the detailed characterization of endogenous proteins. PMID:27264994

  7. On the mineral core of ferritin-like proteins: structural and magnetic characterization.

    PubMed

    García-Prieto, A; Alonso, J; Muñoz, D; Marcano, L; Abad Díaz de Cerio, A; Fernández de Luis, R; Orue, I; Mathon, O; Muela, A; Fdez-Gubieda, M L

    2016-01-14

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction. PMID:26666195

  8. Backbone Solution Structures of Proteins Using Residual Dipolar Couplings: Application to a Novel Structural Genomics Target

    PubMed Central

    Valafar, H.; Mayer, K. L.; Bougault, C. M.; LeBlond, P. D.; Jenney, F. E.; Brereton, P. S.; Adams, M.W.W.; Prestegard, J.H.

    2006-01-01

    Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all side chains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the side chains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins that suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. PMID:15704012

  9. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.

    PubMed

    Scott, Israel M; Rubinstein, Gabe M; Lipscomb, Gina L; Basen, Mirko; Schut, Gerrit J; Rhaesa, Amanda M; Lancaster, W Andrew; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

    2015-10-01

    Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism. PMID:26276113

  10. PCNA is involved in the EndoQ-mediated DNA repair process in Thermococcales

    PubMed Central

    Shiraishi, Miyako; Ishino, Sonoko; Yoshida, Kotaro; Yamagami, Takeshi; Cann, Isaac; Ishino, Yoshizumi

    2016-01-01

    To maintain genome integrity for transfer to their offspring, and to maintain order in cellular processes, all living organisms have DNA repair systems. Besides the well-conserved DNA repair machineries, organisms thriving in extreme environments are expected to have developed efficient repair systems. We recently discovered a novel endonuclease, which cleaves the 5′ side of deoxyinosine, from the hyperthermophilic archaeon, Pyrococcus furiosus. The novel endonuclease, designated as Endonulcease Q (EndoQ), recognizes uracil, abasic site and xanthine, as well as hypoxanthine, and cuts the phosphodiester bond at their 5′ sides. To understand the functional process involving EndoQ, we searched for interacting partners of EndoQ and identified Proliferating Cell Nuclear Angigen (PCNA). The EndoQ activity was clearly enhanced by addition of PCNA in vitro. The physical interaction between the two proteins through a PIP-motif of EndoQ and the toroidal structure of PCNA are critical for the stimulation of the endonuclease activity. These findings provide us a clue to elucidate a unique DNA repair system in Archaea. PMID:27150116