Science.gov

Sample records for archean banded iron

  1. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations - The source of REE and Fe in Archean oceans

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    A detailed Nd isotopic study of the large and well-dated Hamersley and Michipicoten banded iron formations (BIFs) has been conducted. The Hamersley BIFs (Lake Superior type) are located in the Pilbara craton of Western Australia and the Michipicoten BIFs (Algoma type) are located in the northeastern corner of Lake Superior in Ontario, Canada. Their initial epsilon(Nd) values are variable and in the range of 0 to +4. The Fe/Nd ratio in present-day hydrothermal waters and BIFs are both 100,000, suggesting that the source of much of the Fe in BIFs (and Archean seawater) was hydrothermal water circulating through Archean midocean ridge systems.

  2. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.

    2011-10-01

    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  3. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Zentner, Danielle; Lowe, Donald

    2013-04-01

    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  4. Iron isotopes in an Archean ocean analogue

    NASA Astrophysics Data System (ADS)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  5. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang

    2014-04-01

    The microbands in Precambrian banded-iron formations (BIFs) have been conjectured to record annual or even diurnal depositions. However, these bands have rarely been observed in high resolution at their true (micro) scale. Here, I suggest that nanobands of fine-grained hematite represent possible diurnal depositions and that microbands of chert/jasper represent possible annual depositions in three sets of BIFs: 2460-Myr BIFs from the Kuruman Iron Formation, Transvaal Supergroup of South Africa; 2480-Myr BIFs from the Dales Gorge Member of the Brockman Iron Formation, Western Australia; and 2728-Myr BIFs from the Hunter Mine Group, Abitibi Greenstone Belt, Canada. Observations made using scanning electron microscopy indicate that hematite and chert were syngenetic, and that there was a hiatus between their precipitation and the genesis of the remainder of the minerals containing structural Fe(II). Spindle-like grains of hematite, monocrystals of magnetite, and ferro-dolomite formed microbands of ∼30-70 μm in thickness, which appear cyclically in the matrix of the chert. Neither the band-bound magnetite and dolomite nor the linear formations of the hematite spindles represent annual depositions due to their diagenetic features. The thinnest microbands (∼3-∼12 μm) were observed in the chert and jasper, and indicate depositional rates of 6.6-22.2 m/Myr in the BIFs. These rates are consistent with the integrated deposition rates calculated by geochronologic methods for the BIFs, if annual deposition is assumed. The ∼26-nm nanobands observed only in hematite grains reflect an annual deposition of ∼18.6 μm, or ∼18.6 m/Myr, which is also consistent with the depositional rate calculated by geochronologic methods. It is tentatively suggested that these ∼26-nm nanobands were formed from the diurnal precipitation of Fe(III) resulting from the circadian metabolism of Fe(II)-oxidizing or oxygen-evolving photosynthetic microorganisms, which slowed down the rise

  6. Low Temperature Magnetic Properties of the Late Archean Boolgeeda Iron Formation (Hamersley Group, Western Australia): Environmental Implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Isambert, Aude; Bouquerel, Hélène; Pecoits, Ernesto; Philippot, Pascal; Vennin, Emmanuelle; Ader, Magali; Thomazo, Christophe; Buoncristiani, Jean-François; Baton, Franck; Muller, Elodie; Deldicque, Damien

    2015-05-01

    The origin of the iron oxides in Archean and Paleoproterozoic Banded Iron Formations is still a debated question. We report low and high temperature magnetic properties, susceptibility and saturation magnetization results joined with scanning microscope observations within a 35 meters section of the Late Archean Boolgeeda Iron Formation of the Hamersley Group, Western Australia. With the exception of two volcanoclastic intervals characterized by low susceptibility and magnetization, nearly pure magnetite is identified as the main magnetic carrier in all iron-rich layers including hematite-rich jasper beds. Two populations of magnetically distinct magnetites are reported from a 2 meter-thick interval within the section. Each population shows a specific Verwey transition temperature: one around 120-124 K and the other in the range of 105-110 K. This temperature difference is interpreted to reflect two distinct stoichiometry and likely two episodes of crystallization. The 120-124K transition is attributed to nearly pure stoichiometric magnetite, SEM and microprobe observations suggest that the lower temperature transition is related to chemically impure silician magnetite. Microbial-induced partial substitution of iron by silicon is suggested here. This is supported by an increase in Total Organic Carbon (TOC) in the same interval.

  7. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    SciTech Connect

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed by remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.

  8. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    SciTech Connect

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed by remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.

  9. Nd isotopic variations in Precambrian banded iron formations

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    The isotopic composition of Nd is reported for eight banded iron formations (BIFs) ranging in age from 0.65 to 3.4 Ga. The data suggest a trend of increasingly positive epsilon(Nd) values with age which is interpreted to reflect isotopic variations in Precambrian seawater. The Urucum (0.65 Ga) and the Gunflint (1.9 Ga) BIFs yield negative epsilon(Nd) values between -6 and 0. The remaining BIFs, with ages of 1.84 to 3.4 Ga, have predominantly positive values between -1 and +4. The Nd isotopic signature of BIFs changes from a principally continental source to a dominantly depleted mantle source from the present into the Archean.

  10. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  11. Biologically recycled continental iron is a major component in banded iron formations

    PubMed Central

    Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-01-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  12. Biologically recycled continental iron is a major component in banded iron formations.

    PubMed

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M

    2015-07-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  13. Suboxic diagenesis in banded iron formations.

    PubMed

    Walker, J C

    1984-05-24

    Anomalous isotopic composition has been reported for the carbon in carbonate minerals of banded iron formations. Well studied examples show and enrichment in the light isotope of carbon, 12C. This enrichment presumably reflects unusual circumstances in the deposition of these sedimentary rocks. It is suggested here that the isotopically-light carbonate results from early diagenetic oxidation by bacteria of substantial amounts of isotopically light organic carbon. The electron acceptor that permits oxidation in the absence of free oxygen is presumed to the iron(III) which may have been significantly more abundant in the initial chemical precipitate than in the post-diagenetic sedimentary rock. PMID:11541981

  14. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state.

    PubMed

    Rouxel, Olivier J; Bekker, Andrey; Edwards, Katrina J

    2005-02-18

    The response of the ocean redox state to the rise of atmospheric oxygen about 2.3 billion years ago (Ga) is a matter of controversy. Here we provide iron isotope evidence that the change in the ocean iron cycle occurred at the same time as the change in the atmospheric redox state. Variable and negative iron isotope values in pyrites older than about 2.3 Ga suggest that an iron-rich global ocean was strongly affected by the deposition of iron oxides. Between 2.3 and 1.8 Ga, positive iron isotope values of pyrite likely reflect an increase in the precipitation of iron sulfides relative to iron oxides in a redox stratified ocean. PMID:15718467

  15. Suboxic diagenesis in banded iron formations

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.

    1984-01-01

    Anomalous isotopic composition has been reported for the carbon in carbonate minerals of banded iron formations. Well studied examples show an enrichment in the light isotope of carbon, C-12. This enrichment presumably reflects unusual circumstances in the deposition of these sedimentary rocks. It is suggested here that the isotopically light carbonate results from early diagenetic oxidation by bacteria of substantial amounts of isotopically light organic carbon. The electron acceptor that permits oxidation in the absence of free oxygen is presumed to be Fe(III), which may have been significantly more abundant in the initial chemical precipitate than in the postdiagenetic sedimentary rock.

  16. Contrasting behavior of oxygen and iron isotopes in banded iron formation revealed by in situ analysis

    NASA Astrophysics Data System (ADS)

    Beard, B.; Li, W.; Kita, N.; Valley, J. W.; Johnson, C.

    2012-12-01

    Banded iron formations (BIFs) record a period of dramatic secular change in Earth's geologic history, when abundant aqueous Fe(II) was removed from Archean and Proterozoic oceans by oxidation. BIFs are characterized by co-existing of quartz and iron minerals, including oxides and carbonates, and alternating iron-rich and iron-poor layers range from m to Iron Formation, Hamersley Group, Western Australia. Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry (SIMS), and Fe isotope ratios were measured by femtosecond Laser ablation Multi-Collector ICP-MS (fs-LA-MC-ICP-MS), with spatial resolutions of 15 mm (O) and 30-50 mm (Fe), and external precisions (2s) of +0.7 ‰ for δ18O and +0.2 ‰ for δ56Fe, respectively. Analysis of δ18O in iron oxides by SIMS employed special tuning with a 3kV primary beam to minimize orientation effects (Huberty et al. 2010 ). For hematite, δ18O values range from -7.1 ‰ to -0.6 ‰, with the majority of data clustering around -4.5 ‰, and δ56Fe values range from -0.50 ‰ to +1.53‰. Magnetite has a δ18O range of -5.6 ‰ to +5.6 ‰ and a δ56Fe range of -0.76 ‰ to +1.33 ‰. Notably, magnetite shows significant O isotope heterogeneity at a mineral grain scale, and the highest δ18O values were commonly measured from Si-rich (1-3 wt% SiO2) magnetite overgrowths or magnetite grains that have a recrystallization texture. In contrast, lowest δ18O values were measured from magnetite that contains less than 1 wt% SiO2. Individual magnetite grains can have up to 6 ‰ variation in δ18O values between low-Si core and Si-rich overgrowth. Iron

  17. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.

    PubMed

    Chi Fru, Ernest; Ivarsson, Magnus; Kilias, Stephanos P; Bengtson, Stefan; Belivanova, Veneta; Marone, Federica; Fortin, Danielle; Broman, Curt; Stampanoni, Marco

    2013-01-01

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios. PMID:23784372

  18. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Hagemann, Steffen

    2013-03-01

    The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite-(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with

  19. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

    PubMed

    Dauphas, Nicolas; van Zuilen, Mark; Wadhwa, Meenakshi; Davis, Andrew M; Marty, Bernard; Janney, Philip E

    2004-12-17

    Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth. PMID:15604404

  20. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    PubMed

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms. PMID:23404127

  1. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  2. An Episode of Late Archean Euxinia and Enhanced Continental Weathering Revealed by Iron Speciation in the Mt. McRae Shale

    NASA Astrophysics Data System (ADS)

    Reinhard, C. T.; Raiswell, R.; Anbar, A.; Lyons, T.

    2008-12-01

    Recent high-resolution chemostratigraphy for sediments of the late Archean Hamersley Basin has revealed an episode of pronounced enrichment of the redox-sensitive elements molybdenum and rhenium, a primary sedimentary feature that has been accurately dated to 2501.1 ± 8.2 Ma. These enrichments are not easily explained through postdepositional addition or syndepositional hydrothermal input to the ocean and have thus been interpreted to reflect mild oxidative weathering 50-100 million years prior to the significant increase in Earth's atmospheric oxygen level referred to as the "Great Oxidation Event." To further explore this feature of the late Archean record, we have generated complementary high-resolution iron speciation data for the Mt. McRae Shale and the underlying Mt. Sylvia Formation. Using a calibrated sequential extraction, biogeochemically reactive iron phases were separated into Fecarb (siderite or dolomite-ankerite), FeOx (reducible iron oxides such as goethite or hematite), Femag (magnetite), and FePY (pyrite). Values for FeOx are uniformly low for the entire Mt. McRae Shale, indicating water column and pore fluid conditions that were reducing with respect to iron. The observation of FePY concentrations of 0.4-1.5 wt% in the lower Mt. McRae Shale suggests significant sulfide production by microbial sulfate reduction, but values of FePY/FeHR averaging ~0.3 for this unit indicate reactive iron in excess of dissolved sulfide. This reactive iron may have been repartitioned in situ by dissimilatory iron reduction, as reducible iron oxide concentrations are low ([FeOx] ~ 0.1- 0.2 wt%), but may also have been externally sourced by hydrothermal fluids. As a result of this reactive iron excess, variations in FeHR within the lower Mt. McRae Shale are governed primarily by differences in Fecarb, suggesting conditions that were anoxic but non-sulfidic. Values for FePY/FeHR in the upper Mt. McRae Shale generally exceed 0.8, and for many samples are ~1.0, indicating

  3. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  4. Geology and geochemistry of the Macheng Algoma-type banded iron-formation, North China Craton: Constraints on mineralization events and genesis of high-grade iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Niu, Xianglong; Zhang, Lianchang; Pirajno, Franco; Luo, Huabao; Qin, Feng; Cui, Minli; Wang, Changle; Qi, Min

    2015-12-01

    The Macheng iron deposit is located in the eastern Hebei province of the North China Craton (NCC). It is hosted in Neoarchean metamorphic rocks of Baimiaozi formation in the Dantazi Group, consisting of biotite-leptynite, plagioclase-gneiss, plagioclase-amphibolite, migmatite, migmatitic granite and quartz schist. Geochemical analyses of the host biotite leptynite and plagioclase amphibolites show that their protoliths are both volcanics, inferred to be trachytic basalt and basaltic andesite, respectively. Based on the geochemical signature of the host rocks, together with geology of the iron deposit, it is inferred that the Macheng BIF is an Algoma-type iron exhalative formation, formed in an arc-related basin in the Neoarchean. Post-Archean Australian Shale (PAAS)-normalized rare earth elements (REEs) plus yttrium (Y) concentrations of different BIF ores with gneissic, striated and banded structure in the Macheng deposit, show similar patterns with depletions in light rare earth elements (LREEs) and middle rare earth elements (MREEs) relative to heavy rare earth elements (HREEs) and with apparently positive La, Y and Eu anomalies. Y/Ho ratios of the gneissic, striated and banded BIF ores vary from 37 to 56. These geochemical features of the BIF ores reveal their affinity with the sea water and the presence of a high-temperature hydrothermal component, indicating that both the seawater and high temperature hydrothermal fluids derived from alteration of oceanic basalts and komatiites may contribute to formation of the Macheng BIF. Geological, mineralogical and geochemical studies of the Macheng deposit recognized two kinds of high-grade iron ores. One is massive oxidized high-grade ore (Fe2O3T = 74.37-86.20 wt.%), mainly consisting of hematite with some magnetite, which shows geochemical characteristics of the gneissic, striated and banded BIF ores. The other type is magnetite high-grade ore, also massive and consisting of magnetite, with distinct characteristics

  5. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere

    PubMed Central

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2013-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms. PMID:23404127

  6. Ultrafast band-gap oscillations in iron pyrite

    SciTech Connect

    Kolb, B; Kolpak, AM

    2013-12-20

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.

  7. Mineral ecophysiological evidence for microbial activity in banded iron formation

    SciTech Connect

    Li, Dr. Yi-Liang; Konhauser, Dr, Kurt; Cole, David R; Phelps, Tommy Joe

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

  8. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  9. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  10. Identification of biologically recycled continental materials in banded iron formations

    NASA Astrophysics Data System (ADS)

    Li, W.; Beard, B. L.; Johnson, C.

    2015-12-01

    The controversy on the origin of banded iron formations (BIFs) has lasted for many decades. Studies prior to the 1970s suggested that Fe in BIFs was supplied from continental riverine inputs[1], but discovery of midocean ridge hydrothermal systems in the 1970s and identification of positive Eu anomaly in BIF samples led to an alternative model where hydrothermal vents provided Fe in BIFs[2]. Although the latter model has became widely accepted, it should be noted that interpretations of Fe sources for BIFs using the abundance and isotopic composition of rare earth elements (REEs) are based on an assumption that transport and deposition of REEs and Fe were coupled. We address the question of Fe sources and pathways for BIFs by combining stable Fe isotopes with radiogenic Nd isotopes as well as REE measurements to test proposals that Fe in BIFs was hydrothermally sourced. The samples investigated are from a type section of the Dales Gorge member of the 2.5 Ga Brockman Iron Formation, the world's most extensive Superior-type BIF that represents the climax of BIF deposition in the geologic record. Large variations were observed in both Fe and Nd isotope compositions of the BIF samples, and there is a positive correlation between the bulk rock ɛNd and δ56Fe values. In addition, there is a negative corelation between ɛNd and Sm/Nd ratios. In order to explain the observed correlations in those isotopic and elemental data, a two-component model, where mixing between a high ɛNd, low Sm/Nd hydrothermal endmember and a low ɛNd, low δ56Fe, but high Sm/Nd continental endmember occurred prior to deposition of the BIF, is required. The low-δ56Fe, high-Sm/Nd endmember is best explained by microbial dissimilatory iron reduction (DIR) in the coastal sediments, which fractionated Fe isotopes and REEs and released these components back to water column that were ultimately precipitated in BIFs. The range and distribution of ɛNdvalues in the BIF samples suggest that the amount

  11. Identification of an Archean marine oxygen oasis

    SciTech Connect

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  12. Dismembered Archean ophiolite in the SE. Wind River Mountains, Wyoming

    SciTech Connect

    Harper, G.D.

    1985-01-01

    Ophiolitic rocks occur as wall rocks of the 2.7 Ga Louis Lake batholith near Atlantic City, Wyoming. All of the Archean rocks are strongly deformed and metamorphosed to a greenschist and amphibolite facies, but relict structures and textures are commonly preserved. These include the following, from west to east: (1) metadiabase with rare coarse-grained metagabbro; (2) ultramafic rocks and metagabbro; (3) amphibolite, locally pillowed, overlain(.) by pelitic schist, banded iron formation, and quartzite; and (4) pillow lavas, massive sills or flows, and minor metasedimentary rocks. Slice 1 locally contains parallel dike margins and rare metagabbro screens; these features suggest that it may represent a sheeted dike complex. Slice 2 locally contains ultramafic rocks having relict cumulus textures and igneous layering, corresponding to the cumulus portion of an ophiolite. The pillow lavas of slice 4 and possibly slice 3 are interpreted as comprising the extrusive portion of the ophiolite. The immobile trace element chemistry (Ti, V, Zr, Y, Cr, Ni) of slice 1 and 4 is very similar and supports a cogenetic origin, whereas pillow lavas of slice 3 are somewhat distinct. The metadiabases and lavas of slices 1 and 4 are similar to modern mid-ocean ridge basalt, whereas lavas of slice 3 are more similar to island-arc tholeiites. Rare high-Ti basaltic komatiites occur in slices 1 and 4, but have very distinct trace element chemistry and probably represent later off-axis dikes. The ophiolitic rocks are interpreted to represent the remains of Archean oceanic crust.

  13. Magnetic Properties through the Archean/Paleoproterozoic Transition from the Pilbara Craton, Western Australia: Bio-environmental Implications

    NASA Astrophysics Data System (ADS)

    Isambert, A.; Carlut, J. H.; Bouquerel, H.; Pecoits, E.; Philippot, P.; Vennin, E.; Ader, M.; Thomazo, C.; Buoncristiani, J. F.; Baton, F.; Le Huen, A. L.; Muller, E.; Deldicque, D.; Sforna, M. C.

    2015-12-01

    The origin of iron oxides in Archean and Paleoproterozoic Banded Iron Formations is still a matter of debate. We report here low and high temperature magnetic properties, susceptibility and saturation magnetization results coupled with scanning microscope, transmission electron microscopy, Raman observations and microprobe analyses along a 60 meters section, which encompasses the uppermost Archean Boolgeeda Iron Formation and its transition into the lower Paleoproterozoic Kungarra Formation in the Pilbara Craton, Western Australia. With the exception of two volcanoclastic intervals characterized by low susceptibility and magnetization, nearly pure magnetite is identified as the main magnetic carrier in all iron-rich layers including hematite-bearing jasper beds. The relative magnetic contribution of magnetite and hematite throughout the section is evidenced by IRM acquisition curves. We observed a sharp decrease in magnetization at the Archean-Proterozoic transition and a general trend in the Verwey temperature. Two populations of magnetically distinct magnetites are reported from a 2 meter-thick interval lying within the late Archean section of the core. Each population shows a specific Verwey transition temperature: one around 120-124K and the other in the range of 105-110K. The two Verwey transitions are interpreted to reflect two distinct stoichiometry and likely two stages of magnetite crystallization. The 120-124K transition is attributed to nearly pure stoichiometric magnetite, whereas SEM, TEM and microprobe observations suggest that the lower temperature transition is related to chemically impure silician magnetite. Microbial-induced partial substitution of iron by silicon is suggested here. This is supported by an increase in Total Organic Carbon (TOC) in the same interval and Raman spectroscopy data showing a close association of organic carbon with magnetite.

  14. Erythroid 5-aminolevulinate synthase mediates the upregulation of membrane band 3 protein expression by iron.

    PubMed

    Huang, Qianchuan; Li, Jinying; Feng, Weihua; Xu, Yanqun; Huang, Zhenxia; Lv, Shuqing; Zhou, Hong; Gao, Lei

    2010-03-01

    Iron deficiency leads to abnormal expression and function of band 3 protein in erythrocytes, but the underlying mechanisms remain elusive. The mRNA of erythroid-specific 5-aminolevulinate synthase (eALAS) contains an iron response element and the eALAS protein is an important mediator of iron utilization by erythrocytes. In this study, we investigated the effect of short hairpin RNA (shRNA) mediated silencing of eALAS on the expression of band 3 protein induced by iron. By real-time RT-PCR and Western blot we showed that at mRNA and protein level iron-induced expression of band 3 protein was lower in eALAS-shRNA transfected K562 cells than in control cells. Of note, the lowest expression was detected in K562 cells cultured in iron deficiency condition (p < 0.01). Thus either iron deficiency or depletion of eALAS could suppress the expression of erythroid band 3 protein. These results demonstrated for the first time that iron and the iron-regulatory system regulate the expression of the erythrocyte membrane proteins. PMID:20087844

  15. Evidence of low temperature fractionation of silicon in Archean cherts: SIMS Si and O isotope measurements of 3.42-3.26 Ga banded carbonaceous cherts from the Onverwacht Group, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Stefurak, E. J.; Fischer, W. W.; Lowe, D. R.

    2012-12-01

    The striking abundance of chert in Early Archean sedimentary successions highlights a major difference between younger Archean and Proterozoic successions, engendering a number of questions regarding the behavior of the Earth's early silica cycle. Though previously applied largely for the purpose of paleothermometry, Si isotopes are emerging as a new tool for understanding mass flux and mechanisms of silica concentration, precipitation, diagenesis, and metamorphism. In addition, most previous studies lack a detailed petrographic context, laboring under the assumption that the cherts are isotopically homogeneous on a centimeter scale. We present a new suite of high resolution SIMS Si and O isotope ratio data from banded carbonaceous chert from the Onverwacht Group of the Barberton Greenstone Belt, South Africa - collected from the 3.42 Ga Buck Reef Chert and 3.33-3.26 Ga Mendon Formation. These materials contain several distinct silica phases, including carbonaceous bands (with or without well-defined grains), pure chert bands, early cavity filling cements, and later quartz-filled veins, which provide for isotopic comparisons between different textures. δ30Si values from all samples span a range of almost 7‰, from -3.38 to +3.42, with an overall mean of 0.36, median of 0.46, and standard deviation of 0.87. Within individual samples, isotope ratio data displays systematic texture-specific δ30Si variations both between phases and within phases. The observed variations occur on a ~100μm scale and likely reflect isotopically distinct fluids from which different silica phases originated, in addition to fractionation during precipitation. To constrain the causes of the silicon isotope trends, we made 18O/16O measurements on spots placed just adjacent to measured Si spots. SIMS δ18O values are generally 18O-depleted and fall in a range consistent with previously published data from bulk gas source mass spectrometry. Measurements from all samples span a range of ~6

  16. Carbonates of the Gunflint Banded Iron Formation as Analogs of Martian Carbonates

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.; Shearer, C. K.

    2001-01-01

    Terrestrial iron formations preserve remnants of life on Earth and may serve as analogs for identifying evidence of biologic activity in martian rocks. We report on the petrography, mineralogy and trace-element abundances of carbonates of the Gunflint banded iron formation. Additional information is contained in the original extended abstract.

  17. Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth's early oceans

    NASA Astrophysics Data System (ADS)

    Alexander, Brian W.; Bau, Michael; Andersson, Per

    2009-06-01

    Published neodymium (Nd) isotopic data for Archean iron-formations (IF) suggest that, overall, seawater throughout the Archean typically displayed 143Nd/ 144Nd close to bulk Earth values, with ЄNd( t) between - 1.5 and + 2.5. Neodymium isotopic ratios in seawater during deposition of the ~ 3.8 Isua (Greenland) IF likely displayed positive ЄNd(3.8 Ga) of + 2.5, as suggested by IF-G, an Isua reference IF that is considered the best archive for Early Archean seawater. Seawater 143Nd/ 144Nd ratios dominated by radiogenic Nd (positive ЄNd( t)) seem to have persisted for much of the Archean, as IF from the Pietersburg greenstone belt, South Africa, suggest seawater ЄNd(2.95 Ga) ≥ + 1. However, similarly aged (~ 2.9 Ga) IFs from South Africa indicate that significant variations in seawater 143Nd/ 144Nd occurred, and clearly show influences from isotopically distinct crustal sources. These variations are apparently related to depositional environment, with cratonic margin, shallow-water IFs possessing a continental ЄNd( t) of - 3, while IFs associated with sub-aqueous mafic volcanics display more radiogenic, positive ЄNd( t) values. Such variation in seawater 143Nd/ 144Nd is not possible in an isotopically well-mixed ocean, and similar to today, it appears that marine Nd cycling in the Archean produced water masses with distinct Nd isotopic ratios. Since the presence of banded iron-formations requires a reducing Archean ocean capable of transporting Fe, metal-oxide precipitation and scavenging processes near deep sea hydrothermal vent systems would not have scavenged mantle Nd, i.e., Nd sourced from alteration of oceanic crust. We propose that bulk anoxic seawater prior to 2.7 Ga possessed relatively constant positive ЄNd( t) of + 1 to + 2, whereas local shallow-water masses associated with exposed evolved crust could possess distinctly different, lower ЄNd( t).

  18. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Venkatesh, A. S.

    2009-12-01

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  19. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries. PMID:25320452

  20. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle.

    PubMed

    Kusky, T M; Li, J H; Tucker, R D

    2001-05-11

    We report a thick, laterally extensive 2505 +/- 2.2-million-year-old (uranium-lead ratio in zircon) Archean ophiolite complex in the North China craton. Basal harzburgite tectonite is overlain by cumulate ultramafic rocks, a mafic-ultramafic transition zone of interlayered gabbro and ultramafic cumulates, compositionally layered olivine-gabbro and pyroxenite, and isotropic gabbro. A sheeted dike complex is rooted in the gabbro and overlain by a mixed dike-pillow lava section, chert, and banded iron formation. The documentation of a complete Archean ophiolite implies that mechanisms of oceanic crustal accretion similar to those of today were in operation by 2.5 billion years ago at divergent plate margins and that the temperature of the early mantle was not extremely elevated, as compared to the present-day temperature. Plate tectonic processes similar to those of the present must also have emplaced the ophiolite in a convergent margin setting. PMID:11349144

  1. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen. PMID:26426143

  2. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  3. Functional renormalization group study of an 8-band model for the iron arsenides

    NASA Astrophysics Data System (ADS)

    Honerkamp, Carsten; Lichtenstein, Julian; Maier, Stefan A.; Platt, Christian; Thomale, Ronny; Andersen, Ole Krogh; Boeri, Lilia

    2014-03-01

    We investigate the superconducting pairing instabilities of eight-band models for 1111 iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  4. The Archean kerogen paradox

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.

    2012-12-01

    The constituents of organic matter buried in sediments (kerogen) are classified into three types: (1) liable components that may be decomposed by aerobic and anaerobic microbes during the early diagenesis of sediments, and by thermal decomposition during the burial at ~3-5 km depths (T = 100 ~150°C) to generate bitumen (oil); (2) refractory components that may decompose into gaseous components at greater depths (T = 150-230°C); and (iii) inert components that may be converted to graphite during high temperature metamorphism. Laboratory experiments and field observations indicate that matured kerogen (i.e., refractory and inert components) is decomposed during the weathering under an oxygenated atmosphere by reaction C + O2 → CO2, promoted by aerobic organisms. This has resulted in the general absence of old detrital kerogen (except debris of vascular plants) in Phanerozoic-aged sedimentary rocks. In contrast, matured kerogen would not be decomposed during the weathering under a reducing atmosphere, because the reactions C + 2H2 → CH4, C + 2H2O → CO2 + 2H2 and 2C + 2H2O → CO2 + CH4 would not proceed at low temperatures even with the aid of anaerobic organisms. If such reactions could occur at low temperatures, sedimentary rocks, regardless of their age, would have lost all their kerogen before being buried to depths ~3 km. If the Archean atmosphere had been reducing, as postulated by the dominant paradigm of the early Earth, detrital kerogen should be ubiquitously present in Archean-aged sedimentary rocks. We should also find general increasing trends in both the ratio of detrital/syngenetic kerogens and the total amount of reduced C (syngenetic and detrital kerogens) in sedimentary rocks from ~3.8 Ga to ~2.5 Ga in age. Because the detrital kerogen had been subjected to metamorphism and weathering before being transported to the oceans, detrital kerogen would have different structures, textures, and elemental and isotopic ratios compared to the syngenetic

  5. Examples and genetic significance of the formation of iron oxides in the Nigerian banded iron-formations

    NASA Astrophysics Data System (ADS)

    Mücke, A.; Annor, A.

    1993-04-01

    Ore microscopic studies reveal two main parageneses in the banded iron-formations of Nigeria. In the low-grade metamorphic schist belts of northern Nigeria, a magnetitic paragenesis comprising magnetite, silicates (grunerite and garnet), and quartz is developed. Magnetite which sometimes contains carbonate inclusions is markedly martitized. In contrast, the higher-grade metamorphic terrains of central Nigeria exhibit a different paragenesis consisting of hematite (including specularite) and quartz. Here, minerals of the magnetitic paragenesis only occur as relics. The protolith of these banded iron-formation occurrences envisioned as carbonate-containing sediments, with high concentrations of Fe and Si, and lower contents of Ca, Mg, Al (and also Mn where they are associated with gondite) underwent both submarine weathering and metamorphic changes in their evolution. During submarine weathering, sheet silicates and porphyroblasts of Fe-Mn-(Mg-Ca)-carbonate solid solutions, were formed. At the outset of a regional metamorphic episode, grunerite, garnet and porphyroblastic magnetite were developed. Magnetite formed at the expense of carbonate and sheetsilicates but was later martitized under post-metamorphic conditions. In the course of a later heterogeneous tectono-metamorphic event, martitized magnetite was transformed as follows: under low-grade metamorphism, as observed in the northern Nigerian schist belts, recrystallization into coarse-grained martite occurred, while at the higher grades of metamorphism in central Nigeria, recrystallization into hematite and, ultimately, specularite, took place. This relationship between magnetite and hematite has also been observed in many other banded iron-formations from different parts of the world, thus underscoring its widespread significance. Magnetite crystallizes first at the expense of carbonate and silicate minerals and hematite is subsequently derived from it directly or generally through martitization. This

  6. Petrological and geochemical features of the Jingtieshan banded iron formation (BIF): A unique type of BIF from the Northern Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Qing; Zhang, Zuo-Heng; Duan, Shi-Gang; Zhao, Xin-Min

    2015-12-01

    The Jingtieshan banded iron formation (BIF) is located in the Northern Qilian Orogenic Belt (NQOB) in NW China. The BIFs are hosted in Mesoproterozoic Jingtieshan Group, a dominantly clastic-carbonate sedimentary formation, and was metamorphosed to lower greenschist facies. The Jingtieshan BIFs include oxide-, carbonate- and mixed carbonate-oxide facies, and consist of alternating iron-rich and silica-rich bands. The BIFs are composed essentially of specularite and jasper, with minor carbonate minerals and barite. The SiO2 + Fe2O3 content is markedly high in the oxide facies BIF, followed by FeO, CO2 and Ba, with the other elements usually lower than 1%, suggesting that the original chemical sediments were composed of Fe, Si, CO32- and Ba. The positive correlation between Al2O3, TiO2 and Zr in the BIFs indicates that these chemical sediments incorporate minor detrital components. Oxide facies BIF shows low HFSE, low ∑REE and low Y/Ho. The Post Archean Australian Shale-normalized REE patterns for Jingtieshan BIFs are characterized slight LREE depletion, strong positive Eu anomalies and lack of significant negative Ce anomalies. Siderite in the carbonate- and mixed carbonate-oxide facies BIF shows negative δ13C values varying from -8.4‰ to -3.0‰, and δ18O values show a range of -16.6‰ to -11.7‰. The geochemical signatures and carbon-oxygen isotopes suggest origin from high-temperature hydrothermal fluids with weak seawater signature for the sediments of Jingtieshan BIFs. The absence of negative Ce anomalies and the high Fe3+/∑Fe ratios of the oxide facies BIF do not support ocean anoxia. In contrast to the three main types (Algoma-, Superior- and Rapitan-type) of global BIFs, the Jingtieshan BIFs represent a unique type with features similar to those of sedimentary-exhalative mineralization.

  7. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo

    2016-04-01

    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle "marble cake". Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  8. Neodymium isotopic studies of Precambrian banded iron formations

    SciTech Connect

    Pimentel-Klose, M.R.

    1986-01-01

    The isotopic composition of Nd is reported for 11 different Precambrian BIFs and suggests a trend of increasingly positive epsilon/sub Nd/(T) values with age. This trend is interpreted to reflect isotopic variations in precambrian sea water. The Urucum and the Gunflint BIFs, both younger than 1.8 AE, yield negative epsilon/sub Nd/(T) values, between -4.6 and -1.1. The remaining BIFs, with ages between 1.85 and 3.4 AE, have predominantly positive values, between -0.7 and +4.0. The low UXSm/ UUNd ratio in BIFs is inconsistent with their REE being derived from rivers draining large proportions of greenstones. The positive, mantle-like values of BIFs older than 1.8 AE contrasts strongly with the negative, continental-like values of Phanerozoic sea water. Therefore, the REE budget of the oceans during most of the Precambrian was probably dominated by the hydrothermal circulation of sea water through MORBs and not by river waters, as today. A one order of magnitude higher hydrothermal contribution of Nd is suggested by the data for the Early Precambrian. This is most likely due to a higher hydrothermal water to river water flux ratio and/or a higher Nd concentration in hotter hydrothermal waters (>375 C) during this period. The large hydrothermal contribution of REE during the Early Precambrian can be explained best if the temperature of sea water fluxing through MORBs was higher than today. Experiments investigating the interaction between sea water and basalt have shown that the concentration of iron might have been about 20 times larger if the temperature of interaction was about 425 C. Such hot hydrothermal solutions could have been the most important source of iron in Precambrian BIFs.

  9. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    NASA Technical Reports Server (NTRS)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  10. Examining Archean methanotrophy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Fischer, Woodward W.

    2016-05-01

    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  11. Geochemistry of banded iron formation (BIF) host rocks, Yishui county, North China : major element, REE and other trace element analyses

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2013-12-01

    Banded iron formation (BIF) in Yishui area, Western Shangdong Province in North China was formed from late Archean to early Paleoproterizoic (2.6Ga-2.5Ga). Amphibolite, metasediment (schist, gneiss) and migmatitic granite consist of host rocks of the BIF in North China. To find characteristics of BIF host rocks, major element, rare earth element and trace element analyses of whole rocks were conducted. Major elements are analyzed using X-ray Fluorescene Spectrometer (XRF) and REE and trace elements are analyzed by Inductively Coupled Plazma Mass Spectrometer (ICP-MS). Amphibolites show large negative Eu anomalies ([Eu]/[Eu*]=0.91~0.99) and ranges of REE are ∑REE=305~380 ppm. LREE/HREE ratios are (La/Lu)cn=21.07~26.12. SiO2 contents are 35.1~44.2 wt% and some samples have high Loss On Ignition values ([LOI]=8.35-10.06 wt%) compared to other amphibolites. LOI value is related to water and volatile contents in the rocks and it reflects amphibolite got high degree of alteration. The Fe and Mg mobility effects are shown by Fe2O3/MgO ratios which are 4.7~5.7. The Mg# varies from 25.6 to 29.3. Migmatitic granites have various range of ∑REE=21~241 ppm. They show both Eu negative anomalies ([Eu]/[Eu*]=0.53~0.71) and positive Eu anomalies ([Eu]/[Eu*]=1.95). Migmatitic granites have high SiO2 contents (68.8~72.2 wt%) and Al2O3 (13.4~14.2 wt%) contents. They have relatively low TiO2 (<0.5 wt%), MgO ( <0.6 wt%) and P2O5 (<0.2 wt%) contents. Gneiss samples were collected either from core or from mine pit. Core samples have negative Eu anomalies ([Eu]/[Eu*]=0.27~0.62) and show enriched LREE than HREE ((La/Lu)cn=45.60~62.32). Mine pit samples have positive Eu anomalies ([Eu]/[Eu*]=1.64~2.87) and almost flatten pattern except Eu anomalies ((La/Lu)cn=2.19~2.37). Core samples have higher Al2O3, TiO2, Na2O and K2O contents than mine pit samples. But remarkably mine pit samples have high contents of Fe2O3 (>40.4 wt%). Schists are divided into two types following REE patterns. Some

  12. Theoretical Analysis on the Band Structure Variance of the Electron Doped 1111 Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Usui, H.; Iimura, S.; Sato, Y.; Matsuishi, S.; Hosono, H.; Kuroki, K.

    We perform first principles band calculation of electron doped iron-based superconductors adopting the virtual crystal approximation. We find that when electrons are doped by element substitution in the blocking layer, the band structure near the Fermi level is affected due to the increase of the positive charge in the layer. On the other hand, when Fe in the conducting layer is substituted by Co, the band structure is barely affected. This difference should be a key factor in understanding the phase diagram of the heavily doped electron doped systems LnFeAsO1-xHx.

  13. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland)

    NASA Astrophysics Data System (ADS)

    Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang; Moorbath, Stephen

    2013-02-01

    The redox balance of the Archean atmosphere-ocean system is among the most significant uncertainties in our understanding of the earliest history of Earth's surface zone. Most workers agree that oxygen did not constitute a significant proportion of the atmosphere until after ca. 2.45 Ga, after the Great Oxidation Event, but there is less agreement on when O2 production began, and how this may have been consumed by reduced species such as Fe(II) in the oceans. The Fe redox cycle through time has been traced using banded iron formations (BIFs), and Fe isotopes are increasingly used to constrain the conditions of Earth's paleoenvironments, including the pathways of formation of BIFs. Iron isotope analyses of BIFs from the 3.7 to 3.8 Ga Isua Supracrustal Belt (ISB), obtained by micro-sampling of magnetite-rich layers and conventional analysis, as well as by in situ femtosecond laser ablation (fs-LA-ICP-MS), indicate a consistently narrow range of non-zero δ56Fe values. Analysis of magnetite by fs-LA-ICP-MS allows for precise and accurate micron-scale analyses without the problems of orientation effects that are associated with secondary ion mass spectrometry (SIMS) analyses. Magnetite δ56Fe values range from +0.4‰ to +1.1‰ among different bands, but within individual layers magnetite grains are mostly homogeneous. Although these BIFs have been metamorphosed to amphibolite-facies, the metamorphism can neither explain the range in Fe isotope compositions across bands, nor that between hand samples. The isotopic compositions therefore reflect “primary”, low-temperature sedimentary values. The positive δ56Fe values measured from the ISB magnetites are best explained by deposition of Fe(III)-oxides produced by partial oxidation of Fe(II)-rich ocean water. A dispersion/reaction model, which accounts for rates of hydrothermal Fe(II)aq input, rates of oxidation, and rates of Fe(OH)3 settling suggests exceptionally low O2 contents, <0.001% of modern O2 contents in

  14. Archean geotherms and supracrustal assemblages

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.

    1984-06-01

    Metamorphic mineral assemblages suggest the existence of variable geotherms and lithospheric thicknesses beneath late Archean continental crust. Archean granite-greenstone terranes reflect steep geotherms (50-70°C/km) while high-grade terranes reflect moderate geotherms similar to present continental crust with high heat flow (25-40°C/km). Corresponding lithosphere thicknesses for each terrane during the late Archean are 35-50 km and 50-75 km, respectively. Early Archean (⩾ 3.0 b.y.) greenstones differ from late Archean (˜ 2.7 b.y.) greenstones by the rarity or absence of andesite and graywacke and the relative abundance of pelite, quartzite, and komatiite. Mature clastic sediments in early greenstones reflect shallow-water, stable-basin deposition. Such rocks, together with granite-bearing conglomerate and felsic volcanics imply the existence of still older granitic source terranes. The absence or rarity of andesite in early greenstones reflects the absence of tectonic conditions in which basaltic and tonalitic magmas are modified to produce andesite. A model is presented in which early Archean greenstones form at the interface between tonalite islands and oceanic lithosphere, over convective downcurrents; high-grade supracrustals form on stable continental edges or interiors; and late Archean greenstones form in intracontinental rifts over mantle plumes.

  15. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  16. Low-threshold photonic-band-edge laser using iron-nail-shaped rod array

    SciTech Connect

    Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo; Jeong, Kwang-Yong; Park, Hong-Gyu E-mail: hgpark@korea.ac.kr; Kwon, Soon-Yong; Yang, Jin-Kyu E-mail: hgpark@korea.ac.kr; Kwon, Soon-Hong

    2014-03-03

    We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.

  17. Magnetite: What it reveals about the origin of the banded iron formations. [Abstract only

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1994-01-01

    Magnetite, Fe3O4 is produced abiotically and biotically. Abiotically, magnetite is a late magmatic mineral and forms as a consequence of the cooling of iron rich magma. Biotically, magnetite is produced by several organisms, including magnetotactic bacteria. Hematite, Fe2O3, is also produced abiotically and biotically. Abiotically, hematite rarely occurs as a primary mineral in igneous rocks, but is common as an alteration product, fumarole deposit, and in some metamorphosed Fe-rich rocks. Biotically, hematite is produced by several types of microorganisms. Biologically-produced magnetite and hematite are formed under the control of the host organism, and consequently, have characteristics not found in abiotically produced magnetite and hematite crystals. To determine if the magnetite and hematite in the Banded Iron Formation was biologically or abiotically produced, the characteristics of biologically-produced magnetite and hematite (concentrated from Aquaspirillum magnetotacticum) and abiotically-produced magnetite and hematite obtained from Wards Scientific Supply Company, were compared with characteristics of magnetite and hematite concentrated from the Gunflint Banded Iron Formation (Ontario, Canada) using thermal and crystallographic analytical techniques. Whole rock analysis of the Gunflint Banded Iron Formation by x-ray diffraction (XRD) and differential thermal analysis (DTA) revealed the presence of quartz, hematite, siderite and dolomite as the major minerals, and magnetite, greenalite, pyrite, pyrrhotite and apatite as the minor minerals. Analysis of a crude magnetic fraction of the Gunflint showed the minerals quartz, hematite, siderite, dolomite, and magnetite. Analysis of the crude magnetic fraction from Aquaspirillum magnetotacticum revealed organic compounds plus hematite and magnetite. The mineral identification and particle size distribution data obtained from the DTA along with XRD data indicate that the magnetite and hematite from the Gunflint

  18. An Archean Biosphere Initiative

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; Johnson, C.; Lyons, T.; Meadows, V.; Ohmoto, H.; Ono, S.; Peters, J. W.; Shapiro, B.; Summons, R.; Walter, M.

