Science.gov

Sample records for architecture seed development

  1. Seed architecture shapes embryo metabolism in oilseed rape.

    PubMed

    Borisjuk, Ljudmilla; Neuberger, Thomas; Schwender, Jörg; Heinzel, Nicolas; Sunderhaus, Stephanie; Fuchs, Johannes; Hay, Jordan O; Tschiersch, Henning; Braun, Hans-Peter; Denolf, Peter; Lambert, Bart; Jakob, Peter M; Rolletschek, Hardy

    2013-05-01

    Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase-bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro- versus in planta-grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space. PMID:23709628

  2. Seed Development and Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  3. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.

    PubMed

    Weiner, Rebecca G; Kunz, Meredith R; Skrabalak, Sara E

    2015-10-20

    Bimetallic nanoparticles display unique optical and catalytic properties that depend on crystallite size and shape, composition, and overall architecture. They may serve as multifunctional platforms as well. Unfortunately, many routes toward shape and architecturally controlled bimetallic nanocrystals yield polydisperse samples on account of the challenges associated with homogeneously nucleating a defined bimetallic phase by co-reduction methods. Developed by the Skrabalak laboratory, seed-mediated co-reduction (SMCR) involves the simultaneous co-reduction of two metal precursors to deposit metal onto shape-controlled metal nanocrystalline seeds. The central premise is that seeds will serve as preferential and structurally defined platforms for bimetallic deposition, where the shape of the seeds can be transferred to the shells. With Au-Pd as a model system, a set of design principles has been established for the bottom-up synthesis of shape-controlled bimetallic nanocrystals by SMCR. This strategy is successful at synthesizing symmetrically stellated Au-Pd nanocrystals with a variety of symmetries and core@shell Au@Au-Pd nanocrystals. Achieving nanocrystals with high morphological control via SMCR is governed by the following parameters: seed size, shape, and composition as well as the kinetics of seeded growth (through manipulation of synthetic parameters such as pH and metal precursor ratios). For example, larger seeds yield larger nanocrystals as does increasing the amount of metal deposited relative to the