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  19. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    SciTech Connect

    Nutman, A.P. ); Collerson, K.D. )

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. The massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.

  20. Geochemistry of precambrian carbonates. II. Archean greenstone belts and Archean sea water

    SciTech Connect

    Veizer, J. ); Hoefs, J. ); Lowe, D.R. ); Thurston, P.C. )

    1989-04-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at {approximately}2.8 {plus minus} 0.2 and {approximately}3.5 {plus minus} 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon, Michipicoten and Uchi greenstone belts of Canada and the Upper Greenstones of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India. Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite {plus minus} ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with ({sup 87}Sr/{sup 86}Sr){sub o} of 0.7025 {plus minus} 0.0015 and 0.7031 {plus minus} 0.0008 for younger and older greenstones, respectively. The mineralogical and chemical attributes of Archean carbonates are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the mantle, that is, with the oceanic crust and the coeval ubiquitous volcanosedimentary piles derived from mantle sources.

  1. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  2. Phosphate microaggregates in Archean sediments. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mojzsis, S.; Fan, G. Y.; Arrhenius, G.

    1994-01-01

    Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.

  3. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  4. Increasing the band gap of iron pyrite by alloying with oxygen

    NASA Astrophysics Data System (ADS)

    Law, Matthew; Hu, Jun; Zhang, Yanning; Wu, Ruqian

    2013-03-01

    Systematic density functional theory studies and model analyses have been used to show that the band gap of iron pyrite (FeS2) can be increased from ~ 1.0 to 1.2 -1.3 eV by replacing ~ 10% of the sulfur atoms with oxygen atoms (i.e., ~ 10% OS impurities). OS formation is exothermic, and the oxygen atoms tend to avoid O-O dimerization, which favors the structural stability of homogeneous FeS2-xOx alloys and frustrates phase separation into FeS2 and iron oxides. With an ideal band gap, absence of OSinduced gap states, high optical absorptivity, and low electron effective mass, FeS2-xOx alloys are promising for the development of pyrite-based heterojunction solar cells that feature large photovoltages and high device efficiencies. Acknowledgement: We thank the NSF SOLAR Program (Award CHE-1035218) and the UCI School of Physical Sciences Center for Solar Energy for support of this work. Calculations were performed on parallel computers at NERSC and at NSF supercomputer centers.

  5. Geochemistry of the ~2.7 Ga Prohibition Banded Iron Formation, Meekatharra, Western Australia

    NASA Astrophysics Data System (ADS)

    González-Álvarez, I.; Thébaud, N.; Hollingsworth, D.

    2007-12-01

    At ~2.7 Ga a large quantity of continental crust was generated coinciding with a world-wide vast formation of Iron-bearing sedimentary rocks. The key depositional mechanism for iron during that time is part of an unsettled long-standing debate.Trace elements and particularly rare earth elements (REE) have been extensively applied as a proxy to approach the origin of these iron-bearing sedimentary formations. Accordingly, this study presents novel geochemical data from the Prohibition banded iron-formation (BIF) in Meekatharra, Western Australia, and its wrapping sedimentary package.The Meekatharra area belongs to the Murchison Domain that is part of the Youanmi Terrane in the Yilgarn Craton. The Youanmi Terrane is composed of north-trending greenstone belts separated by extensive granite and granitic gneiss. Lava flows at the Meekatharra-Mt Magnet Greenstone Belt has been dated at 2.7 Ga. Stratigraphically the Prohibition BIF is enclosed within a sedimentary package of volcanoclastic siltstone and fine- grained sandstone bounded by mafic chlorite-schist. Samples were collected from diamond drill core at the BIF outcrop in the Prohibition gold mine pit, comprising the iron-bearing sedimentary unit and the volcanoclastic envelope associated.Samples were normalized to bulk continental crust values. BIF samples display Fe2O3 content from 27 to 42wt%, featuring: (1) flat REE patterns systematically depleted between ~0.2-0.6; (2) slight negative Ce depletion; (3) positive Eu anomaly; and (4) large Cu, As and Sb positive anomalies up to 2.5, 62 and 7 respectively; whereas samples from the sedimentary volcanoclastic unit grouped at two populations: (1) with depleted REE profiles, La/Lu = 0.17-0.34, and V, Sc, Co, Cr and Ni enrichment; and (2) with concave REE patterns due to middle REE lower values accentuated by Eu depletion at ~0.8, coupled with La/Lu = 0.8-1. Both populations display Cu, As and Sb positive anomalies up to 5, 60 and 6 correspondingly.The geochemical

  6. Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies.

    PubMed

    Bowman, David N; Blew, James H; Tsuchiya, Takashi; Jakubikova, Elena

    2013-08-01

    Iron(II) polypyridines represent a cheaper and nontoxic alternative to analogous Ru(II) polypyridine dyes successfully used as photosensitizers in dye-sensitized solar cells (DSSCs). We employ density functional theory (DFT) and time-dependent DFT (TD-DFT) to study ground and excited state properties of [Fe(bpy)(CN)4](2-), [Fe(bpy-dca)(CN)4](2-), and [Fe(bpy-dca)2(CN)2] complexes, where bpy = 2,2'-bipyridine and dca = 4,4'-dicarboxylic acid. Quantum dynamics simulations are further used to investigate the interfacial electron transfer (IET) between the excited Fe(II) dyes and a TiO2 nanoparticle. All three dyes investigated display two bands in the visible region of the absorption spectrum, with the major transitions corresponding to the metal-to-ligand charge transfer states. The calculated IET rates from the particle states created by the excitation of the lower-energy absorption band are comparable to or slower than the rate of the excited state decay into the nonemissive, metal-centered states of the Fe(II) dyes (∼100 fs), indicating that the IET upon the excitation of this band is unlikely. Several particle states in the higher-energy absorption band display IET rates at or below 100 fs, suggesting the possibility of the IET between the Fe(II)-sensitizer and TiO2 nanoparticle upon excitation with visible light. Our results are consistent with the previous experimental work on Fe(II) sensitizers (Ferrere, S. Chem. Mater. 2000, 12, 1083) and elucidate the band-selective nature of the IET in these compounds. PMID:23837840

  7. Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India

    NASA Astrophysics Data System (ADS)

    Orberger, Beate; Wagner, Christiane; Wirth, Richard; Quirico, Eric; Gallien, Jean Paul; Derré, Colette; Montagnac, Gilles; Noret, Aurélie; Jayananda, Mudlappa; Massault, Marc; Rouchon, Virgile

    2012-06-01

    The banded iron formation of the Bababudan Group (Western Dharwar Craton, India) is composed of millimetric to centimetric alternating quartz and grey to red Fe-oxide bands. Major phases are quartz and martite (hematized magnetite) with minor Fe-sulfides and Ca-Mg-Fe-carbonates. Micrometric Fe-oxide spherules fill cavities in discontinuous micrometric layers of Fe-oxides that occur in the massive quartz layers and at the interface of massive Fe-oxide and quartz layers. The spherules are composed of micrometric radial plates of hematite intergrown with nanometric magnetite. These spherules contain carbonaceous matter (CM) with nanometric Fe-particles and have low N contents (˜900 ppm; CM1). The spherule formation is attributed to a low temperature hydrothermal process (150-200 °C) at around 2.52 Ga, possibly favored by the presence of CM. These hydrothermal fluids dissolved diagenetic interstitial sulfides or carbonates creating cavities which, provided space for the spherule precipitation. Carbonaceous matter of semi-anthracite maturity is encapsulated in quartz grains adjacent to the Fe-oxide spherules (CM2) and it is thus concluded that CM1 and CM2 are most likely contemporaneous and of the same origin, either incorporated at the time of BIF formation or during the hydrothermal event at 2.52 Ga from the underlying phyllitised black shales. Carbonaceous matter (CM3) was also found around the Fe-oxide spherules and the martite grains. CM3 has much higher N contents (>5000 ppm), is of a lower maturity than CM1 and CM2, and is related to weathering, which is also indicated by the presence of goethite and kaolinite. The δ13C of all CMs varies from -19.4 to -24.7‰, similar to values measured in the underlying phyllitised black shales and likely reflect denitrifying microbial activity.

  8. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  9. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  10. Extraterrestrial demise of banded iron formations 1.85 billion years ago

    USGS Publications Warehouse

    Slack, J.F.; Cannon, W.F.

    2009-01-01

    In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.

  11. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition

    NASA Astrophysics Data System (ADS)

    Koeksoy, Elif; Halama, Maximilian; Konhauser, Kurt O.; Kappler, Andreas

    2016-07-01

    Early Earth processes are typically identified through the study of mineralogical, elemental and isotopic features in the rock record, including Precambrian banded iron formations (BIF). However, post-depositional processes often obscure the primary geochemical signals, making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially imprecise. Thus, alternative approaches are required to complement the information gained from the rock record in order to fully understand the distinctive biogeochemical processes on ancient Earth. Simulating these conditions in the laboratory is one approach, but this approach can never fully replicate the complexity of a natural environment. Therefore, finding modern environments with a unique set of geochemical and microbiological characteristics to use as analogues for BIF depositional environments can provide invaluable information. In this review, we provide an overview of the chemical, physical and biological parameters of modern, ferruginous lakes that have been used as analogue BIF environments.

  12. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  13. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.

    2016-04-01

    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  14. Photosynthesis in the Archean era.

    PubMed

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga. PMID:16453059

  15. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations?

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano W.

    2014-07-01

    concentration is locally decreased below opal-A and opal-CT saturation allowing for precipitation of the thermodynamically more stable phase: quartz. This mechanism of chert formation at the iron oxidation front in suboxic zones may explain why early-diagenetic microcrystalline chert only occurs sporadically in modern marine sediments. It may also serve as a modern analogue for the deposition of much more abundant banded iron/chert formations at the time of the great oxidation event around 2.4 Ga BP, which was probably the largest iron oxidation front in Earth's history.

  16. Biomarkers in Archaean banded iron formations : examples from Pilbara and Dhawar Craton

    NASA Astrophysics Data System (ADS)

    Orberger, B.; Pinti, D. L.; Cloquet, C.; Hashizume, K.; Soyama, H.; Jayananda, M.; Wirth, R.; Gallien, J. P.; Massault, M.; Rouchon, V.

    The origin of Archeaen banded iron formations (BIF) and the role of biosphere in Fe precipitation is still highly debated. In order to elucidate these processes, detailed mineralogical and textural analyses combined with δ 15 N, δ 56 Fe and δ 13 C data were obtained on Fe-oxide bands from Marble Bar chert Unit (MB, 3.46 Ga, Pilbara craton, W. Australia) and a BIF from the Bababudan Group (BG, 2.7-2.9 Ga, Dhawar Craton, Southern India). Both samples are composed of alternating quartz and Feoxide bands with wavy micro-textures. CI-normalized REE patterns show that MB reflects hydrothermal fluid/basalt interactions, while BG precipitated from a hydrothermal fluid/seawater mixture. In MB, nano-cristalline hematite replaced magnetite, Mgcalcite and Fe-sulfides producing a matlike surface, preserving nanometric N-bearing amorphous carbon nodules. Measured C/N ratios (2.3 to 52) are typical of Precambrian organic matter. The δ 56 Fe of -0.40±0.02% suggests MOR-hydrothermal fluids as a Fe-source, while a δ 15 N of +7.4±0.4% is compatible with nitrification- denitrification processes and δ 13 C of -19.9±0.1% support an organic origin. BG is composed of intergrown magnetite and hematite. Disseminated grunerite and magnetite grew during low T metamorphism. Fe-oxide spherules compose vermicular- filaments that nucleated perpendicular to quartz surfaces. Fe-oxide spherule bunches are perfectly preserved in the silica bands forming micrometric mats, which contain heterogeneously distributed N (˜0.09at.%) and C (0.51 at.%, C/N=5.73). Bulk δ 13 C of -15.35%±0.10 points to an organic origin for C. The ?56 Fe in Fe and Si layers (0.75% to 2.16%) is compatible with a chemical precipitation for BIF. A negative correlation between ?56 Fe and the Th/U ratio suggests that Fe isotopic variations are related to fluid circulation and re-precipitation of Fe-oxides. High ?15 N, on one Feoxide layer, of +21.8±0.7%, corresponds to that observed for Archeaen BIFs and may be related

  17. Iron mineralogy of the surface of Mars from the 1 μm band spectral properties

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Bellucci, G.; Poulet, F.; D'Aversa, E.; Bibring, J.-P.

    2012-10-01

    We study the 1 μm absorption from OMEGA/MEX spectra to map Martian iron mineralogy at a global scale. This band is covered on the left by the VNIR (visible and near infrared) OMEGA channel and on the right by the SWIR (short wavelengths infrared) one. We first perform a systematic spatial coregistration of the two channels after an improvement of the VNIR radiometric calibration. The update of the VNIR Instrumental Transfer Function (ITF) and the internal stray-light estimation is based on the spectra of the Phobos red units and of the water ice north polar cap of Mars, which have been fitted according to an iterative process. The level of the signal in the blue wavelength range, previously systematically overestimated due to a stray-light residual and the general shape of the spectrum for λ > 0.7 μm are improved . Global maps of the 1 μm signature have been derived from 9 new spectral indices. The largest values of the 1 μm band integral are found in Noachian terrains and in the dunes around the north polar cap. In the south polar region, an area centered at ˜155°W and ˜83°S is mapped as a distinctive spectral unit, dominated by pyroxene. The northern lowlands of Mars together with other dark terrains located in the northern hemisphere show very low values of some spectral indices due to the negative spectral slope in the NIR. This behavior is consistent with the presence of weathered basalts with a possible glassy or amorphous component. Among the hydrated terrains, the only ones that can be isolated by studying the 1 μm band are those located in Terra Meridiani, Aram Chaos and Capri Chasma, enriched in sulfate and hematite. On the other hand, the sulfates of the dark dunes surrounding the northern polar cap and the phyllosilicates of the bright hydrated deposits of Mawrth Vallis cannot be isolated combining the parameters used in this study. This suggests that their distinctive mineralogy does not affect the 1 μm band, remaining similar to the global

  18. Stable Ni Isotope Fractionation In Systems Relevant To Banded Iron-Formations

    NASA Astrophysics Data System (ADS)

    Howe, H.; Spivak-Birndorf, L.; Newkirk, D.; Wasylenki, L. E.

    2013-12-01

    An important event in the evolution of life was the rise of atmospheric oxygen during the Proterozoic. Preceding the rise in O2 was a decline in atmospheric methane concentrations, likely due to decreased productivity of methanogenic Archaea. Based on Ni concentrations in banded iron formations (BIF), Konhauser et al. (2009) hypothesized that mantle cooling during the Archaean reduced the amount of Ni present in igneous rocks and in oceans, causing a Ni shortage for methanogens. Methanogens use Ni for cofactor F430, a catalyst during methanogenesis. To confirm Konhauser's hypothesis, a proxy for methanogen productivity in the rock record is necessary, in order to determine whether a decline in methanogen populations correlated with the observed decrease in maximum Ni contents in rocks from the Archaean. Ni isotope ratios recorded in BIF (oceanic sediments consisting of layered iron oxides and cherts) may provide evidence of a decline in methane production. Cameron et al. (2009) have shown that methanogens preferentially assimilate light Ni isotopes. Thus Ni isotopes in BIF have potential use as biomarkers for methanogenesis. Ferrihydrite was almost certainly the dominant Fe-oxide phase precipitating during BIF deposition. Ferrihydrite nanoparticles have large surface areas and are able to remove aqueous metals from solution through multiple sorption mechanisms. Thus we investigated experimentally the relationship between Ni isotopes in solution and Ni associated with ferrihydrite. We experimented with two different sorption mechanisms: adsorption of aqueous Ni onto surfaces of synthetic ferrihydrite and coprecipitation of aqueous Ni with ferrihydrite. Preliminary results indicate that light isotopes are preferentially associated with ferrihydrite in both adsorption and coprecipitation experiments, with an average fractionation of 0.3‰ in terms of δ60/58 Ni. Future experiments will investigate whether the observed isotope fractionations reflect kinetics or

  19. Biosignatures of early life in >3.8Ga Banded Iron Formations?

    NASA Astrophysics Data System (ADS)

    Dodd, Matthew; Papineau, Dominic

    2015-04-01

    Almost all Eoarchean sedimentary rocks have undergone high grade metamorphism. However, small enclaves of Banded Iron Formations (BIFs) from the south-west margin of the Nuvvuagittuq supracrustal belt (NSB-Canada) are now the first candidate Eoarchean BIFs metamorphosed to only around the greenschist facies. Ellipsoidal ribbons of microcrystalline hematite in 1-4 micron chert and chert-hematite rosettes are preserved and largely undeformed, which point to diagenetic structures metamorphosed at low grade facies. Stilpnomelane is common as a prograde mineral in these rocks, which suggests the upper limits of metamorphic conditions where 430-500˚C at 5-6 Kbars; this is reinforced by the presence of ripidolite which is not seen in BIFs subjected to above 500˚C (Miyano & Klein, 1989). The exceptional low metamorphic grade of these Eoarchean rocks has enabled the preservation of diagenetic structures and mineral associations of disordered organic carbon with pyrite, apatite, carbonate and phyllosilicates, thus providing excellent opportunities to search for possible remains of some of the most primitive life. Noteworthy mineral assemblages include microscopic apatite and carbon inclusions in phyllosilicate and layered-pyritiferous, ring structures that contain disordered organic carbon. Raman spectra display broad D and G peaks and lack 2nd-order carbon peaks, which are indicative of disordered carbon, also raman peaks around 1440 cm-1 represent stretching of C-H bonds in the carbonaceous material. Focused ion beam milling and transmission electron microscope analysis of the milled foils reveals the structure and chemistries of these potential biosignatures down to the nanoscale and details the diverse relations of organic carbon in Earth's oldest sedimentary rocks. References Miyano, T. & Klein, C., 1989. Phase equilibria in the system K20 - FeO - MgO - AIzO3 - SiO2 - H20 - CO2 and the stability limit of stilpnomelane in metamorphosed Precambrian iron

  20. The photochemistry of manganese and the origin of Banded Iron Formations.

    PubMed

    Anbar, A D; Holland, H D

    1992-07-01

    The photochemical oxidation of Fe(2+) -hydroxide complexes dissolved in anoxic Precambrian oceans has been suggested as a mechanism to explain the deposition of Banded Iron Formations (BIFs). Photochemical studies have not yet addressed the low levels of manganese in many of these deposits, which probably precipitated from solutions bearing similar concentrations of Fe2+ and Mn2+. Depositional models must also explain the stratigraphic separation of iron and manganese ores in manganiferous BIFs. In this study, solutions containing 0.56 M NaCl and approximately 180 micromoles MnCl2 with or without 3 to 200 micromoles FeCl2 were irradiated with filtered and unfiltered UV light from a medium-pressure mercury-vapor lamp for up to 8 hours. The solutions were deaerated and buffered to pH approximately 7, and all experiments were conducted under O2-free (< 1 ppm) atmospheres. In experiments with NaCl + MnCl2, approximately 20% of the Mn2+ was oxidized and precipitated as birnessite in 8 hours. Manganese precipitation was only observed when light with lambda < 240 nm was used. In experiments with NaCl + MnCl2 + FeCl2, little manganese was lost from solution, while Fe2+ was rapidly oxidized to Fe3+ and precipitated as gamma-FeOOH or as amorphous ferric hydroxide. The Mn:Fe ratio of these precipitates was approximately 1:50, similar to the ratios observed in BIFs. A strong upper limit on the rate of manganese photo-oxidation during the Precambrian is estimated to be 0.1 mg cm-2 yr-1, a factor of 10(3) slower than the rate of iron photo-oxidation considered reasonable in BIF depositional basins. Thus, a photochemical model for the origin of oxide facies BIFs is consistent with field observations, although models that invoke molecular O2 as the oxidant of Fe2+ and Mn2+ are not precluded. Apparently, oxide facies BIFs could have formed under anoxic, as well as under mildly oxygenated atmospheres. PMID:11537803

  1. The reliability of ∼2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics

    NASA Astrophysics Data System (ADS)

    Viehmann, Sebastian; Bau, Michael; Smith, Albertus J. B.; Beukes, Nicolas J.; Dantas, Elton L.; Bühn, Bernhard

    2015-11-01

    Pure marine chemical sediments, such as (Banded) Iron Formations, (B)IFs, are archives of geochemical proxies for the composition of Precambrian seawater and may provide information about the ancient hydrosphere-atmosphere system. We here present rare earths and yttrium (REY) and high precision Sm-Nd isotope data of ∼2.90 Ga old Superior-type BIFs from the Witwatersrand Supergroup, South Africa, and compare those with data for near-contemporaneous BIFs from the correlative Pongola Supergroup (Superior-type BIF) and from the Pietersburg Greenstone Belt (Algoma-type IF), respectively. All Witwatersrand samples studied display the typical general REY distribution of Archean seawater, but their REY anomalies are less pronounced and their immobile element concentrations are higher than those of other pure (B)IFs. These observations indicate the presence of significant amounts of detrital aluminosilicates in the Witwatersrand BIFs and question the reliability of the Contorted Bed and Water Tower BIFs (Parktown Formation, West Rand Group) as archives of Mesoarchean seawater. Significant post-depositional alteration of the REY budget and the Sm-Nd isotope system is not observed. The Nd isotopic compositions of the purest BIF samples, i.e. the most reliable archives for Witwatersrand seawater, show initial εNd values between -3.95 and -2.25. This range is more negative than what is observed in ambient shales, indicating a decoupling of suspended and dissolved loads in the "near-shore" Witwatersrand Basin seawater. However, εNd range overlaps with that of the correlative Pongola BIF (Alexander et al., 2008). The deeper-water Algoma-type Pietersburg BIF shows more positive (i.e. more mantle-like) εNd2.9Ga values, supporting the hypothesis that a significant amount of its REY inventory was derived from black smoker-style, high-temperature hydrothermal fluids that had altered seafloor basalts. In marked contrast, the dissolved REY budgets (including the Nd isotopic

  2. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  3. Are Archean lithospheric keels inverted?

    NASA Astrophysics Data System (ADS)

    Percival, J. A.; Pysklywec, R. N.

    2007-02-01

    Post-tectonic granite "blooms" in many Archean cratons manifest widespread crustal melting that cannot be explained by lithosphere removal, considering the long-term buoyancy of Archean cratonic keels and low mantle geotherms indicated by Archean diamondiferous lithosphere. Rather, heat may have been transferred from the mantle through a process of lithosphere inversion, driven by basal tractive forces acting on gravitationally unstable lithosphere. The top-heavy cell comprises eclogitic lower crust ( ρ = 3500 kg/m 3) lying above depleted mantle lithosphere ( ρ = 3300 kg/m 3), whose aggregate density remained less than that of surrounding asthenosphere ( ρ = 3340 kg/m 3). Parameterized numerical models of the inversion process show a > 40 m.y. pulse of maximum 1060 °C temperatures in the lower crust, sufficient to drive anhydrous melting, when overturned basal lithosphere reaches the Moho. In equilibrating to lower lithosphere conditions, the eclogitic cap may have yielded siliceous melts that infiltrated overlying, previously depleted mantle, producing the high Si/Mg characteristic of some cratonic peridotites. P-T paths calculated for the central part of the inverting cell criss-cross the graphite-diamond boundary, explaining development of large diamond crystals through numerous growth increments. The craton stabilization process follows terminal tectonism by about 50 m.y. as a result of initial cooling, eclogite formation and lithosphere stiffening. Related consequences in the crust include low-pressure regional metamorphism and widespread hydrothermal effects including some gold mineralization. Craton stability is attributed to the high strength of the depleted mantle lithosphere, its rectified density profile, and the presence of refractory compositions at the lithosphere-asthenosphere boundary.

  4. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    SciTech Connect

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-15

    A new selenidoantimonate (CH{sub 3}NH{sub 4})[Mn(phen){sub 2}](SbSe{sub 4})·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen){sub 2}](Se{sub 4}) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ{sup 2}Se{sup 1},Se{sup 4} chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p–π{sup ⁎} orbital for 1 and the Se 4p and Fe 3d states to the phen p–π{sup ⁎} orbital for 2. - Graphical abstract: Two metal–Se complexes, representing the only example of a selenidoantimonate ligand to a TM π-conjugated ligand complex, and a tetraselenide ligand to a Fe complex cation, were synthesized. - Highlights: • The first π-conjugated ligand complex containing selenidoantimonate was isolated. • The first example of a tetraselenide ligand to a Fe complex cation was reported. • We found that phen can adjust the optical band gaps of metal–Se complexes.

  5. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-01

    A new selenidoantimonate (CH3NH4)[Mn(phen)2](SbSe4)·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen)2](Se4) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ2Se1,Se4 chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p-π* orbital for 1 and the Se 4p and Fe 3d states to the phen p-π* orbital for 2.

  6. Spin-wave band-pass filters based on yttrium iron garnet films for tunable microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Ustinov, A. B.; Drozdovskii, A. V.; Nikitin, A. A.; Kalinikos, B. A.

    2015-12-01

    The paper reports on development of tunable band-pass microwave filters for microwave photonic generators. The filters were fabricated with the use of epitaxial yttrium iron garnet films. Principle of operation of the filters was based on excitation, propagation, and reception of spin waves. In order to obtain narrow pass band, the filtering properties of excitation and reception antennas were exploited. The filters demonstrated insertion losses of 2-3 dB, bandwidth of 25-35 MHz, and tuning range of up to 1.5 GHz in the range 3-7 GHz.

  7. Composition and origin of Archean lower crust, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Mansur, A. T.; Manya, S.; Rudnick, R.

    2008-12-01

    Granulite-facies xenoliths from tuff cones erupted on the margin of the Tanzanian craton and within the adjacent Mozambique belt in northern Tanzania offer an opportunity to assess the role of lower crustal processes in the tectonic evolution of these two terranes. Both terranes are Archean, but record very different histories, starting in the Proterozoic and continuing today. Whereas the craton experienced little metamorphism or igneous activity following its stabilization around 2.8 Ga, Archean rocks of the Mozambique belt in the study area experienced at least one episode of high-grade metamorphism during the East African orogeny (ca. 640 Ma). Today, the East African rift exists at the contact between the Mozambique belt and the craton, implying a fundamental lithospheric weakness at this boundary. Granulite xenoliths come from Labait, on the craton margin, and Lashaine and Naibor Soito in the metamorphic belt. Most xenoliths are mafic and all are igneous in origin. Cratonic xenoliths (pl- opx±cpx±gt±hbl) are primarily anhydrous two-pyroxene granulites that likely originated as crystallized high-Ni, Archean basaltic melts. Xenoliths from the Mozambique belt are dominated by mafic granulites (pl-cpx-gt±opx) at Lashaine and banded, mafic to intermediate granulites at Naibor Soito. Positive Sr and Eu anomalies imply that the Lashaine granulites originated as plagioclase cumulates. The wide range in SiO2 (47-65 wt%) and correlation of Ni-MgO in the Naibor Soito xenoliths suggests they may have originated as igneous rocks that subsequently underwent partial melting to form the mafic (pl- opx±cpx±gt±hbl±bt) and felsic bands (pl-qtz-opx±kfs). U-Pb zircon ages for xenoliths from both terranes are Archean, as are most TDM ages, though younger TDM ages are seen in some Lashaine samples that were contaminated by rift magma. High pressures (up to 2.7GPa) are recorded by the Mozambique belt xenoliths, suggesting equilibration in thickened crust during the East

  8. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Z. K.; Yi, M.; Zhang, Y.; Hu, J.; Yu, R.; Zhu, J.-X.; He, R.-H.; Chen, Y. L.; Hashimoto, M.; Moore, R. G.; Mo, S.-K.; Hussain, Z.; Si, Q.; Mao, Z. Q.; Lu, D. H.; Shen, Z.-X.

    2015-12-01

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1 +ySexTe1 -x (0 bands dominated by the dx y orbital character significantly decreases with increasing selenium ratio, as compared to the dx z/dy z orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe1 +ySexTe1 -x .

  9. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations.

    PubMed

    Chan, C S; Emerson, D; Luther, G W

    2016-09-01

    Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3-25 μm). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the 'Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O2 levels increased. PMID:27392195

  10. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Vickers, John

    2007-02-01

    The temporal association between late Archaean to earliest Proterozoic asteroid impact ejecta/fallout units and overlying banded iron formations suggests that, in some instances, these impacts were closely followed by significant transformation in the nature of source terrains of the sediments. The Jeerinah Impact Layer (JIL) [B.M. Simonson, D. Davies, S.W. Hassler, Discovery of a layer of probable impact melt spherules in the late Archean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47 (2000) 315-325; B.M. Simonson, S.W. Hassler, Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust. J. Earth Sci. 44 (1997) 37-48; B.M. Simonson, B.P. Glass, Spherule layers - records of ancient impacts. Ann. Rev. Earth Planet. Sci. 32 (2004) 329-361; A.Y. Glikson, Early Precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4 (2001) 19-50; S.W. Hassler, B.M. Simonson, D.Y. Sumner, D. Murphy, Neoarchaean impact spherule layers in the Fortescue and Hamersley Groups, Western Australia: stratigraphic and depositional implications of re-correlation. Aust. J. Earth Sci. 52 (2005) 759-772; B. Rasmussen, C. Koeberl, Iridium anomalies and shocked quartz in a late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32 (2004) 1029-1032; B. Rasmussen, T.S. Blake, I.R. Fletcher, U-Pb zircon age constraints on the Hamersley spherule beds: Evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology, 33 (2005) 725-728.] overlies an argillite-dominated unit (Jeerinah Formation, 2684 ± 6 Ma [A.F. Trendall, W. Compston, D.R. Nelson, J.R. deLaeter, V.C. Bennett, SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western

  11. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  12. Mineralogical Mapping of the Banded Iron Formations using Fourier Transform Infra-Red (FTIR) Spectroscopy and micro-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McKeeby, B. E.; Schoonen, M. A.; Glotch, T. D.; Ohmoto, H.

    2013-12-01

    Banded Iron Formations (BIFs) consist of thin alternating layers of iron-poor silica and iron-bearing phylosilicates, iron oxides, and carbonates and/or sulfides. BIFs are common in the Precambrian. Although BIFs have been the subject of numerous studies, the mechanism and environments of formation remains poorly understood. It has been hotly debated whether BIFs formed by microbes in Fe2+-rich oceans under a reducing atmosphere, or by reactions between locally discharged submarine hydrothermal fluids and O2-rich deep ocean water. The debates have continued mostly because of the lack of detailed studies on the paragenesis of minerals in BIFs to determine which minerals are primary precipitates, and which are diagenetic and metamorphic products. The purpose of this study is to explore the applications of FTIR spectroscopy and micro-Raman spectroscopy in micro-scale paragenetic studies of BIF samples. FTIR and Raman are vibrational spectroscopy techniques that provide insight into the chemical bonding within a compound. With these techniques it is possible to resolve the iron oxide, carbonate, and clay mineralogy within BIFs, which is difficult with techniques that rely on elemental analysis, such as TEM-EDAX. Samples used in this study are thin sections of the 2.7 Ga BIFs from Temagami in the Abitibi green stone belt, Ontario, Canada. FTIR analyses were conducted using a Nicolet iN10MX Micro-Imaging FTIR Spectrometer. This instrument is capable of collecting hyperspectral infrared images with a pixel size of 25 microns covering the range from 7000 to 715 cm-1. In addition, we collected point spectra measuring 50X50 microns over a spectral range from 4000 to 400 cm-1. These point spectra were used to distinguish among different iron minerals in the thin sections. Using the hyperspectral data, we created composite false color Images to show mineral variation across the samples. The spectra were modeled using a digital spectral library. After modeling and examination

  13. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  14. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: klind@mpa-garching.mpg.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200 K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.

  15. Near infrared iron absorption bands: Applications to geologic mapping and mineral exploration

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.

    1972-01-01

    A spectroscopic analysis of the difference in reflectance of iron-rich and iron-poor minerals was made. Attempts were made to use these minima contrast in geological mapping and metallic mineral exploration of large areas from near infrared and visible satellite images. Data cover pertinent laboratory spectroscopic investigations, applications of spectral differences to the discrimination of two important metamorphic rock types, and mineral exploration by aircraft in Beartooth Mountains, Montana.

  16. Cooper pairing in the insulating valence band in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Lun-Hui; Chen, Wei-Qiang; Zhang, Fu-Chun

    2015-04-01

    Conventional Cooper pairing arises from attractive interaction of electrons in the metallic bands. A recent experiment on Co-doped LiFeAs shows superconductivity in the insulating valence band, which is evolved from a metallic hole band upon doping. Here we examine this phenomenon by studying superconductivity in a three-orbital Hamiltonian relevant to the doped LiFeAs. We show explicitly that Cooper pairing of the insulating hole band requires a finite pairing interaction strength. For strong coupling, the superconductivity in the hole band is robust against the sink of the hole band below the Fermi level. Our theory predicts a substantial upward shift of the chemical potential in the superconducting transition for Co-doped LiFeAs.

  17. Spin excitations in antiferromagnetic metallic phase of iron pnictides analyzed with a five-band itinerant model

    NASA Astrophysics Data System (ADS)

    Kaneshita, Eiji; Tohyama, Takami

    2011-03-01

    We investigate the spin wave excitation in the metallic antiferromagnetic phase of iron pnictide superconductors based on calculated neutron scattering spectra by mean-field calculations with a random phase approximation in a five-band itinerant model [E.K. & T.T., RPB 82, 094441 (2010)]. The calculated excitation spectra reproduce well spin-wave dispersions observed in inelastic neutron scattering, with a realistic magnetic moment for CaFe 2 As 2 . A particle-hole gap is found to be crucial to obtain consistent results; we predict the spin wave in LaFeAsO disappears at a lower energy than in CaFe 2 As 2 .

  18. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  19. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  20. Electron pairing in the presence of incipient bands in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Maiti, S.; Linscheid, A.; Hirschfeld, P. J.

    2015-12-01

    Recent experiments on certain Fe-based superconductors have hinted at a role for paired electrons in "incipient" bands that are close to, but do not cross, the Fermi level. Related theoretical works disagree on whether or not strong-coupling superconductivity is required to explain such effects, and whether a critical interaction strength exists. In this work, we consider various versions of the model problem of pairing of electrons in the presence of an incipient band, within a simple multiband weak-coupling BCS approximation. We categorize the problem into two cases: case (i), where superconductivity arises from the "incipient band pairing" alone, and case (ii), where it is induced on an incipient band by pairing due to Fermi-surface-based interactions. Negative conclusions regarding the importance of incipient bands have been drawn so far largely based on case (i), but we show explicitly that models under case (ii) are qualitatively different, and can explain the nonexponential suppression of Tc, as well as robust large gaps on an incipient band. In the latter situation, large gaps on the incipient band do not require a critical interaction strength. We also model the interplay between phonon and spin fluctuation driven superconductivity and describe situations in which they can enhance each other rather than compete. Finally, we discuss the effect of the dimensionality of the incipient band on our results. We argue that pairing on incipient bands may be significant and important in several Fe-based materials, including LiFeAs, FeSe intercalates, and FeSe monolayers on strontium titanate, and indeed may contribute to high critical temperatures in some cases.

  1. Strong Phylogeographic Structure in a Millipede Indicates Pleistocene Vicariance between Populations on Banded Iron Formations in Semi-Arid Australia

    PubMed Central

    Nistelberger, Heidi; Byrne, Margaret; Coates, David; Roberts, J. Dale

    2014-01-01

    The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit. PMID:24663390

  2. Observation of a Hidden Hole-Like Band Approaching the Fermi Level in K-Doped Iron Selenide Superconductor

    NASA Astrophysics Data System (ADS)

    Sunagawa, Masanori; Terashima, Kensei; Hamada, Takahiro; Fujiwara, Hirokazu; Fukura, Tetsushi; Takeda, Aya; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Suzuki, Katsuhiro; Usui, Hidetomo; Kuroki, Kazuhiko; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2016-07-01

    One of the ultimate goals of the study of iron-based superconductors is to identify the common feature that produces the high critical temperature (Tc). In the early days, based on a weak-coupling viewpoint, the nesting between hole- and electron-like Fermi surfaces (FSs) leading to the so-called s± state was considered to be one such key feature. However, this theory has faced a serious challenge ever since the discovery of alkali-metal-doped FeSe (AFS) superconductors, in which only electron-like FSs with a nodeless superconducting gap are observed. Several theories have been proposed, but a consistent understanding is yet to be achieved. Here we show experimentally that a hole-like band exists in KxFe2-ySe2, which presumably forms a hole-like Fermi surface. The present study suggests that AFS can be categorized in the same group as iron arsenides with both hole- and electron-like FSs present. This result provides a foundation for a comprehensive understanding of the superconductivity in iron-based superconductors.

  3. Mineral ecophysiological evidence for biogeochemical cycles in 2461-2495 million year old banded iron formations (BIF).

    SciTech Connect

    Li, Y; Konhauser, Dr, Kurt; Cole, David; Mildner, David; Phelps, Tommy Joe

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

  4. Electron pairing in the presence of incipient bands in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Linscheid, Andy; Chen, Xiao; Maiti, Saurabh; Hirschfeld, Peter

    Recent experiments on certain Fe-based superconductors (SC) have hinted at a role for paired electrons in ``incipient'' bands that are close to, but do not cross the Fermi level. Within a simple multiband weak-coupling BCS approximation, we categorize the problem into two cases: case(I) where SC arises from the incipient band pairing alone, and case(II) where it is induced on an incipient band by pairing due to Fermi-surface based interactions. Negative conclusions regarding the importance of incipient bands are largely based on case(I). However, we show explicitly that models under case(II) can explain the mild suppression of Tc, as well as robust large gaps on an incipient band. We also model the interplay between phonon and spin fluctuation (SF) driven SC and describe the bootstrap of electron-phonon SC by SF coupling the incipient and the regular bands. We argue that pairing on incipient bands may be important in several Fe-based materials, including LiFeAs, FeSe intercalates and FeSe monolayers on SrTiO3, and indeed may contribute to high Tc in some cases. In addition, we address the question whether this conclusion holds if the SF interaction is derived explicitly in the incipient band scenario and retardation effects are included on the level of the Eliashberg equations. SM was supported by NHMFL through NSF-DMR-1157490, AL and PJH were supported in part by DOE DE-FG02-05ER46236.

  5. Subduction, recycling and (carbonatite) melting of C-bearing banded iron formation (BIF) to 14 GPa

    NASA Astrophysics Data System (ADS)

    Kang, N.; Schmidt, M. W.

    2012-12-01

    Archean subduction geotherms indicating that subducted C-bearing BIFs probably may well have molten and that only part of the CO2 was transferred into the deep Earth, at least for fO2=HM. (ii) Natural BIF+shale mixtures represent ancient anoxic (but oxidized) deep water sediments. Experiments were performed on a synthetic carbonated pelite with high dolomite content + BIF at oxidizing (hematite+magnetite) and relatively reducing (graphite+magnetite) conditions. First melting experiments in BIF+shale at 10 GPa indicate that the solidus is just below 1100 °C at fO2~HM, yielding a carbonatite melt that quenches to a K-rich and Fe+Ca-rich carbonate while saturated with hematite and Fe-rich garnet. The C-saturated experiments remained at subsolidus conditions. (iii) The temperature stability of siderite is crucial for the ternary Fe-Mg-Ca carbonate phase diagram and for natural BIF's as minimum melts are expected to be Fe-rich carbonatites. Previous experiments by Franzolin (2011) on pure siderite ≤6 GPa encountered the auto-redox dissociation reaction before melting temperatures were reached. However, we successfully performed pure siderite melting experiments at 10, 13.6 GPa. Additional experiments with Mg-bearing siderite (XMg=0.15) yield a minimum in the binary MgCO3-FeCO3 at XMg~0.08.

  6. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments

    NASA Astrophysics Data System (ADS)

    Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.; Beukes, Nicolas J.

    2010-05-01

    Combined Fe, C, and O isotope measurements of ~ 2.5 Ga banded iron formation (BIF) carbonates from the Kuruman Iron Formation and underlying BIF and platform Ca-Mg carbonates of the Gamohaan Formation, South Africa, constrain the biologic and abiologic formation pathways in these extensive BIF deposits. Vertical intervals of up to 100 m were sampled in three cores that cover a lateral extent of ~ 250 km. BIF Fe carbonates have significant Fe isotope variability ( δ56Fe = + 1 to - 1‰) and relatively low δ13C (down to - 12‰) and δ18O values ( δ18O ~ + 21‰). In contrast, Gamohaan and stratigraphically-equivalent Campbellrand Ca-Mg carbonates have near-zero δ13C values and higher δ18O values. These findings argue against siderite precipitation from seawater as the origin of BIF Fe-rich carbonates. Instead, the C, O, and Fe isotope compositions of BIF Fe carbonates reflect authigenic pathways of formation in the sedimentary pile prior to lithification, where microbial dissimilatory iron reduction (DIR) was the major process that controlled the C, O, and Fe isotope compositions of siderite. Isotope mass-balance reactions indicate that the low- δ13C and low- δ18O values of BIF siderite, relative to those expected for precipitation from seawater, reflect inheritance of C and O isotope compositions of precursor organic carbon and ferric hydroxide that were generated in the photic zone and deposited on the seafloor. Carbon-Fe isotope relations suggest that BIF Fe carbonates formed through two end-member pathways: low- δ13C, low- δ56Fe Fe carbonates formed from remobilized, low- δ56Fe aqueous Fe 2+ produced by partial DIR of iron oxide, whereas low- δ13C, high- δ56Fe Fe carbonates formed by near-complete DIR of high- δ56Fe iron oxides that were residual from prior partial DIR. An important observation is the common occurrence of iron oxide inclusions in the high- δ56Fe siderite, supporting a model where such compositions reflect DIR "in place" in the soft

  7. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    NASA Technical Reports Server (NTRS)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  8. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  9. Preparation of Ni-B Coating on Carbonyl Iron and Its Microwave Absorption Properties in the X Band

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhou, Wan-Cheng; Qing, Yu-Chang

    2014-09-01

    Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate that the CI particles have been coated with intact spherical-shell Ni-B coating, indicating the core-shell structure of CI@Ni-B particles, and the Ni-B coating can prevent the further oxidation of the CI particles. Compared with the raw CI particles/paraffin coatings with the same coating thickness of 2.0 mm and particles content of 70%, the CI@Ni-B particles/paraffin coatings possess higher microwave absorption (the RL exceeding -10 dB is obtained in the whole X band (8.2-12.4 GHz) with minimal RL of -35.0 dB at 9.2 GHz).

  10. Venus and the Archean Earth: Thermal considerations

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.

  11. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  12. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  13. The Hf-Nd isotope record of Archean seawater: potential and pitfalls

    NASA Astrophysics Data System (ADS)

    Viehmann, Sebastian; Bau, Michael; Münker, Carsten; Elis Hoffmann, J.; Marquez, J. Eduardo

    2014-05-01

    Banded Iron Formations (BIFs) are Precambrian marine chemical sediments that may be used as archives of the trace element and isotope compositions of ancient seawater. Comparable to hydrogenetic FeMn crusts which are archives of modern seawater, a recent study [1] successfully used the Neoarchean Temagami BIF to study the (de)coupled Hf-Nd systematics of Late Archean seawater. Here, we evaluate the best approach to discriminate effects of syn- or postdepositional processes (e.g. detrital contamination, metamorphic or hydrothermal overprint) of the pristine seawater signature. To step further back in time we report Hf-Nd isotope and trace element data of pure Si- and Fe-rich layers from the Eoarchean ~3.75 Ga Isua BIF (Greenland) and the Mesoarchean ~3.25 Ga Fig Tree BIF (Barberton Greenstone Belt, South Africa) and compare them to data for the Neoarchean ~2.70 Ga Temagami BIF (Canada). To evaluate the effect of syn- or postdepositional processes on the Nd isotopic budget, shale-normalised REY (rare earths and yttrium) patterns of each particular sample should be compared with those of modern seawater and other Archean marine precipitates. Positive La, Gd and Y anomalies (i.e. super-chondritc Y/Ho ratios) and enrichments of HREE over LREE indicate a pristine seawater-derived REY (including Sm and Nd) composition in a BIF sample. Zr/Hf ratios serve as a perfect tool to distinguish seawater Hf from detrital Hf, because both particle-reactive, geochemical twins behave similar during igneous processes, but show a strong decoupling in aqueous solutions, leading to non-chondritic Zr/Hf [2]. Information about open system behaviour of the Hf-Nd systems during metamorphic events can be evaluated by an isochron approach. In contrast to the lower greenschist facies Temagami BIF with its well-defined Nd and Hf isochrons yielding an accurate depositional age [1], errorchrons derived from the data from the Isua and Barberton BIFs, respectively, yield unrealistically young ages

  14. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  15. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  16. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during

  17. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  18. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  19. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  20. Multi-band reflectance spectroscopy of carbonaceous lithium iron phosphate battery electrodes versus state of charge

    NASA Astrophysics Data System (ADS)

    Norris, R.; Iyer, K.; Chabot, V.; Nieva, P.; Yu, A.; Khajepour, A.; Wang, J.

    2014-03-01

    This study aims to expand the body of knowledge about the optical properties of battery cathode materials. Although some studies have been conducted on the optical properties of Lithium Iron Phosphate (LiFePO4), to the authors' knowledge, this is the first study of its kind on electrodes extracted from commercially available LiFePO4 batteries. The use of Vis/NIR and FTIR spectroscopy provides for a methodology to study the optical properties of LiFePO4 and may allow for the characterization of other properties such as particle size and the proportions of LiFePO4 versus FePO4 material. Knowledge of these properties is important for the development of a mechanism to measure the state-of charge (SOC) in lithium ion batteries. These properties are also important in a host of other applications including battery modeling and materials characterization. Cylindrical LiFePO4 batteries (from A123 Systems Inc.) were acquired from the commercial market and charged to 10 different states between 30% and 80% of their nominal capacity using a constant-current, constant-voltage (CCCV) cycling method. Visual inspection of the extracted electrodes shows that the LiFePO4/C-cathodes display subtle changes in color (shades of grey) with respect to SOC. Vis/NIR measurements support the visual observation of uniform intensity variations versus SOC. FTIR measurements show an absorbance signature that varies with SOC and is distinct from results found in the literature for similar LiFePO4-based material systems, supporting the uniqueness of the absorbance fingerprint.

  1. Archaean asteroid impacts, banded iron formations and MIF-S anomalies: A discussion

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2010-05-01

    on impact spherule size distribution ( Melosh, H.J., Vickery, A.M. [1991] Nature, 350, 494-497) suggest projectiles several tens of kilometers in diameter (Byerly and Lowe, 1994; Shukloyukov, A., Kyte, F.T., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2000]. In: Koeberl, C., Gilmour, I. (Eds.), Impacts and the Early Earth, Springer-Verlag, Berlin, pp. 99-116; Kyte, F.T., Shukloyukov, A., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2003] Geology, 31, 283-286). Due to incomplete preservation these impacts represent a minimum rate of the Archaean impact flux. High UV radiation associated with low ozone levels in the Archaean atmosphere may have been further enhanced by large impacts, accentuating MIF-S anomalies. The appearance of iron-rich sediments above late and mid-Archaean impact ejecta units (Glikson, A.Y. [2006] Earth Planet. Sci. Lett., 246, 149-160; Glikson, A.Y., Vickers, J. [2007] Earth Planet. Sci. Lett., 254, 214-226) may be related either to microbial oxidation of ferrous iron or, alternatively, photochemical oxidation of ferrous to ferric iron. Given post-2.45 Ga diluting of possible MIF-S anomalies by the oxygenating ocean sulfate reservoir (Pavlov, A.A., Kasting, J.F. [2002] Astrobiology, 2, 27-41), similar MIF-S anomalies may have been associated with Proterozoic and Phanerozoic impacts, although to date little evidence exists in this regard (Marouka, T., Koeberl, C., Newton, J., Gilmour, I., Bohor, B.F. [2002] Geological Society of America Special Paper 356, pp. 337-344; Koeberl, C., Thiemens, M. [2008] Multi-sulfur isotopes in cretaceous-tertiary boundary samples from the Western interior-search for photochemical effects 2008. Joint Meeting of the Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM. (abstract)). Detailed sampling and

  2. Accretion of the Archean Slave province

    NASA Astrophysics Data System (ADS)

    Kusky, T. M.

    1989-01-01

    Continental rift models have long been applied to the Archean Slave province of northwestern Canada. A reassessment of these models shows them to be incompatible with observed geological relations and suggests that contractional tectonic models may be more appropriate than extensional ones. Regions composed of different rock suites (e.g., orthogneisses vs. mafic volcanics) are separated by high-strain zones recording large displacements. It is proposed that the high-strain zones separate four distinct terranes that have been juxtaposed during collisional orogenesis. From west to east, these include the Anton terrane, interpreted as an Archean microcontinent; the Sleepy Dragon terrane, possibly an exhumed more eastern part of the Anton terrane; the Contwoyto terrane, a westward-verging fold and thrust belt containing tectonic slivers of greenstone volcanics; and the Hackett River volcanic terrane, interpreted as an Archean island arc. The Contwoyto and Hackett River terranes represent a paired accretionary prism and island-arc system that formed above an east-dipping subduction zone. These collided with the Anton microcontinent, producing a basement nappe, expressed as the Sleepy Dragon terrane, during the main accretion event within the Slave province. The whole tectonic assemblage was intruded by late-kinematic to postkinematic granitoids.

  3. Interpretation of high resolution aeromagnetic data for lineaments study and occurrence of Banded Iron Formation in Ogbomoso area, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Oladunjoye, Michael Adeyinka; Olayinka, Abel Idowu; Alaba, Mustapha; Adabanija, Moruffdeen Adedapo

    2016-02-01

    The quest for solid mineral resource as an alternative for oil income in Nigeria presents opportunity to diversify the resource base of the country. To fill some information gap on the long abandoned Ajase and Gbede Banded Iron Formations (BIF) in Ogbomoso area, Southwestern Nigeria, high resolution aeromagnetic data of Ogbomoso - Sheet 222 was interpreted; to provide a better understanding of the mode of occurrence of the iron ore and associated structural features and geologic model. These were accomplished by subjecting reduced-to-pole (RTP) residual aeromagnetic intensity map to various data filtering and processing involving total horizontal derivative, vertical derivative, Upward Continuation (UC), Downward Continuation (DC), Euler Deconvolution at different Spectral Indices (SI), and Analytical signal using Geosoft Oasis Montaj 6.4.2 (HJ) data processing and analysis software. The resultants maps were overlain, compared and or plotted on RTP residual aeromagnetic intensity map and or geological map and interpreted in relation to the surface geological map. Positive magnetic anomalies observed on the RTP residual aeromagnetic intensity map ranged from 2.1 to 94.0 nT and associated with contrasting basement rocks, Ajase and Gbede BIF; while negative magnetic anomalies varied between -54.7 nT and -2.8 nT and are associated with intrusive bodies. Interpreted lineaments obtained from total horizontal derivative map were separated into two categories namely ductile and brittle based on their character vis-à-vis magnetic anomalies on RTP intensity map. Whilst the brittle lineaments were interpreted as fracture or faults; the ductile lineaments were interpreted as folds or representing the internal fabric of the rock units. In addition prominent magnetic faults mainly due to offset of similar magnetic domain/gradient were also interpreted. The iron ore mineralization is distributed within the eastern portion of the study area with Ajase BIF at relatively greater

  4. Tracing fluid pathways in Archean hydrothermal systems with imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    von Ruitenbeek, F. J. A.; Cudahy, T.; Hale, M.; van der Werff, H. M. A.; van der Meer, F. D.

    2008-09-01

    Abstract Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral deposits and their association with environments that are favorable for early forms of life. Interpretation and reconstruction of these systems is difficult because of their geologic complexity. Airborne imaging spectroscopy provides information about the presence, abundance, and composition of near-infrared active minerals at continuous spatial coverage and high spatial resolution, and can therefore be used to obtain new geologic insights into of the Archean hydrothermal systems. It was applied to the Panorama VMS-district in the Soanesville greenstone belt, Western Australia. Results from the analyses of 189 hand specimen showed that the wavelength position of the main absorption feature of white micas, a proxy for their Al content, varied between 2195 nm and 2225 nm. These wavelength variations and the relative abundance of white micas were used to reconstruct fossil fluid pathways from low-temperature recharge to hightemperature discharge zones. Results also showed that the absorption-wavelength variations of white micas could be mapped from airborne imaging spectroscopy using a stochastic method where the presence of white mica minerals and their absorption wavelengths in field measurements were predicted from hyperspectral band ratios. Analysis of the spatial patterns in segmented images, covering 52 km2, of white mica probability and their absorption wavelengths and their comparison with field data resulted in the identification of regional scale hydrothermal fluid pathways, a regional-scale K alteration event, and differences in hydrothermal regime between the northern and southern parts of the test area.

  5. Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character.

    PubMed

    Bourgeois-Hope, P; Chi, S; Bonn, D A; Liang, R; Hardy, W N; Wolf, T; Meingast, C; Doiron-Leyraud, N; Taillefer, Louis

    2016-08-26

    The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the T=0  K limit, κ_{0}/T, is vanishingly small. The application of a magnetic field B causes an exponential increase in κ_{0}/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ_{0}/T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a characteristic field B^{⋆}≪B_{c2}, and then a second rise up to the upper critical field B_{c2}. This shows that the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe. We estimate that the minimum value of the gap, Δ_{min}, is an order of magnitude smaller than the maximum value, Δ_{max}. PMID:27610878

  6. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate

    NASA Astrophysics Data System (ADS)

    Young, Grant M.

    2002-11-01

    Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited ˜300 Ma later in a basin that formed as a result of closure of the "Huronian" ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth's atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere. Neoproterozoic glaciogenic deposits are widespread on the world's continents. Some are associated with iron-formations. Two theories have emerged

  7. Late-Archean continental emergence: consequences for the rise of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Flament, N. E.; Coltice, N.; Rey, P. F.

    2008-12-01

    The balance between the secular cooling of the Earth's mantle and the growth of the continental crust implies changes in the isostatic equilibrium between continents and oceans, in the oceanic bathymetry, and in the area of emerged continental crust. The evolution of the latter is of fundamental importance to the geochemical coupling between the continental crust, the atmosphere and the oceans. The area of emerged land can be estimated from models that depend on mantle temperature, continental area and continental hypsometry. In the Archean, the mantle was probably 150-200°C hotter than present and the continental area could have increased from 20% of present at ~~3.5Ga to 80% of present by ~~2.5Ga. Using these values, and comparing different thermal evolution models for the Earth, we calculate that the area of emerged continental crust would be reduced to 1-12% of the Earth's area during the Archean (compared to 27.5% for present-day Earth). As for the continental hypsometry, a greater radiogenic crustal heat production and a greater mantle heat flow would have reduced the strength of the continental lithosphere in the Archean, thus limiting the crustal thickening due to mountain building processes and the maximum elevation in the Earth's topography [Rey and Coltice, Geology 36, 635-638 (2008)]. Taking this into account, we show that the continents were mostly flooded until the end of the Archean and that less than 3% of the Earth's area (which is roughly the superficy of South America) consisted of emerged continental crust by ~~2.5~Ga. These results are consistent with widespread Archean submarine continental flood basalts, and with the emergence of a sialic geochemical reservoir recorded from ~~2.5~Ga in (a) the composition of shales, (b) the isotopic ratio 87Sr/86Sr of marine carbonates and (c) the δ18O signature of igneous zircons. The progressive emergence of the continents as shown by our models from the late-Archean

  8. New Discoveries From The Archean Biosphere Drilling Project (ABDP)

    NASA Astrophysics Data System (ADS)

    Nedachi, M.

    2004-12-01

    The Archean Biosphere Drilling Project (ABDP), an international scientific drilling project involving scientists from the USA, Australia and Japan, was initiated in Pilbara Craton, Western Australia. The scientific objectives of the ABDP are the identification of microfossils and biomarkers, the clarification of geochemical environment of the early Earth, and the understanding of geophysical contribution to the co-evolution of life and environment. Through 2003 and 2004 activities, we have drilled 150 _| 300 m deep holes to recover _gfresh_h (modern weathering-free) geologic formations that range from 3.5 to 2.7 Ga in age. The drilling targets were: (1) 3.46 Ga Towers Formation, (2) mid-Archean Mosquito Formation, (3) 2.77 Ga Mt Roe Basalt, (4) 2.76 Ga Tumbiana Formation, (5) 2.74 Ga Hardey Formation. The initial investigations on the ABDP drill cores by Japanese members have already produced many exciting and interesting data and observations. 3.46 Ga Marble Bar Jasper could provide clues to the argument about the early photosynthetic cyanobacteria that have produced free oxygen and have evolved the oxygen level on the earth. There have been many ideas how the hematite in jasper was formed. Our most important discoveries are the confirmations that hematite, magnetite and siderite precipitated separately as primary minerals, and that there is a remaining texture which resembles microfossil using FE-SEM, ESCA, Laser-Raman and cathodoluminescence. Taking into account the carbon isotopic ratios of remains from _|25 to _|40 permil, these iron oxides might be biogenic. We need to identify the iron bacteria in detail to deduce the early earth_fs surface environment. In addition, the black shale of Apex Basalt overlying Marble Bar Jasper contains organic carbon from 0.7 to 5.2 percent, and the carbon isotopic ratio of which is from -26 to -30 per mil, suggesting that various microbes inhabited in the early Archean ocean. 2.77 Ga Mt Roe Basalt, which is composed of

  9. Sulphur tales from the early Archean world

    NASA Astrophysics Data System (ADS)

    Montinaro, A.; Strauss, H.

    2016-07-01

    Sedimentary and magmatic rocks and their distinct sulphur isotopic signatures indicate the sources and processes of sulphur cycling, in particular through the analysis of all four stable sulphur isotopes (32S, 33S, 34S and 36S). Research over the past 15 years has substantially advanced our understanding of sulphur cycling on the early Earth, most notably through the discovery of mass-independently fractionated sulphur isotopic signatures. A strong atmospheric influence on the early Archean global sulphur cycle is apparent, much in contrast to the modern world. Diverse microbially driven sulphur cycling is clearly discernible, but its importance for Earth surface environments remains to be quantified.

  10. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. PMID:25378621

  11. Sulfate was a trace constituent of Archean seawater

    NASA Astrophysics Data System (ADS)

    Crowe, Sean A.; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L.; Nomosatryo, Sulung; Fowle, David A.; Adkins, Jess F.; Sessions, Alex L.; Farquhar, James; Canfield, Donald E.

    2014-11-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ34S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 103 to 104 years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans.

  12. Analysis of lipid biomarkers in rocks of Archean crystalline basement

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Nina V.; Osipov, George A.; Verkhovtseva, Nadejda V.; Pevzner, Lev A.

    2003-01-01

    The Earst-European platform Archean crystalline basement rocks opened by Vorotilov Deep Well (VDW) were studied within depths 2575 - 2805 m. VDW was drilled through Puchezh-Katunki impact structure and opened some rocks characterized by high magnetic saturation. Micro-dispersed structure of magnetite indicated on a possibility of its biogenic origin. Really some pure cultures of magnet-ordered compound producing bacilli were isolated. Thus, the identification of fatty acids and other lipid components of microbial cells inside rocks was made to establish the iron reduction role in common biochemical activity in deep subsurface. 34 microbial lipid markers were detected by gas chromatography -- mass-spectrometry and 22 species were identidied by private database. Bacteria of g. Bacillus reached 6.8% in subsurface communities. However, representatives of gg. Clostridium (37.1 - 33.2%) and Rhodococcus (27.6 - 33.7%) were absolute dominants within studied depth interval. Geochemical conditions in situ as well as physiological features of these micro-organisms allow to constitute a following trophic chain: subsurface fluid hyudrocarbons --> it oxidizing rhodococci --> free aminoacids and biomass proteins (products of rhodococci metabolism) --> it fermenting clostridia. This syntrophic association may be a new basement for subsurface ecosystem and can support the magnet-ordered compounds production.

  13. Archean collisional tectonics in SW Montana

    SciTech Connect

    Mogk, D.; Rickmond, D.; Salt, K.; Clark, M.; Mueller, P.; Lafrenze, D.; Wooden, J.; Henry, D.

    1985-01-01

    The Archean continental crust of SW Montana evolved through alternating cycles of stable platform sedimentation followed by crustal thickening through collisional tectonics. The ancient sialic crust in the Beartooth Mountains served as the nucleus for accretion of younger terranes to the west. The oldest orogenic cycle recognized in the Beartooth Mountains involves a 3.4 Ga old supracrustal sequence which was metamorphosed in the granulite facies (T=700-800/sup 0/C, P=6Kb, 35/sup 0/C/Km); deep burial is interpreted as the result of collisional tectonic thickening. The second orogenic cycle is subduction related and has produced 2.8 Ga old andesites, 2.75 Ga old calc-alkaline intrusives, upper amphibolite grade metamorphism, transcurrent faulting (in the North Snowy Block and Yankee Jim canyon at 2.8 Ga) and nappe emplacement. In the central Beartooths post-orogenic granites intrude pelitic schists (T=600/sup 0/C, P=8Kb, 25/sup 0/C/Km). West of the Beartooths the basement consists of 2.75-2.70 Ga old, tectonically telescoped coarse clastics (Gallatin, Madison Ranges) and stable platform sequences (Gravelly, Tobacco Root, Ruby Ranges). Nappe formation and granulite-migmatite (700-750/sup 0/C) associations are common, suggesting deep burial through tectonic thickening. A later-kinematic mesozonal (8Kb) qtz diorite-granodiorite batholithic complex is present in the northern Madison Range. Quartzofeldspathic paragneisses in the westernmost Archean basement are derived from either a continental or island arc source.

  14. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  15. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  16. Development of an X-ray Telescope with a Large Effective Area for the Iron K Line Band

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hironori; Tachibana, Sasagu; Yoshikawa, Shun; Tamura, Keisuke; Mori, Hideyuki; Mitsuishi, Ikuyuki; Tawara, Yuzuru; Kunieda, Hideyo; Yamashita, Kojun

    2015-08-01

    X-ray micro-calorimeters such as the Soft X-ray Spectrometer (SXS) on board ASTRO-H will enable precise spectroscopy of iron K lines even for spatially extended objects. To exploit the full power of the high-energy resolution, X-ray telescopes with a large effective area around 6 keV are essentially important. Conventional Wolter-I X-ray telescopes aimed at X-rays below 10 keV have used the principle of total reflection to collect the X-rays. Enlarging the diameter of this type of telescopes is not effective to obtain the large effective area, since the incident angle of X-rays for the outer part of the telescope exceeds the critical angle, and the X-ray reflectivity of the outer part is significantly low. For example, the critical angle of Ir for an X-ray of 6 keV is 0.748 deg. Thus if we assume a focal length of 6 m for a Wolter-I optics using mirrors covered with Ir as a reflector, the mirrors the radial position of which are larger than 34 cm cannot reflect X-rays above 6 keV effectively. If multi-layer mirrors are applied to the outer part of the telescope, however, the X-ray reflectivity can be enhanced significantly by the principle of Bragg reflection. Our objective is to develop a Wolter-I X-ray telescope with an aperture of 110 cm and a focal length of 6 m, and make all mirrors in the telescope can reflect X-rays around 6 keV effectively by utilizing the multi-layer mirrors. The size of the telescope is determined by a boundary condition that can be launched by the epsilon rocket of ISAS/JAXA. The multi-layer is designed to enhance the reflectivity at 6.4 keV, 6.7 keV, or 6.9 keV. Our simulation suggests that the effective area averaged in the 5.7-7.7 keV band could be 2000 cm2, whichis comparable to the effective area of Athena launched in 2028 by ESA. Furthermore, we showed that the Ir/C multi-layers produced by our DC magnetron sputtering machine has a surface roughness of less than 4 angstrom. This value is smaller than the average surface roughness

  17. Middle Archean continent formation by crustal delamination

    NASA Astrophysics Data System (ADS)

    Zegers, Tanja E.; van Keken, Peter E.

    2001-12-01

    The processes that created the first large cratonic areas such as the Pilbara and the Kaapvaal remain poorly understood. Models based on the uniformitarian extrapolation of present-day arc volcanic processes to a hotter early Earth have not adequately explained the observations in these terranes. Here we propose an alternative mechanism for the formation of the earliest continental crust. The formation of continental crust may be achieved by delamination of the lower eclogitic part of an oceanic plateau like protocrust. Such delamination results in uplift, extension, and the production of tonalite, trondhjemite, and granodiorite (TTG) suites as recorded in Middle Archean cratons. The available geologic and geophysical observations in combination with model calculations permit this scenario as an alternative to subduction-based hypotheses.

  18. Zircon Archean of the Transuralian megazone

    NASA Astrophysics Data System (ADS)

    Krasnobaev, A. A.; Puchkov, V. N.; Puzhakov, B. A.; Busharina, S. V.; Sergeeva, N. D.

    2015-12-01

    The Il'inka metamorphic complex (IC) is located in the Transuralian megazone at the latitude of the Chelyabinsk granite pluton, east of the Chelyabinsk graben. The petrological, mineralogical, and age data on the IC indicate the presence of Archean complexes during its formation. Taking into account the importance of the age data on IC, zircons were additionally analyzed using a SHRIMP. For the Transuralian megazone, the analytical data allowed us for the first time to establish the presence of the Neoarchean (2715 ± 15 Ma) substance and two stages of metamorphism of gneisses. The early stage was in the Paleoproterozoic (1970-2130 Ma). The metamorphism of 648 ± 18 Ma ends the evolution of IC.

  19. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    PubMed Central

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  20. Study on the genesis of Yishui banded iron formation (BIF) in the North China Craton: geochemical characteristics and tectonic environment

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2015-12-01

    The Yishui BIFs are located in the Taishan Group, Shandong province of Eastern Block of North China Craton. The iron ore samples were collected from the mine pits. Major elements were analyzed by X-ray Fluoresence Spectromemter (XRF). Trace elements and REY (REE + Y) were analyzed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Petrological, mineralogical and geochemical analyses of iron ores and their wall rock (amphibolite) were conducted to trace the genesis of Yishui BIF. Iron ores of Yishui BIF are mainly composed of SiO2 and Fe2O3T (SiO2+ Fe2O3T= 85.8 to 98.8 wt%) and consistent with major mineral components which are quartz and iron oxide such as magnetite and hematite. Low contents of TiO2 (0.01 to 0.09 wt%) , Al2O3 (0.42 to 1.18 wt%) and HFSE indicate no or little effect of detrital contamination. Iron ores have positive La, Eu, Gd, Er and Y anomalies with enriched HREE in PAAS normalized REY graph. The REY patterns of iron ores were used as a fingerprint to trace the source of iron and silica. Distinctive positive Eu anomalies (Eu/Eu*= 2.44-4.19), Y anomalies (Y/Y*=0.97 - 4.19), slightly negative Ce anomalies (Ce/Ce*= 0.87-0.97) and enriched HREE ((La/Yb)SN= 0.17-0.32) indicate that mixture of seawater and high-temperature hydrothermal fluid (>250 ◦C). Depositional environment in North China Craton implies that Yishui BIFs were formed at Neoarchean and associated arc-related tectonic setting. All these data suggest that Yishui BIFs belong to typical Algoma-type BIF.

  1. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  2. Early Archean spherule beds of possible impact origin from Barberton, South Africa: A detailed mineralogical and geochemical study

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1992-01-01

    The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we have prepared detailed thin sections of all core and underground samples (as well as some surface samples from the S-2 layer for comparison). For geochemical work, layers with thicknesses in the order of 1-5 mm were separated from selected core and underground samples. The chemical analyses are being performed using neutron activation analysis in order to obtain data for about 35 trace elements in each sample. Major elements are being determined by XRF and plasma spectrometry. To clarify the history of the sulfide mineralization, sulfur isotopic

  3. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  4. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Kain, L.

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  5. Boron in chert and Precambrian siliceous iron formations

    NASA Astrophysics Data System (ADS)

    Truscott, Marilyn G.; Shaw, Denis M.

    1984-11-01

    In order to assess the importance of siliceous sediments as a sink for oceanic B and to determine the effect of diagenesis on the mobilization of B, samples were analysed from chert nodules, bedded cherts, and siliceous banded iron formations from a variety of sedimentary environments and geologic ages. Boron analyses on bulk samples were made by prompt gamma neutron activation analysis. The distribution of B in rocks was mapped using α-track methods. Nodular Phanerozoic cherts typically contain 50-150 ppm B, and bedded cherts somewhat less. The B is initially concentrated in tests of silica-secreting organisms, but some is lost in early diagenesis as silica progressively recrystallises to quartz. Banded iron formation silica of Archean and Proterozoic age usually contains < 2 ppm B. This conforms with the view that such silica is not of biogenic origin but, since many iron formations are undoubtedly of marine origin, raises the question whether Precambrian oceans were impoverished in B. Analyses of Precambrian marine argillaceous sediments, averaging 70 ppm B, do not resolve this question.

  6. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  7. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle.

    PubMed

    Fischer, Woodward W; Fike, David A; Johnson, Jena E; Raub, Timothy D; Guan, Yunbin; Kirschvink, Joseph L; Eiler, John M

    2014-04-15

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ(33)S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ(34)S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments--even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  8. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations

    NASA Astrophysics Data System (ADS)

    Sun, Zhilei; Li, Jun; Huang, Wei; Dong, Hailiang; Little, Crispin T. S.; Li, Jiwei

    2015-01-01

    hydrothermal Fe-Si oxyhydroxide deposits are now known to be analogues to ancient siliceous iron formations. In this study, samples of Fe-Si oxyhydroxide deposits were collected from hydrothermal field on the Southwest Indian Ridge. An investigation of mineralization in these deposits was carried out based on a series of mineralogical and morphological methods. X-ray diffraction and selected area electron diffraction analysis show that amorphous opal and poorly crystalline ferrihydrite are the major minerals. Furthermore, some typical filament structures detected by scanning electronic microscopy examinations, probably indicating the presence of Fe-oxidizing bacteria (FeOB), are pervasive with the main constituents being Fe, Si, P, and C. We thus believe that chemolithoautotrophic FeOB play a significant role in the formation of Fe oxyhydroxide which can effectively oxidize reduced Fe(II) sourced from hydrothermal fluids. Precipitation of amorphous silica, in contrast, is only a passive process with the Fe oxyhydroxide acting as a template. The distinct microlaminae structure alternating between the Fe-rich and Si-rich bands was observed in our samples for the first time in modern seafloor hydrothermal systems. We propose that its formation was due to the episodic temperature variation of the hydrothermal fluid which controls the biogenic Fe oxyhydroxide formation and passive precipitation of silica in this system. Our results might provide a clue for the formation mechanism of ancient banded iron formations.

  9. Intrinsic Josephson Junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Moll, Philip; Zhu, Xiyu; Cheng, Peng; Wen, Hai-Hu; Bertram, Batlogg

    2014-03-01

    We have observed clear experimental evidence for intrinsic Josephson junction (iJJ) behavior in the iron-based superconductor (V2Sr4O6)Fe2As2 (Tc ~ 20 K). The iJJs are identified by periodic oscillations of the flux flow voltage for out-of-plane (c-axis) currents upon increasing a well aligned in-plane magnetic field. Their periodicity is well explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. Essential for reliable c-axis transport measurements on the available microcrystals are Focused Ion Beam microstructuring and contacting techniques. The insulating temperature behavior of ρc indicates S-I-S type junctions. This finding adds (V2Sr4O6)Fe2As2 as the first iron-based, multi-band superconductor to the copper-based iJJ materials of interest for Josephson junction applications, and in particular novel devices based on multi-band Josephson coupling may be realized.

  10. Tectonic implications of Archean anorthosite occurrences

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.; Maczuga, D. E.

    1988-01-01

    The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences.

  11. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia.

    PubMed

    Baur, M E; Hayes, J M; Studley, S A; Walter, M R

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron. PMID:11539027

  12. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  13. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    NASA Astrophysics Data System (ADS)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  14. Some examples of deep structure of the Archean from geophysics

    NASA Technical Reports Server (NTRS)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  15. Convergent Plate Boundary Processes in the Archean: Evidence from Greenland

    NASA Astrophysics Data System (ADS)

    Polat, A.

    2014-12-01

    The structural, magmatic and metamorphic characteristics of Archean greenstone belts and associated TTG (tonalite, trondhjemite and granodiorite) gneisses in southern West Greenland are comparable to those of Phanerozoic convergent plate margins, suggesting that Archean continents grew mainly at subduction zones. These greenstone belts are composed mainly of tectonically juxtaposed fragments of oceanic crust including mafic to ultramafic rocks, with minor sedimentary rocks. Volcanic rocks in the greenstone belts are characterized mainly by island arc tholeiitic basalts, picrites, and boninites. The style of deformation and geometry of folds in 10 cm to 5 m wide shear zones are comparable to those occur on 1 to 50 km scale in the greenstone belts and TTG gneisses, suggesting that compressional tectonic processes operating at convergent plate boundaries were the driving force of Archean crustal accretion and growth. Field observations and trace element data suggest that Archean continental crust grew through accretion of mainly island arcs and melting of metamorphosed mafic rocks (amphibolites) in thickened arcs during multiple tectonothermal events. Fold patterns on cm to km scale are consistent with at least three phases of deformation and multiple melting events generating TTG melts that intruded mainly along shear zones in accretionary prism and magmatic arcs. It is suggested that Archean TTGs were produced by three main processes: (1) melting of thickened oceanic island arcs; (2) melting of subducted oceanic crust; and (3) differentiation of basaltic melts originating from metasomatized sub-arc mantle wedge peridotites.

  16. Geology and tectonics of the Archean Superior Province, Canadian Shield

    NASA Technical Reports Server (NTRS)

    Card, K. D.

    1986-01-01

    Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.

  17. The early Earth -- A perspective on the Archean

    SciTech Connect

    Hamilton, W.B. )

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball. Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.

  18. Weathering in the late Archean and perturbations by oxygenic photosynthesis (Invited)

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.; Lee, N.; Hazen, R. M.

    2009-12-01

    Low values for logfO2 in the near-surface late Archean environment have long been suggested based on upper limits deduced from the preservation of detrital siderite, pyrite and uraninite, paleosols, atmospheric models, and models of sulfur isotope data. Reducing conditions could presumably be maintained by an adequate supply of reductants such as H2 and CO supplied from volcanic sources, although these must have reacted with exposed rocks via aqueous solutions during weathering processes. In addition, once oxygenic photosynthesis arose, there would probably be a period of time during which weathering and atmospheric reductants would compete with the O2 released by photosynthesis. What has not been sufficiently explored quantitatively are the implications of such processes for the evolution of the aqueous solution chemistry and weathering products. In the present study, irreversible chemical mass transfer models were used to investigate the chemical reaction of rainwater from an Archean atmosphere with volcanic gases and continental crust to gain insight into the types of minerals that may result, and the evolution of the water chemistry and oxidation state of the near-surface environment. The minerals enstatite, ferrosilite, diopside, anorthite and albite were permitted to react irreversibly with a model rainwater with a starting composition similar to that of the present-day, but with logfO2 = -70 and logfCO2 = -1.5. Simultaneously, the rainwater was reacted with a model mixture of volcanic gases including H2, H2S, SO2, CO2 and CO. The reactions produced a Na-Mg-Ca-HCO3 water and minerals such as pyrite, kaolinite, chalcedony, siderite and calcite. Dissolved ferrous iron reached a maximum of about 3 ppm indicating that ferrous iron could be transported in Archean riverine systems to the oceans. The oxidation state of the system stayed roughly constant (about ±2 units of logfO2) in or near the pyrite and siderite stability fields consistent with the preservation

  19. The character of the Moho and lower crust within Archean cratons and the tectonic implications

    NASA Astrophysics Data System (ADS)

    Abbott, Dallas H.; Mooney, Walter D.; VanTongeren, Jill A.

    2013-12-01

    Undisturbed mid Archean crust (stabilized by 3.0-2.9 Ga) has several characteristics that distinguish it from post Archean crust. Undisturbed mid-Archean crust has a low proportion of internal seismic boundaries (as evidenced by converted phases in seismic receiver functions), lacks high seismic velocities in the lower crust and has a sharp, flat Moho. Most of the seismic data on mid-Archean crust comes from the undisturbed portions of the Kaapvaal and Zimbabwe (Tokwe segment) cratons. Around 67-74% of younger Archean crust (stabilized by 2.8-2.5 Ga) has a sharp, flat Moho. Much of the crust with a sharp, flat Moho also lacks strong internal seismic boundaries, but there is not a one to one correspondence. In cases where its age is known, basaltic lower crust in Archean terranes is often but not always the result of post Archean underplating. Undisturbed mid-Archean cratons are also characterized by lower crustal thicknesses (Archean median range = 32-39 km vs. post-Archean average = 41 km) and lower crustal seismic velocities. These observations are shown to be distinct from those observed in any modern-day tectonic environment. The data presented here are most consistent with a model in which Archean crust undergoes delamination of dense lithologies at the garnet-in isograd resulting in a flat, sharp Moho reflector and a thinner and more felsic-intermediate crust. We discuss the implications of this model for several outstanding paradoxes of Archean geology.

  20. Archean crustal evolution of the northern North China Craton

    NASA Technical Reports Server (NTRS)

    Qian, Xianglin; Chen, Yaping; Liu, Jinzhong

    1988-01-01

    The Archean granultie facies rocks of the North China (Sino-Korean) Craton mostly occur inside the northern boundary forming a unique and spectacular granulite belt trending roughly E-W from eastern Hebei, North China in the east to Mt. Daqinchan, western Inner Mongolia in the west, ranging about 1,000 km long. Over the years in the middle portion of this Archean high-grade metamorphic belt a stratigraphic unconformity between the khondalite rock assemblage and the medium in composition granulite assemblage in Datong-Xinghe area is determined. The geological structural properties of the North China Craton are discussed.

  1. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an

  2. Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Zhu, Xiyu; Cheng, Peng; Wen, Hai-Hu; Batlogg, Bertram

    2014-09-01

    In layered superconductors, Josephson junctions may be formed within the unit cell as a result of sufficiently low inter-layer coupling. These intrinsic Josephson junction (iJJ) systems have attracted considerable interest for their application potential in quantum computing as well as efficient sources of THz radiation, closing the famous `THz gap'. So far, iJJ have been demonstrated in single-band, copper-based high-Tc superconductors, mainly in Bi-Sr-Ca-Cu-O (refs , , ). Here we report clear experimental evidence for iJJ behaviour in the iron-based superconductor (V2Sr4O6)Fe2As2. The intrinsic junctions are identified by periodic oscillations of the flux-flow voltage on increasing a well-aligned in-plane magnetic field. The periodicity is explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. This finding adds the pnictide (V2Sr4O6)Fe2As2 to the copper-based iJJ materials of interest for Josephson junction applications. In particular, novel devices based on multi-band Josephson coupling may be realized.

  3. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  4. Morphological and chemical evidence of stromatolitic deposits in the 2.75 Ga Carajás banded iron formation, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2012-11-01

    We describe evidence of biogenicity in the morphology and carbon content of well-preserved, Neoarchean samples of banded iron formation (BIF) from Carajás, Brazil. Silica-rich BIF layers contain translucent ellipsoidal or trapezoidal structures (˜5-10 μm diameter) composed of silica, hematite, and kerogen, which are arranged in larger ring-like forms (rosettes). Stable carbon isotope analysis yields a δ13C value of -24.5‰ indicating that the contained carbon is likely biogenic. Raman and SEM analyses, as well as wavelength-dispersive X-ray elemental maps, show kerogen inside the rosette forms. Within the iron-rich BIF layers, tubular structures (0.5-5 μm) were observed between hematite granules and blades. Kerogen and kaolinite are present in these structures. Both the rosettes and the tubular structures resemble morphologies that are characteristic of some bacterial species. We hypothesize that the Carajás BIFs originated as biomats formed by one or more species that over time produced large stromatolitic structures. The rosettes and the tubular structures, associated with chert-rich and iron-rich BIF layers, respectively, may represent two different species, or perhaps, two phases of a bacterium life cycle. For example, some modern myxobacteria exhibit similar morphologies in their resting and vegetative stages. Fe(III) precipitation may have occurred by contact of Fe(II) with bacterial slime, leading to oxidation by chemical reactions with exposed polysaccharide hydroxyl and carboxyl groups. The Fe(III) would then have been available for use as a source of energy in a dissimilatory iron reduction type of metabolism. Organic carbon input presumably came from primary producers (not necessarily aerobic) within the local water column, perhaps in shallow-water communities. Alternatively, the carbon may have originated by Fischer-Tropsch synthesis at ocean hydrothermal vents. The observed lateral continuity of BIF layers may perhaps be explained by chemical

  5. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  6. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  7. A revised, hazy methane greenhouse for the Archean Earth.

    PubMed

    Haqq-Misra, Jacob D; Domagal-Goldman, Shawn D; Kasting, Patrick J; Kasting, James F

    2008-12-01

    Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earth's climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm. PMID:19093801

  8. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  9. Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

    PubMed Central

    Bourbin, M.; Derenne, S.; Binet, L.; Le Du, Y.; Westall, F.; Kremer, B.; Gautret, P.

    2013-01-01

    Abstract Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks—Contamination—Spectroscopy—Archean

  10. Progressive removal of an upper-mantle KREEP component by TTG magmatism through the Archean

    NASA Astrophysics Data System (ADS)

    Guitreau, M.; Blichert-Toft, J.; Herve, M.; Mojzsis, S. J.; Albarede, F.

    2010-12-01

    It has been suggested [1,2] that the proto-crust parental to the host granites of the Hadean Jack Hills zircons formed at ~4.35 Ga and evolved from a geochemically enriched KREEPy mantle derived from the primordial differentiation of the magma ocean. The prevalence of TTGs in the Archean may be connected with their role as a source intermediary between KREEP-soaked magma ocean cumulates and Jack Hills-type granites [1]. Here we report Lu-Hf isotope analyses by solution MC-ICP-MS of 182 globally distributed TTGs ranging in age from 2.5 to 4.0 Ga. Of these, 127 samples have initial ɛHf from -1 to +4, 46 samples display negative initial ɛHf (-1 to -17), and 9 show positive initial ɛHf (+5 to +15), all without age or geographic correlations. Values of ɛHf>+4 are thought to reflect either too old ages resulting in too radiogenic initial 176Hf/177Hf, or disturbance of the Lu-Hf system. Negative ɛHf values represent either too young ages or reworking of earlier formed crust. Comparing our TTG results with literature data for detrital and igneous zircons, three features stand out: (1) a 2D density plot of literature zircons show that each orogenic segment (starting at 4.2, 3.8, 3.3, 2.7, and 2.5 Ga) forms a coherent positive trend (‘band’) with a positive slope characteristic of the Lu/Hf ratio of that particular crust segment; (2) the slopes of the bands become progressively steeper through the Archean, attesting to a correlative decrease in the Lu/Hf ratio; (3) the most radiogenic ɛHf values in each zircon-defined band are also the oldest and are always matched by TTGs and increase systematically from -2 at 4.2 Ga to +6 at 2.5 Ga. Each individual band probably corresponds to a particular orogenic episode starting with juvenile material extracted from the mantle and evolving through reworking of earlier crust from previous orogenic events. Although the overall increase in maximum ɛHf values of the origins of the individual bands should be viewed in light of the

  11. Mineralogy of approximately 1-10 Micrometer Iron Spheres Within 3.4 Ga Rocks (Towers Formation, Warrawoona Group, Northwestern Australia)

    NASA Technical Reports Server (NTRS)

    Morris, P. A.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Allen, Carlton C.; Schwandt, Craig S.; McKay, David S.; Westall, Frances; Bell, Mary Sue; Gibson, Everett K.

    2000-01-01

    Iron-bearing spherules in Archean Warrawoona rocks are composed of hematite and goethite. They are clearly syngenetic with the rock but their origin, whether biological or abiogenic, is not yet known.

  12. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  13. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    SciTech Connect

    Zarkevich, N. A. E-mail: ddj@ameslab.gov; Johnson, D. D. E-mail: ddj@ameslab.gov

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  14. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    DOE PAGESBeta

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less

  15. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have

  16. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  17. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean. PMID:14596897

  18. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). PMID:23397956

  19. Hospitable archean climates simulated by a general circulation model.

    PubMed

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model. PMID:23808659

  20. Workshop on a Cross Section of Archean Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor); Card, K. D. (Editor)

    1983-01-01

    Various topics relevant to crustal genesis, especially the relationship between Archean low - and high-grade terrains, were discussed. The central Superior Province of the Canadian Shield was studied. Here a 120 km-wide transition from subgreenschist facies rocks of the Michipicoten greenstone belt to granulite facies rocks of the Kapuskasing structural zone represents an oblique cross section through some 20 km of crust, uplifted along a northwest-dipping thrust fault.

  1. Chemical constraints on the evolution of Archean continental crust

    NASA Technical Reports Server (NTRS)

    Weaver, B. L.; Tarney, J.

    1985-01-01

    One of the challenges of Archean geochronology is to find isotopic systems that preserve an indication of a rock's primary age in spite of the effects of later metamorphism. Zircon dating has been used widely with considerable success but not without difficulty, especially in polymetamorphic terrains. Zircons in such cases commonly are found to have lost radiogenic Pb, and despite fractionizing the zircons or abrading them to remove disturbed portions; it often is not possible to define a pattern of Pb loss from which the original age can confidently be inferred. The refinement of techniques to enable extremely small samples, or even single crystals, to be analyzed has contributed greatly to solving the problem but even those techniques cannot resolve the micron scale isotopic heterogeneities within single zircons in which much of their history is recorded. That can only be done by ion microprobe. Progress reports on studies of four Archean rocks, each of which illustrates the power and potential of ion microprobe analysis in solving problems of Archean geochronology are discussed.

  2. Crust formation and plate motion in the early archean.

    PubMed

    Kröner, A; Layer, P W

    1992-06-01

    Mounting evidence for voluminous continental crust formation in the early Archean involving intracrustal melting and selective preservation of granitoid rocks suggests that initial crust formation crust formation and growth were predominantly by magmatic underplating in plumegenerated Iceland-type settings. Collision of these early islands to give rise to larger blocks is suggested by extensive horizontal shortening in both supracrustal and granitoid assemblages. Preservation of early Archean high-grade gneisses that were once at depths of 20 to 30 kilometers implies that these blocks developed thick, subcrustal roots despite high mantle heat flow. Rigid continental plates must have existed since at least 3.5 billion years ago, and greenstone belts (composed of mixed metavolcanic and metasedimentary sequences intruded by granitoid plutons) probably developed on or near these microcontinents. Paleomagnetic data with good age control from at least one ancient craton suggest that plate motion was at normal minimum average velocities of about 17 millimeters per year with respect to the poles during the period 3.5 billion to 2.4 billion years ago. If this is true on a global scale, Archean plate motion was not faster than in later geologic times. PMID:17791608

  3. Bridging Two Worlds: From the Archean to the Proterozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    2000-01-01

    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans ("Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).

  4. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  5. How sharp is the sharp Archean Moho? Example from eastern Superior Province

    NASA Astrophysics Data System (ADS)

    Levin, Vadim; VanTongeren, Jill A.; Servali, Andrea

    2016-03-01

    The Superior Province of North America has not experienced major internal deformation for nearly 2.8 Gyr, preserving the Archean crust in its likely original state. We present seismological evidence for a sharp (less than 1 km) crust-mantle boundary beneath three distinct Archean terranes and for a more vertically extensive boundary at sites likely affected by the 1.2-0.9 Ga Grenville orogeny. At all sites crustal thickness is smaller than expected for the primary crust produced by melting under higher mantle potential temperature conditions of Archean time. Reduced thickness and an abrupt contrast in seismic properties at the base of the undisturbed Archean crust are consistent with density sorting and loss of the residues through gravitational instability facilitated by higher temperatures in the upper mantle at the time of formation. Similar sharpness of crust-mantle boundary in disparate Archean terranes suggests that it is a universal feature of the Archean crustal evolution.

  6. How widely is the Andean type of continental margin represented in the Archean

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  7. Deformation history of Archean metasedimentary rocks of the Beartooth mountains in the vicinity of the Mineral Hill mine, Jardine, Montana

    SciTech Connect

    Jablinski, J.D.; Holst, T.B. )

    1992-09-01

    Archean metasedimentary rocks of the South Snowy Block of the Beartooth Mountains, in the vicinity of Jardine, Montana, consist predominantly of schistose rocks with rare iron formation. These rocks are intruded by Precambrian granitic stocks and minor mafic dikes and sills. Evidence for three phases of folding and late-stage kinking is found within the metasedimentary rocks, whereas rocks of the Crevice Mountain stock (2,700 Ma) are unaffected by any of these events. The first folding event involved the development of isoclinal, recumbent folds of varying scale. F[sub 1] fold hinges are rare, most commonly observed underground in Mineral Hill. An S[sub 1] schistosity has developed axial planar to these folds. This schistosity, which is subparallel to bedding, is very well developed and ubiquitous in the metasedimentary rocks of the Jardine region. Two later phases of folding are also recognized. F[sub 2] folds are nearly upright with gently to moderately plunging fold hinges. Temperature and pressure conditions during deformation, as revealed by calculations from microprobe analyses, suggest that the peak of metamorphism occurred at a temperature of about 560 C and a pressure of 2.9 kb. Thin section observations indicate that the metamorphic peak accompanied the formation of S[sub 1] schistosity. Structural, metamorphic, and geochemical data are consistent with the hypothesis that the metasedimentary rock of the Jardine region are allochthonous and constitute one of a number of tectonostratigrphic terranes in the western Beartooth Mountains that were juxtaposed tectonically against the western margin of an Archean continent during a Late Archean collisional event.

  8. Constraining Archean Earth's Atmosphere with the Geological Record

    NASA Astrophysics Data System (ADS)

    Horan, A. M.; Domagal-Goldman, S. D.; Claire, M.

    2014-12-01

    A warm, water-bearing Archean Earth, when the Sun was young and faint, remains a paradox to the scientific world. Abundant geological data suggests that Archean Earth had standing water at the surface, despite the fainter Sun. An explanation of this paradox is vital to the understanding of Earth's history and coevolution with life. If the surface of the planet was not being kept warm by the Sun, which was 25% less luminous than now, it must have been kept warm a different way—by an atmospheric composition high in greenhouse gases. Constraints on these gases come from the geological record, which have provided proxies for the redox state of the atmosphere (limiting H2 and O2), the total atmospheric pressure, and the partial pressure of certain gases such as carbon dioxide (CO2) and methane (CH4). Previous attempts at solutions to the paradox are consistent with some, but not all, of the geological proxies. The constraints are used as inputs for a 1-D photochemical code, which calculates atmospheric composition and predicts the abundances of atmospheric gases that affect climate, particularly methane (CH4) and gaseous hydrogen (H2). A coupled 1-D radiative-convective climate code is then used to calculate the corresponding surface temperature. Critically, the improved photochemical code maintains strict redox boundary conditions, and is being further updated to ensure that the redox fluxes from volcanoes and mid-ocean ridge vents are consistent with both each other and the redox state of the mantle. These code improvements will lead to changes in both the inputs to the atmosphere from volcanoes and the sink for oxidants at mid-ocean ridges, in turn affecting the abundance of redox-sensitive greenhouse gases such as CH4 and H2. The main purpose of this project is to extend simulations of the Archean surface environment down into the mantle, and to search for a solution to the faint young sun paradox that is consistent with the geological proxies. Beyond having

  9. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    NASA Astrophysics Data System (ADS)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-01

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779-1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50-1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  11. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE PAGESBeta

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist largemore » or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  12. Thyroid hormone-dependent formation of a subcortical band heterotopia (SBH) in the neonatal brain is not exacerbated under conditions of low dietary iron (FeD).

    PubMed

    Spring, S R; Bastian, T W; Wang, Y; Kosian, P; Anderson, G W; Gilbert, M E

    2016-01-01

    Thyroid hormones (TH) are critical for brain development and insufficiencies can lead to structural abnormalities in specific brain regions. Administration of the goitrogen propylthiouracil (PTU) reduces TH production by inhibiting thyroperoxidase (TPO), an enzyme that oxidizes iodide for the synthesis of TH. TPO activity is iron (Fe)-dependent and dietary iron deficiency (FeD) also reduces circulating levels of TH. We have previously shown that modest degrees of TH insufficiency induced in pregnant rat dams alters the expression of TH-responsive genes in the cortex and hippocampus of the neonate, and results in the formation of a subcortical band heterotopia (SBH) in the corpus callosum (Royland et al., 2008, Bastian et al., 2014, Gilbert et al., 2014). The present experiment investigated if FeD alone was sufficient to induce a SBH or if FeD would augment SBH formation at lower doses of PTU. One set of pregnant rats was administered 0, 1, 3, or 10ppm of PTU via drinking water starting on gestational day (GD) 6. FeD was induced in a 2nd set of dams beginning on GD2. A third set of dams received the FeD diet from GD2 paired with either 1ppm or 3ppm PTU beginning on GD6. All treatments continued until the time of sacrifice. On PN18, one female pup from each litter was sacrificed and the brain examined for SBH. We observed lower maternal, PN2 and PN18 pup serum T4 in response to PTU. FeD reduced serum T4 in pups on PN16, but did not affect serum T4 in dams or PN2 pups. Neither did FeD in combination with PTU alter T4 levels in dams on PN18 or pups on PN2 compared to PTU treatment alone. By PN16, however more severe T4 reductions were observed in pups when FeD was combined with PTU. SBH increased with increasing dosage of PTU, but counter to our hypothesis, no SBH was detected in the offspring of FeD dams. As such, T4 levels in dams and newborn pups rather than older neonates appear to be a better predictor SBH associated with TH insufficiency. These data indirectly

  13. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  14. Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei province, North China Craton: Constraints from geochemistry and SIMS zircon U-Pb dating

    NASA Astrophysics Data System (ADS)

    Cui, Minli; Zhang, Lianchang; Wu, Huaying; Xu, Yingxia; Li, Wenjun

    2014-11-01

    The North China Craton (NCC), one of the oldest continental blocks in Asia, has a complicated evolutionary history with the age of the old crust up to 3.8 Ga and records the important geological events of the Earth. The Sijiaying BIF, the largest banded iron formation located in eastern Hebei province, in the east part of NCC, records an important thermo-tectonic event; Previous studies focused on the geological description, but the timing and tectonic setting have been unclear so far. The Sijiaying BIF is hosted in Neoarchean metamorphic rocks, which includes biotite-leptynite, hornblende plagioclase-gneiss and biotite plagioclase-gneiss. Using major element contents and ratios of the host rocks, the protoliths of the hornblende plagioclase-gneiss and biotite plagioclase-gneiss are shown to be dacite, whereas those of the biotite-leptynites are sedimentary rocks. Based on geology and geochemistry of the host rocks, we infer that the Sijiaying BIF is an Algoma type deposit. SIMS zircon U-Pb dating shows: igneous zircons from the biotite plagioclase-gneiss and hornblende plagioclase-gneiss have U-Pb ages of 2535 ± 8 Ma and 2543 ± 14 Ma, respectively; zircons from the biotite-leptynite have an age of 2537 ± 13 Ma. We infer that the ages of 2543-2535 Ma represent the time of the Sijiaying BIF. PAAS-normalized REY profiles of the ore samples are characterized by LREE depletion and HREE enrichment, positive La and Eu anomalies and an average Y/Ho weight ratio of 32, indicating a mixture of submarine hydrothermal fluids and deep seawater. REE data was combined with the δ18O analyzed by previous researcher of the ore from individual magnetite bands to infer that the Sijiaying BIF precipitated from hydrothermal fluids discharging on the sea floor. The hornblende plagioclase-gneiss and biotite plagioclase-gneiss that are enriched in LILE and LREE and depleted in high field strength elements (HFSE) Nb, Ta and Ti, have geochemical signatures that are similar to those of

  15. Boron isotopes in Archean cherts: investigating early Earth marine conditions

    NASA Astrophysics Data System (ADS)

    Lemarchand, D.; Jeambrun, M.; van Bergen, M. J.; van Cappellen, P.

    2009-12-01

    The Archean Eon was a period of intense modifications of the Earth surface environment that led to the emergence of life in the early ocean. Therefore, the chemistry of Archean seawater and its relationship to that of the solid Earth, through oceanic and continental crust alteration, remain a matter of great interest and debate. Here, we present new boron (B) isotopes data in well-characterized cherts (ca. 3.5 Ga) from the Pilbara Craton, in order to provide new constraints on their depositional environments. Boron isotopes offer a potentially powerful tool for investigating seawater/rock interactions. The modern differences between B isotopes in seawater, continental crust and oceanic crust greatly facilitate the identification of B sources, while mineral precipitation processes are also accompanied by large isotopic fractionations. We analyzed B concentrations and δ11B in 12 subsamples from two types of stratiform chert; one type (C-chert) is interpreted as resulting from direct precipitation of a seawater-hydrothermal fluid mixture, the second type (S-chert) as resulting from silicification of detritic sediment precursors (Van den Boorn et al., 2007). The C-cherts subsamples show relative large ranges of δ11B values (from -3 to +16 ‰) and B concentrations (0.4-20 ppm). The cm scale variations argue against significant post depositional alteration and thus support the hypothesis that the primary signature is preserved. The similarity of our results with B isotopes in modern cherts suggests that Archean seawater conditions during chert deposition were rather close to those in the modern ocean, at least with respect to B isotopes. In particular, the marine B isotopic budget was likely comparable to the present one. If this is correct, the B isotopes data imply that Archean seawater pH was neutral to slightly basic (pH ≈ 7-9). The S-chert subsamples show remarkably constant δ11B values (≈ -20 ‰) despite a wide range of B concentrations (3-120 ppm). These

  16. Triple sulfur isotope composition of Late Archean seawater sulfate

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  17. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Slack, J. F.; Grenne, T.; Bekker, A.; Rouxel, O. J.; Lindberg, P. A.

    2007-03-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8 Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71 Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O 2 but no H 2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69 Ga, 1.40 Ga, and 1.24 Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ˜ 1.8 to 0.8 Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution.

  18. Accretionary origin for the late Archean Ashuanipi Complex of Canada

    NASA Technical Reports Server (NTRS)

    Percival, J. A.

    1988-01-01

    The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible.

  19. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  20. Eukaryote-dominated Microbial Communities That Build Iron-Stromatolites in Acid Mine Drainage, Western Indiana: An Analog for Proterozoic Banded Iron Formations and Oxygenation of the Early Atmosphere?

    NASA Astrophysics Data System (ADS)

    Hasiotis, S. T.; Brake, S. S.; Dannelly, H. K.; Duncan, A.

    2001-03-01

    Eukaryote-dominated microbial communities build iron-rich stromatolites in acid mine drainage at several reclaimed coal mine sites in western Indiana, which can serve as an analog for Proterozoic iron-rich deposits and the oxygenation of the early atmosphere.

  1. Relationship between high- and low-grade Archean terranes: Implications for early Earth paleogeography

    NASA Technical Reports Server (NTRS)

    Eriksson, K. A.

    1986-01-01

    The Western Gneiss Terrain (WGT) of the Yilgarn Block, Western Australia was studied. The WGT forms an arcuate belt of Archean gneisses that flank the western margin of the Yilgarn Block. In general the WGT is composed of high-grade orthogneisses and paragneisses which contain supracrustal belts composed largely of siliciclastic metasediments and subordinate iron formation. The platformal nature of the metasedimentary belts and lack of obvious metavolcanic lithologies contrasts with the composition of typical Yilgarn greenstones to the east. Radiometric data from WGT rocks indicates that these rocks are significantly older than Yilgarn rocks to the east (less than 3.3 Ga) and this has led to the suggestion that the WGT represents sialic basement to Yilgarn granite-greenstone belts. The Mount Narryer region exposes the northernmost occurrence of high-grade metasediments within the WGT and consists of quartz-rich clastic metasediments at upper amphibolite to granulite grade. Most occurrences of supracrustal rocks in this region comprise isolated lenses within the gneissic basement. However, at Mount Narryer a unique sequence of metaclastics with preserved bedding provide an unusual window into the parentage of similar supracrustal bodies in this region.

  2. In-Situ Silicon Isotope Analysis of Archean Cherts by Laser Ablation MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; van den Boorn, S. H.; van der Wagt, B. J.; van Bergen, M. J.

    2007-12-01

    We present in-situ stable silicon isotope results for Archean Cherts from the Pilbara region, Western Australia. Analyses were performed using a Geolas Laser Ablation (LA) system equipped with a 193nm Excimer laser and a ThermoFinnigan Neptune MC-ICPMS. The MC-ICPMS was used in medium resolution mode (RP=4000) to resolve molecular isobaric interferences (e.g., 12C16O+, 14N2+, 14N16O+). We used an ablation pit size of 49 by 300μm with a 7Hz repetition rate and 5 J.cm-2. Tuning conditions and cup settings were similar as those described by Van den Boorn et al. (2006; 2007) for solution work. To assess precision and accuracy of the LA technique, chert samples were analyzed that were previously characterized for silicon isotopes by micro-drilling and subsequent liquid chromatographic purification. A chemically homogenous chert sample that is well characterized for silicon isotopes was used as a standard. This in-house standard has a δ30Si of 0.50 ± 20 (2sd, n=4) relative to NIST RM8546 (=NBS28). Our precision with the LA technique of 0.2° (2sd, n=11), based on repeated measurements of the standard, is slightly better than the long-term precision of 0.3‰ for solution work (Van den Boorn et al. 2006). Micro-drill and laser data are in excellent agreement (less than 0.4‰), which is well within the variations recorded in individual mm-cm sized chert laminae. By producing 3cm scans across chert bands, inhomogeneities of up to 0.5‰ can be resolved within a single band. Matrix effects might be significant in LA work. For example, borate silicate glass was up to 2.15‰ heavier than values obtained by solution work. This suggests that ablation induces isotopic fractionation and/or that matrix elements cause a shift in mass bias for silicon in the plasma. Because Archean cherts generally contain more than 95% SiO2, offsets due to matrix effects will be small. However, the use of a standard with a composition close to samples is recommended. References: Van den Boorn

  3. Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Orberger, Beate; Gallien, Jean-Paul; Cloquet, Christophe; Massault, Marc

    2007-02-01

    To quantify and localize nitrogen (N) and carbon (C) in Archean rocks from the Marble Bar formation, Western Australia, and to gain insights on their origin and potential biogenicity, we conducted nuclear reaction analyses (NRA) and carbon and nitrogen isotope ratio measurements on various samples from the 3460-Myr-old Fe-rich Marble Bar chert. The Marble Bar chert formed during the alteration of basaltic volcanoclastic rocks with Fe- and Si-rich hydrothermal fluids, and the subsequent precipitation of magnetite, carbonates, massive silica, and, locally, sulfides. At a later stage, the magnetite, sulfides, and carbonates were replaced by Fe-Mn-oxyhydroxides. Nuclear reaction analyses indicate that most of the N and C resides within these Fe-Mn-oxyhydroxides, but a minor fraction is found in K-feldspars and Ba-mica dispersed in the silica matrix. The N and C isotopic composition of Fe-oxides suggests the presence of a unique biogenic source with δ 15NAIR values from +6.0 +/- 0.5‰ to 7.3 +/- 1.1‰ and a δ 13CPDB value of -19.9 +/- 0.1‰. The C and N isotope ratios are similar to those observed in Proterozoic and Phanerozoic organic matter. Diffusion-controlled fractionation of N and C released during high combustion temperatures indicates that these two elements are firmly embedded within the iron oxides, with activation energies of 18.7 +/- 3.7 kJ/mol for N and 13.0 +/- 3.8 kJ/mol for C. We propose that N and C were chemisorbed on iron and were subsequently embedded in the crystals during iron oxidation and crystal growth. The Fe-isotopic composition of the Marble Bar chert (δ 56Fe = -0.38 +/- 0.02‰) is similar to that measured in iron oxides formed by direct precipitation of iron from hydrothermal plumes in contact with oxygenated waters. To explain the N and C isotopic composition of Marble Bar chert, we propose either (1) a later addition of N and C at the end of Archean when oxygen started to rise or (2) an earlier development of localized oxygenated

  4. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  5. Early Archean tonalite gneiss in the upper peninsula of Michigan

    NASA Technical Reports Server (NTRS)

    Peterman, Z. E.; Zartman, R. E.; Sims, P. K.

    1986-01-01

    Geochronological results on tonalite gneiss of northern Michigan that is 3.56 Ga or slightly older is presented. Tonalitic augen gneiss and structurally overlying biotite gneiss and schist are exposed in a dome near Watersmeet. They are part of an extensive gneiss terrane of southern Minnesota, Wisconsin and Michigan that includes rocks of early to late Archean ages and lies south of the Wawa volcanic subprovince. Two samples of the augen gneiss and one of the biotite gneiss show zircon grains of similar shape, zoning, color, and development of crystal faces. These zircons give Pb/U isotopic ratios that plot on a chord of 3,560 + or - 40 m.y. upper intersect and of 1,250 + or m.y. lower intersect. The 3,560 m.y. number is believed to be a minimum age because analysis of one of the least discordant zircon fractions by ion microprobe that gave a nearly concordant age of 3,650 m.y. The 1,250 m.y. lower intersect is without geological significance: it is interpreted to be a result of multiple lead loss at 2.7, 1.8, and 0.5 Ga by U/Pb in zircon. Archean rocks 10 to 25 km northwest of the Watersmeet dome give a 2.75 Ga age on zircons. Quartz monzonite here is dated at 2.65 Ga.

  6. Early Archean tonalite gneiss in the upper peninsula of Michigan

    NASA Astrophysics Data System (ADS)

    Peterman, Z. E.; Zartman, R. E.; Sims, P. K.

    Geochronological results on tonalite gneiss of northern Michigan that is 3.56 Ga or slightly older is presented. Tonalitic augen gneiss and structurally overlying biotite gneiss and schist are exposed in a dome near Watersmeet. They are part of an extensive gneiss terrane of southern Minnesota, Wisconsin and Michigan that includes rocks of early to late Archean ages and lies south of the Wawa volcanic subprovince. Two samples of the augen gneiss and one of the biotite gneiss show zircon grains of similar shape, zoning, color, and development of crystal faces. These zircons give Pb/U isotopic ratios that plot on a chord of 3,560 + or - 40 m.y. upper intersect and of 1,250 + or m.y. lower intersect. The 3,560 m.y. number is believed to be a minimum age because analysis of one of the least discordant zircon fractions by ion microprobe that gave a nearly concordant age of 3,650 m.y. The 1,250 m.y. lower intersect is without geological significance: it is interpreted to be a result of multiple lead loss at 2.7, 1.8, and 0.5 Ga by U/Pb in zircon. Archean rocks 10 to 25 km northwest of the Watersmeet dome give a 2.75 Ga age on zircons. Quartz monzonite here is dated at 2.65 Ga.

  7. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  8. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  9. Post-orogenic thermal evolution of newborn Archean continents

    NASA Astrophysics Data System (ADS)

    Jaupart, C.; Mareschal, J.-C.

    2015-12-01

    The post-orogenic thermal evolution of newborn cratons in the Archean is marked by high-temperature metamorphism and plutonic activity that lag accretion by several tens of million years. The source of the heat that is required remains controversial. Here, we show that such late activity is consistent with the thermal evolution of new continental crust that adjusts to heat released by radioactive decay. Quantitative results depend on the total amount of radioactive elements in the newborn crust. Using heat flow and heat production data from the Archean Superior Province of the Canadian Shield, we show that temperatures ≈800-900 °C were reached in the lower crust a few tens of million years after the final accretion event. The timing of post-orogenic metamorphism is sensitive to the thermal structure acquired at the end of accretion. For the Superior Province, the relatively short time-lag between the end of accretion and metamorphism suggests that the lithosphere was thin or had been heated up by sustained magma percolation.

  10. Mineralogy and composition of Archean Crust, Greenland: A pilot study

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Curtiss, Brian

    1989-01-01

    The Portable Instant Display and Analysis Spectrometer (PIDAS) was taken to southwestern Greenland to investigate in situ the potential application of AVIRIS to estimate the mineralogy and composition of rocks exposed in Archean terranes. The goal was to determine the feasibility of using a high spectral resolution scanner to find and study pristine rocks, those that have not been altered by subsequent deformation and metamorphism. The application of AVIRIS data to the problems in Greenland is logical. However, before a costly deployment of the U-2 aircraft to Greenland is proposed, this study was undertaken to acquire the spectral data necessary to verify that mineralogical mapping in the environmental conditions found there is possible. Although field conditions were far from favorable, all of the major objectives of the study were addressed. One of the major concerns was that lichens would obscure the rock surfaces. It was found that the spectral signature of the lichens was distinct from the underlying rocks. Thus, a spectrum of a rock outcrop, with its partial cover of lichens, can be un-mixed into rock and lichen components. The data acquired during the course of this study supports the conclusion that areas of pristine Archean crust can be differentiated from that which has experienced low grade alteration associated with Proterizoic faulting.

  11. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    The U-Pb isotope system provides us with a powerful tool for understanding the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because U mobility makes initial Pb isotope ratios from old silicate rocks difficult, if not impossible, to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide snapshots of initial Pb ratios because their Pb isotopic composition is time invariant at their formation (U/Pb=0). The Pb isotopic record from galenas from rocks of all age have been utilized for over 70 years to answer a wide range of scientific problems beginning with Al Nier's pioneering work analyzing Pb isotopes in the 1930's but are no longer widely used by the isotopic community because they have been produced by older TIMS techniques. We have begun a re-examination of Archean Pb by an extensive analysis of over 100 galena samples from Archean VMS deposits throughout the Superior and Slave Provinces in Canada as well as from other VMS deposits in Finland, South Africa and Western Australia. The goal of this work is to provide modern, high precision measurements and update an old, but venerable, Pb isotopic data set. We feel these data provide important constraints on not only the Pb isotopic evolution of the Earth, but planetary differentiation and recycling processes operating in the first 2 b.y. of Earth's history. Our analytical techniques include dissolving the Pb sulfide minerals, purifying them with ion chromatography, and analyzing them using MC-ICPMS at both Washington State University (Neptune) and Ecole Normale Superieure in Lyon, France (Nu). All Pb solutions are doped with Tl in order to correct for mass fractionation. In this abstract we report preliminary galena Pb isotope data from 6 VMS deposits in the Abitibi greenstone belt: Chibougamu, Matagami, Noranda, Normetal, Timmins, and Val d"Or. These deposits are all approximately 2.7 Ga in age but in detail vary from 2

  12. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2

    NASA Astrophysics Data System (ADS)

    Liu, Z. T.; Xing, X. Z.; Li, M. Y.; Zhou, W.; Sun, Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Yao, Q.; Li, W.; Shi, Z. X.; Shen, D. W.; Wang, Z.

    2016-07-01

    CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs2 would provide us a unique opportunity to realize and explore Majorana fermion physics.

  13. Coupled Fe and S isotope variations in pyrite nodules from Archean shale

    NASA Astrophysics Data System (ADS)

    Marin-Carbonne, Johanna; Rollion-Bard, Claire; Bekker, Andrey; Rouxel, Olivier; Agangi, Andrea; Cavalazzi, Barbara; Wohlgemuth-Ueberwasser, Cora C.; Hofmann, Axel; McKeegan, Kevin D.

    2014-04-01

    Iron and sulfur isotope compositions recorded in ancient rocks and minerals such as pyrite (FeS2) have been widely used as a proxy for early microbial metabolisms and redox evolution of the oceans. However, most previous studies focused on only one of these isotopic systems. Herein, we illustrate the importance of in-situ and coupled study of Fe and S isotopes on two pyrite nodules in a c. 2.7 Ga shale from the Bubi Greenstone Belt (Zimbabwe). Fe and S isotope compositions were measured both by bulk-sample mass spectrometry techniques and by ion microprobe in-situ methods (Secondary Ion Mass Spectrometry, SIMS). Spatially-resolved analysis across the nodules shows a large range of variations at micrometer-scale for both Fe and S isotope compositions, with δ56Fe and δ34S values from -2.1 to +0.7‰ and from -0.5 to +8.2‰, respectively, and Δ33S values from -1.6 to +2.9‰. The Fe and S isotope variations in these nodules cannot be explained by tandem operation of Dissimilatory Iron Reduction (DIR) and Bacterial Sulfate Reduction (BSR) as was previously proposed, but rather they reflect the contributions of different Fe and S sources during a complex diagenetic history. Pyrite formed from two different mineral precursors: (1) mackinawite precipitated in the water column, and (2) greigite formed in the sediment during early diagenesis. The in-situ analytical approach reveals a complex history of the pyrite nodule growth and allows us to better constrain environmental conditions during the Archean.

  14. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Archean OM suggest that instrumental bias is consistent for 12C count rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, approximately 2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, approximately 2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, approximately 2.6 Ga), and SV1 (n=1; Tumbiana Fm, approximately 2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, delta C-13 varies between -53.1 and -28.3 % and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for gradients of oxidation with depth in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of previously reported Archean OM will be discussed.

  15. Late Archean Euxinia as a Window into Early Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Scott, C.; Bekker, A.; Reinhard, C.; Lyons, T. W.

    2009-12-01

    A number of transition metals present in seawater in trace amounts (10-10 to 10-7 moles/L) are nevertheless bioessential micronutrients, utilized in a wide range of cellular activities. Because their abundances in seawater are largely a reflection of redox-controlled sources and sinks, Precambrian biogeochemists increasingly focus on the interrelated nature of major redox transitions, the chemical composition of the oceans, and the evolution of life on Earth. Of particular interest are temporal trends in seawater inventories of elements utilized in the nitrogen cycle, both nitrogen fixation (Fe, V, Mo) and denitrification (Cu). Recent work on the link between trace metal abundance and the biologically mediated nitrogen cycle has focused on the Proterozoic Eon, when oxidative weathering was well established and sulfidic conditions were common in the deep ocean. However, we know little about trace metal availability during the Archean Eon, when oxygenic photosynthesis first appeared on Earth and began to alter the chemical composition of the oceans and atmosphere. The development of euxinic conditions, or anoxic and sulfidic bottom waters, provides important information regarding the cycling of major elements such as C, S and Fe. However, euxinic black shales can also provide a record of trace metal abundance. Mo is highly enriched in these shales and displays a conspicuous covariation with the concentration of total organic carbon (TOC). Furthermore, it has been demonstrated that the ratio Mo/TOC is proportional to the concentration of Mo in seawater. Cu and V are also enriched in euxinic black shales, and both correlate with TOC. By analogy with Mo, it is likely that the ratios Cu/TOC and V/TOC also contain information on the concentration of these transition metals in seawater. Here we present C-S-Fe systematics as well as trace metal concentrations from black shales of the Roy Hill Member of the late Archean Jeerinah Formation. Fe speciation indicates that the

  16. Short-lived chemical heterogeneities in the archean mantle with implications for mantle convection.

    PubMed

    Blichert-Toft, J; Albarede, F

    1994-03-18

    The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust. PMID:17744788

  17. The Petrogenetic significance of Plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Phinney, W. C.; Maczuga, D. E.

    1988-01-01

    The petrogenetic significance of plagioclase megacryst-bearing Archean rocks was considered. It was suggested that these developed in mid-to upper-crustal magma chambers that were repeatedly replenished. Crystallization of megacrysts from a primitive liquid that evolves to an Fe-rich tholeiite (with LREE enrichment) is nearly isothermal and is an equilibrium process. Cumulates probably form near the margins of the chambers and liquids with megacrysts are periodically extracted and can appear as volcanics. Some flows and intrusives are found in arc-like settings in greenstone belts. Megacrystic dikes represent large volumes of melt and dike swarms such as the Metachawan swarm of Ontario suggest multiple sources of similar compositions. A complex series of melt ponding and migration are probable and involve large amounts of liquid.

  18. Methane Greenhouses and Anti-Greenhouses During the Archean Era

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Pavlov, A. A.

    2002-12-01

    Climate and life are coupled today through the biogeochemical carbon cycle, but they may have been even more tightly coupled in the distant past when atmospheric O2 levels were lower. The finding of mass-independently fractionated S isotopes in Archean rocks confirms that pO2 was very low, probably <10-13 times the present level, prior to 2.3 Ga (1). The Sun was also some 20 percent less luminous at this time (2). High CO2 levels were initially proposed to solve this `faint young Sun problem' (3); however, these levels are in conflict in data from paleosols (4). CH4 is an alternative greenhouse gas which could have kept the Archean climate warm if present at concentrations of 0.01-0.1 percent by volume (5). The primary source of methane is biological. CH4 is produced by methanogenic bacteria that today live in anaerobic environments such as the intestines of ruminants and the water-logged soils underlying rice paddies. During the Archean, however, methanogens should have been widespread, and the methane they produced would have had a long photochemical lifetimes, around 10,000 years (6). Most methanogens are thermophiles or hyperthermophiles, and those which are more thermophilic have shorter doubling times than those that prefer cooler temperatures. This suggests that a positive feedback loop may have existed, whereby methanogens warmed the climate by releasing CH4, which in turn promoted the proliferation of faster-growing methanogens. This positive feedback would have been halted, however, once the ratio of CH4 to CO2 in the atmosphere exceeded unity. At this point, polymerization of CH4 by solar UV radiation would have caused the formation of an organic haze layer similar to that observed today on Titan. Such a haze layer would have cooled the climate by creating an `anti-greenhouse effect.' This creates an overall negative feedback loop that may have been responsible for maintaining a stable Archean climate. The rise of O2 at 2.3 Ga disrupted this equilibrium

  19. Noble metal abundances in an Early Archean impact deposit.

    PubMed

    Kyte, F T; Zhou, L; Lowe, D R

    1992-01-01

    We report detailed analyses on the concentrations of the noble metals Pd, Os, Ir, Pt, and Au in an early Archean spherule bed (S4) of probable impact origin from the lower Fig Tree Group, Barberton Greenstone Belt, South Africa. Compared to other sedimentary deposits of known or suspected impact origin, some noble metals are present in exceptionally high concentrations. Noble metal abundances are fractionated relative to abundances in chondrites with ratios of Os/Ir, Pt/Ir, Pd/Ir, and Au/Ir at only 80, 80, 41, and 2% of these values in CI chondrites. Although an extraterrestrial source is favored for the noble metal enrichment, the most plausible cause of the fractionation is by regional hydrothermal/metasomatic alteration. PMID:11537203

  20. Noble metal abundances in an early Archean impact deposit

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Zhou, Lei; Lowe, Donald R.

    1992-01-01

    Detailed analyses are reported on the concentrations of the noble metals Pd, Os, Ir, Pt, and Au in an early Archean spherule bed (S4) of probably impact origin from the lower Fig Tree Group, Barberton Greenstone Belt, South Africa. Compared to other sedimentary deposits of known or suspected impact origin, some noble metals are present in exceptionally high concentrations. Noble metal abundances are fractionated relative to abundances in chondrites with ratios of Os/Ir, Pt/Ir, Pd/Ir, and Au/Ir at only 80, 80, 41, and 2 percent of these values on CI chondrites. Although an extraterrestrial source is favored for the noble metal enrichment, the most plausible cause of the fractionation is by regional hydrothermal/metasomatic alteration.

  1. Early Archean Spherule Beds-Confirmation of Impact Origin

    NASA Technical Reports Server (NTRS)

    Shukolyukov, A.; Kyte, F. T.; Lugmair, G. W.; Lowe, D. R.; Byerly, G. R.

    2000-01-01

    The oldest record of major impact events on Earth may be a number of early Archean (3.5 to 3.2 Ga) spherule beds that have been identified in the Barberton Greenstone Belt, South Africa. Several field, petrographic, and geochemical criteria distinguish these beds from typical volcanic and clastic sediments. These criteria include the wide geographic distribution of two beds in a variety of depositional environments, the presence of relict quench textures, absence of juvenile volcaniclastic debris within the beds, and extreme enrichment of Ir and other platinum group elements (PGE) as compared to surrounding sediments. Some researchers, however, argued for a terrestrial origin for spherule bed formation, possibly related to volcanism and gold mineralization.

  2. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    SciTech Connect

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  3. Late Archean mafic volcanism in the Rainy Lake area, Minnesota

    SciTech Connect

    Day, W.C.

    1985-01-01

    The Late Archean greenstone-granite terrane of the Rainy Lake area of Minnesota contains a bimodal suite of mafic and felsic volcanic and coeval intrusive rocks. New geochemical data show that the mafic rocks occur in three distinct suites: (1) low-Ti olivine- and quartz-tholeiite, (2) high-Ti quartz-tholeiite and basaltic andesite, and (3) calc-alkaline lamprophyric monzodiorite and quartz diorite. The low-Ti tholeiites have only slightly evolved Mg-numbers from 53-63, Ni=125-300 ppm, and MORB-like REE. In contrast, the high-Ti tholeiites are more evolved, with Mg*=26-48, Ni=43-135 ppm, and higher total REE. Compared to the tholeiitic suites, the monzodiorite suite has more primitive Mg-numbers, with Mg*=70-78, Ni<410 ppm, and anomalously high LREE. The two tholeiitic suites cannot be genetically related by simple fractionation from a single parent magma; however, lower degrees of partial melting (<8 percent) of a mantle source (spinel periodotite) with REE=2-4 times chondrites could have produced the high-Ti tholeiites, and higher degrees of melting (20-30 percent) of a similar source could have generated the low-Ti tholeiites. In contrast, the monzodiorite suite must have been generated from either a LREE-rich or (and) a garnet-bearing source (garnet periodotite). The authors conclude that shallow melting (<40-50 km) within the Archean mantle in the Rainy Lake area produced the tholeiitic rocks, and that deep melting (>40-50 km) generated the lamprophyric monzodiorites.

  4. Archean evolution of the Leo Rise and its Eburnean reworking

    NASA Astrophysics Data System (ADS)

    Thiéblemont, Denis; Goujou, Jean Christian; Egal, Emmanuel; Cocherie, Alain; Delor, Claude; Lafon, Jean Michel; Fanning, C. Mark

    2004-06-01

    Recent geological mapping in southeastern Guinea, supported by zircon dating, has called into question traditional understanding concerning the evolution of the Leo Rise. Gneiss dated at about 3540 Ma appears to constitute the earliest evidence for continental accretion within the Leo Rise. The existence of a Leonian depositional cycle at about 3000 Ma is confirmed, marked by volcanic and sedimentary rocks that can be correlated with the Loko Group in Sierra Leone. The span of ages (3244-3050 Ma) suggests that the Leonian cycle comprises different episodes whose respective chronology is as yet uncertain. Clearly distinct from the Leonian cycle, the Liberian cycle (˜2900-2800 Ma) is represented in Guinea by granite and migmatite (˜2910-2800 Ma), reflecting remobilization of the ancient Archean basement and deformation of the Leonian rocks; no deposition is associated with this cycle. After the Liberian, the Nimba and Simandou successions, containing Liberian detrital zircons, are assigned to the Birimian (˜2200-2000 Ma). Finally, Eburnean tectonism caused intense deformation of the Archean craton, accompanied by high-grade metamorphism and the intrusion of granite and syenite with ages between 2080 and 2020 Ma. The evolution of the Kénéma-Man domain, attributed to the cumulated effect of the Leonian and Liberian cycles, is thus in part Eburnean. We can suppose, therefore, that the NNE-SSW-trending structures attributed to the Liberian in Sierra Leone are, in fact, Eburnean. The Kambui Supergroup, also affected by this tectonism, should thus be assigned to the Birimian rather than the Liberian, which would explain its similarities with the Nimba and Simandou successions.

  5. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    NASA Astrophysics Data System (ADS)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  6. Linking the Fe-, Mo-, and Cr isotope records with the multiple S isotope record of Archean sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.; Watanabe, Y.

    2011-12-01

    Researchers have interpreted the isotopic data of redox sensitive elements (e.g., Fe, Mo and Cr) in Archean- and Proterozoic-aged sedimentary rocks within a framework of an atmospheric O2 evolution model that relied on an interpretation of the multiple sulfur isotopic record of sedimentary rocks. The current paradigm is that the anomalous isotopic fractionations of sulfur (AIF-S, or MIF-S) in sedimentary rocks were created by the UV photolysis of volcanic SO2 in an O2-poor (i.e., pO2 < 1 ppm) atmosphere, and that the rise of atmospheric pO2 to > 1 ppm occurred at ~2.45 Ga. However, this paradigm has recently encountered the following serious problems: (1) UV photolysis of SO2 by a broad-band UV lamp, which simulates the UV spectra of the sun light, produced the δ34S-Δ33S values for the S0 and SO4 that are significantly different from >90% of data on natural samples. (2) Many Archean-age sedimentary rocks do not exhibit AIF-S signatures. (3) Strong AIF-S signatures are typically found in organic C- and pyrite rich Archean-age black shales that were altered by submarine hydrothermal fluids during the early diagenetic stage of the rocks. (4) H2S, rather than SO2, was probably the dominant S-bearing volcanic gas on an anoxic Earth. Yet, UV photolysis of H2S does not generate AIF-S. (5) Some post-2.0 Ga natural samples were found to possess strong AIF-S signatures, such as sulfates in air pollutants that were produced by coal burning in an oxygen-rich atmosphere. Lasaga et al. (2008) demonstrated theoretically that chemisorption reactions between some solid surfaces and S-bearing aqueous (or gaseous) species, such as between organic matter and aqueous sulfate, may generate AIF-S. Watanabe et al. (2009; in prep.) demonstrated experimentally that reactions between simple amino acid crystals and sulfate under hydrothermal conditions produced AIF-S signatures that matched with more than 90% of data on natural samples. These studies, as well as the observed correlations

  7. Dating Archean zircon by ion microprobe: New light on an old problem

    NASA Technical Reports Server (NTRS)

    Williams, I. S.; Kinny, P. D.; Black, L. P.; Compston, W.; Froude, D. O.; Ireland, T. R.

    1985-01-01

    Ion microprobe analysis of zircons from three sites (Watersmeet Dome in northern Michigan, Mount Sones in eastern Antarctica, and Mount Narryer in western Australia) is discussed. Implications of the results to Archean geochronology and early Earth crust composition are addressed.

  8. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. PMID:26798012

  9. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance

    NASA Technical Reports Server (NTRS)

    Taylor, Stuart Ross; Rudnick, Roberta L.; Mclennan, Scott M.; Eriksson, Kenneth A.

    1986-01-01

    REE data on metasedimentary rocks from two different types of high-grade Archean terrains are presented and analyzed. The value of REEs as indicators of crustal evolution is explained; the three geologic settings (in North America, Southern Africa, and Australia) from which the samples were obtained are described; and the data are presented in extensive tables and graphs and discussed in terms of metamorphic effects, the role of accessory phases, provenance, and tectonic implications (recycling, the previous extent of high-grade terrains, and a model of Archean crustal growth). The diversity of REE patterns in shallow-shelf metasediments is attributed to local provenance, while the Eu-depleted post-Archean patterns are associated with K-rich plutons from small, stable early Archean terrains.

  10. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L.

    2016-01-01

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

  11. PGE Chemistry and Systematics of Some Archean Spherule Layers in the Barberton Mountain Land

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, T.; Reimold, W. U.; Greshake, A.; Hoehnel, D.; Fritz, J.; Schmitt, R. T.; Salge, T.; Hofmann, A.; Oezdemir, S.; Schulz, T.; Koeberl, C.

    2015-07-01

    Comprehensive study of petrographic, mineralogical, and geochemical characteristics from a set of new samples of Archean spherule layers in the ICDP drill core BARB5 and drill core CT3 from the Barberton Greenstone Belt (BGB), South Africa.

  12. Nature of the Coast Batholith, Southeastern Alaska: Are there Archean analogs

    NASA Technical Reports Server (NTRS)

    Barker, Fred; Arth, J. G.

    1988-01-01

    The comparison of Phanerozoic Andean margins and their possible Archean analogs was made. Geochemical and isotopic data was presented for the episodic intrusion of the elongate, continental margin Coast batholith of southeastern Alaska and British Columbia. The batholith was characterized as having been formed in direct response to subduction in accreted terranes of oceanic or slope origin. It was concluded that there were good analogs of the Coast batholith in Archean plutonic suites.

  13. Geostable molecules and the Late Archean 'Whiff of Oxygen'

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.

    2012-12-01

    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  14. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  15. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    NASA Astrophysics Data System (ADS)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  16. Heterogeneously hydrated mantle beneath the late Archean Yilgarn Craton

    NASA Astrophysics Data System (ADS)

    Ivanic, T. J.; Nebel, O.; Jourdan, F.; Faure, K.; Kirkland, C. L.; Belousova, E. A.

    2015-12-01

    Archean mafic-ultramafic melts, crystallized as layered intrusions in the upper crust and extruded as komatiitic flows, are primary probes of upper mantle chemistry. However, the message from their primary chemical composition can be compromised by different modes of contamination. Contaminants are typically cryptic in terms of their geochemical and isotopic signals but may be related to metasomatised mantle sources, ambient crustal assimilation or subduction-related inputs. In this work we present critical evidence for both dry and wet Archean mantle sources for two juxtaposed layered intrusions in the Australian Yilgarn Craton. The ca. 2813 Ma Windimurra and ca. 2800 Ma Narndee Igneous Complexes in Western Australia are two adjacent layered intrusions and would be expected to derive via similar mantle sections. A key difference in their chemistry is the presence of crystal-bound water in the Narndee Igneous Complex, represented primarily by abundant hornblende. Such a primary hydrous phase is notably absent in the Windimurra Igneous Complex. New 40Ar/39Ar plateau ages for fresh Narndee hornblende (weighted mean: 2805 ± 14 Ma, MSWD = 1.8, probability = 0.18) agrees with the published U-Pb age of 2800 ± 6 Ma for the complex and is consistent with a magmatic origin for this phase. Zircon Hf and whole-rock Hf and Nd isotopes for the Narndee Igneous Complex indicate only minor crustal contamination, in agreement with H and O isotope values in amphibole and O isotope values in rare zircon crystals, plagioclase and pyroxene within both complexes. These findings illustrate a fast temporal transition, in proximal bodies, from anhydrous to hydrous mantle sources with very minor crustal contamination. These large layered mafic-ultramafic intrusions are igneous bodies with a primitive chemical bulk composition that requires large degrees of mantle melting. This has been attributed by many workers to mantle plume activity, yet not without dispute, as subduction-related flux

  17. Dating of Archean basement in northeastern Wyoming and southern Montana.

    USGS Publications Warehouse

    Peterman, Z.E.

    1981-01-01

    Rb-Sr whole-rock and U-Pb zircon ages of granite and gneiss cores from three deep drill holes extend known occurrences of Archean rocks in the subsurface of NE Wyoming and S Montanta. Rb-Sr and K- Ar mineral ages are discordant and reflect early or middle Proterozoic disturbance. Highly altered rocks occur in a thin zone immediately below the sub-Cambrian unconformity. Samples from a few metres deeper in the basement are much fresher but show the effects of this alteration in filled fractures and thin adjacent alteration haloes. Whole-rock Rb-Sr systems have retaioned a fair degree of integrity in spite of increased susceptibility to modification because of the disturbed mineral systems. Interaction of the rocks with water a few metres below the sub-Cambrian unconformity probably occurred for only a relatively short time. Fractures filled rapidly with secondary minerals such as chlorite, anhydrite, and carbonate to maintain a relatively impermeable crystalline basement in which the silicates and their contained isotopic systems were preserved.- Author

  18. A Coupled General Circulation Model of the Archean Earth

    NASA Astrophysics Data System (ADS)

    Wolf, E. T.; Toon, O. B.

    2011-12-01

    We present results from a new coupled general circulation model suitable for deep paleoclimate studies. Particular interest is given to the faint young Sun paradox. The model is based on the Community Earth System Model maintained by the National Center for Atmospheric Research [1]. Prognostic atmosphere, ocean, land, ice, and hydrological cycle models are coupled. A new correlated-k radiative transfer model has been implemented allowing accurate flux calculations for anoxic atmospheres containing high concentrations of CO2 and CH4 [2, 3]. This model represents a significant improvement upon one-dimensional radiative-convective climate models used previously to study ancient climate [4]. Cloud and ice albedo feedbacks will be accurately quantified and new constraints on Archean surface temperatures will be revealed. References [1] Collins W.D. et al. "Description of the NCAR Community Atmosphere Model (CAM 3.0)." NCAR Technical Note, 2004. [2] Toon O.B., McKay, C.P., Ackerman, T.P. "Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple Scattering Atmospheres." J. Geo. Res., 94(D13), 16287 - 16301, 1989. [3] Mlawer, E.J., et al. "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave." J. Geo. Res., 102(D14), 16663 - 16682, 1997. [4] Kasting J.F., Pollack, J.B., Crisp, D. "Effects of High CO2 Levels on Surface Temperature and Atmospheric Oxidation State of the Early Earth." J. Atm. Chem., 1, 403-428, 1984.

  19. Archean foreland basin tectonics in the Witwatersrand, South Africa

    SciTech Connect

    Burke, K.; Kidd, W.S.F.; Kusky, T.M.

    1986-06-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this Phase of Witywatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben. 64 references.

  20. Archean foreland basin tectonics from the Witwatersrand, South Africa

    SciTech Connect

    Burke, K.; Kidd, W.S.F.; Kusky, T.M.

    1985-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These and other features indicate that the Witwatersrand strata were deposited in a foreland basin. A regional geologic synthesis suggests that his basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. We suggest that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Striking similarities are seen between this phase of Witwatersrand Basin evolution and active basins located north of the Tibetan Plateau. The geologic evidence is not so compatible with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  1. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this Phase of Witywatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  2. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  3. The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.; Sage, R. P.; Jensen, L. S.; Luhta, L. E.

    1983-01-01

    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described.

  4. Effect of manganese and iron at a neutral and acidic pH on the hematology of the banded Tilapia (Tilapia sparrmanii)

    SciTech Connect

    Wepener, V.; Van Vuren, J.H.J.; Du Preez, H.H.

    1992-10-01

    The pollution of natural water bodies is a common phenomenon in developing countries. Increases in population densities lead to increased mining and industrial activities in the area. With the establishment of gold and coal mines in South Africa, several industrial zones were created to support the mining industry. Many of these industries consist of heavy metal processing factories. Over the years pollution from the mines has led to acidification of the streams and lakes in the Transvaal. It was also found that high concentrations of heavy metals occurred in the water, sediments, plants and fish tissue in the affected water systems. Of all the heavy metals, iron and manganese were found in the highest concentrations. In order to determine the subtle, non-lethal effects induced by sublethal concentrations of heavy metals on the physiology of fish, it is necessary to monitor certain clinical parameters. The use of hematological methods as indicators of sublethal stress can supply valuable information concerning the physiological reactions of fish in a changing environment. The reason for this is the close association between the circulatory system of the fish and the external environment. The objective of the present paper was to evaluate the effects of manganese and iron at a neutral and acidic pH on the hematology of Tilapia sparrmanii. 19 refs., 2 figs.

  5. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified

  6. The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens

    PubMed Central

    Rouzaud, Jean-Noël; Derenne, Sylvie; Bourbin, Mathilde; Westall, Frances; Kremer, Barbara; Sugitani, Kenichiro; Deldicque, Damien; Robert, François

    2016-01-01

    Abstract The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candidates for seeking non-altered sample remnants of life. Analysis of chemical (Raman spectroscopy, 13C NMR, elemental analysis) and structural (HRTEM) features of Archean and non-Archean carbonaceous matter (CM) that was submitted to metamorphic grades lower than, or equal to, that of greenschist facies showed that these features had all undergone carbonization but not graphitization. Raman-derived quantitative parameters from the present study and from literature spectra, namely, R1 ratio and FWHM-D1, were used to draw a carbonization continuum diagram showing two carbonization stages. While non-Archean samples can be seen to dominate the first stage, the second stage mostly consists of the Archean samples. In this diagram, some Archean samples fall at the boundary with non-Archean samples, which thus demonstrates a low degree of carbonization when compared to most Archean CM. As a result, these samples constitute candidates that may contain preserved molecular signatures of Archean CM. Therefore, with regard to the search for the oldest molecular traces of life on Earth, we propose the use of this carbonization continuum diagram to select the Archean CM samples. Key Words: Archean—Early life—Kerogen—Raman spectroscopy—Carbonization. Astrobiology 16, 407–417. PMID:27186810

  7. The Building of the Archean Superior Craton: Thermal Perspective

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Mareschal, J. C.

    2014-12-01

    The building of a craton involves the extraction of continental crust from the Earth's mantle and the lateral accretion of juvenile volcanic terranes. Ascertaining which conditions allow a newborn continental assemblage to survive requires information on its mechanical strength, which depends on the amount and vertical distribution of radioactive elements in the crust. There is thus a connection between crust formation mechanisms and a successful amalgamation process. To address outstanding questions concerning Archean cratons, the Superior province in Canada is the perfect region because it contains a well preserved geological record of accretion that provides compelling evidence for plate tectonic processes at 2.7 Ga. At almost the same time, the rate of continental growth decreased significantly, which may result from either slower crust formation or enhanced destruction through erosion and subduction. These issues are linked to the strength of the newborn continent. The extensive heat flow data set now available in the Superior Province reveals a clear demarcation between a chemically depleted and differentiated craton core and weakly differentiated enriched juvenile accreted terranes. The Superior craton was thus made of a strong core surrounded by weak terranes. This dichotomy implies that the accretion process could not involve complex imbrication of the accreted belts into the craton core. Subsequently, the craton may have been protected from convective disruption or delamination by its weak margins. Differences between the craton core and accreted terranes may be due to different crustal extraction processes, such as melting in a mantle plume or magmatism in a subduction zone. If subduction started at about 3 Ga, as advocated by several authors, the assembly and survival of large cratons may well be a consequence of this key shift in mantle activity. Alternatively, the chemical depletion of the craton core may be due to a prolonged history of internal

  8. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  9. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  10. U-Pb SHRIMP and Sm-Nd geochronology of granite-gneiss complexes and implications for the evolution of the Central Brazil Archean Terrain

    NASA Astrophysics Data System (ADS)

    Queiroz, Cláudia Lima; Jost, Hardy; da Silva, Luiz Carlos; McNaughton, Neal J.

    2008-07-01

    The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U-Pb SHRIMP zircon and Sm-Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2 σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2 σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data

  11. Sm-Nd isotope study of early Archean rocks, Qianan, Hebei Province, China

    NASA Technical Reports Server (NTRS)

    Huang, X.; Bi, Z.; Depaolo, D. J.

    1986-01-01

    The geochronology of amphibolitic and gneiss rocks in the Qianan region in China is examined. Sm-Nd isotopic measurements were performed to determine if the rocks existed in the early Archean age. The average age for the amphibolite samples is 3.50 + or - 0.08 billion years with an initial epsilon(Nd) value of 3.3 + or - 0.3, and for the gneiss samples the average age is also 3.5 billion years. The high initial epsilon(Nd) value indicates that the mantle magma source is depleted of magmaphile elements and the geochemistry of the early Archean mantle is similar to the modern upper mantle.

  12. Sink or Swim? the Role of Intracrustal Differentiation in the Generation of Compositional Diversity and Crustal Delamination in the Archean

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Herzberg, C. T.; Kaus, B.; Johnson, T. E.; Brown, M.

    2014-12-01

    Significant debate exists regarding the processes of crustal formation and stabilization in the Archean, with some researchers advocating for continuous subduction-like processes throughout earth history, and others advocating crustal recycling by lithospheric delamination or 'drip tectonics'. Much of the debate hinges on whether Archean mantle potential temperatures (Tp) were significantly hotter than the present day. The rock record of non-arc Archean primary magma compositions (Herzberg et al., 2010) has been used to infer higher ambient Tp (Tp = 1500-1650C) during the Archean, causing high melt fractions during decompression melting, and leading to extreme primary (oceanic) crustal thicknesses of 30-40 km (Herzberg and Rudnick, 2012). Such crustal thicknesses might inhibit subduction, in which case an alternative mechanism of crustal recycling would be required. In their recent paper, Johnson et al. (2014) showed that at Tp > 1500C, the lower portions of a thick homogenous Archean primary crust generated would be density unstable with respect to the ambient mantle. Additionally, they showed that given realistic rheological constraints, large-scale lower crustal delamination is a very efficient crustal recycling mechanism at Tp >1600C. The Archean crust, however, is likely to be internally differentiated. Here we present pMELTS and Perple_X modeling results on the intracrustal differentiation of Archean primary crust, resulting in the formation of TTG-like granitoids in the upper crust and a lower crust dominated by clinopyroxenite. Using the composition and density profiles generated by intracrustal differentiation, our geodynamic modeling extends the Tp over which efficient crustal delamination will occur to lower values, consistent with those likely throughout the Archean. Efficient crustal differentiation and delamination of dense mafic residues throughout the Archean may explain the apparent paucity of mafic lithologies relative to TTGs that characterize

  13. An Archean Terrestrial Fractionation Line for Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Rumble, D.; Blake, R. E.; Bao, H.; Bowring, S.; Komiya, T.; Rosing, M.; Ueno, Y.

    2008-12-01

    The Terrestrial Fractionation Line (TFL) for oxygen isotopes is defined by 17O/16O and 18O/16O analyses of meteoric waters, seawater, sedimentary, metamorphic, and igneous rocks and constituent minerals. Interlaboratory measurements of the slope of the TFL on a plot of d18O vs. d17O revealed eclogitic garnets with a slope of 0.526 and hydrothermal quartz of 0.524 from rocks younger than 0.8 Ga (Giga years before present). New measurements show Archean metamorphic rocks and minerals from Barberton, (3.2 Ga, S. Africa), Isua (3.8 Ga, Greenland), and Acasta (4.0 Ga, Canada) have a slope of 0.524 +/- 0.002 (95% confidence, MSWD = 0.66). Analysis of Ag3PO4 prepared from apatite mineral separates from Isua meta-sediments gives a slope of 0.509 +/- 0.022 (95% confidence, MSWD = 0.59). Taken at face value, steeper slopes on a d17O vs. d18O diagram indicate an approach towards isotope exchange equilibrium. Lower slopes are expected when isotope fractionation is kinetically controlled. The lower slope of 0.509 for Isua apatite suggests that the formation of orthophosphate was kinetically controlled. Kinetic fractionations are known to occur during catalysis of reactions by enzymes secreted by microbes. Enzymatic catalysis confers an advantage on organisms because energy-producing reactions may be induced to occur at lower temperature conditions more accessible to the organism. May it be definitively concluded that enzymatic catalysis was responsible for the measured 0.509 slope? No, abiotic kinetic fractionation cannot be disproven with existing data. The preparation of Ag3PO4 from apatite may have introduced kinetic fractionation as an analytical artifact. Conclusions fully supported by the data suggest: (1) Mixing accompanying the violent birth of the Earth- Moon system had already succeeded in establishing Earth's current oxygen isotope composition by 4.0 Ga; and (2) No trace of an episode of late heavy meteorite bombardment remains in the oxygen isotope compositions of

  14. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere.

    PubMed

    Ventura, Gregory T; Kenig, Fabien; Reddy, Christopher M; Schieber, Juergen; Frysinger, Glenn S; Nelson, Robert K; Dinel, Etienne; Gaines, Richard B; Schaeffer, Philippe

    2007-09-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36-C39 derivatives of the biphytanes, and C31-C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (approximately 2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  15. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere

    PubMed Central

    Ventura, Gregory T.; Kenig, Fabien; Reddy, Christopher M.; Schieber, Juergen; Frysinger, Glenn S.; Nelson, Robert K.; Dinel, Etienne; Gaines, Richard B.; Schaeffer, Philippe

    2007-01-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36–C39 derivatives of the biphytanes, and C31–C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (≈2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  16. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  17. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  18. Diversity in the Archean biosphere: new insights from NanoSIMS.

    PubMed

    Oehler, Dorothy Z; Robert, François; Walter, Malcolm R; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K

    2010-05-01

    The origin of organic microstructures in the approximately 3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide approximately 3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least approximately 3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry. PMID:20528196

  19. The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.

    1986-01-01

    The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.

  20. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    USGS Publications Warehouse

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  1. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: What Is the Message?

    NASA Astrophysics Data System (ADS)

    El Atrassi, F.; Debaille, V.; Mattielli, N. D. C.; Berger, J.

    2014-12-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African Craton in Mauritania (Amsaga area). The Amsaga Archean Crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. Our main objectives aim to the identification of the mafic lithology origin and a better understanding of their role in the continental crust emplacement. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. The amphibolites are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. Two groups are distinct in their geochemical characteristics (major and trace elements), although both have tholeiitic basalt composition. The first group show LREE-enriched patterns and negative Nb-Ta anomalies. The second group is characterized by near-flat LREE patterns and flat HREE patterns. This second group clearly shows no Nb-Ta anomalies. The first group could be related to arc-like basalts, as it is many similarities with some Archean amphibolites probably formed in a supra-subduction zone, for instance the volcanic rocks from the southern edge of the Isua Supracrustal Belt. On the contrary, the second group has a MORB-like signature which is more unusual during the Archean. Different scenarios will be discussed regards to the Archean geodynamics.

  2. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  3. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.

    2012-12-01

    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  4. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  5. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  6. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    SciTech Connect

    Maynard, J.B.; Ritger, S.D. ); Sutton, S.J. )

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archean Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.

  7. Paleomagnetic dating of liesegang bands

    SciTech Connect

    Cochran, K.A.; Elmore, R.

    1985-01-01

    Paleomagnetic analysis, in conjunction with petrographic studies, was used to date the formation of hematite liesegang bands in the Ordovician Upper Arbuckle Group in southern Oklahoma. The hematite bands form symmetrical patterns on both sides of calcite-filled fractures in dolomite beds. The bands decrease in abundance and become more diffuse away from the fractures. Dedolomite is common near the fractures. Samples from distinctly banded dolomite near the fractures contain a relatively strong chemical remanent magnetization (CRM) with a southeasterly declination and shallow inclination. Samples farther from the fractures that are less distinctly banded or have no bands contain a weaker and less table CRM. Petrographic evidence and stable demagnetization to 600/sup 0/C indicate that the CRM resides in hematite. Samples were collected from both flanks of the Arbuckle Anticline (late Pennsylvanian folding), and a fold test demonstrates that the CRM is post-folding. The pole position for the CRM corresponds to the Early Permian (approx. 280 Ma) part of the Apparent Polar Wander Path for stable North America. These results suggest that the liesegang bands formed in the Early Permian, probably by rhythmic precipitation of hematite from fluids that moved out from the fractures. The fluids also apparently caused dedolomitization and precipitation of calcite in intercrystalline pore spaces. These fluids were probably the source of iron for the bands, although iron released from dedolimitization of ferroan dolomite may have been a local source.

  8. Discovering the Carrier Phase of the Extraterrestrial Component in Archean Spherule Layers, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, T.; Fritz, J.; Reimold, W. U.; Schmitt, R. T.; Hofmann, A.; Koeberl, C.; Luais, B.; Tagle, R.; Salge, T.; Hoehnel, D.

    2014-09-01

    Comprehensive study of sedimentary, petrographic, mineralogical, and geochemical characteristics from a set of new samples of Archean spherule layers in the ICDP Drill Core BARB5 from the Barite Valley.

  9. An actualistic perspective into Archean worlds - (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa.

    PubMed

    Noffke, N; Beukes, N; Bower, D; Hazen, R M; Swift, D J P

    2008-01-01

    Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic-physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The 'Nhlazatse Section' includes structures such as 'erosional remnants and pockets', 'multidirected ripple marks', 'polygonal oscillation cracks', and 'gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or 'orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean

  10. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  11. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  12. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    SciTech Connect

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallow emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.

  13. Phase separation in iron chalcogenide superconductor Rb0.8+xFe1.6+ySe2 as seen by Raman light scattering and band structure calculations

    NASA Astrophysics Data System (ADS)

    Pashkevich, Yu.; Gnezdilov, V.; Lemmens, P.; Shevtsova, T.; Gusev, A.; Lamonova, K.; Wulferding, D.; Gnatchenko, S.; Pomjakushina, E.; Conder, K.

    2016-06-01

    We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K over a wide temperature region 3-500 K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN = 525 K demonstrate modest anomalies in the frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed RbδFe2Se2 (122) conductive phase. The superconducting gap with d x 2 - y 2 symmetry has been detected in our spectra. In the range 0-600 cm-1 we observe a weak but highly polarized B1g-type background which becomes well-structured upon cooling. A possible magnetic or multiorbital origin of this background is discussed. We argue that the phase separation in M0.8+xFe1.6+ySe2 is of pure magnetic origin. It occurs below the Néel temperature when the magnetic moment of iron reaches a critical value. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab initio spin-polarized band structure calculations we demonstrate that the compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the purely metallic RbδFe2Se2 phase and the insulating Rb2Fe4Se5 phase providing percolative Josephson-junction like superconductivity all throughout of Rb0.8+xFe1.6+ySe2. Our lattice dynamics calculations show significant differences in the phonon spectra of the conductive and insulating Rb2Fe4Se5 phases.

  14. The transition from an Archean granite-greenstone terrain into a charnockite terrain in southern India

    NASA Technical Reports Server (NTRS)

    Condie, K. C.; Allen, P.

    1983-01-01

    In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.

  15. Lode Gold Deposits and Archean Mantle Plume-Island Arc Interaction, Abitibi Subprovince, Canada.

    PubMed

    Wyman; Kerrich; Groves

    1999-11-01

    In combination with seismic interpretations and geochronological constraints, the association of juvenile arc-type low-Ti tholeiitic basalts with komatiites in the southeastern Abitibi subprovince, Canada, supports a history of subduction step back following Late Archean mantle plume-island arc interaction. The resulting paired collision zones preserved abundant komatiites and numerous massive sulphide deposits and established the critical metallogenic features to concentrate the majority of Canada's Precambrian gold resources in a small area of the southern Abitibi subprovince. PMID:10517886

  16. Uvá complex, the oldest orthogneisses of the Archean-Paleoproterozoic terrane of central Brazil

    NASA Astrophysics Data System (ADS)

    Jost, Hardy; Junior, Farid Chemale; Fuck, Reinhardt Adolfo; Dussin, Ivo Antônio

    2013-11-01

    The Archean-Paleoproterozoic terrane of central Brazil is an exotic and allochthonous part of the Tocantins Province, a large Brasiliano/Pan-African orogen of the South American Platform formed during the Brasiliano orogeny. The terrane amalgamated to the province during the late stages of the orogeny as a crustal segment consisting of six Archean orthogneiss complexes and five low-grade metamorphic, in part Paleoproterozoic (Rhyacian) greenstone belts. The Uvá complex is the southernmost orthogneiss association of the Archean-Paleoproterozoic terrane of central Brazil. New U-Pb LA-ICP-MS data from zircon crystals show that the complex formed at least during two magmatic stages. The older consists of polydeformed tonalite and granodiorite batholitic and diorite stock protoliths with igneous age of 3040 Ma to 2930 Ma. The youngest comprises tonalite, monzogranite and granodiorite tabular bodies formed between 2876 and 2846 Ma. As compared to the orthogneisses of the northern portion of the terrane, both the oldest and youngest granitogenesis stages of the Uvá complex are, in average, about 150 Ma older. This suggests that the northern and southern orthogneisses formed during different times as independent crustal segments, but when and why they amalgamated is still under investigation.

  17. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  18. Evaluation of Early Archean Volcaniclastic and Volcanic Flow Rocks as Possible Sites for Carbonaceous Fossil Microbes

    NASA Astrophysics Data System (ADS)

    Walsh, Maud M.

    2004-12-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation. Astrobiology 4, 429-437.

  19. Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean

    SciTech Connect

    Veizer, J. Ruhr Universitaet, Bochum ); Clayton, R.N. ); Hinton, R.W. Grant Institute of Geology, Edinburgh ); von Brunn, V. ); Mason, T.R. ); Buck, S.G. ); Hoefs, J. )

    1990-10-01

    A comprehensive whole-rock study of mineralogical, chemical, and isotopic attributes of Archean carbonates suggests that their lithologies and facies have been controlled by tectonic setting. In the first two papers of this series they have shown that the dominant lithology of sedimentary carbonates in greenstone belt settings is limestone. In this paper the authors suggest that the Archean shelf sequences are mostly dolostone, and the contemporaneous lacustrine playa lakes are characterized by limestone facies. The present study is of the shelf environments of the Archean, represented by the Pongola Supergroup of South Africa and the Hamersley Group of Australia. The lacustrine playa examples have been sampled from the Ventersdorp Supergroup of South Africa and the Fortescue Group of Australia. Geological, trace element, and oxygen isotope considerations of the shelf carbonates suggest that their original mineralogy may have been aragonite and that the Pongola dolostones probably represent a direct dolomitization product of this precursor. In contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone prior to dolomitization.

  20. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    PubMed

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation. PMID:15684724

  1. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  2. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  3. Molecular Fossil Evidence of Archaea and a Deep Biosphere during the Late Archean

    NASA Astrophysics Data System (ADS)

    Ventura, G. T.; Kenig, F.; Reddy, C.; Schieber, J.; Nelson, R. K.; Frysinger, G. S.; Gaines, R. B.; Schaeffer, P.

    2006-12-01

    Whereas molecular fossil evidence indicates that bacteria and eukarya were present by the Late Archean, similar evidence of the domain archaea is lacking. The existence of archaea is instead inferred based on the occurrence of highly 13C depleted carbon that is thought to derive by carbon cycling between methanogens and methanotrophs. We present archaeal lipids extracted from 2.71-2.65 Ga (billion years) lower greenschist facies metasediments of Timmins Ontario, Canada. These archaeal lipids are isomerized, cracked, acyclic and cyclic biphytanes and form an unresolved complex mixture. Biphytane is also observed in high pressure catalytic hydrogenation (HPCH) products of extracted sediments, providing evidence that archaea were present in Late Archean sedimentary environments. Petrographic evidence indicates the extractable hydrocarbons were encapsulated within the mineral matrix during metamorphism(~2.6 Ga). Prior to metamorphism, hydrothermal CO2 buffered solutions resulted in gold mineralization and partial graphitization of the kerogen. Samples located in areas of mineralization contain a very high concentration of extractable archaeal lipids, neither correlated to their total organic carbon content, nor to the generally low abundance of archaeal lipids in HPCH products. This secondary addition of archaeal lipids is likely the product of a Late Archean intraterrestrial community that thrived within the hydrothermal waters that resulted in gold mineralization.

  4. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred. PMID:24621308

  5. Comparison of Archean and Phanerozoic granulites: Southern India and North American Appalachians

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Kittleson, Roger C.

    1988-01-01

    Archean granulites at the southern end of the Dharwar craton of India and Phanerozoic granulites in the southern Appalachians of North America share an important characteristic: both show continuous transitions from amphibolite facies rocks to higher grade. This property is highly unusual for granulite terranes, which commonly are bounded by major shears or thrusts. These two terranes thus offer an ideal opportunity to compare petrogenetic models for deep crustal rocks formed in different time periods, which conventional wisdom suggests may have had different thermal profiles. The salient features of the Archean amphibolite-to-granulite transition in southern India have been recently summarized. The observed metamorphic progression reflects increasing temperature and pressure. Conditions for the Phanerozoic amphibolite-to-granulite transition in the southern Appalachians were documented. The following sequence of prograde reactions was observed: kyanite = sillimanite, muscovite = sillimanite + K-feldspar, partial melting of pelites, and hornblende = orthopyroxene + clinopyroxene + garnet. The mineral compositions of low-variance assemblages in mafic and intermediate rocks are almost identical for the two granulite facies assemblages. In light of their different fluid regimes and possible mechanisms for heat flow augmentation, it seems surprising that these Archean and Phanerozoic granulite terranes were apparently metamorphosed under such similar conditions of pressure and temperature. Comparison with other terrains containing continuous amphibolite-to-granulite facies transitions will be necessary before this problem can be addressed.

  6. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  7. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  8. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  9. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  10. Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.

    2005-01-01

    We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.

  11. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  12. A review of tectonic aspects of the Limpopo belt and other Archean high-grade gneissic terranes

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1985-01-01

    Published information on the Archean high grade terrains varies a great deal in the detail available. Such information as exists indicates marked differences in the lithic types and proportions present in the central Limpopo belt compared with the better studies of the other Archean high grade terrains. These differences may be important because they are expressed by the presence in the Limpopo belt of subordinate, but significant quantities (about 5% each) of two rock suites likely to have formed on a shallow marine platform of significant size (Eriksson and Kidd, in prep.). These suites consist of thick sections dominantly consisting of either carbonate and calc-silicate, or of pure metaquartzites, often fuchsite bearing, whose lithic characters are unlike those expected for metacherts but are very like those expected for platform arenites. Isotopic ages suggest these sediments are probably older than 3.3 Ga and younger than 3.5 Ga. Studies lead to the conclusions that (1) continental fragments large enough to provide a substrate for significant platform arenite and carbonate sedimentation existed by 3.3 to 3.5 Ga ago; (2) Wilson cycle tectonics seems to adequately explain most major features of the Archean gneissic terranes; and (3) Tibetan-Himalayan style collisional tectonics 2.6 Ga and older accounts for the large scale relationships between the Limpopo belt and the adjacent Archean greenstone granitoid terrane cratons. By inference, other more fragmentary Archean gneissic terranes may have once been part of such collisional zones.

  13. EPR study of thermally treated Archean microbial mats analogues and comparison with Archean cherts: towards a possible marker of oxygenic photosynthesis?

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Westall, F.; Gourier, D.; Gautret, P.; Rouzaud, J.-N.; Robert, F.

    2012-04-01

    The datation of photosynthesis apparition remains an open question nowadays: did oxygenic photosynthesis appear just before the Great Oxidation Event (GOE) of the atmosphere, 2.3 to 2.4 Gyr ago, or does it originate much earlier? It is therefore of uttermost interest to find markers of oxygenic photosynthesis, applicable to samples of archean age. In order to handle this problem, Microcoleus Chtonoplastes cyanobacteria and Chloroflexus-like non-oxygenic photosynthetic bacteria, were studied using Electron Paramagnetic Resonance (EPR) spectroscopy, a high sensitivity technique for the study of organic radicals in mature geological samples (coals, cherts, meteorites...). M. chtonoplastes and Chloroflexus-like bacteria were sampled in mats from the hypersaline lake "La Salada de Chiprana" (Spain), an analogue to an Archean environment, and were submitted to accelerated ageing through cumulative thermal treatments. For thermal treatment temperatures higher than 620° C, a drastic increase in the EPR linewidth of the oxygenic photosynthetic bacteria (M. chtonoplastes) occurred, as compared with the anoxygenic photosynthetic one (Chloroflexus-like). The EPR study of a thermally treated mixture of the two bacteria evidences that this linewidth increase is driven by catalytic reaction at high temperatures on an element selectively fixed by M. chtonoplastes. Based on comparative EDS analyses, Mg is a potential candidate for this catalytic activity but its precise role and the nature of the reaction are still to be determined. The EPR study of organic radicals in chert rocks of ages ranging from 0.42 to 3.5 Gyr, from various localities and that underwent various metamorphisms, revealed a dispersion of the signal width for the most mature samples. This comparative approach between modern bacterial samples and Precambrian cherts leads to propose the EPR linewidth of mature organic matter in cherts as a potential marker of oxygenic photosynthesis. If confirmed, this marker

  14. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, C.N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  15. Ferride geochemistry of Swedish precambrian iron ores

    NASA Astrophysics Data System (ADS)

    Loberg, B. E. H.; Horndahl, A.-K.

    1983-10-01

    Chemical analysis for major and trace elements have been performed on 30 Swedish Precambrian iron ores and on some from Iran and Chile. The Swedish ores consist of apatite iron ores, quartz-banded iron ores, skarn and limestone iron ores from the two main ore districts of Sweden, the Bergslagen and the Norrbotten province. Some Swedish titaniferous iron ores were also included in the investigation. The trace element data show that the Swedish ores can be subdivided into two major groups: 1. orthomagmatic and exhalative, 2. sedimentary. Within group 1 the titaniferous iron ores are distinguished by their high Ti-contents. From the ferride contents of the Kiruna apatite iron ores, the ores are considered to be mobilization products of skarn iron ores from the Norbotten province.

  16. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  17. A Multi-Technique Approach to Understanding Camp-Wide Mineralization Processes in Archean VMS Deposits

    NASA Astrophysics Data System (ADS)

    Sharman, E. R.; Wing, B.; Taylor, B.; Jonasson, I.; Farquhar, J.; Dubé, B.

    2009-05-01

    Volcanogenic Massive Sulphide (VMS) deposits form on or below the seafloor, in association with submarine extrusive volcanism, and reflect the hydrothermal concentration of ore-forming components originating from various reservoirs within the submarine environment. A defining question about VMS deposits is the relative contributions of different sulfur sources to mineralization. Standard models for VMS formation include contributions from reduction of seawater sulfate, remobilization of sedimentary sulfur, and volcanic sources (e.g., direct magmatic degassing, hydrothermal dissolution of sulfides in volcanic wall rocks). We are using an array of geochemical techniques to assess a suite of sulphide mineral separates collected from numerous VMS deposits within the Archean Noranda camp of the Abitibi Belt, Superior Province, Canada. These techniques include ICP-MS analyses of dissolved sulphide separates, microprobe analysis, and multiple sulphur isotope analyses. Multiple sulphur isotope analysis provides a new and powerful tool for interpreting Archean ore deposits. In pre-2.45 Ga rocks, multiple sulphur isotope analyses (δ33S, δ34S, and δ36S) document mass-independent sulphur isotope fractionation (δ33S≠0.515×δ34S, δ36S≠1.9×δ34S), likely expressed because of the lack of an oxygenated atmosphere. Ore-forming processes in VMS deposits cannot create mass-independent fractionation; they can only dilute it away. Trace element geochemistry of sulphides has been used to identify where in a VMS system these minerals form, with contributions from sources such as sea-water, or from a plume having different geochemical 'footprints'. Coupled with multiple sulphur isotope measurements, trace element geochemistry can be used to help identify sulphur sources within Archean VMS deposits and can be used to interpret camp-wide ore-forming processes and controls on mineralization. This will in turn allow for a more comprehensive understanding of VMS mineralization

  18. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust

    NASA Astrophysics Data System (ADS)

    Guitreau, Martin; Blichert-Toft, Janne; Martin, Hervé; Mojzsis, Stephen J.; Albarède, Francis

    2012-07-01

    Combined whole-rock and zircon MC-ICP-MS Lu-Hf isotope data are reported for a large collection of Archean granitoids belonging to typical tonalite-trondhjemite-granodiorite (TTG) suites. Our data demonstrate that the time-integrated Lu/Hf of the mantle source of TTGs has not significantly changed over the last 4 Gy. Continents therefore most likely grew from nearly primordial unfractionated material extracted from the deep mantle via rising plumes that left a depleted melt residue in the upper mantle. The deep mantle could retain its primitive relative element abundances over time because sinking plates are largely stripped barren of their oceanic and continental crust components at subduction zones; this process results in only small proportions (<15-25%) of present-day continental mass getting recycled to great depths. Zircon populations extracted from the analyzed TTGs have Hf isotopic compositions broadly consistent with those of their host whole-rocks, whereas the U-Pb system in the same grains is often disturbed, causing a discrepancy that creates spurious initial ɛHf values. This problem is endemic to the Archean detrital zircon record and consistent with experimental results bearing on the relative retentivity of Hf vs. U and Pb in zircon. We argue that this behavior biases the Archean zircon record toward negative ɛHf values, which are at odds with the present TTG data set. If Hadean Jack Hills zircons are considered in light of these results, the mantle source of continents has remained unchanged for the last 4.3 Gy.

  19. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  20. Earth's Archean Impact Record In The ICDP Drilling "Barberton Mountain Land".

    NASA Astrophysics Data System (ADS)

    Fritz, Jörg; Schmitt, Ralf-Thomas; Reimold, Uwe; Koeberl, Christian; Mc Donald, Ian; Hofmann, Axel; Luais, Beatrice

    2013-04-01

    The marine meta-sedimentary successions in the "Barberton Mountain Land" are formed by Archean volcanic and sedimentary rocks including the oldest known impact ejecta layers on Earth. The chemical signature (high iridium concentrations, chromium isotopic ratios) of some of these up to tens of cm thick Archean spherule layers advocate that these ejecta deposits represent mainly extraterrestrial material [1]. These ejecta layers contain millimetre sized spherules that are larger and accumulated thicker layers compared to any impact ejecta layer known from Phanerozoic sediments, including the global ejecta layer of the Chicxulub impact catering event terminating the Mesozoic era of Earth's history [2]. The Archean spherule layers are interpreted as products of large impacts by 20 to >100 km diameter objects [3, 4]. Identifying traces of mega-impacts in Earth's ancient history could be of relevance for the evolution of atmosphere, biosphere, and parts of the Earth's crust during that time. In addition, recognizing global stratigraphic marker horizons is highly valuable for inter-correlating sedimentary successions between Archean cratons [5]. However estimates regarding size of the impact event and correlations between the different outcrops in the Barberton mountain land are complicated by post depositional alterations of the tectonically deformed sediments [6, 7]. The relatively fresh samples recovered from below the water table during the 2011-2012 ICDP drilling "Barberton Mountain Land" are promising samples to investigate and to discriminate primary and secondary features of these rare rocks. We plan to conduct 1) petrographic, micro-chemical and mineralogical characterization of the impact ejecta layers, 2) bulk chemical analyses of major and trace elements, and 3) LAICP- MS elemental mapping of platinum group element (PGE) distributions. and elemental analyses of moderately siderophile elements. This aims at 1) characterization of the ejecta layers, 2

  1. The western Wabigoon Subprovince, Superior Province, Canada: Archean greenstone succession in rifted basement complex

    NASA Technical Reports Server (NTRS)

    Edwards, G. R.; Davis, D. W.

    1986-01-01

    The Wabigoon Subprovince, interposed between the predominantly metasedimentary-plutonic and gneissic English River and Quetico Subprovinces to the north and south respectively, exposed Archean greenstone and granitoid rocks for a strike length of greater than 700 km. Based on predominating rock types, the western part of the subprovince is divided into two terrains: the northern Wabigoon volcano-sedimentary and pluonic terrain (NWW) and the Wabigoon Diapiric Axis terrain (WDA). Both the NWW and WDA are described according to volcanic sequence, geological faults, chemical composition and evolutionary history.

  2. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  3. The Preservation of Meso- Archean Refractory Lithospheric Mantle Underneath the Eastern Margin of the Tanzania Craton

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Liu, J.; Pearson, G. D.; Gibson, S. A.

    2014-12-01

    Numerous studies on the petrology and geochemistry of peridotite xenoliths from the Tanzanian Craton and its rifted margins have investigated the origin, chemical change and thermal state of the cratonic roots from its core area (Nzega and Mwadui), its Northern (Marsabit) and Eastern margin Labait and Lashaine area (e.g. Dawson, 1964; Henjes-Kunst and Altherr, 1991; Lee & Rudnick, 1999; Chesley et al., 1999; Gibson et al., 2013). These studies suggest that the Tanzanian cratonic mantle formed via high degrees of melt extraction in the Archean (oldest Re-depletion age TRD = 3.4 Ga, Burton et al., 2000) and sev­eral episodes of refertilization. In order to gain further temporal and chemical understanding on the effects of tectonic processes on cratonic roots, we carried out a Re-Os isotopic study on peridotites (n = 11) from Lashaine, which will be followed by Lu-Hf, Sm-Nd and Sr isotope investigations of the constituent minerals of the same samples. The preliminary whole-rock Os isotope data from Lashaine peridotites show a large range of 187Os/188Os (0.1061 - 0.1261), with TRD ages from Meso-Archean to very young (3.1 Ga to 0.3 Ga). There is a negative correlation between TRD and bulk alumina contents. One sample with the lowest Al2O3 yields the oldest age of 3.1 Ga. Five samples range from 2.5 to 2.8 Ga, three give ages close to 2 Ga, and one sample with a high Al2O3 has a TRD at 0.3 Ga. The positive Al2O3-187Os/188Os correlation trend passes above the PM composition may reflect ancient metasomatism by high Re/Os melts or recent metasomatism by very radiogenic Os plume-derived melts. These processes could be related to the evolution of the peripheral Proterozoic mobile belts, or Cenozoic rifting on the Eastern margin. Collectively, our new Os isotope data demonstrate that Meso-Archean (at least 3.1 Ga old) mantle portions are still retained underneath the rifted Eastern margin of the Craton. This is in line with previous results indicating that Archean cratonic

  4. Exploring the possible climates of the Archean Earth with a 3D GCM

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Forget, F.; Wordsworth, R.; Leconte, J.; Millour, E.; Codron, F.

    2012-12-01

    The climate of the early Earth and the faint young Sun paradox have been hitherto essentially studied with 1D models. Different hypothesis have been suggest to solve the faint young Sun paradox as: a higher greenhouse effect by CO2 and CH4 [1], a reduced planetary albedo by a reduced continental area and thinner archean clouds [2] or a higher atmospheric pressure [3]. The problem of 1D models is that they do not simulate the oceanic ice and cloud feedback well. A new global climate model has been developped by our team to study the climates of exoplanets [4] and primitive atmospheres [5]. A correlated-k radiative transfert model is use to simulate atmospheres of N2, CO2 and CH4. Oceanic transport and oceanic ice formation is computed through a slab-ocean module [6], cloud formation and precipitations are based on physical and robust parametrizations. First, we validate our model by simulating the modern Earth. Then we apply it to simulate the climates during the Archean and to test different hypothesis supposed to solve the faint young Sun paradox. We quantify the effect of the lack of ozone, the faster rotation rate and the reduced continental area of the early Earth on the climate. We simulate climates for low, moderate and high CO2/CH4 concentration. We test the effect the radius of cloud droplets and the effect of a higher atmospheric pressure. In particular, by fixing the radius of cloud droplets or the amount of CCN, we show that thinner clouds with a low CO2 and CH4 partial pressure [2] is not a solution over all the Archean, higher greenhouse gas concentrations are required. References [1] Haqq-Misra et al.: A revised, hazy methane greenhouse for the Archean Earth, Astrobiology,8,1127-1137 (2008) [2] Rosing et al.: No climate paradox under the faint early Sun, Nature, 464, 744-747 (2010) [3] Goldblatt et al.: Nitrogen-enhanced greenhouse warming on early Earth, Nature Geoscience, 2, 891-896 (2009) [4] Wordsworth et al.: Gliese 581d is the First Discovered

  5. Pale Orange Dots: Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn; Meadows, Victoria S.; Claire, Mark; Schwieterman, Edward

    2014-11-01

    Of the four terrestrial worlds with significant atmospheres in our solar system - Venus, Earth, Mars, and Titan - two of these worlds are presently enshrouded by hazes, and observations suggest that hazy exoplanets are also common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014, Knutson et al. 2014). The early (Archean) Earth may have had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climactic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Here, we considered Archean Earth as an analog for hazy Earthlike exoplanets and used a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate model Archean atmospheres with fractal hydrocarbon haze particles. A 1-D line-by-line fully multiple scattering radiative transfer model (Meadows and Crisp 1996) was then used to generate synthetic spectra of early Earth with haze. We have used the resulting synthetic spectra to examine the effect of haze on the detectability of putative biosignatures and the Rayleigh scattering slope, which has been suggested as a means for constraining atmospheric pressure (Benneke and Seager 2012). We also examined haze's impact on the spectral energy distribution reaching the planetary surface. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, and because exoplanets will occupy a range of parameter space, we tested the influence of atmospheric pressure and particle density on haze formation, and explored how various particle size distributions affect the spectrum. We find that haze strongly affects the spectral region of the Rayleigh slope, a change detectable at low spectral resolution that impacts the ability to constrain pressure with Rayleigh scattering. The spectral energy distribution at the surface is modulated by haze thickness and the assumed particle size

  6. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    PubMed

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago. PMID:8688075

  7. Isotopic Constraints on Processes of Mantle Recycling (Subduction?) in the Hadean and Archean

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Basu, A. R.; Kamber, B.; Mueller, P. A.; Whitehouse, M.

    2006-12-01

    The earliest evidence for subduction and its effects on the Hadean and Archean Earth can be found in the isotopic signatures of recycling in Archean igneous and metasedimentary rocks. The separation of an early terrestrial reservoir from the upper mantle shown by ^{142}Nd isotope data (Boyet & Carlson, Science, 2005) obviates the need for massive extraction and recycling of early continental crust (Armstrong, Phil Trans A, 1981) to explain the depleted mantle. Without extensive continents, an intra-oceanic-arc type of recycling process dominated the evolution of the early mantle. When continental crustal recycling did occur, it appears limited to the margins of emergent and juvenile continental nuclei. Intra-oceanic arc recycling has long been supported by geochemical studies of present mantle heterogeneity that show it represents ancient (>3 Ga) recycled components and geodynamic studies of mantle convection that show the mantle can remain poorly mixed at these time scales. Such studies cannot readily distinguish Hadean to Eoarchean foundering from true plate subduction. However, ^{142}Nd excesses (Caro et al, GCA 2006) and Pb isotopic variability in Eoarchean rocks (Kamber et al, CMP 2003), Hf isotopic variability in Hadean zircon (Harrison et al, Science 2005) and a solar component in mantle rare gases (Tolsthikin and Hofmann, PEPI 2005) require long term isolation of a mafic Hadean crust incompatible with a dynamic process of plate destruction accompanied by efficient return. In contrast to this oldest record, minerals and rocks from <3.6 Ga no longer show extreme heterogeneity in Hf and Pb isotopes and the ^{142}Nd excess in highly depleted mantle had apparently disappeared. Subduction can be strongly inferred from surficial isotopic signatures in crustal and mantle rocks and minerals preserved in the Paleo- to Meso-Archean portions of various continents and their lithospheric mantle keels: 3.5 Ga old diamonds from the Slave craton mantle lithosphere that

  8. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  9. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.

    2008-08-01

    Large ion lithophile and high field strength element distributionsin juvenile upper continental crust are controlled chiefly bythe abundance of tonalite-trondhjemite-granodiorite (TTG) inthe Archean shifting to a combination of TTG, calc-alkalinegranitoid, and graywacke control thereafter. Geochemical differencesbetween TTG and high-silica adakites do not require productionof most TTG magmas in descending slabs. Changes in the ratioof TTG to calc-alkaline granitoids after 2.5 Ga indicate thatArchean subduction zones must have differed from younger subductionzones in two very important ways: (1) a deep mafic crust servedas a TTG magma source (either as thickened crust or in descendingslabs), and (2) they did not give rise to significant volumesof calc-alkaline magma. Thickened mafic crust in the Late Archeanmay have resulted from plate jams in subduction zones causedby thicker oceanic crust and oceanic plateaus produced duringLate Archean mantle thermal events.

  10. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone

    NASA Astrophysics Data System (ADS)

    Wyman, D. A.; Ayer, J. A.; Devaney, J. R.

    2000-06-01

    Late Archean niobium-enriched basalts from the Central Sturgeon Lake assemblage and Neepawa group of the western Wabigoon subprovince have mantle-normalized Nb/La between 0.8 and 1.3 and Zr/Y between 4 and 7. They are compositionally similar to basalts attributed to adakite metasomatism of mantle wedge regions in Cenozoic subduction zones [Sajona et al., J. Petrol. 37 (1996) 693-726]. In detail, their Sc-REE systematics suggest the Archean basalts were generated above the garnet stability field. An association with adakite-like volcanic rocks, an absence of komatiites and the arc-like attributes of their host sequences suggest a subduction-related origin for the basalts. If current models of adakite and Niobium-enriched basalt genesis are valid, then additional examples of these rocks should be relatively common in other Archean greenstone belts.

  11. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  12. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    NASA Technical Reports Server (NTRS)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  13. Nickel-iron spherules from aouelloul glass

    USGS Publications Warehouse

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  14. Evidence for and implications of an Early Archean terrestrial impact record

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history.

  15. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life

    PubMed Central

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T.; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-01-01

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81–3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100–300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  16. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts.

    PubMed

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts. PMID:23254854

  17. Archean gold mineralization and metamorphism: timing constraints from precise U-Pb dating

    SciTech Connect

    Colvine, A.C.; Corfu, F.; Davis, D.W.; Stott, G.M.

    1985-01-01

    Gold mineralization is tightly constrained to an event closely following establishment of peak metamorphic condition, in all areas of the Superior Province of Canada where precise dating has been applied to defined field relationships. In the Abitibi and Wabigoon Subprovinces of the Southern Superior Domain, peak metamorphism caused by major batholith emplacement is consistently >2685 Ma and affects Archean supracrustal units of all ages (mainly >2700 Ma). Gold is commonly hosted by felsic stocks, dated at a specific age in the Abitibi Belt (2688-2684 Ma), and is therefore close to or younger than peak metamorphism. Dateable units crosscutting mineralization are extremely rare, but at Shebandowan and Mine Centre dated field relationships bracket the maximum and minimum age of mineralization between 2689 - 2684 and 2692 - 2686 Ma, respectively. While the metamorphic event in the Northern Superior Domain is approximately 20 my older, relative timing of gold mineralization is identical. At Red Lake, gold is hosted by units ranging in age from 2990-2718 Ma, all metamorphosed at >2704 Ma. Peak metamorphic minerals are retrograded by alteration during gold localization and mineralization is cut by a 2704 Ma dyke. These data show that gold mineralization was the product of a tectonic event during the latest Archean which involved major plutonism, deformation and metamorphism.

  18. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  19. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  20. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean

    PubMed Central

    Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.

    2015-01-01

    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  1. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks

    NASA Astrophysics Data System (ADS)

    Debaille, Vinciane; O'Neill, Craig; Brandon, Alan D.; Haenecour, Pierre; Yin, Qing-Zhu; Mattielli, Nadine; Treiman, Allan H.

    2013-07-01

    A major change in Earth's geodynamics occurred ~3 billion years (Ga) ago, likely related to the onset of modern and continuous plate tectonics. However, the question of how Earth functioned prior to this time is poorly constrained. Here, we find a resolvable positive 142Nd anomaly in a 2.7 Ga old tholeiitic lava flow from the Abitibi Greenstone Belt indicating that early-formed mantle heterogeneities persisted at least 1.8 Ga after Earth's formation. This result contradicts the expected rapid early (~0.1 Ga), as well as the slower present-day (~1 Ga) mixing rates in the convecting mantle. Using a numerical modeling approach, we show that convective mixing is inefficient in absence of mobile-lid plate tectonics. The preservation of a 142Nd anomaly until 2.7 Ga ago can be explained if throughout the Hadean and Archean, Earth was characterized by a stagnant-lid regime, possibly with sporadic and short subduction episodes. The major change in geodynamics observed around ~3 Ga ago can then reflect the transition from stagnant-lid plate tectonics to modern mobile-lid plate tectonics. Solving the paradox of a convective but poorly-mixed mantle has implications not only for Archean Earth, but also for other planets in the solar system such as Mars.

  2. Moho offsets beneath the Western Ghat and the contact of Archean crusts of Dharwar Craton, India

    NASA Astrophysics Data System (ADS)

    Saikia, Utpal; Rai, S. S.; Meena, Rishikesh; Prasad, B. N. V.; Borah, Kajaljyoti

    2016-03-01

    We present the Moho depth variation along a 600 km long profile from the west to the east coast of South India covering the passive continental margin, and the Western Ghat escarpment created during India-Madagascar separation at ~ 85 Ma; Archean western and eastern Dharwar Craton, and Proterozoic basin. The image is generated through three different approaches: H - vP/vS stacking, common conversion point (CCP) migration and inversion of teleseismic receiver functions at 38 locations. The Moho depth along the profile varies smoothly between 34 and 41 km, except beneath the Western Ghat and at the contact of east and west Dharwar Craton, where it is offset by up to ~ 8 km. The study suggests (i) the possible differential uplift of the Western Ghat, as a consequence of India-Madagascar separation and the prominent role of deep crustal structure in the location of the escarpment, compared to the surface process and (ii) presence of long-lived steeply dipping fault separating the two distinct Archean crustal blocks indicative of mechanically strong continental lithosphere beneath the Dharwar Craton.

  3. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes

    NASA Astrophysics Data System (ADS)

    van den Boorn, Sander H. J. M.; van Bergen, Manfred J.; Nijman, Wouter; Vroon, Pieter Z.

    2007-10-01

    The great variety and abundance of chert deposits in Archean terrains constitute one of the most unusual features that mark Earth's early geological history. Proposed explanations for their origin largely relying on field observations, trace element patterns, or oxygen isotope signatures have not yielded an encompassing model. Here we document silicon isotope systematics in cherts from 3.5-3.0 Ga units in the Pilbara Craton (Western Australia) as evidence of their formation by several distinct processes in Early Archean near-surface environments. Our δ30Si results, in combination with geochemical and mineralogical signatures and field relations, point to three end-member sources of silica derivation. One chert type is inferred to have originated through massive transformation of precursor material by silica added from sea water. At least 2‰ differences in δ30Si between the two other types, produced by direct chemical precipitation on the seafloor or in conduits, discriminate seawater from hydrothermal fluid as a source of silica. A virtually continuous Si isotope trend in cherts from this group is consistent with interaction between silica-carrying fluids at submarine vent systems.

  4. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials

    NASA Technical Reports Server (NTRS)

    Lindsay, John F.; McKay, David S.; Allen, Carlton C.

    2003-01-01

    The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.

  5. Cyanobacterial Inhabitation on Archean Rock Surfaces in the Pilbara Craton, Western Australia.

    PubMed

    Hoshino, Yosuke; George, Simon C

    2015-07-01

    High abundances of 7- and 6-monomethylalkanes as well as C17 n-alkane, indicative of cyanobacteria, have been discovered near the surfaces of Archean carbonate rocks of the Fortescue Group in the Pilbara region, Western Australia. The presence of cyanobacterial biomarkers is mostly limited to the surface layer (<1 cm thickness) of the rocks, indicating that the cyanobacteria are an endolithic species. Biomarkers are found in bitumen I (solvent-extracted rock) and also in bitumen II (solvent-extracted decarbonated rock). The abundance of biomarkers is generally the same between both bitumen fractions in the surface layer, which suggests that the cyanobacteria penetrated into the carbonate minerals. Trace amounts of the biomarkers have also diffused into a deeper part of the rocks, but this influence is only seen in bitumen I. This implies that hydrocarbons moved toward the inside of the rock through pores and fissures in the rock fabric. In contrast, hydrocarbons in bitumen II, which mainly come from within the carbonate minerals, are isolated from the hydrocarbon migration from the outside of the rock and may be ancient indigenous organic matter. To the best of our knowledge, this is the first report of the past or modern inhabitation of cyanobacteria on Archean rocks in the Pilbara region for which hydrocarbon biomarker analyses was used. PMID:26153724

  6. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  7. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean.

    PubMed

    Kendall, Brian; Creaser, Robert A; Reinhard, Christopher T; Lyons, Timothy W; Anbar, Ariel D

    2015-11-01

    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial (187)Os/(188)Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial (187)Os/(188)Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial (187)Os/(188)Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  8. Evidence for a complex archean deformational history; southwestern Michipicoten Greenstone Belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Shrady, Catherine H.

    1986-01-01

    The Michipicoten Greenstone Belt extends for about 150 km ENE from the northeastern angle of Lake Superior. In common with many other Archean greenstone belts, it is characterized by generally steep bedding dips and a distribution of major lithologic types suggesting a crudely synclinal structure for the belt as a whole. Detailed mapping and determination of structural sequence demonstrates that the structure is much more complex. The Archean history of the belt includes formation of at least three regionally significant cleavages, kilometer-scale overturning, extensive shearing, and diabase intrusion. Most well defined, mappable 'packages' of sedimentary rocks appear to be bounded by faults. These faults were active relatively early in the structural history of the belt, when extensive overturning also occurred. Steepening of dips, NW-SE shortening, development of steep NE cleavage, and pervasive shearing all postdate the early faulting and the regional overturning, obscuring much of the detail needed to define the geometry of the earlier structures. The results obtained so far suggest, however, that the Michipicoten Greenstone Belt underwent an early stage of thrusting and associated isoclinal folding, probably in a convergent tectonic environment.

  9. Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Marty, Bernard; Burgess, Ray

    2011-08-01

    Ancient sedimentary rocks may have retained a record of the past atmospheric composition. We present evidence for the geological preservation of remnants of the Archean atmosphere. Hydrothermal quartz containing fluid inclusions from a core drilled in 3.5 Ga-old terrains at North Pole, (Western Australia), has a Ar-Ar plateau age of 3.0 ± 0.2 Ga. An Archean age is confirmed independently by 130Ba- 130Xe dating of fluid inclusions. Xenon trapped in the present sample and in 3.5 Ga-old barite from the same locality (Pujol et al., 2009; Srinivasan, 1976) presents an isotopic composition intermediate between the atmospheric composition and that of chondritic, or solar, xenon. In contrast, the stable isotopes of neon and krypton are isotopically atmospheric. This observation suggests that the well known but unexplained enrichment of heavy Xe isotopes in the atmosphere relative to cosmochemical (chondritic or solar) end-members was progressive, and not complete ≥ 3 Ga ago. This Xe isotopic fractionation might have taken place during prolongated irradiation of the atmosphere by the ancient Sun.

  10. Petrogenesis of basalts from the Archean Matachewan Dike Swarm Superior Province of Canada

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1987-01-01

    The Matachewan Dike swarm of eastern Ontario comprises Archean age basalts that were emplaced in the greenstone, granite-greenstone, and metasedimentary terrains of the Superior Province of Canada. The basalts are Fe-rich tholeiites, characterized by the near ubiquitos presence of large, compositionally uniform, calcic plagioclase. Major and trace element whole-rock compositions, along with microprobe analyses of constituent phases, from a group of dikes from the eastern portion of the province, were evaluated to constrain petrological processes that operated during the formation and evolution of the magmas. Three compositional groupings, were identified within the dikes. One group has compositional characteristics similar to modern abyssal tholeiites and is termed morb-type. A second group, enriched in incompatible elements and light-REE enriched, is referred to as the enriched group. The third more populated group has intermediate characteristics and is termed the main group. The observation of both morb-type and enriched compositions within a single dike strongly argues for the contemporaneous existence of magmas derived through different processes. Mixing calculations suggest that two possibilities exist. The least evolved basalts lie on a mixing line between the morb-type and enriched group, suggesting mixing of magmas derived from heterogeneous mantle. Mixing of magmas derived from a depleted mantle with heterogeneous Archean crust can duplicate certain aspects of the Matachewan dike composition array.

  11. Geochemical consequences of the metasomatic conversion of an Early Archean komatiite sequence into chert

    SciTech Connect

    Hanor, J.S.; Duchac, K.C.

    1985-01-01

    Duchac and Hanor (1985) have demonstrated from field and petrographic evidence that the stratiform, muscovite-bearing cherts of Skokhola Ridge, Barberton Mountain Land, South Africa, represent a pervasively silicified sequence of komatiites and komatiitic basalts of Early Archean age. Most alteration took place early, prior to any significant tectonic deformation. The isovolumetric nature of the alteration, as confirmed by excellent preservation of igneous textures, and the immobility of Al make it possible to quantify elemental gains and losses during metasomatism. The sequence was strongly depleted in Na, Mg, Ca, Sr, Fe, and Mn, and enriched in K, Rb, and Ba, Al, Y, Zr, Ti, and P were immobile. It is most likely that the sequence was altered by large volumes of ascending hydrothermal solutions, with the decrease in T upward favoring precipitation of silica and muscovite. The net effect was to convert an ultramafic igneous rock into a rock having a composition approaching that of the average sandstone. Such alteration, if regionally extensive, undoubtedly affected the geochemical evolution of both the Early Archean crust and hydrosphere in the Barberton greenstone belt.

  12. Archean to Paleoproterozoic polymetamorphic history of the Salma eclogite in Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Imayama, Takeshi; Oh, Chang-Whan; Park, Chan-Soo; Yi, Keewook; Jung, Haemyeong

    2015-04-01

    One of the most important questions in the Earth Science is when and how plate tectonics operate in the Precambrian time. The tectonic and thermal evolution of the Precambrian eclogite is significant key for understanding the Precambrian geodynamic mechanisms. Eclogites in Kola Peninsula, Russia are some of the oldest eclogites of the world, but there has been much debate about the timing of eclogite-facies metamorphism: Archean (e.g. Volodichev et al. 2004; Mints et al., 2010) or Paleoproterozoic (e.g. Skublob et al., 2011, 2012). The controversy is mainly because of the lack of zircon dating coupled with the formation of garnet and omphacite. In this study, we present geochronological, petrographic, and geochemical data from the Salma eclogites in the Kola Peninsula, Russia to characterize subduction and collision processes in the Precambrian. Microstructural observations, P-T analyses, zircon inclusion analyses, and U-Pb zircon dating revealed multiple metamorphic stages that the Salma eclogite underwent. The amphibolite facies metamorphic event firstly occurred at 2.73-2.72 Ga during Archean. In the Paleoproterozoic period, the Salma eclogites underwent prograde stage of epidote-amphibolite facies metamorphism. The eclogite facies metamorphic event took place under the P-T condition of 16-18 kbar and 740-770 °C at 1.89-1.88 Ga, with a subsequent granulite facies metamorphism during decompression stage from 18 kbar to 9-12 kbar. Finally, later amphibolite facies metamorphism occurred at 8-10 kbar and 590-610 °C on cooling. The Archean metamorphic zircons that contain inclusions of Grt + Am + Bt + Pl + Qtz + Rt are unzoned grains with dark CL, and they are relatively enriched in HREE. In contrast, the 1.89-1.88 Ga sector or concentric zoned zircons with pale-grey CL include inclusions of Grt + Omp + Ca-Cpx + Am + Bt + Qtz + Rt, and they have the flat pattern of HREE due to the amounts of abundant garnet during the eclogite-facies metamorphism. Whole rock

  13. Mafic-ultramafic magmatism of the Early Precambrian (from the Archean to Paleoproterozoic)

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.; Bogina, M. M.

    2009-04-01

    Compositional evolution of the Archean mafic-ultramafic volcanics is considered in comparison with evolution of the Paleoproterozoic volcanism using available data on the Baltic shield, Pilbara (Australia) and Superior (Canada) cratons, and the Isua greenstone belt (Greenland). The Archean volcanics of mantle origin are of two major types, represented (a) by komatiite-basaltic complexes (komatiites, komatiitic and tholeiitic basalts) and (b) by geochemical analogs of boninites (GAB) and siliceous high-Mg series (SHMS) of volcanic rocks. As is established, the komatiitic and GAB volcanism ceased in the terminal Archean, whereas the SHMS rocks prevailed in the Paleoproterozoic to become extinct about 2 Ga ago in connection with transition to the Phanerozoic type of tectonomagmatic activity. Geochemical trends of mafic-ultramafic associations occurring in the considered cratons are not uniform, being of particular character to certain extent. With transition from the Paleo- to Neoarchean, rock associations of both types reveal a minor increase in Ti and Fe contents. Comparatively high Fe2O3tot TiO2, and P2O5 concentrations (maximal ones in the Archean), which are characteristic of the Neoarchean (2.75-2.70 Ga) basalts from the Superior and Pilbara cratons or the Baltic shield, represent a result of relatively high-Ti intracratonic magmatic activity that commenced in that period practically for the first time in the Earth history. This magmatic activity of the Neoarchean was not as intense as the high-Mg basaltic volcanism, and the absolute maximum in concentrations of the above components was attained only 2.2-1.9 Ga ago, at the time of appearance in abundance of Fe-Ti picrites and basalts typical of the Phanerozoic intraplate magmatism. The Archean volcanic complexes demonstrate gradual secular increase in concentrations of incompatible elements (LREE inclusive) and growth of Nb/Th ratio that apparently reflected the progressing influence of mantle plumes. In the

  14. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and <200μm in length. Their size, shape and distribution have been directly compared to those found in recent oceanic crust. Thus it has been argued that they are the mineralized remains of tunnels formed by microbes that etched volcanic glass in the Archean sub-seafloor (Furnes et al 2004; Banerjee et al. 2006). Elemental mapping by NanoSIMS was undertaken to investigate reports of enrichments in carbon (possibly also nitrogen) along the margins of the microtextures previously interpreted as decayed cellular remains. We mapped for 12C-, 26CN-, 32S- along with 16O-, 28Si-, 24Mg+,27Al+, 40Ca+, 48Ti+ and 56Fe+ in chlorite and quartz hosted examples. The 12C- or 26CN- linings were not found along the margins of the microtextures in neither the original, nor the drill core samples, despite NanoSIMS being a more sensitive and higher-spatial-resolution technique than earlier microprobe X-ray maps. The absence of organic linings in these samples excludes a key line of evidence previously used to support the biogenicity of the microtextures. Sulfur isotopes 32S and 34S were measured by NanoSIMS on two types of sulfide: i) small sulfides (1-15μm) intimately associated with the microtextures and; ii) larger sulfides (10-60μm) that cross-cut the microtextures and are disseminated near a quartz-carbonate vein. The sulfide inclusions in the microtextures have strongly

  15. Correlation, magnetization and conduction in iron pnictides and iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel

    2011-03-01

    By combining density functional theory (DFT) and dynamical mean field theory (DMFT), we study the electronic properties of iron pnictides and iron chalcogenides in both the paramagnetic and magnetic states. With ab initio derived realistic Coulomb interaction U and Hund's exchange coupling J, we find detailed agreements bewtween our calculations and many experimental observations in these compounds, including ARPES, magnetic properties, optical conductivity and anisotropy, and so on, WITHOUT any adjustment such as shifting of atomic positions, Fermi level and bands and renormalizations of bands which are commonly needed in DFT calculations in order to compare with experiments. Our theory explains the origin of the different magnetizations in FeTe and other iron pnictides and provides a unique physical picture. We find that in the magnetic phase of the iron pnictides, both the spin and the orbital polarization are strongly energy dependent. The spin polarization becomes weaker around Fermi level when the orbital polarization is stronger and vice verse at high energies. We stress on the role of the Hund's J rather than the Coulomb U and show how the iron pnictides and iron chalcogenides differ from other compounds.

  16. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  17. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  18. Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Robert, F.; Walter, M. R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E. K.

    2010-01-01

    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms.

  19. The Large Igneous Province (LIP) Record during the Archean-Proterozoic Transition Between 2.5 Ga and 2.0 Ga

    NASA Astrophysics Data System (ADS)

    Ernst, R. E.; Bleeker, W.

    2010-12-01

    A review of the large igneous province (LIP) record reveals numerous events between 2500 and 2000 Ma with a potential gap between 2370 Ma and 2230 Ma. The distribution is uneven with some blocks, such as Superior and Karelia, being well populated, while others, such as Kaapvaal, Amazonia and Yilgarn, having few well-dated LIP events in this time interval; however, the relative paucity of dated events on some blocks may at present simply reflect severe undersampling. LIP events in the 2.5-2.0 Ga interval are thought to be linked to progressive rifting and breakup of late Archean supercratons (e.g., Bleeker 2003, Lithos), or possibly a large supercontinent. Some of these LIPs may also be linked to major environmental changes including iron formation deposition (e.g., Bekker et al. 2010, Econ. Geol.). In terms of understanding the changing geodynamic setting in the 2.5-2.0 Ga interval it is critical to discriminate between LIPs that perhaps were global in extent and those that were more regional in scale but have been widely scattered through subsequent supercontinent fragmentation. Thus, determining the paleogeography of latest Archean supercratons is key. This can be achieved most efficiently by completing the LIP records (magmatic “barcodes”) for all major crustal blocks. Craton-scale blocks that were nearest neighbours in a preexisting landmass will share essential elements of their barcodes, and geometrical information inherent in giant dyke swarms, the plumbing systems of LIPs, can constrain likely configurations. Comparison of paleomagnetic poles and matching of geochemical fingerprints from coeval LIPs on different crustal blocks will provide additional constraints. Using the 2.5-2.0 Ga LIP record, it has been determined that the Superior craton was bordered on its southern-southeastern margin, from west to east, by the Wyoming, Hearne, Karelian, and Kola cratons (Bleeker and Ernst 2006 in Hanski et al. (eds.) Dyke swarms — time markers of crustal

  20. Sulfur MIF, Organic Haze, and the Gaia Hypothesis in the Archean

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S.; James, K. F.

    2006-05-01

    The presence of mass-independent fractionation (MIF) of sulfur isotopes in Archean sedimentary rocks provides evidence for a low-O2 atmosphere prior to 2.4 Ga. Recent data suggest that S-MIF vanished transiently between ~3.2 Ga and 2.8 Ga. The absence of S-MIF after 2.4 Ga is commonly attributed to the rise of O2 in the atmosphere, as the presence of free O2 would have oxidized all sulfur species, thereby erasing any MIF created by atmospheric photochemistry. However, if free O2 did not appear in the atmosphere until 2.4 Ga, then why did S-MIF disappear transiently much earlier? Could S-MIF have been eliminated from the rock record without the presence of free atmospheric O2? We used a 1-dimensional photochemical model to demonstrate how this might have happened. Increasing the CH4/CO2 ratio in the model atmosphere results in the formation of organic haze. If the haze was sufficiently thick, it would have blocked out much of the solar UV radiation shortward of 220 nm that dissociates SO2 and SO, and thereby causes MIF. The haze should also have caused anti-greenhouse cooling and may have triggered the (putative) 2.8-Ga glaciations. Speculatively, an increase in CH4 at 3.0 Ga could have been caused by the evolution of methanogens, while a CH4 decrease at 2.7 Ga could correspond to the evolution of cyanobacteria. The presence of an optically thin organic haze between 2.4 and 2.7 Ga may explain the larger S-MIF values seen at this time, as compared to the early Archean. If such an organic haze existed, it could have resulted in a biologically-mediated negative feedback loop that stabilized the Archean climate. This feedback loop would have operated as follows: an increase in the biological CH4 flux would have led to an increase in haze thickness and a stronger anti-greenhouse effect, cooling the surface. The surface cooling would have caused a reduction of methanogen productivity, thus offsetting the original increase in the CH4 flux. Such stabilizing feedbacks

  1. Ophiolitic Chromitites from the Andriamena Greenstone Belt, Madagascar: Possible Evidence for mid-Archean Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Reisberg, L. C.; Ohnenstetter, M.; Zimmermann, C.; Ratefiarimino, A.; Levy, D.

    2015-12-01

    Determining the time of the onset of plate tectonics is critical to understanding the geodynamic processes that controlled the evolution of the early Earth. The near absence of Archean ophiolites, as defined by the presence of a residual ultramafic section, has been considered to be one of the primary arguments against Archean plate tectonics. The Andriamena greenstone belt of Madagascar contains massive chromitite bodies consisting of about 90% chromite and about 10% gangue minerals, mostly secondary (talc, green amphibole, orthopyroxene, Ca and Mg carbonate). Numerous observations argue in favor of an ophiolitic origin for these chromitites, including the high Cr# (0.67-0.74), coupled with relatively high Mg# (0.6-0.78) of the constituent chromite. In addition, these phases display extremely low TiO2 contents (<0.25%), which are also characteristic of ophiolites and possibly suggestive of an arc environment. Though in many places the chromitite is in tectonic contact with a variety of unrelated igneous lithologies, remnants of apparently cogenetic ultramafic rock types, including dunites, harzburgites, and some pyroxenites are sometimes immediately juxtaposed with the chromitite. The very high Fo content of the olivine in the associated dunite, as high as 0.95, also attests to an ophiolitic provenance. Platinum group element (PGE) and 187Os/188Os analyses were performed on several chromitite samples. Chondrite normalized PGE spectra display marked depletions in PPGE relative to IPGE, with (Pt/Ir)N ranging from ~0 to 0.09, though Pd contents are somewhat less depleted than those of Pt. The observed PPGE depletion is another feature characteristic of ophiolitic chromitites. The IPGE enrichment is consistent with the presence of laurite microinclusions in the chromite revealed by SEM. Os isotopic compositions are tightly clustered, with 187Os/188Os ranging from 0.1057 to 0.1059, corresponding to TRD model ages of ~ 3.2 Ga, assuming primitive upper mantle parameters

  2. Selection of Portable Spectrometers for Planetary Exploration: A Comparison of 532 nm and 785 nm Raman Spectroscopy of Reduced Carbon in Archean Cherts.

    PubMed

    Harris, Liam V; Hutchinson, Ian B; Ingley, Richard; Marshall, Craig P; Marshall, Alison Olcott; Edwards, Howell G M

    2015-06-01

    Knowledge and understanding of the martian environment has advanced greatly over the past two decades, beginning with NASA's return to the surface of Mars with the Pathfinder mission and its rover Sojourner in 1997 and continuing today with data being returned by the Curiosity rover. Reduced carbon, however, is yet to be detected on the martian surface, despite its abundance in meteorites originating from the planet. If carbon is detected on Mars, it could be a remnant of extinct life, although an abiotic source is much more likely. If the latter is the case, environmental carbonaceous material would still provide a source of carbon that could be utilized by microbial life for biochemical synthesis and could therefore act as a marker for potential habitats, indicating regions that should be investigated further. For this reason, the detection and characterization of reduced or organic carbon is a top priority for both the ESA/Roscosmos ExoMars rover, currently due for launch in 2018, and for NASA's Mars 2020 mission. Here, we present a Raman spectroscopic study of Archean chert Mars analog samples from the Pilbara Craton, Western Australia. Raman spectra were acquired with a flight-representative 532 nm instrument and a 785 nm instrument with similar operating parameters. Reduced carbon was successfully detected with both instruments; however, its Raman bands were detected more readily with 785 nm excitation, and the corresponding spectra exhibited superior signal-to-noise ratios and reduced background levels. PMID:26060980

  3. A major Archean, gold- and crust-forming event in the Kaapvaal craton, South Africa.

    PubMed

    Kirk, Jason; Ruiz, Joaquin; Chesley, John; Walshe, John; England, Gavin

    2002-09-13

    The 2.89- to 2.76-gigayear-old conglomerates of the Central Rand Group of South Africa host an immense concentration of gold. The gold and rounded pyrites from the conglomerates yield a rhenium-osmium isochron age of 3.03 +/- 0.02 gigayears and an initial 187Os/188Os ratio of 0.1079 +/- 0.0001. This age is older than that of the conglomerates. Thus, the gold is detrital and was not deposited by later hydrothermal fluids. This Middle Archean gold mineralization event corresponds to a period of rapid crustal growth in which much of the Kaapvaal craton was formed and is evidence for a significant noble metal flux from the mantle. PMID:12228713

  4. A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere.

    PubMed

    Kasting, J F; Pavlov, A A; Siefert, J L

    2001-06-01

    A simple coupled ecosystem-climate model is described that can predict levels of atmospheric CH4, CO2, and H2 during the Late Archean, given observed constraints on Earth's surface temperature. We find that methanogenic bacteria should have converted most of the available atmospheric H2 into CH4, and that CH4 may have been equal in importance to CO2 as a greenhouse gas. Photolysis of this CH4 may have produced a hydrocarbon smog layer that would have shielded the surface from solar UV radiation. Methanotrophic bacteria would have consumed some of the atmospheric CH4, but they would have been incapable of reducing CH4 to modern levels. The rise of O2 around 2.3 Ga would have drastically reduced the atmospheric CH4 concentration and may thereby have triggered the Huronian glaciation. PMID:11434106

  5. Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland.

    PubMed

    Lepland, A; van Zuilen, M A; Philippot, P

    2011-01-01

    Graphite, interpreted as altered bioorganic matter in an early Archean, ca. 3.83-Ga-old quartz-amphibole-pyroxene gneiss on Akilia Island, Greenland, has previously been claimed to be the earliest trace of life on Earth. Our petrographic and Raman spectroscopy data from this gneiss reveal the occurrence of graphitic material with the structure of nano-crystalline to crystalline graphite in trails and clusters of CO₂, CH₄ and H₂O bearing fluid inclusions. Irregular particles of graphitic material without a fluid phase, representing decrepitated fluid inclusions are common in such trails too, but occur also as dispersed individual or clustered particles. The occurrence of graphitic material associated with carbonic fluid inclusions is consistent with an abiologic, fluid deposited origin during a poly-metamorphic history. The evidence for fluid-deposited graphitic material greatly complicates any claim about remnants of early life in the Akilia rock. PMID:21070588

  6. Geophysical detection of relict metasomatism from an Archean (approximately 3.5 Ga) subduction zone.

    PubMed

    Chen, Chin-Wu; Rondenay, Stéphane; Evans, Rob L; Snyder, David B

    2009-11-20

    When plate tectonics started on Earth has been uncertain, and its role in the assembly of early continents is not well understood. By synthesizing coincident seismic and electrical profiles, we show that subduction processes formed the Archean Slave craton in Canada. The spatial overlap between a seismic discontinuity and a conductive anomaly at approximately 100 kilometers depth, in conjunction with the occurrence of mantle xenoliths rich in secondary minerals representative of a metasomatic front, supports cratonic assembly by subduction and accretion of lithospheric fragments. Although evidence of cratonic assembly is rarely preserved, these results suggest that plate tectonics was operating as early as Paleoarchean times, approximately 3.5 billion years ago (Ga). PMID:19965424

  7. Archean plate tectonics geodynamics: example from the Belomorian province, Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2014-05-01

    A fragment of the Archean collisional Belomorian orogen has been identified as the Belomorian province (BP) of the Fennoscandian Shield (Slabunov, 2008; Holtta et al., 2014). The province consists dominantly of Archean rocks, Early Paleoproterozoic rocks being less abundant. Rock of BP exhumed from middle crustal depths in Paleoproterozoic time (1.94-1.8 Ga). Seismic (CDP) profiling data (Sharov et al., 2010) show that the internal structure of BP reflects nappe tectonics: in Archean time, a collage of numerous slides was formed, and in Paleoproterozoic time the BP was thrusted on the Karelian craton and, in turn, was thrusted by rocks of the Kola province. The BP consists dominantly of Meso- and Neoarchean rock association (Slabunov et al. 2006). Neoarchean granitoids predominate, but eclogite-bearing metam?lange (Volodichev et al., 2004; Mints et al., 2010; Shchipansky et al., 2012), island-arc volcanics, front-arc basin sediments, ophiolite-type oceanic plateau-type rocks, collisional S-granites, kyanite-facies metamorphic rocks, molassa-type rocks, subalkaline granitoids and leucogabbro have been revealed among supracrustal rock associations. Rocks of the Belomorian province were subjected to multiple metamorphism in Archean and Paleoproterozoic time at moderately high to high pressures and were considerably deformed. High-grade supracrustal complexes make up not more than 20 % of the BP, but as they probably host ore and are crucial for the understanding of the formation and evolution of the structure, they are given close attention. Five generations of greenstone complexes of different ages: 2.88-2.82 Ga, 2.8-2.78 Ga, ca. 2.75 Ga , ca. 2.72 Ga and not later than 2.66 Ga, and two paragneiss complex in which sediments were formed 2.89-2.82 and 2.78 Ga ago, are distinguished. The main stages of crustal evolution in the BP: ca 2.88-2.82 Ga - the first subduction-accretion event marked by the following complexes: island-arc volcanics of the Keret GB; metagraywacke

  8. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  9. Origin of Archean anorthosites - Evidence from the Bad Vermilion Lake anorthosite complex, Ontario

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Morrison, D. A.; Phinney, W. C.; Wood, J.

    1983-01-01

    Studies of the petrology and geochemistry of the anorthosite complex at Bad Vermillion Lake, Canada, based on 400 samples collected in summer, 1979, are presented. Petrographic, microprobe, X-ray-fluorescence, and instrumental-neutron-activation analyses were performed. Major and trace-element abundances of the anorthositic rocks and surrounding mafic and felsic rocks are reported in tables, chondrite-normalized rare-earth-element patterns are shown, and the anorthositic, intrusive, and metavolcanic formations are characterized in detail. The anothrositic plagioclases are found to have a coarse porphyritic texture and calcic composition (80 normative mol percent An) similar to those of other Archean anorthosite complexes. Chemical similarities indicate that the gabbro and mafic to felsic metavolcanic formations associated with the anorthosite complex may be comagmatic with it, while the absence of ultramafic material and the bulk composition of the comagmatic basalt (about 20 wt percent Al2O3) suggest that much of the original comagmatic material has been separated.

  10. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  11. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa

    NASA Technical Reports Server (NTRS)

    Walsh, M. M.; Lowe, D. R. (Principal Investigator)

    1992-01-01

    There is widespread textural evidence for microbial activity in the cherts of the Early Archean Onverwacht Group. Layers with fine carbonaceous laminations resembling fossil microbial mats are abundant in the cherty metasediments of the predominantly basaltic Hooggenoeg and Kromberg Formations. In rare cases, filamentous microfossils are associated with the laminae. The morphologies of the fossils, as well as the texture of the encompassing laminae suggest an affinity to modern mat-dwelling cyanobacteria or bacteria. A variety of spheroidal and ellipsoidal structures present in cherts of the Hooggenoeg and Kromberg Formations resemble modern coccoidal bacteria and bacterial structures, including spores. The development of spores may have enabled early microorganisms to survive the relatively harsh surficial conditions, including the effects of very large meteorite impacts on the young Earth.

  12. Crustal anisotropy in the Archean Minnesota River Valley Subprovince and its significance

    NASA Astrophysics Data System (ADS)

    Gebelin, A.; Ferre, E. C.; Teyssier, C.

    2007-12-01

    The origin and evolution of the American continental lithosphere is a key question addressed by EarthScope. The Superior Province formed as an amalgamation of Archean/ Proterozoic terranes that subsequently acted as a stabilizing nucleus. This province is characterized by a strong seismic anisotropy (SWS = 1.3 s) of unknown origin. As suggested for the Archean Kaapvaal Craton (South Africa), this could be attributed (1) to current asthenospheric flow, or (2) to fossil lithospheric anisotropy, or (3) to the role of lithospheric keels on modern asthenospheric flow. The first hypothesis is not favored because SWS data for the Superior Province do not fit global mantle flow models. The second hypothesis would be compatible with obliquity between lithospheric mantle and crustal seismic anisotropies, possibly due to oblique docking. The third hypothesis would require asthenospheric flow to be controlled by lithospheric block geometry. The origin of seismic anisotropy and its spatial variations need to be determined to test these hypotheses. The deployment of USArray in the Superior Province in FY10, along with the prospect of deployment of a Flexible Array and the GeoFrame Superior focus area should provide a wealth of seismic data. Yet, the contribution of the Archean-early Proterozoic continental crust to seismic anisotropy is unknown. This study focusses on the Minnesota River Valley (MRV) Subprovince, part of the Superior Province. The MRV Subprovince consists of four juxtaposed blocks (Benson, Montevideo, Morton and Jeffers) of amphibolite to granulite grade migmatites, tonalites, granodiorites, diorites and pelitic rocks interlayered into each other. These blocks are separated by EW-dipping shear zones broadly parallel to SWS observations. In other parts of the world, the crustal seismic anisotropy is generally considered to be modest (SWS = 0.1-0.2 s), although experiments specifically designed to constrain it are scarce. The MRV represents a 200 km-wide, tilted

  13. Geophysical consequences of phanerozoic and Archean crustal evolution: Evidence from crustal cross-sections

    NASA Technical Reports Server (NTRS)

    Fountain, D. M.

    1983-01-01

    Geophysical properties of continental crust depend on the nature of crustal evolution. This is well illustrated by examination of two crustal cross-sections (1), the combined Ivrea-Verbano zone (IVZ) and Strona-Ceneri zone (SCZ) of northern Italy and the Pikwitonei granulite belt (PGB) and Cross Lake subprovince (CLS) of Manitoba. These two cross-sections are of particular interest because the IVZ and SCZ developed during Phanerozoic time whereas the PGB-CLS is an example of Archean crustal evolution. Consequently, each cross-section is geologically distinctive and, thus, exhibits very different geophysical properties such as density, seismic velocity, heat production, and magnetism. Results of geological investigations of each area are given.

  14. Early Proterozoic activity on Archean faults in the western Superior province - evidence from pseudotachylite

    USGS Publications Warehouse

    Peterman, Z.E.; Day, W.

    1989-01-01

    Major transcurrent faults in the Superior province developed in the Late Archean at the close of the Kenoran orogeny. Reactivation of some of these faults late in the Early Proterozoic is indicated by Rb-Sr analyses of pseudotachylite from the Rainy Lake-Seine River and Quetico faults in the Rainy Lake region of Minnesota and Ontario. Fault veins of pseudotachylite and immediately adjacent country rock at two localities yielded subparallel isochrons that are pooled for an age of 1947??23 Ma. K-Ar and Rb-Sr biotite ages register earlier regional cooling of the terrane at about 2500 Ma with no evidence of younger thermal overprinting at temperatures exceeding 300??C. Accordingly, the 1947??23 Ma age is interpreted as dating the formation of the pseudotachylite. Reactivation of existing faults at this time was caused by stresses transmitted from margins of the Superior province where compressional tectonic events were occurring. -Authors

  15. A Pb Isotope Window Into the Geodynamics of the Archean Mantle

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.

    2004-05-01

    The U-Pb isotope system provides us with a powerful tool for attacking problems of the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because the mobility of U makes initial Pb isotope ratios from old silicate rocks difficult if not impossible to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide us with snapshots into initial Pb ratios in these rocks because their Pb isotopic composition is time invariant (U/Pb=0) and is also buffered against disturbances by their high Pb concentrations. Initial Pb isotopic compositions determined from galenas of VMS deposits from the 2.7 Ga Abitibi greenstone belt define a highly linear Pb/Pb isotope array (207Pb/204Pb vs. 206Pb/204Pb), nearly coincident with the 2.7 Ga geochron, whose slope corresponds to an age of ~4.4 Ga. The Abitibi array has a large range of 207Pb/204Pb, remarkably the same magnitude as modern MORB, but 206Pb/204Pb variations only one-tenth as large as MORB. The U/Pb variations that produced these Pb isotopic relationships could only have been created early in the Earth's history when more radiogenic 207Pb was produced than 206Pb. The Pb isotopic variations also require that evolution of Pb took place in a system that was nearly closed between 4.4 and 2.7 Ga. The Abitibi crust that hosts these VMS deposits is widely characterized by depleted Nd and Hf isotopic compositions, consistent with a the Abitibi being a dominantly juvenile addition from depleted mantle at 2.7 Ga with little evidence of contributions from older crust. In contrast, the Pb isotopic composition of 2.7 Ga VMS galenas from Archean cratons where older crust is known to occur (e.g., Slave) have Pb isotopic compositions displaced toward higher 206Pb/204Pb, clearly indicating the contribution of pre-2.7 Ga crust in their genesis. The simple observation is that there is Pb isotopic evidence for older crust where it is known to exist today and this

  16. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa.

    PubMed

    Lowe, D R

    1994-12-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust. PMID:11539408

  17. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa.

    PubMed

    Walsh, M M

    1992-01-01

    There is widespread textural evidence for microbial activity in the cherts of the Early Archean Onverwacht Group. Layers with fine carbonaceous laminations resembling fossil microbial mats are abundant in the cherty metasediments of the predominantly basaltic Hooggenoeg and Kromberg Formations. In rare cases, filamentous microfossils are associated with the laminae. The morphologies of the fossils, as well as the texture of the encompassing laminae suggest an affinity to modern mat-dwelling cyanobacteria or bacteria. A variety of spheroidal and ellipsoidal structures present in cherts of the Hooggenoeg and Kromberg Formations resemble modern coccoidal bacteria and bacterial structures, including spores. The development of spores may have enabled early microorganisms to survive the relatively harsh surficial conditions, including the effects of very large meteorite impacts on the young Earth. PMID:11540926

  18. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  19. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    SciTech Connect

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  20. Characterizing the Purple Earth: Modeling the Globally Integrated Spectral Variability of the Archean Earth

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.; López, R.; Montañés-Rodríguez, P.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  1. Modeling the globally-integrated spectral variability of the Archean Earth: The purple planet

    NASA Astrophysics Data System (ADS)

    Palle, E.; Sanroma, E.; Parenteau, M. N.; Kiang, N. Y.; Gutierrez-Navarro, A. M.; Lopez, R.; Montañes-Rodríguez, P.

    2014-03-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3 Gyr ago. At that time, one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and bacteria concentration/ distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  2. Biogeochemical Processes in Late Archean Marine Biosphere Revealed by Isotopic and Molecular Records

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.

    2004-12-01

    The presence of shallow-marine oxygen oases and associated aerobic ecosystems in an otherwise anoxic and anaerobic world has been proposed by researchers to explain the anomalous 40 permil spread in organic-carbon isotope values during the late Archean. To test this hypothesis, we studied isotopic, molecular, and lithologic records of 2.7-2.5 Ga rocks of different depositional facies from the Hamersley Province, Western Australia. Kerogen carbon-isotopic compositions indicate that extreme 13C-depletion (more than -45 permil) was associated with shallow-marine-carbonate environments at 2.72 Ga and with deepwater environments thereafter. Moreover, kerogen-carbon-isotope values associated with carbonate environments became enriched by more than 10 permil over 100-150 Ma. These observations suggest that microbial processes responsible for extreme 13C-depletion became less significant in shallow carbonate environments, but remained important in deeper settings. Molecular biomarker ratios determined for associated bitumens: 1) strongly correlate to kerogen carbon-isotope values and other biomarker ratios, and, 2) show relationships with depositional facies and dolomite abundance giving credence to a syngenetic relationship with host rocks. The biomarker data confirm aerobic methanotrophs in the Late Archean biosphere, but not in strong association with extreme 13C-depletion. Biomarker patterns reflect a greater association of aerobic respiration and oxygenic photosynthesis in shallow carbonate environments compared to deeper settings. Collectively, the data record dramatic changes in carbon cycling associated with environmental partitioning of microbial processes and ecosystems over 100-150 Ma. Most likely, this represents increased bioavailability of strong electron acceptors with the expansion of oxidant-rich oases prior to rise in atmospheric oxygen.

  3. Pre-3000 Ma thermal history of the Archean Kaap Valley puton, South Africa

    NASA Astrophysics Data System (ADS)

    Layer, Paul W.; Kröner, Alfred; York, Derek

    1992-08-01

    The Kaap Valley pluton is one of several early Archean (3200-3500 Ma) tonalite-trondhjemite plutons that surround the Barberton Greenstone belt, southern Africa. Precise dating using single-grain 207Pb/206Pb evaporation of zircon and 40Ar/39Ar laser step-heating of hornblende and biotite indicates that, in its interior, the Kaap Valley pluton preserves a memory of its initial intrusion and cooling, which spanned a time from 3225 to 3142 Ma. The pluton also records the effect of a low-temperature thermal event at its margin as seen by a 40Ar/39Ar biotite age of 3035 Ma, which is perhaps related to hydrothermal activity and gold mineralization in the adjacent Barberton Greenstone belt. These pre-3000 Ma ages are not in agreement with results of dating studies from sedimentary rocks in the Barberton Greenstone belt and plutons south of the belt which show evidence of having been overprinted by late Archean events (2650-2700 Ma), and the Bushveld Complex intrusion (2050 Ma). These events have been interpreted as affecting most of the Kaapvaal craton. That the Kaap Valley pluton has escaped these and all other events since 3035 Ma with temperatures never reaching 250 °C implies that these large-scale events did not affect the entire craton and the overprinting seen elsewhere is of a more local nature. Thus, it is possible to determine the intrusive and cooling history of the pluton; these data can be used in developing models of heat flow, paleomagnetic remanence acquisition, and deformation events.

  4. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  5. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  6. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  7. Analog Models of Crustal-Scale Folding with Special Reference to the Archean

    NASA Astrophysics Data System (ADS)

    Peschler, A. P.; Benn, K.; Roest, W. R.

    2004-05-01

    We use analog experiments to investigate folding of continental crust subjected to different geothermal gradients and displacement rates. The experiments are designed with an eye to crustal-scale folding of Archean greenstone belts, however, the results may also be pertinent for crustal folding of younger terranes. Localized thermal anomalies are used to investigate effects of major additions of heat to the crust, such as might occur above a plume or in response to magmatic underplating. The scaled models are composed of five layers. The model upper crust is composed of silica sand overlying a thin base of silicone gum. Two paraffin waxes of different densities and with different melting temperatures are used for the middle and lower crust. The viscosities of paraffin waxes are modified by addition of heat from a source below the models, which leads to lower viscosities and eventually to melting. The upper mantle is modeled by a thick layer of the same silicone gum used for the lowermost upper crust. In our experiments, folding is the main response to shortening of the analog crust. The middle and lower crust analogs behave essentially as one ductile layer and respond to the shortening by buckling. Folding is accompanied by thickening of the paraffin wax layers in the intrados of folds and thinning in the extrados. In the upper crust analog, the first-order folding imposed by the middle and lower crustal layers is accompanied, in some experiments, by higher-order folding, by the formation of grabens above anticlines, and by reverse shear zones located near inflection lines on limbs of synclines. For the coolest thermal gradients, one anticline-syncline pair is formed. For warmer gradients, multiple folds develop that have shorter wavelengths and smaller amplitudes. Based on our models, we interpret that the increase of crustal temperatures may result in a decrease in wavelength and a decrease of the amplitude of the crustal folds. Changing the displacement rates

  8. Origin of Archean Chromitites in the Nuggihalli Schist Belt, Dharwar Craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Mondal, S. K.; Rosing, M. T.; Frei, R.

    2009-12-01

    Layered ultramafic-mafic rocks with chromitite bodies occur as sill-like intrusions within the Archean greenstone sequences of the Nuggihalli belt, Western Dharwar Craton. The 3.1Ga chromitite-bearing ultramafic-mafic rocks occur as dismembered en echelon, lenticular units that are conformable within the metasedimentary rocks, and surrounded by the tonalite-trondhjemite-granodiorite suite. The chromitite bodies are hosted within intensely deformed serpentinite, and associated with gabbro. The chromitite bodies have high length/width ratio (60-500 m/15 m) and occur in the form of pods and elongated lenses. Detailed electron microprobe study reveals high Cr/(Cr+Al)=0.85-0.86 and moderate Mg/(Mg+Fe2+)=0.38-0.58 of the primary chromite from the massive chromitite. Interstitial and included olivine and pyroxene grains within massive chromitite, exhibit very high Fo content (Fo96-98) and Mg-numbers (94-99) respectively. Chromite grains exhibit intense compositional variability due to subsolidus re-equilibration and low temperature hydrothermal alteration processes such as in the altered massive chromitite (70% chromite), serpentinite (2% chromite) and silicate-rich chromitite (45% chromite). In these associations, chromite grains are compositionally zoned and commonly altered to ferritchromit (rarely magnetite) along the rim and fractures. The primary chromite compositions are used to compute the parent melt that is characterised by low Al2O3 (8.38-10.63 wt%), moderate to high TiO2 (0.94-1.58 wt%) and FeO/MgO ratios of 0.46-0.92 wt%. The parent melt calculations indicate derivation from a high-Mg komatiitic basalt, and matches with the compositions of komatiitic rocks reported from the greenstone terrain. Parent melts are produced by high degrees of partial melting of a depleted source mantle evident from the refractory compositions of chromite, olivine and pyroxene. Tectonic discrimination diagrams indicate a supra-subduction zone setting (SSZ) for the Archean

  9. The Bombardment of the Earth During the Hadean and Early Archean Eras

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Bottke, W. F.; Elkins-Tanton, L. T.; Morbidelli, A.; Wuennemann, K.; Kring, D. A.; Bierhaus, M.

    2013-12-01

    Our knowledge of the Earth during the Hadean and early Archean eons (ca 4.5-3.5 Ga) is very limited, mainly because few rocks older than 3.8 Ga have been found (e.g. Harrison 2009). Hadean-era zircons have allowed us to glean important insights into this era, but their data has led to considerably different evolution models for the evolution of the early Earth; some predict a hellish world dominated by a molten surface with a sporadic steam atmosphere (e.g. Pollack 1997), while others have predicted a tranquil, cool surface with stable oceans (e.g. Wilde et al 2001; Valley et al 2002). To understand whether either model (or both) could be right, we believe it is useful to quantitatively examine the post Moon-forming impact bombardment of the early Earth. Over the last several years, through a combination of observations (e.g., Marchi et al 2012), theoretical models (e.g., Bottke et al 2012), and geochemical constraints from lunar rock (e.g. highly siderophile elements -HSE- abundances delivered to the Moon by impactors; the global number of lunar basins; the record of Archean-era impact spherule beds on Earth; Walker 2009; Neumann et al 2012), we have constructed a calibrated model of the early lunar impactor flux (Morbidelli et al 2012). Our results have now been extrapolated to the Earth, where they can make predictions about its early bombardment. Using a Monte Carlo code to account for the stochastic nature of major impacts, and constraining our results by the estimated HSE abundances of Earth's mantle (that were presumably delivered by impactors; Walker 2009; Bottke et al. 2010), we find the following trends. In the first ~100-200 Myr after the formation of the Moon, which we assume was created ~4.5 Ga, the Earth was almost entirely resurfaced by impacts. This bombardment, which included numerous D > 1000 km diameter impactors, should have vigorously mixed the crust and upper mantle. Between ~4.1-4.3 Ga, the impactor flux steadily decreased; though an uptick

  10. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the

  11. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  12. Archean crust in the Rio de la Plata Craton, Uruguay — SHRIMP U Pb zircon reconnaissance geochronology

    NASA Astrophysics Data System (ADS)

    Hartmann, Léo A.; Campal, Néstor; Santos, João Orestes S.; McNaughton, Neal J.; Bossi, Jorge; Schipilov, Alejandro; Lafon, Jean-Michel

    2001-11-01

    Two Archean units were detected in the center of the Nico Pérez Terrane of the Rio de la Plata Craton in Uruguay, the La China Complex, a deformed granite-greenstone belt and the Las Tetas Complex, a deformed sedimentary platform cover. Reconnaissance dating of zircons from three samples by U-Pb sensitive high-mass resolution ion microprobe (SHRIMP) indicates that the two units are amongst the oldest Archean continental remnants in South America. The La China metatonalite has zircons with igneous cores (3.41 Ga) with metamorphic rims between 3.10 and 2.7 Ga. A muscovite quartzite from the Las Tetas Complex has detrital zircons with ages between 3.26 and 3.14 Ga, while the main source of the Las Tetas metaconglomerate was dated by zircon at about 2.76 Ga. The interpretation is that a ˜3410 Ma greenstone belt was thrust-stacked with a 2.7 Ga carbonate-quartzite-pelite-conglomerate platform cover, so that granite-greenstone piles are positioned on top of cover rocks. The La China greenstone belt has intercalations of subvertical decameter-sized layers of talc-chlorite-tremolite schists with mafic and ultramafic amphibolites, a presumed volcanic komatiite/basalt sequence. The Las Tetas platform cover is a layered sequence of metamorphosed limestones, quartzites, conglomerates and pelites. Stromatolites occur in the carbonate sequence, whereas the pelites are now staurolite schists. The characterization of Archean continental remnants in the center of the Nico Pérez Terrane requires a reevaluation of the internal structure of the Rio de la Plata Craton. Important consequences emerge from this investigation for the understanding of the oldest environments in the South American crust and for the reconstruction of Archean paleocontinents.

  13. Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren B.

    2013-12-01

    This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That

  14. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  15. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  16. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    SciTech Connect

    Peterson, J.W. ); Geiger, C.A. )

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with a high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.

  17. How to draw down CO2 from severe Hadean to habitable Archean?

    NASA Astrophysics Data System (ADS)

    Zhelezinskaia, I.; Ding, S.; Mulyukova, E.; Martirosyan, N.; Johnson, A.; West, J. D.; Kolesnichenko, M.; Saloor, N.; Moucha, R.

    2015-12-01

    It has been hypothesized that as the magma ocean crystallized in the Hadean, volatiles such as CO2 and H2O were released to the surface culminating with the formation of a liquid ocean by about 4.4 Ga [1] and hot CO2-rich atmosphere [2]. The resulting late Hadean atmospheric pCO2 may have been as high as 100 bars [3] with corresponding surface temperatures ~500 K [4]. Geological evidence suggests that by the early-to-mid Archean, atmospheric pCO2 became less than 1 bar [5]. However, the mechanisms responsible for the great amount of CO2 drawdown in a relatively short period of time remain enigmatic. To identify these possible mechanisms, we have developed a box model during the CIDER 2015 Summer Program that takes into account geological constraints on basalt alteration [6, 7] and possible rate of new oceanic crust formation [8] for the Archean. Our model integrates geodynamic and geochemical approaches of interaction between the Hadean atmosphere, hydrosphere, oceanic crust, and mantle to drawdown CO2. Our primary assumption for the Hadean is the absence of the continental crust and thus continental weathering. Therefore in the model we present, the level of CO2 in the atmosphere is regulated by the formation of oceanic crust (OC), rate of the interaction between the ocean and OC, and carbonate subduction/CO2 degassing. Preliminary results suggest that it would take about 1 billion years for the atmospheric CO2 to decrease to 1 bar if the production of oceanic crust was 10 times more than today and the pH of the ocean was less than 7, making the basalt alteration more efficient. However, there is evidence that some continental crust began to form as early as 4.4 Ga [9] and therefore the role of continental weathering and its rate of CO2 drawdown will need to be further explored. References: [1] Wilde et al. (2001). Nature 409(6817), 175-178. [2] Walker (1985). Origins of Life and Evolution of the Biosphere 16(2), 117-127. [3] Elkins-Tanton (2008). EPSL, 271, 181

  18. Archean terrane docking: upper crust collision tectonics, Abitibi greenstone belt, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Mueller, W. U.; Daigneault, R.; Mortensen, J. K.; Chown, E. H.

    1996-11-01

    The northern (NVZ) and southern volcanic zones (SVZ) of the Abitibi greenstone belt are separated by the major E-trending Destor-Porcupine-Manneville fault zone (DPMFZ). The DPMFZ is interpreted to be the locus of Archean terrane docking between the older diffuse volcanic arc of the NVZ (2730-2710 Ma) and the younger arc segments of the SVZ (2705-2698 Ma). Two distinct evolutionary phases can be documented along the DPMFZ of the Abitibi greenstone belt and include (1) arc-arc collision occurring between 2697 and 2690 Ma, and (2) arc fragmentation between 2689 and 2680 Ma. Identification of these two events along the DPMFZ is based on detailed structural studies, sedimentary basin analysis, and precise UPb age determinations. The thrusting event, representative of the arc-arc collision phase, is characterized by shallow north-dipping foliations (20-40°) and dip-parallel stretching lineations in the eastern Manneville segment of the DPMFZ. Local overturned mafic pillowed units suggest recumbent folding. Late strike-slip or transcurrent movement displayed in the late-orogenic sedimentary Duparquet Basin records the arc fragmentation phase. Basin geometry, E-trending en-echelon folds, shallow E-plunging stretching lineations and a late NE-striking cleavage cross-cutting the folds support a dextral shear sense along the western Destor-Porcupine segment of the DPMFZ. The sedimentary facies observed in the basin are consistent with those of modern strike-slip basins located along the East Anatolian fault, Turkey (Hazar Lake) and the Hope fault, New Zealand (Hanmer Basin). Precise UPb zircon age determinations from porphyry stocks located at the northern and southern limits of the Duparquet Basin, yielded 2681 ± 1 Ma and 2689 +3.2-2.9 Ma, respectively. These ages constrain the rapid change from thrusting to transcurrent movement. It is apparent that once thrusting ceased the response to oblique subduction continued in the form of strike-slip displacement. Modern

  19. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    NASA Astrophysics Data System (ADS)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  20. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  1. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  2. Petrogenesis of silicic magmatism related to the ˜ 2.44 Ga rifting of Archean crust in Koillismaa, eastern Finland

    NASA Astrophysics Data System (ADS)

    Lauri, L. S.; Rämö, O. T.; Huhma, H.; Mänttäri, I.; Räsänen, J.

    2006-01-01

    Early Paleoproterozoic extension in the Archean craton of the Fennoscandian shield led to the emplacement of several 2.44 Ga layered gabbroic intrusive complexes in northern Finland and adjacent Russia. Closely associated with them are felsic rocks of similar age: (1) the Sirniö Group volcanic rocks on top of the Koillismaa layered complex; (2) a quartz alkali feldspar syenite at Kynsijärvi near the Koillismaa complex; and (3) an aluminous A-type granite at Nuorunen near the Oulanka layered complex. In the Koillismaa area, the ruptured Archean crust consists of ortho- and paragneisses that were intruded and migmatized by somewhat younger granites. U-Pb zircon data indicate that the gneisses are at least ˜2.8 Ga old and that the granites were crystallized at ˜2.7 Ga. Both rock types show a common monazite age of 2695 Ma that registers the peak of granulite facies metamorphism and, possibly, the intrusion of the granites. The local Neoarchean crust has ɛNd(at 2440 Ma) values between - 5 and - 8.5. The mafic rocks of the Koillismaa complex show initial ɛNd(at 2440 Ma) values around - 1.5 and those of the Oulanka complex range from - 2.1 to 0. The ɛNd value (- 4.8) and TDM model age (2.9-3.0 Ga) of the Kynsijärvi quartz alkali feldspar syenite are within the limits of the evolution path of the local Archean crust. The corresponding values for the Nuorunen granite are - 2.0 and 2.76 Ga and are thus closer to those of the mafic rocks. The volcanic rocks of the Sirniö Group show more scatter with initial ɛNd(at 2440 Ma) values of - 1.1 to - 5.3; the lowest ɛNd values probably reflect later disturbance-magmatic values cluster around - 2. Major and trace element modeling shows that fractional crystallization of the Koillismaa complex parental magma or partial melting of the Archean crust cannot account for the ˜ 2.44 Ga silicic rocks of Koillismaa. The geochemical and Nd isotope characteristics of the volcanic rocks and the Kynsijärvi quartz alkali feldspar

  3. Carbon Monoxide Cycling in Hot Spring Microbial Communities and Links to the Composition of the Archean Atmosphere

    NASA Astrophysics Data System (ADS)

    Colman, A. S.; Techtmann, S.; He, B.; Robb, F.

    2010-12-01

    Carbon monoxide (CO) budgets for the Archean atmosphere generally treat the early biosphere as a major sink for CO, thereby preventing the development of a “CO runaway” atmosphere. Indeed, hydrogenogenic carboxydotrophy (CO + H2O → CO2 + H2) is an anaerobic metabolism that appears to be geographically widespread in hydrothermal microbial ecosystems, including those we have studied at hot springs in Uzon Caldera, Kamchatka, Russia. Carboxydotrophs have been isolated that can use CO as sole carbon and energy source in culture medium with headspace CO partial pressures ranging from ≤ 10-4 atm to ≥ 2 atm. In modern environments, this metabolism was thought to depend on CO supplied as a dissolved and free phase constituent of geothermal fluids. Recent dissolved and free phase gas measurements in Uzon hot springs, coupled with rate determinations of CO consumption in hot spring microbial mats, indicate that the supply of CO from volcanic gases is insufficient to meet the needs of the microbial communities in hot spring sediments. Instead, proximal biological production of CO by environmental microbial consortia must be invoked. The plausibility of widespread biogenic production of CO in natural microbial communities is supported by recent pure culture work that has shown small but ecologically significant CO production by certain methanogens and sulfate reducers. In the Archean, leakage to the atmosphere of even a small fraction of the biologically produced CO would have exceeded the volcanic outgassing flux. Biogenic CO production would also have diminished the biospheric sink for atmospheric CO. This would have had a major influence on the chemistry of the Archean atmosphere, possibly enabling CO concentrations to reach percent levels in the atmosphere. Elevated atmospheric CO concentrations in the Archean would have exerted significant pressures on the early biosphere. Futhermore, CO in the Archean atmosphere would have titrated OH radical, influencing the

  4. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  5. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  6. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  7. New Constraints on Archean-Paleoproterozoic Carbonate Chemistry and pCO2

    NASA Astrophysics Data System (ADS)

    Blättler, C. L.; Higgins, J. A.

    2015-12-01

    Very few constraints exist on Archean and Proterozoic seawater chemistry, leaving huge uncertainties on the boundary conditions for the evolution of life and a habitable environment. Ancient carbonate chemistry, which is intimately related to oceanic pH and atmospheric pCO2, remains particularly uncertain, despite its importance for understanding environments and temperatures on early Earth. Using a new application of high-precision calcium isotope measurements, we present data from the Tumbiana Formation (2.7 Ga, Western Australia), the Campbellrand Platform (2.6 Ga, South Africa) and the Pethei Group (1.9 Ga, Northwest Territories, Canada) that allow us to place constraints on carbonate chemistry both before and after the Great Oxidation Event. By analogy with calcium isotope behavior in sulfate minerals (Blättler and Higgins, 2014) and Mono Lake (Nielsen and DePaolo, 2013), we infer a lower limit on the ratio of calcium ions to carbonate alkalinity during deposition of these three sedimentary sequences. These data rule out the soda ocean hypothesis (Kempe and Degens, 1985) and make further predictions about the role of CO2 in solving the faint young Sun problem.

  8. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere

    PubMed Central

    Shaheen, Robina; Abaunza, Mariana M.; Jackson, Teresa L.; McCabe, Justin; Savarino, Joël; Thiemens, Mark H.

    2014-01-01

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984–2001) showed the highest S-isotopic anomalies (Δ33S = +1.66‰ and Δ36S = +2‰) in a nonvolcanic (1998–1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997–1998)-induced changes in troposphere–stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ36S = −0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  9. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  10. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin

    NASA Technical Reports Server (NTRS)

    Arrhenius, T.; Arrhenius, G.; Paplawsky, W.

    1994-01-01

    The sources and speciation of reduced carbon and nitrogen inferred for the early Archean are reviewed in terms of current observations and models, and known chemical reactions. Within this framework hydrogen cyanide and cyanide ion in significant concentration would have been eliminated by reaction with excess formaldehyde to form cyanohydrin (glycolonitrile), and with ferrous ion to formferrocyanide. Natural reactions of these molecules would under such conditions deserve special consideration in modeling of primordial organochemical processes. As a step in this direction, transformation reactions have been investigated involving glycolonitrile in the presence of water. We find that glycolonitrile, formed from formaldehyde and hydrogen cyanide or cyanide ion, spontaneously cyclodimerizes to 4-amino-2-hydroxymethyloxazole. The crystalline dimer is the major product at low temperatue (approximately 0 C); the yield diminishes with increasing temperature at the expense of polymerization and hydrolysis products. Hydrolysis of glycolamide and of oxazole yields a number of simpler organic molecules, including ammonia and glycolamide. The spontaneous polymerization of glycolonitrile and its dimer gives rise to soluble, cationic oligomers of as yet unknown structure, and, unless arrested, to a viscous liquid, insoluble in water. A loss of cyanide by reaction with formaldehyde, inferred for the early terrestrial hydrosphere and cryosphere would present a dilemma for hypotheses invoking cyanide and related compounds as concentrated reactants capable of forming biomolecular precursor species. Attempts to escape from its horns may take advantage of the efficient concentration and separation of cyanide as solid ferriferrocyanide, and most directly of reactions of glycolonitrile and its derivatives.

  11. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  12. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  13. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  14. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation. PMID:10757939

  15. Archean high δ18O Mg-diorite: crustal-derived melt hybridized with enriched mafic accumulated rocks

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Guo, Jing-Hui

    2016-04-01

    The genesis of Mg-diorite or sanukitoids has significances to understand the crustal growth and tectonic style in Archean. The chemical compositions of minerals and rocks, whole-rock Sm-Nd isotope, zircon SIMS U-Pb ages and Hf-O isotopes of Zhulagou (ZLG) Mg-diorite and their mafic enclaves (Yinshan Block, North China Craton) were studied to place constraints on their sources and genesis, and therefore provide information about dynamic processes. The ~2520 Ma ZLG diorites have intermediate SiO2 (59.4-65.5 wt.%), high Mg# (49-52), Cr (90.4-438 ppm), Ni (15.0-95.9 ppm), Sr (436-882 ppm) and Ba (237-1206 ppm) contents with fractionated rare earth elements (REE, LaN/YbN = 9.1-40.5) and depleted high field-strength element (HFSE, e.g. Nb, Ta and Ti). These geochemical signatures are similar to those Archean high-Mg diorites and sanukitoids. However, they are sodic with low K2O/Na2O (0.14-0.49) ratios, exhibiting an affinity with Archean trondhjemite-tonalite-granodiorite (TTG). Abundant coeval amphibole-bearing mafic enclaves (~2525 Ma) are enclosed within the ZLG diorites. They display low SiO2 (46.5-50.3 wt.%) contents but high concentrations of MgO (9.0-14.5 wt.%), Cr (647-1946 ppm) and Ni (197-280 ppm). They are enriched in K2O (0.64-3.43 wt.%) and large ion lithophile element (LILE), depleted in Nb, Ta and Ti. Combined with their concave REE patterns and prominent negative Eu anomaly, we suggest that they are cumulates of the melt which probably derived from subduction-related Archean metasomatized mantle source. Mineral trace element modelling results, similar ɛNd(t) (+0.6 to +2.3) and δ18O(Zrc) values (~8.6-9.0 ‰) of the diorites and mafic enclaves, strongly reflect that they had experienced intense interaction and hybridization. Evolved whole-rock Nd isotopes (TDM = 2.80-2.70 Ga), variable zircon ɛHf (t) (-1.6 to +6.0) and high δ18O (~9.0 ‰) values of the diorites indicate that they most likely originated from melting of an older continental crust (≥ 2

  16. A Detailed Record of Archean Biogochemical Cycles and Seawater Chemistry Preserved in Black Shales of the Abitibi Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Scott, C.; Planavsky, N. J.; Bates, S. M.; Wing, B. A.; Lyons, T. W.

    2011-12-01

    Geological and biological evolution are intimately linked within the Earth System through the medium of seawater. Thus, in order to track the co-evolution of Life and Earth during the Archean Eon we must determine how biogeochemical cycles responded to and initiated changes in the composition of Archean seawater. Among our best records of biogeochemical cycles and seawater chemistry are organic carbon-rich black shales. Here we present a detailed multi-proxy study of 2.7 Ga black shales from the Abitibi Greenstone Belt, Canada. Abitibi shales demonstrate extreme enrichments in total organic carbon (up to 15 wt. %) and total sulfur (up to 6 wt. %) reflecting vigorous biogeochemical cycling in the basin, likely driven by cyanobacteria. The speciation of reactive Fe minerals indicates that pyrite formed in a sulfidic water column (euxinia) and that dissolved Fe was the limiting reactant. The deposition of more than 50 m of euxinic black shales suggests that the Fe-rich conditions reflected by Archean BIF deposition were not necessarily ubiquitous. Biologically significant trace metals fall into two categories. Metals that can be delivered to seawater in large quantities from hydrothermal sources (e.g., Cu and Zn) are enriched in the shales, reflecting their relative abundance in seawater. Conversely, metals that are primarily delivered to the ocean during oxidative weathering of the continents (e. g., Mo and V) are largely absent from the shales, reflecting depleted seawater inventories. Thus, trace metal supply at 2.7 Ga was still dominated by geological processes. Biological forcing of trace metal inventories, through oxidative weathering of the continents, was not initiated until 2.5 Ga, when Mo enrichments are first observed in the Mt. McRae Shale, Hamersley Basin. Multiple sulfur isotope analysis (32S, 33S, 34S) of disseminated pyrite displays large mass independent fractionations (Δ33S up to 6 %) reflecting a sulfur cycle dominated by atmospheric processes

  17. Analysis of shear banding in twelve materials

    NASA Astrophysics Data System (ADS)

    Batra, R. C.; Kim, C. H.

    The problem of the initiation and growth of shear bands in 12 different materials, namely, OFHC copper, Cartridge brass, Nickel 200, Armco IF (interstitial free) iron, Carpenter electric iron, 1006 steel, 2024-T351 aluminum, 7039 aluminum, low alloy steel, S-7 tool steel, Tungsten alloy, and Depleted Uranium (DU -0.75 Ti) is studied with the objectives of finding out when a shear band initiates, and upon what parameters does the band width depend. The nonlinear coupled partial differential equations governing the overall simple shearing deformations of a thermally softening viscoplastic block are analyzed. It is assumed that the thermomechanical response of these materials can be adequately represented by the Johnson-Cook law, and the only inhomogeneity present in the block is the variation in its thickness. The effect of the defect size on the initiation and subsequent growth of the band is also studied. It is found that, for each one of these 12 materials, the deformation has become nonhomogeneous by the time the maximum shear stress occurs. Also the band width, computed when the shear stress has dropped to 85 percent of its peak value, does not correlate well with the thermal conductivity of the material. The band begins to grow rapidly when the shear stress has dropped to 90 percent of its maximum value.

  18. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.

    PubMed

    Field, E K; Kato, S; Findlay, A J; MacDonald, D J; Chiu, B K; Luther, G W; Chan, C S

    2016-09-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypothesis was that cyanobacteria produced oxygen which oxidized iron abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to banded iron formations (BIFs) and other ferruginous deposits. However, there is currently little evidence for planktonic marine iron oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 μm O2 , <0.2 μm H2 S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Cyanobacteria may be providing oxygen for microaerophilic iron oxidation through a symbiotic relationship; at high Fe(II) levels, cyanobacteria would gain protection against Fe(II) toxicity. A Zetaproteobacteria isolate from this site oxidized iron at rates sufficient to account for deposition of geologic iron formations. In sum, our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron oxidizers were likely important drivers of iron mineralization in ancient oceans. PMID:27384464

  19. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  20. Selection of Portable Spectrometers for Planetary Exploration: A Comparison of 532 nm and 785 nm Raman Spectroscopy of Reduced Carbon in Archean Cherts

    PubMed Central

    Hutchinson, Ian B.; Ingley, Richard; Marshall, Craig P.; Olcott Marshall, Alison; Edwards, Howell G.M.

    2015-01-01

    Abstract Knowledge and understanding of the martian environment has advanced greatly over the past two decades, beginning with NASA's return to the surface of Mars with the Pathfinder mission and its rover Sojourner in 1997 and continuing today with data being returned by the Curiosity rover. Reduced carbon, however, is yet to be detected on the martian surface, despite its abundance in meteorites originating from the planet. If carbon is detected on Mars, it could be a remnant of extinct life, although an abiotic source is much more likely. If the latter is the case, environmental carbonaceous material would still provide a source of carbon that could be utilized by microbial life for biochemical synthesis and could therefore act as a marker for potential habitats, indicating regions that should be investigated further. For this reason, the detection and characterization of reduced or organic carbon is a top priority for both the ESA/Roscosmos ExoMars rover, currently due for launch in 2018, and for NASA's Mars 2020 mission. Here, we present a Raman spectroscopic study of Archean chert Mars analog samples from the Pilbara Craton, Western Australia. Raman spectra were acquired with a flight-representative 532 nm instrument and a 785 nm instrument with similar operating parameters. Reduced carbon was successfully detected with both instruments; however, its Raman bands were detected more readily with 785 nm excitation, and the corresponding spectra exhibited superior signal-to-noise ratios and reduced background levels. Key Words: Raman spectroscopy—Archean—Organic matter—Planetary science—Mars. Astrobiology 15, 420–429. PMID:26060980

  1. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  2. High-temperature superconductivity: Electron mirages in an iron salt

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2014-11-01

    The detection of unusual 'mirage' energy bands in photoemission spectra of single-atom layers of iron selenide reveals the probable cause of high-temperature superconductivity in these artificial structures. See Letter p.245

  3. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. PMID:25324177

  4. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  5. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    NASA Astrophysics Data System (ADS)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  6. Formation and exhumation mechanisms of high-grade rocks: Sagduction and Subduction processes during the Archean

    NASA Astrophysics Data System (ADS)

    François, C.; Philippot, P.; Rey, P.

    2012-04-01

    The interpretation of high-grade rocks in the Archean is controversial. Mid- to high-pressure assemblages are commonly interpreted in terms of plate tectonic processes including subduction. In the Archean however, mid- to high-pressure assemblages could have been also produced during the sagduction of greenstone covers into their crustal basement. Often put in opposition, sagduction and subduction are not incompatible processes. In order to better documents the P-T-t signatures of both processes we are conducting a comparative study - structural, metamorphic and numerical - of supposedly subduction-related metamorphic rocks described in ~3.5-3.2 Ga old Barberton greenstones (Kaapvaal Craton, South Africa) (Moyen et al., 2006), and supposedly sagduction-related high-grade rocks in the 3.5-3.2 Ga old East Pilbara Craton (Western Australia) (Delor et al., 1991). Interestingly, these two terranes display dome-and-keel structure in which narrow belts of greenstone (ultramafic and mafic metabasalts) and overlying sedimentary rocks occur in association with broad TTG (trondhjemite-tonalite-granodiorite) granitoids. We present here preliminary results from fieldwork, metamorphic investigations and numerical experiments. Petrological analyses have been conducted on metabasalts and metasediments in enclaves in migmatitic and granitic rocks, both inside and outside granitic domes. We sampled high-grade mafic rocks in enclaves within the NNE trending steeply deeping migmatitic Inyoni shear zone located between the 3.45 Ga Stolzburg pluton and the 3.2 Ga Badplass gneisses in the southern Barberton terrane (Moyen et al., 2006). Preliminary P-T estimations have been performed with multi-equilibrium approach using Thermocalc and with thermodynamic modeling using PerpleX on garnet-amphibole-clinopyroxene-epidote-plagioclase assemblage reveals pressures of 12-14 kbar at temperatures of 600-650°C for the metamorphic peak. Maximum temperature is reached at the beginning of exhumation

  7. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa

    NASA Astrophysics Data System (ADS)

    Wilson, Allan

    2013-04-01

    The Pongola Supergroup is one of the most extensive and well preserved volcano-sedimentary successions emplaced in a continental setting in the Meso-Archean (c. 2.95 Ga). It contrasts with both the older (Barberton type c.3.5 Ga) and younger (Belingwe type c.2.7 Ga) greenstone belts in southern Africa in that the sequence has not undergone the strong horizontal compressional tectonics typically related to greenstone belt-TTG environments. However, it is appropriate to compare this sequence with rocks of the Barberton greenstone belt by which the final phase of deposition preceded that of the juxtaposed Pongola basin with a relatively small time interval. The Pongola succession, which commenced with the first major magmatic event after the Barberton greenstone belt, overlies granitoids and remnants of greenstone belts in SE South Africa and in SW Swaziland. Formation was not in a continental rift environment but most likely in a marginal epicontinental basin with syn-depositional subsidence in a half-graben fault system in the type area. The Pongola rocks occur in two domains related to a NW-trending central basement high in the Kaapvaal Craton and achieving a maximum thickness of 8 km in the northern areas. The lower section (Nsuze group 3.7 km thick) is made up mainly of lavas and pyroclastic rocks and the upper section (Mozaan Group 4.3 km thick) is aranaceous sediments and argillites with a thick volcanic unit observed in the south-eastern facies. Chemical affinities of the lavas include tholeiite and calc-alkaline over the compositional range of basalt to rhyolite. There is a preponderance of andesites in the compositional array. The preservation of these rocks gives insight into the range of volcanic processes that took place at this stage of Earth history and in some areas it is possible to identify eruptions from a single source over several kilometres, as well as feeder-dyke systems to the lava flows. Simultaneous eruption of contrasting magmas from several

  8. Micro-scale (1.5 microm) sulphur isotope analysis of contemporary and early Archean pyrite.

    PubMed

    Nishizawa, Manabu; Maruyama, Shigenori; Urabe, Tetsuro; Takahata, Naoto; Sano, Yuji

    2010-05-30

    We present a method for in situ sulphur (S) isotopic analysis of significantly small areas (1.5 microm in diameter) in pyrite using secondary ion mass spectrometry (NanoSIMS) to interpret microbial sulphur metabolism in the early earth. We evaluated the precision and accuracy of S isotopic ratios obtained by this method using hydrothermal pyrite samples with homogeneous S isotopic ratios. The internal precision of the delta(34)S value was 1.5 per thousand at the level of 1 sigma of standard error (named 1SE) for a single spot, while the external reproducibility was estimated to be 1.6 per thousand at the level of 1 sigma of standard deviation (named 1SD, n = 25). For each separate sample, the average delta(34)S value was comparable with that measured by a conventional method, and the accuracy was better than 2.3 per thousand. Consequently, the in situ method is sufficiently accurate and precise to detect the S isotopic variations of small sample of the pyrite (less than 20 microm) that occurs ubiquitously in ancient sedimentary rocks. This method was applied to measure the S isotopic distribution of pyrite within black chert fragments in early Archean sandstone. The pyrite had isotopic zoning with a (34)S-depleted core and (34)S-enriched rim, suggesting isotopic evolution of the source H(2)S from -15 to -5 per thousand. Production of H(2)S by microbial sulphate reduction (MSR) in a closed system provides a possible explanation for both the (34)S-depleted initial H(2)S and the progressive increase in the delta(34)S(H2S) value. Although more extensive data are necessary to strengthen the explanation for the origin of the MSR, the results show that the S isotopic distribution within pyrite crystals may be a key tracer for MSR activity in the early earth. PMID:20411578

  9. Cenozoic uplift on the West Greenland margin: active sedimentary basins in quiet Archean terranes.

    NASA Astrophysics Data System (ADS)

    Jess, Scott; Stephenson, Randell; Brown, Roderick

    2016-04-01

    The North Atlantic is believed by some authors to have experienced tectonically induced uplift within the Cenozoic. Examination of evidence, onshore and offshore, has been interpreted to imply the presence of kilometre scale uplift across the margins of the Barents Sea, North Sea, Baffin Bay and Greenland Sea. Development of topography on the West Greenland margin (Baffin Bay), in particular, has been subject to much discussion and dispute. A series of low temperature thermochronological (AFT and AHe) studies onshore and interpretation of seismic architecture offshore have suggested uplift of the entire margin totalling ~3km. However, challenges to this work and recent analysis on the opposing margin (Baffin Island) have raised questions about the validity of this interpretation. The present work reviews and remodels the thermochronological data from onshore West Greenland with the aim of re-evaluating our understanding of the margin's history. New concepts within the discipline, such as effect of radiation damage on Helium diffusivity, contemporary modelling approaches and denudational mapping are all utilised to investigate alternative interpretations to this margins complex post rift evolution. In contrast to earlier studies our new approach indicates slow protracted cooling across much of the region; however, reworked sedimentary samples taken from the Cretaceous Nuussuaq Basin display periods of rapid reheating and cooling. These new models suggest the Nuussuaq Basin experienced a tectonically active Cenozoic, while the surrounding Archean basement remained quiet. Faults located within the basin appear to have been reactivated during the Palaeocene and Eocene, a period of well-documented inversion events throughout the North Atlantic, and may have resulted in subaerial kilometre scale uplift. This interpretation of the margin's evolution has wider implications for the treatment of low temperature thermochronological data and the geological history of the North

  10. Geochemistry of archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance

    SciTech Connect

    Wronkiewicz, D.J.; Condie, K.C.

    1987-09-01

    With a few exceptions, shales from the Archean Witwatersrand Supergroup in South Africa are depleted in Na, Ca, Large ion lithophile elements (LILE, rare earth elements (REE) and half field strength elements ((HFSE) compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable, even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism. Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models abased on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite.

  11. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    NASA Astrophysics Data System (ADS)

    Day, Warren C.; Weiblen, P. W.

    1986-07-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite ( S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite ( I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.

  12. Geological Setting of Diamond Drilling for the Archean Biosphere Drilling Project, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Hickman, A.

    2004-12-01

    The Archean Biosphere Drilling Project (ABDP) is a collaborative international research project conducting systematic (bio)geochemical investigations to improve our understanding of the biosphere of the early Earth. The Pilbara Craton of Western Australia, which includes exceptionally well preserved 3.52 to 2.70 Ga sedimentary sequences, was selected for an innovative sampling program commencing in 2003. To avoid near-surface alteration and contamination effects, sampling was by diamond drilling to depths of between 150 and 300 m, and was located at sites where the target lithologies were least deformed and had lowest metamorphic grade (below 300°C). The first of five successful drilling sites (Jasper Deposit) targeted red, white and black chert in the 3.46 Ga Marble Bar Chert Member. This chert marks the top of a thick mafic-felsic volcanic cycle, the third of four such cycles formed by mantle plumes between 3.52 and 3.43 Ga. The geological setting was a volcanic plateau founded on 3.72 to 3.60 Ga sialic crust (isotopic evidence). The second hole (Salgash) was sited on the basal section of the fourth cycle, and sampled sulfidic (Cu-Zn-Fe), carbon-rich shale and sandstone units separated by flows of peridotite. The third hole (Eastern Creek) was sited on the margin of a moderately deep-water rift basin, the 2.95 to 2.91 Ga Mosquito Creek Basin. This is dominated by turbidites, but the sandstones and carbon-rich shales intersected at the drilling site were deposited in shallower water. The fourth and fifth holes, located 300 km apart, sampled 2.77 to 2.76 Ga continental formations of the Fortescue Group; both holes included black shales.

  13. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Cabral, R. A.; Jackson, M. G.; Vidito, C.; Day, J. M. D.; Hauri, E. H.

    2014-06-01

    Lavas from Mangaia in the Cook-Austral island chain, Polynesia, define an HIMU (or high μ, where μ=U238/Pb204) global isotopic end-member among ocean island basalts (OIB) with the highest 206,207,208Pb/204Pb. This geochemical signature is interpreted to reflect a recycled oceanic crust component in the mantle source. Mass independently fractionated (MIF) sulfur isotopes indicate that Mangaia lavas sampled recycled Archean material that was once at the Earth's surface, likely hydrothermally-modified oceanic crust. Recent models have proposed that crust that is subducted and then returned to the surface in a mantle plume is expected to transform to pyroxenite/eclogite during transit through the mantle. Here we examine this hypothesis for Mangaia using high-precision electron microprobe analysis on olivine phenocrysts. Contrary to expectations of a crustal component and, hence pyroxenite, results show a mixed peridotite and pyroxenite source, with peridotite dominating. If the isotopic compositions were inherited from subduction of recycled oceanic crust, our work shows that this source has phantom-like properties in that it can have its lithological identity destroyed while its isotope ratios are preserved. This may occur by partial melting of the pyroxenite and injection of its silicic melts into the surrounding mantle peridotite, yielding a refertilized peridotite. Evidence from one sample reveals that not all pyroxenite in the melting region was destroyed. Identification of source lithology using olivine phenocryst chemistry can be further compromised by magma chamber fractional crystallization, recharge, and mixing. We conclude that the commonly used terms mantle “heterogeneities” and “streaks” are ambiguous, and distinction should be made of its lithological and isotopic properties.

  14. 10. VIEW OF PORTIONS OF THE CONCRETE CAUSEWAY, THE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF PORTIONS OF THE CONCRETE CAUSEWAY, THE IRON BRIDGE AND STONE ABUTMENTS, TAKEN ON THE NORTH SIDE OF THE STRUCTURE. NOTE THE IRON BANDS PLACED ABOUT THE ABUTMENT CORNICE. - Freedom Bridge, Spanning West Fork of White River at County Road 590 South, Freedom, Owen County, IN

  15. Ferritin associates with marginal band microtubules

    SciTech Connect

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich . E-mail: friedrich.propst@univie.ac.at

    2007-05-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir.

  16. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  17. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    USGS Publications Warehouse

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  18. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  19. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  20. Mineral inclusions in diamonds from the Kelsey Lake Mine, Colorado, USA: Depleted Archean mantle beneath the Proterozoic Yavapai province

    NASA Astrophysics Data System (ADS)

    Schulze, Daniel J.; Coopersmith, Howard G.; Harte, Ben; Pizzolato, Lori-Ann

    2008-03-01

    Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr 2O 3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr 2O 3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ 13C PDB = -6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from "normal" for the upper mantle (δ 13C PDB = -5.5‰) to somewhat low (δ 13C PDB = -10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic

  1. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with

  2. The Khida terrane - Geochronological and isotopic evidence for Paleoproterozoic and Archean crust in the eastern Arabian Shield of Saudi Arabia

    USGS Publications Warehouse

    Whitehouse, M.J.; Stoeser, D.B.; Stacey, J.S.

    2001-01-01

    The Khida terrane of the eastern Arabian Shield of Saudi Arabia has been proposed as being underlain by Paleoproterozoic to Archean continental crust (Stoeser and Stacey, 1988). Detailed geological aspects of the Khida terrane, particularly resulting from new fieldwork during 1999, are discussed in a companion abstract (Stoeser et al., this volume). We present conventional and ion- microprobe U-Pb zircon geoenronology, Nd whole-rock, and feldspar Pb isotopic data that further elucidate the pre-Pan-African evolution of the Khida terrane. Locations for the Muhayil samples described below are shown in figure 2 of Stoeser et al. (this volume). 

  3. Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:

  4. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1991-01-01

    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  5. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  6. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  7. X-Band/Ka-Band Dichroic Plate

    NASA Technical Reports Server (NTRS)

    Chen, Jacqueline C.

    1993-01-01

    Dichroic plate designed nearly transparent to circularly polarized microwaves at frequencies between 31.8 and 34.7 GHz (in and near Ka band) and reflective at frequencies between 8.4 and 8.5 GHz (in the X band). Made of electrically conductive material and contains rectangular holes in staggered pattern.

  8. Precipitation of iron minerals by a natural microbial consortium

    SciTech Connect

    Brown, D.A.; Sherriff, B.L.; Sparling, R.; Sawicki, J.A.

    1999-08-01

    A microbial biofilm consortium enriched from Shield surface water is able to mediate geochemical cycling of iron within a biofilm. Iron can be leached from Fe(II) containing minerals such as magnetite, biotite and ilmenite to generate a colloidal Fe(III) suspension. The Fe(III) can then be reduced back to Fe(II) by iron-reducing bacteria that utilize it as an electron acceptor. On precipitation, different iron compounds are formed depending on the ratio of iron to carbon in the media and upon the local environment. Moessbauer and X-ray diffraction spectroscopy show these compounds to include ferrous hydroxide, vivianite, ferrihydrite and hematite. These minerals may then become incorporated into stratifer iron deposits such as Banded Iron Formations.

  9. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  10. Role of Plumes and Plates in the Construction and Preservation of Hadean-Archean Continental Nuclei

    NASA Astrophysics Data System (ADS)

    Mueller, P. A.; Mogk, D. W.; Henry, D.; Wooden, J.

    2014-12-01

    Crust and lithosphere formed in modern island arc and plume environments exhibit strong contrasts in both structure and composition compared to present day continents. The limited inventory of Hadean and Eoarchean material available for study, the possibility that the preserved record is biased, and the lack of continental crust on other terrestrial planets, make it difficult to determine the nature of the first continental nuclei. Nonetheless, certain first order similarities in preserved Archean continental crust suggest that these continental nuclei (microcontinents or protocontinents) allow us to establish limits on processes of early crustal genesis Based on geochemical (elemental and isotopic), geochronologic, and petrologic data from Paleo- to Mesoarchean rocks preserved in the northern Wyoming Province, we propose a multi-stage evolution of a continental nucleus that reflects a secular change from plume- to plate-related processes. 1) 4.0-4.1 Ga: mafic and ultramafic magmas formed a section of thickened lithosphere over a zone of upwelling primitive mantle; 2) 3.6-4.0 Ga: continuity of magmatism recorded in detrital zircons does not favor growth by episodic subduction; Hf isotopes in zircon suggest extensive crustal recycling with some juvenile additions; 3) 3.6-3.2 Ga: a major crust-forming interval with infusion of new crust derived from more depleted sources, including a hydrous, garnet-bearing source; 4) intervening granulite facies metamorphism of supracrustal rocks and orthogneisses, clockwise PTt path, coupled with ductile deformation (~ 750-800oC and 6-8 Kbar); 5) ~2.8-2-9 Ga: a second period of major magmatism resulted from subduction and a volcanic arc was built on the older 3.2-3.5 Ga crust. This geochemical record indicates that the earliest crust formed through diapiric upwelling and anhydrous melting of primitive mantle in a plume setting, followed by recycling of this crust with only limited juvenile additions in the Paleoarchean; in the

  11. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T., Jr.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  12. The Building of Continental Crust in the Archean Superior Province, Canada, Deduced from Heat Flow Data

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Mareschal, J.

    2013-12-01

    Making continental crust can be achieved in several different ways, including extraction of melts from a mantle plume or from a subducting slab. Cratonization, i.e. the formation of mature stable continental crust, requires two additional steps, horizontal accretion of a number of terranes and belts and vertical internal differentiation leading to separation of an enriched upper crust from a depleted lower crust. Heat flow and heat production data provide constraints on the bulk crustal composition as well as on the degree of internal differentiation, and hence bring key constraints on crust-building processes. Together with older data, new measurements from the Archean Superior Province, Canadian Shield, are used to document how and with what material this large piece of continental crust was built. The southern Superior Province was assembled out of an old nucleus made of gneisses and tonalite-granodiorite plutons called the North Caribou Super Terrane, and a number of belts and terranes that were sequentially docked to its southern margin. The North Caribou area was subjected to magmatic and metamorphic activity spanning about 1.1 Gy from 3.8 to 2.7 Gy. Alternating belts of metasedimentary and volcanic rocks on the one hand and greenstone and plutonic rocks on the other hand made the craton grow to about twice its initial size in ≈100 My. The average heat flow is much lower in the North Caribou core region than in the younger volcanic/plutonic belts (Wabigoon and Wawa-Abitibi) to the South, 30 versus 44 mW/m2. The heat flux is also slightly higher (48mW/m2) in the metasedimentary (English River and Quetico) than in the plutonic belts. The two volcanic/plutonic belts share the same characteristics, testifying to a remarquable uniformity of crust-building mechanisms on a large-scale. The marked difference between the older craton nucleus and the younger belts requires the operation of two very different processes. The very shape and geological structure of the

  13. Accretion, modification and erosion of Archean lithosphere: evidence from the Superior Province and adjacent regions (Invited)

    NASA Astrophysics Data System (ADS)

    Frederiksen, A. W.; Olaleye, M.; Toni, D. A.; Darbyshire, F. A.; Eaton, D. W.

    2010-12-01

    The lithosphere beneath shield regions is generally believed to be thick, cold, high in seismic velocity, and convectively stable. If formation of the shield lithosphere was approximately contemporaneous with the overlying crust, then the lithosphere has undergone a history as complex as the crust; however, this history will be fundamentally different due to potential influences on the lithosphere from both plate-tectonic (top-down) and mantle convective (bottom-up) processes. The Superior Province in eastern and central Canada is the largest Archean craton in the world; recent seismological investigations have shown that it has a complex internal structure. Through a combination of tomography, shear-wave splitting, and receiver-function analysis, we have found evidence of anomalous mantle which we believe to date back to the accretion of the lithosphere: a high-velocity, strongly and consistently anisotropic region in the western Superior which is truncated by the Trans-Hudson Orogen at its western edge. This feature was then eroded by Trans-Hudson orogenic activity, as the anomaly now ends ca. 200 km east of the boundary. Subsequent rifting along the Mid-Continent Rift truncated the anomalous region to the south; the enigmatic Nipigon Embayment, which is associated with the rift but may be something other than a failed arm, contains a tightly-focused region of anomalous mantle. In the easter Superior, the lithosphere is lower in velocity and more weakly anisotropic, with more directional variation. Some of this difference may be due to different formation mechanisms, but there is also evidence of later modification by the Great Meteor hotspot. The Great Meteor track continues into the Grenville Province and shows possible evidence of later deformation. Complicating this large-scale picture is the strong evidence for internal layering seen in receiver function gathers. An anisotropic layer immediately below the Moho is ubiquitous underneath the western Superior

  14. Formation of the Archean crust of the ancient Vodlozero domain (Baltic shield)

    NASA Astrophysics Data System (ADS)

    Arestova, N. A.; Chekulaev, V. P.; Lobach-Zhuchenko, S. B.; Kucherovskii, G. A.

    2015-03-01

    The available geological, petrological, and isotopic data on Archean rocks of the Baltic shield are used to analyze the formation of the crust of the ancient Vodlozero domain. This made it possible to reveal the succession of endogenic processes in different parts of the domain and correlate them between each other. Several stages of magmatic processes reflecting changes in magma-generation environments are definable in the crust formation. The earliest stages of magmatism (3.24 and 3.13-3.15 Ga) are mostly represented by rocks of the tonalite-trondhjemite-granodiorite association. The next stage of endogenic activity (3020-2900 Ma) was marked by the formation of volcanics of the komatiite-basalt and andesite-dacite associations constituting greenstone belts in marginal parts of the Vodlozero domain and basic dikes accompanied by layered pyroxenite-norite-diorite intrusion in its central part. These basic bodies crossing earlier tonalities were formed in extension settings related to the formation of the mantle plume, which is confirmed by the rock composition. This stage culminated in the formation of trondhjemites at margins of greenstone structure. The next stage of endogenic activity commenced at 2890-2840 Ma by the emplacement of high-magnesian gabbro and diorite dikes in the western margin of the domain, where they cross rocks of the tonalitetrondhjemite association. This stage was marked by the formation of intermediate-acid subvolcanic bodies and dikes as well as basite intrusions including the layered and differentiated Semch intrusion, the largest one in the Vodlozero domain. The stage culminated at approximately 2850 Ma in the emplacement of tonalities of the limited distribution being represented by the Shilos massif in the north of the domain and Shal'skii massif on the eastern shore of Lake Onega. The important stage in the geological history of the Vodlozero domain is the formation of the intracratonic Matkalakhta greenstone belt at approximately 2

  15. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana

    USGS Publications Warehouse

    Kellogg, Karl S.; Mogk, David W.

    2009-01-01

    The Crooked Creek mylonite, in the northwestern Madison Range, southwestern Montana, is defined by several curved lenses of high non-coaxial strain exposed over a 7-km-wide, northeast-trending strip. The country rocks, part of the Archean Wyoming province, are dominantly trondhjemitic to granitic orthogneiss with subordinate amphibolite, quartzite, aluminous gneiss, and sills of metabasite (mafic granulite). Data presented here support an interpretation that the mylonite formed during a period of rapid, heterogeneous strain at near-peak metamorphic conditions during an early deformational event (D1) caused by northwest–southeast-directed transpression. The mylonite has a well-developed L-S tectonite fabric and a fine-grained, recrystallized (granoblastic) texture. The strong linear fabric, interpreted as the stretching direction, is defined by elongate compositional “fish,” fold axes, aligned elongate minerals, and mullion axes. The margins of the mylonitic zones are concordant with and grade into regions of unmylonitized gneiss. A second deformational event (D2) has folded the mylonite surface to produce meter- to kilometer-scale, tight-to-isoclinal, gently plunging folds in both the mylonite and country rock, and represents a northwest–southeast shortening event. Planar or linear fabrics associated with D2 are remarkably absent. A third regional deformational event (D3) produced open, kilometer-scale folds generally with gently north-plunging fold axes. Thermobarometric measurements presented here indicate that metamorphic conditions during D1 were the same in both the mylonite and the country gneiss, reaching upper amphibolite- to lower granulite-facies conditions: 700 ± 50° C and 8.5 ± 0.5 kb. Previous geochronological studies of mylonitic and cross-cutting rocks in the Jerome Rock Lake area, east of the Crooked Creek mylonite, bracket the timing of this high-grade metamorphism and mylonitization between 2.78 and 2.56 Ga, nearly a billion years

  16. Investigation of Archean microfossil preservation for defining science objectives for Mars sample return missions

    NASA Astrophysics Data System (ADS)

    Lorber, K.; Czaja, A. D.

    2014-12-01

    Recent studies suggest that Mars contains more potentially life-supporting habitats (either in the present or past), than once thought. The key to finding life on Mars, whether extinct or extant, is to first understand which biomarkers and biosignatures are strictly biogenic in origin. Studying ancient habitats and fossil organisms of the early Earth can help to characterize potential Martian habitats and preserved life. This study, which focuses on the preservation of fossil microorganisms from the Archean Eon, aims to help define in part the science methods needed for a Mars sample return mission, of which, the Mars 2020 rover mission is the first step.Here is reported variations in the geochemical and morphological preservation of filamentous fossil microorganisms (microfossils) collected from the 2.5-billion-year-old Gamohaan Formation of the Kaapvaal Craton of South Africa. Samples of carbonaceous chert were collected from outcrop and drill core within ~1 km of each other. Specimens from each location were located within thin sections and their biologic morphologies were confirmed using confocal laser scanning microscopy. Raman spectroscopic analyses documented the carbonaceous nature of the specimens and also revealed variations in the level of geochemical preservation of the kerogen that comprises the fossils. The geochemical preservation of kerogen is principally thought to be a function of thermal alteration, but the regional geology indicates all of the specimens experienced the same thermal history. It is hypothesized that the fossils contained within the outcrop samples were altered by surface weathering, whereas the drill core samples, buried to a depth of ~250 m, were not. This differential weathering is unusual for cherts that have extremely low porosities. Through morphological and geochemical characterization of the earliest known forms of fossilized life on the earth, a greater understanding of the origin of evolution of life on Earth is gained

  17. Si transfers during Archean weathering processes traced by silicon isotopes and Ge/Si ratios

    NASA Astrophysics Data System (ADS)

    Delvigne, Camille; Opfergelt, Sophie; Hofmann, Axel; Cardinal, Damien; André, Luc

    2015-04-01

    Weathering conditions in the Mesoarchean are poorly constrained. Recent advances in analytical capabilities have added Si isotopes and Ge/Si ratios to the repertoire of tracers used in the study of soil formation processes: neoformation of secondary clay minerals is associated with large Si isotope and Ge/Si fractionation in response to desilication processes and the weathering degree [1, 2, 3, 4]. Here we combine Si isotopes and Ge/Si ratios of a Mesoarchean paleosol (~2.95 Ga) and of nearly coeval but younger shales as proxies of weathering processes and Si mass transfer at the early Earth's surface. The paleosol is developed on andesite and shows a well defined mineralogical and chemical differentiation. In a first step, similar to modern soils, neoformation of secondary clay minerals in the paleosol was associated with fractionation of Si isotopes and Ge/Si ratios in response to chemical weathering degree and soil desilication. In a second step, the loss of Fe(II)-rich minerals, likely Fe-rich smectites, due to low pO2 conditions produced additional control on Si and Ge mobilities. Opposite fractionation behaviors are observed: products of desilication acted as 28Si and Ge sink while the leaching of Fe(II)-rich minerals released 28Si and Ge to soil solutions. Furthermore, the shales deposited immediately after the paleosol display δ30Si and Ge/Si compositions which may be explained as mixtures of the recognized Archean paleosols components. Their recording within the sedimentary pile suggests that the observed weathering-induced desilication might have been widely effective during the Mesoarchean as well as Fe(II)-rich minerals leaching in a lesser extent and pointing out these processes as determinant in the Si transfers from continents to hydrosphere. [1] Kurtz et al., (2002) Geochim. Cosmochim. Acta 66, 1525-1537 [2] Ziegler et al., (2005) Geochim. Cosmochim. Acta 69, 4597-4610. [3] Opfergelt et al., (2010) Geochim. Cosmochim. Acta 74, 225-240. [4

  18. Geochemistry and radiogenic isotope characteristics of xenoliths in Archean diamondiferous lamprophyres: Implications for the Superior Province cratonic keel

    NASA Astrophysics Data System (ADS)

    Wyman, D. A.; Hollings, P.; Conceição, R. V.

    2015-09-01

    Xenoliths retrieved from lamprophyric hosts in the Michipicoten belt fall into four groups defined by Al-Mg contents but do not include mantle peridotite. Based on immobile trace element abundances, the xenoliths are derived from magmas associated with the main phase of arc volcanism between 2.75 and 2.70 Ga or are co-genetic with the orogenic shoshonite suite. Trace elements distinguish two styles of metasomatism characterized either by LILE enrichment or both LILE and Zr-Hf (± Nb-Ta). The first is likely associated with a hydrous fluid while the second is related to melts that permeated underplated shoshonitic mafic magmas and cumulates or the older sub-arc mantle. The Sm-Nd isotopic compositions of the xenoliths indicate that an aged, highly depleted, source was tapped during the orogenic event. The formation depths of the lamprophyric magmas, and the xenoliths they contain, contrast with the calculated depths to the base of the depleted lithosphere based on xenoliths retrieved from post-Archean kimberlites. The differences imply a late docking of the ~ 150-160 km deep Archean keel beneath the Abitibi-Wawa terrane following the emplacement of major orogenic gold deposits.

  19. Metamorphism and deformation of Archean gold deposits: the importance of structural documentation in the evaluation of gold mineralization

    SciTech Connect

    MacGeehan, P.J.

    1985-01-01

    Archean gold deposits are comparable in almost all respects to their Phanerozoic counterparts, but differ in the extent of superimposed metamorphism-deformation. In many instances this has obscured the original mode of emplacement of the gold mineralization, in that (1) the primary structural-stratigraphic setting of the mineralization is disguised by later deformation, and (2) the deposits are almost invariably metamorphosed, and blocking temperatures established on the basis of current equilibrium ore-mineral assemblages or even fluid inclusion filling-temperatures are either suspect, or represent the P-T of subsequent metamorphic events. The effects of this overprint are particularly important when evaluating mineralization emplaced pre-peak metamorphism, in consequence of which there has been little support for the presence of Archean epithermal (unconformity - related) mineralization, or of epigenetic and/or exhalative mineralization emplaced contemporaneous with volcanism. This problem is examined in some major currently-producing West Australian gold mining camps, including Norseman (3.8 M.Oz), Kambalda (1.3 M.Oz) and the Kalgoorlie Golden Mile (36 M.Oz). The solution lies in detailed structural documentation and a reconstruction of the original environment of deposition of the gold mineralization, viewed through the larger-scale perspective of greenstone-belt evolution.

  20. Stratigraphy of the Archean western Superior Province from P- and S-wave receiver functions: Further evidence for tectonic accretion?

    NASA Astrophysics Data System (ADS)

    Angus, D. A.; Kendall, J.-M.; Wilson, D. C.; White, D. J.; Sol, S.; Thomson, C. J.

    2009-12-01

    The Archean western Superior Province in Canada represents the nucleus of the North American continent whose origin has been speculated to be the result of widespread crustal accretion some 2.7 Ga ago. In this paper, crustal and upper-mantle seismic discontinuities beneath the western Superior Province of the Canadian shield are imaged with teleseismic P-to-S and S-to-P converted phases using the receiver function method. Three crustal discontinuities are observed: the Moho, ranging in depth between 38 and 47 km and dipping to the south; and two intra-crustal discontinuities having depths of approximately 15 and 30 km. The crustal discontinuities undulate laterally and often lose continuity, possibly indicating an imbricated structure and/or regions of velocity gradients. In the shallow lithosphere, a positive discontinuity is imaged at approximately 65 km depth and is consistent with earlier refraction and wide-angle reflection results. Additionally, two zones of negative receiver function amplitudes at 55 km depth are observed and are coincident with a region of anomalous tomographic low P- and S-wave velocities as well as a zone of high electrical conductivity. The images for the crust and shallow upper-mantle, when integrated with previous geophysical studies, are consistent with ideas of continental root formation due to imbrication of Archean subducted material and accretion of island arcs observed in surface geology.

  1. The petrology, structure and geochemistry of an Archean terrane in the North Snowy Block, Beartooth Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.

    1984-12-01

    Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.

  2. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  3. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; Teixeira, Nilson P.; Rämö, O. Tapani; Moura, Candido A. V.; Macambira, Moacir J. B.; de Oliveira, Davis C.

    2005-03-01

    Three Paleoproterozoic A-type rapakivi granite suites (Jamon, Serra dos Carajás, and Velho Guilherme) are found in the Carajás metallogenic province, eastern Amazonian craton. Liquidus temperatures in the 900-870 °C range characterize the Jamon suite, those for Serra dos Carajás and Velho Guilherme are somewhat lower. Pressures of emplacement decrease from Jamon (3.2±0.7 kbar) through Serra dos Carajás (2.0±1.0 kbar) to Velho Guilherme (1.0±0.5 kbar). Oxidizing conditions (NNO+0.5) characterized the crystallization of the Jamon magma, the Velho Guilherme magmas were reducing (marginally below FMQ), and the Serra dos Carajás magmas were intermediate between the two in this respect. The three granite suites have Archean T DM model ages and strongly negative ɛNd values (-12 to -8 at 1880 Ma), and they were derived from Archean crust. The Jamon granite suite may have been derived from a quartz dioritic source, and the Velho Guilherme granites from K-feldspar-bearing granitoid rocks with some sedimentary input. The Serra dos Carajás granites either had a somewhat more mafic source than Velho Guilherme or were derived by a larger degree of melting. Underplating of mafic magma was probably the heat source for the melting. The petrological and geochemical characteristics of the Carajás granite suites imply considerable compositional variation in the Archean of the eastern Amazonian craton. The oxidized Jamon suite granites are similar to the Mesoproterozoic magnetite-series granites of Laurentia, and they were derived from Archean igneous sources that were more oxidized than the sources of the Fennoscandian rapakivi granites. The Serra dos Carajás and Velho Guilherme granites approach the classic reduced rapakivi series of Fennoscandia and Laurentia. No counterparts of the Mesoproterozoic two-mica granites of Laurentia have been found, however. Following the model of Hoffman [Hoffman, P., 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga

  4. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  5. CSF oligoclonal banding

    MedlinePlus

    ... the cerebrospinal fluid (CSF). CFS is the clear fluid that flows in the space around the spinal cord and brain. Oligoclonal bands are proteins called immunoglobulins. The ... system. Oligoclonal bands may be a sign of multiple sclerosis.

  6. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  7. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  8. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  9. Paleomagnetism of the Marble Bar Chert Member, Western Australia: Implications for apparent polar wander path for Pilbara craton during Archean time

    NASA Astrophysics Data System (ADS)

    Suganuma, Yusuke; Hamano, Yozo; Niitsuma, Sachiko; Hoashi, Masamichi; Hisamitsu, Toshio; Niitsuma, Nobuaki; Kodama, Kazuto; Nedachi, Munetomo

    2006-12-01

    The Archean Biosphere Drilling Project (ABDP) drilled a continuous 270 m long oriented core from the Towers Formation, which includes the Marble Bar Chert Member (3456.1-3476.0 Ma) in the Pilbara craton, northwestern Australia. A paleomagnetic study of 261 discrete specimens, collected from a 158.5 to 182.0 m section of the Marble Bar Chert Member, revealed two distinct magnetic components (LT and MT). The MT component yields seven different mean paleomagnetic directions clustered as MB1 to MB7. These, together with the published paleomagnetic poles of early Archean rocks from the Pilbara craton, draw a continuous paleomagnetic pole path, which likely to be regarded as the early to late Archean apparent polar wander path (APWP) for the Pilbara craton. The APWP implies that the Pilbara craton underwent a latitudinal drift of about 21° during the interval when the magnetization of the Marble Bar Chert Member was acquired. The estimated speed of the lateral drift is 12-112 cm/yr (120-1120 km/Myr), which is large compared with current plate motion velocities, suggesting that continents might have moved during the Archean faster than in the Phanerozoic.

  10. Late Archean greenstone tectonics: Evidence for thermal and thrust-loading lithospheric subsidence from stratigraphic sections in the Slave Province, Canada

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.

    1988-01-01

    How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.

  11. Granitic rocks and metasediments in Archean crust, Rainy Lake area, Ontario: ND isotope evidence for mantle-like SM/ND sources

    NASA Technical Reports Server (NTRS)

    Shirey, S. B.; Hanson, G. N.

    1983-01-01

    Granitoids, felsic volcanic rocks and clastic metasediments are typical rocks in Archean granite-greenstone belts that could have formed from preexisting continentasl crust. The petrogenesis of such rocks is assessed to determine the relative roles of new crust formation or old crust formation or old crust recycling in the formation of granite-greenstone belts.

  12. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  13. Archean tonalites are not derived by melting of hot subducted slabs: They are produced by differentiation of mafic, hydrous magmas and melting of pre-existing crust

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Bowring, S. A.

    2001-05-01

    Slab melting in a subduction zone has been called upon to produce high-MgO, high- silica magmas known as adakites (EOS, 2001, 82: 65-69). Adakites are rare, volumetrically minor in subduction zone settings, and appear to be associated with subduction of young, "hot" oceanic crust which is inferred to be easier to melt. These conditions are often hypothesized to have been more common in the Archean, resulting in the gregarious tonalite-trondjhemite-granite (TTG) suites thought to characterize Archean cratons. There are at least two difficulties with this hypothesis. 1) Most Archean TTGs are not compositionally similar to adakites. Although the Archean TTGs share some trace element characteristics (e.g. high Sr and low Y), they do not have the high magnesium contents that are a distinctive hallmark of adakites. The important major element characteristics of Archean TTGs are strikingly similar to modern silica-rich igneous rocks that formed through a combination of complex petrologic processes that include: fractionation of more mafic subduction-related basalts, re-melting of underplated basalt in the lower crust (+/- garnet-bearing amphibolites), and melting and assimilation of pre-existing crustal rocks. In arc settings, these processes all occur within the overriding plate, not in the subducted slab. 2) Adakites are not produced by hot slab melting, but by wet slab fluid loss or low extents of water-saturated melting. Experimental calibration of the melting conditions that formed primitive adakite magmas at Mt. Shasta, California indicate that mantle melting occurs when a water-rich fluid component released from the cooler slab encounters hotter overlying mantle at the base of the mantle wedge and melts at the vapor-saturated solidus. Melting continues as the hydrous mantle melts ascends into hotter, shallower mantle wedge, and a cool, hydrous magma is separated at the top of the wedge and delivered to the crust. Thus, the major element and trace-element signatures

  14. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  15. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  16. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  17. Iron deposits in relation to magmatism in China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochong; Santosh, M.; Li, Jianwei

    2015-12-01

    China has a rich reserve of iron ores, and hosts most of the major types of iron deposits recognized over the world. However, most of these deposits are low-grade ores (<50% Fe), and the high-grade iron ores only account for ˜1% of the total iron ore resources (Zhang et al., 2014a). During 50s to 70s of the last century, two major research and exploration programmes were implemented on national level in China, focusing on the high-grade iron ores of banded iron formation (BIF) deposits. However, apart from several small deposits, no large high-grade iron deposits under the BIF category were discovered. Thus, the exploration and scientific studies on iron deposits came to a dead-end during 1980's to 2005. In the recent years, however, there has been an increasing demand for iron resources due to China's rapid industrialization and economic development. Thus, a new surge of studies and prospecting of high-grade iron deposits started, which resulted in many advances in our understanding of the formation and exploration of iron deposits.

  18. Kyanite/corundum eclogites from the Kaapvaal Craton: subducted troctolites and layered gabbros from the Mid- to Early Archean

    NASA Astrophysics Data System (ADS)

    Shu, Qiao; Brey, Gerhard P.; Hoefer, Heidi E.; Zhao, Zhidan; Pearson, D. Graham

    2016-02-01

    An oceanic crustal origin is the commonly accepted paradigm for mantle-derived eclogites. However, the significance of the aluminous members of the eclogite suite, containing kyanite and corundum, has long been underrated and their role neglected in genetic models of cratonic evolution. Here, we present a geochemical and petrological study of a suite of kyanite- and corundum-bearing eclogites from the Bellsbank kimberlite, S. Africa, which originate from depths between 150 and 200 km. Although clearly of high-pressure provenance, these rocks had a low-pressure cumulative origin with plagioclase and olivine as major cumulate phases. This is shown by the very pronounced positive Eu anomalies, low REE abundances, and δ 18O values lower than the Earth's mantle. Many chemical features are identical to modern-day troctolitic cumulates including a light REE depletion akin to MORB, but there are also distinguishing features in that the eclogites are richer in Na, Fe, and Ni. Two of the eclogites have a minimum age of ~3.2 Ga, defined by the extremely unradiogenic 87Sr/86Sr (0.7007) in clinopyroxene. Phase equilibria indicate that the parent melts were formed by partial melting below an Archean volcanic center that generated (alkali-)picritic to high-alumina tholeiitic melts from a mantle whose oxygen fugacity was lower than today. Fractional crystallization produced troctolites with immiscible sulfide melt droplets within the mafic crust. Instability of the mafic crust led to deep subduction and re-equilibration at 4-6 GPa. Phase relationships plus the presence of a sample with appreciable modal corundum but no Eu anomaly suggest that kyanite- and corundum-bearing eclogites may also originate as plagioclase-free, higher pressure cumulates of highly aluminous clinopyroxene, spinel, and olivine. This is consistent with the crystallizing phase assemblage from an olivine tholeiitic to picritic magma deeper in the Archean oceanic crust or uppermost mantle. We postulate that

  19. Paleomagnetism of the Astrobiology Drilling Project 8 drill core, Pilbara, Western Australia: implications for the early geodynamo and Archean tectonics

    NASA Astrophysics Data System (ADS)

    Bradley, K.; Weiss, B.; Carporzen, L.; Anbar, A.; Buick, R.

    2008-12-01

    Paleomagnetic measurements from the Archean Pilbara craton have recently been used to argue for the presence of a substantial magnetic field at 3.2 Ga (Tarduno et al., 2007), as well as for extremely fast plate motions or true polar wander (Strik et al., 2003, Suganuma et al., 2006). Paleomagnetic records in the Archean are fundamentally limited by the scarcity of well-preserved, low metamorphic grade Archean rocks. Where such rocks are exposed, paleomagnetic sampling is often difficult or impossible due to pervasive lightning remagnetization and deep weathering of the cratonic surface. More pristine samples can potentially be obtained from shallow drill cores like those obtained by the Astrobiology Drilling Project (ABDP). We present a paleomagnetic analysis of the ~350 m deep ABDP-8 drill core, which was drilled in the East Strelley greenstone belt and which penetrated the Double Bar Formation of the Warrawoona Group, as well as the unconformably overlying Euro Basalt and Strelley Pool Chert units of the Kelly Group. Full sample orientation (declination and inclination) was achieved through the use of a Ballmark orientation system. A strong drilling overprint was removed for most samples by alternating field demagnetization to 20 mT. Subsequent thermal demagnetization revealed single-polarity magnetic directions within the Euro Basalt and Double Bar Formation carried by magnetite. The directions from these two Formations are statistically different to >95% confidence, which constitutes a positive unconformity test and indicates that the Euro Basalt direction is primary. Upon tilt correction, the ~3.34-3.37 Ga Euro Basalt direction is indistinguishable from the tilt-corrected direction found previously in the ~3.46 Ga Duffer Formation of the Warrawoona Group (McElhinny and Senanayake, 1980). The Euro Basalt direction, if taken at face value, implies small relative motion of the Pilbara Craton from ~3.46 Ga to ~3.34 Ga. This is inconsistent with the apparent polar

  20. Seismicity and depth of faulting in the Archean Kuusamo region based on relocation of earthquakes with new velocity models

    NASA Astrophysics Data System (ADS)

    Uski, M.; Tiira, T.; Grad, M.; Yliniemi, J.

    2012-04-01

    New crustal velocity models and synthetic waveform modelling are used to constrain the depth distribution of earthquakes in Kuusamo and surrounding Archean areas of north-eastern Fennoscandia. In the Kuusamo block, the seismogenic layer extends from about 8 km below the surface down to a depth of about 30 km, i.e., close to the basement of the middle crust. Clear decrease in activity at about 20 km depth may be related to lithological contrast between the upper and middle crust. The upper cut-off in seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth. In the surrounding Archean areas, two-thirds of the earthquakes occur in the upper crust between 1 and 13 km depth, and a sharp drop in seismicity level happens at 14 km. The lower cut-off depth of 38 km is solely attributed to the deep microseismic activity in the Norrbotten tectonic province of northern Sweden. The limited data set available for this study shows no evidence on movements in the lower crust beneath the Archean Karelian bedrock of northern Finland and Russian Karelia. The new 2-D crustal velocity models and a Moho depth map of the area were derived by integrating waveform data recorded by the Kuusamo temporary network with previous data sets. The results indicate that the Karelian upper crust is 12-20 km thick and associated with P wave velocities of 6.1-6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust - lower crust boundary is located at depths between 28 and 38 km. In the middle crust, lower crust, and uppermost mantle P wave velocities range from 6.5 to 6.8 km/s, 6.9 to 7.3 km/s and 7.9 to 8.2 km/s, respectively. The average Vp/Vs ratio increases from 1.71 in the upper crust

  1. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.

    2011-06-01

    Archean shales from the Pilbara in Western Australia contain biomarkers that have been interpreted as evidence for the existence of cyanobacteria and eukaryotes 2.7 billion years (Ga) ago, with far reaching implications for the evolution of Earth's early biosphere. To re-evaluate the provenance of the biomarkers, this study determined the spatial distribution of hydrocarbons in the original drill core material. Rock samples were cut into millimeter-thick slices, and the molecular content of each slice was analyzed. In core from the Hamersley Group (˜2.5 Ga), C <13 alkanes had gradually increasing concentrations from the surfaces to the center of the rock while the abundance of steranes, hopanes and C 15+ alkanes decreased with distance from the outer surfaces. In samples from the Fortescue Group (˜2.7 Ga), hydrocarbons were overwhelmingly concentrated on rock surfaces. Two mechanisms are proposed that may have caused the inhomogeneous distribution: diffusion of petroleum products into the rock (contamination model), and leaching of indigenous hydrocarbons out of host shales driven by pressure release after drilling ('live-oil' effect). To test these models, the hydrocarbon distributions in the Archean shales are compared with artificially contaminated rocks as well as younger mudstones where leaching of live-oil had been observed. The results show that chromatographic phenomena associated with live-oil escape and contaminant diffusion have strong effects on molecular ratios and maturity parameters, potentially with broad implications for oil-source rock correlation studies and paleoenvironmental interpretations. For the Archean shales, the live-oil effect is consistent with some of the observed patterns, but only the contamination model fully explains the complex chromatographic fingerprints. Therefore, the biomarkers in the Pilbara samples have an anthropogenic origin, and previous conclusions about the origin of eukaryotes and oxygenic photosynthesis based on

  2. Archean cherts: field, petrographic and geochemical criteria to determine their origin

    NASA Astrophysics Data System (ADS)

    Ledevin, Morgane; Arndt, Nicholas T.; Simionovici, Alexandre

    2013-04-01

    Archean cherts provide valuable information about conditions on the sea floor during the early history of Earth. We conducted field, petrological and geochemical studies on examples from different environments in the Barberton Greenstone Belt (3.2-3.5 Ga), South Africa, with the aim of improving our understanding of these enigmatic rocks. We distinguish three different origins for cherts: direct precipitation from seawater (C-cherts); precipitation in fractures from silica-rich fluids (F-cherts); and replacement of preexisting rocks (silicification) either at or near the surface (S-cherts). The three types were distinguished using a combination of sedimentary and deformation structures, petrological observations (RAMAN, electron microprobe, X-Ray microfluorescence, cathodoluminescence) and geochemical data. C-cherts best record the composition and physical conditions in primitive oceans and the depositional environment because they precipitated from seawater. Based on sedimentary structures, we show that the silica was deposited as a siliceous ooze or amorphous gel on the seafloor, with variable precipitation rates that depend on the amount and nature of co-precipitated phases (called here the "contaminant"), such as detrital grains, carbonates, carbonaceous matter and oxides. We observe a complex rheology of C-cherts, which show both ductile to brittle deformation structures, sometimes in the same layer. We infer that the cherts underwent extremely rapid diagenetic induration at or near the surface, a process that proceeded faster when contaminants are lacking. Geochemical data (ICP-MS/ICP-AES) indicate that whole rock chemistries are dominated by the contaminant phases. Detrital grains with continental signatures dominate the compositions of cherts in the turbidite sequence of the Komati River whereas carbonates preserving modern, seawater-like compositions control the compositions of cherts of Fig Tree Fm in the Barite Valley. The silica minerals do not

  3. Early terrestrial impact events: Archean spherule layers in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Schulz, Toni; Reimold, W. Uwe; Hofmann, Axel

    2015-04-01

    In addition to the oldest known impact structure on Earth, the 2.02-billion-year-old Vredefort Structure in South Africa, the evidence of Early Earth impact events are Archean spherule beds in South Africa and Australia. These spherules have been interpreted as condensation products from impact plumes and molten impact ejecta or/and impact ejecta that were melted during atmospheric re-entry [e.g., 1,2]. The 3.2-3.5 Ga spherule layers in the Barberton Greenstone Belt in South Africa currently represent the oldest known remnants of impact deposits on Earth. Aiming at identification of extraterrestrial components and to determine the diagenetic and metamorphic history of spherule layer intersections recently recovered in the CT3 drill core from the northeastern part of the Barberton Greenstone Belt, we have studied samples from these layers in terms of petrography and geochemistry. All samples, including spherule layer intersections and intercalating country rocks, were studied for mineral identification by optical and electron microscopy, as well as electron microprobe analysis (EPMA) at Natural History Museum Vienna and Museum für Naturkunde Berlin (MfN). Major and trace element compositions were determined via X-ray fluorescence spectrometry at MfN and instrumental neutron activation analysis (INAA) at University of Vienna. Os isotopes were measured by thermal ionization mass spectrometry (N-TIMS) at University of Vienna. Eighteen spherule beds are distributed over 150 meter drill core in CT3. Spherules are variably, deformed or undeformed. The high number of these layers may have been caused by tectonic duplication. Spherule beds are intercalated with shale, chert, carbonate, and/or sulfide deposits (country rocks). The size range of spherules is 0.5 to 2 mm, and some layers exhibit gradation. Shapes of spherules differ from spherical to ovoid, as well as teardrops, and spherules commonly show off-center vesicles, which have been interpreted as a primary

  4. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1989-01-01

    The River Valley pluton is a ca. 100 km2 body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An60-70) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo70-80. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. Ten samples, including both igneous and deformed lithologies give a Pb-Pb whole-rock isochron of 2560??155Ma, which is our best estimate of the time of primary crystallization. The River Valley pluton is thus the oldest anorthositic intrusive yet reported from the Grenville Province, but is more calcic and augitic than typical massifs, and lacks their characteristic Fe-Ti oxide ore deposits. The River Valley body may be more akin to similar gabbro-anorthosite bodies situated at the boundary between the Archean Superior Province and Huronian supracrustal belt of the Southern Province west of the Grenville Front. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2377 ?? 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2185 ?? 105 Ma, which is similar to internal Pb-Pb isochron ages of 2165 ?? 130 Ma and 2100 ?? 35 Ma for two igneous-textured rocks. It is uncertain whether these ages correspond to a discrete event at this time or represent a partial resetting of the Rb-Sr and Pb

  5. Archean Arctic continental crust fingerprints revealing by zircons from Alpha Ridge bottom rocks

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Shevchenko, Sergey; Presnyakov, Sergey; Antonov, Anton; Belyatsky, Boris

    2015-04-01

    Whereas thick Cenozoic sedimentary cover overlapping bedrock of the Arctic Ocean, some tectonic windows were sampled by scientific submarine manipulator, as well as by grabbing, dredging and drilling during «Arctic-2012» Russian High-Arctic expedition (21 thousands samples in total, from 400-km profile along Alpha-Mendeleev Ridges). Among others, on the western slope of Alpha Ridge one 10x10 cm fragment without any tracks of glacial transportation of fine-layered migmatitic-gneiss with prominent quartz veinlets was studied. Its mineral (47.5 vol.% plagioclase + 29.6% quartz + 16.6% biotite + 6.1% orthoclase) and chemical composition (SiO2:68.2, Al2O3:14.9, Fe2O3:4.44, TiO2:0.54, MgO:2.03, CaO:3.13, Na2O:3.23, K2O:2.16%) corresponds to trachydacite vulcanite, deformed and metamorphozed under amphibolite facies. Most zircon grains (>80%) from this sample has an concordant U-Pb age 3450 Ma with Th/U 0.8-1.4 and U content of 100-400 ppm, epsilon Hf from -4 up to 0, and ca 20% - ca 3.3 Ga with Th/U 0.7-1.4 and 90-190 ppm U, epsilon Hf -6.5 to -4.5, while only 2% of the grains show Proterozoic age of ca 1.9 Ga (Th/U: 0.02-0.07, U~500 ppm, epsilon Hf about 0). No younger zircons were revealed at all. We suppose that magmatic zircon crystallized as early as 3450 Ma ago during acid volcanism, the second phase zircon crystallization from partial melt (or by volcanics remelting) under amphibolite facies metamorphism was at 3.3 Ga ago with formation of migmatitie gneisses. Last zircon formation from crustal fluids under low-grade metamorphic conditions was 1.9 Ga ago. There are two principal possibilities for the provenance of this metavolcanic rock. The first one - this is ice-rafted debris deposited by melted glacial iceberg. However, presently there are no temporal and compositional analogues of such rocks in basement geology of peri-oceanic regions, including Archean Itsaq Gneiss Complex, Lewisian Complex and Baltic Shield but these regions are far from the places of

  6. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana. Implications for crustal evolution in the Wyoming craton

    SciTech Connect

    Mueller, P.A.; Shuster, R.D. ); Wooden, J.L. ); Erslev, E.A. ); Bowes, D.R. )

    1993-04-01

    The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostly granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.

  7. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data

    USGS Publications Warehouse

    Aleinikoff, J.N.; Williams, I.S.; Compston, W.; Stuckless, J.S.; Worl, R.G.

    1989-01-01

    Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670??13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698??8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ???3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ???3.35, 3.65 and ???3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province. ?? 1989 S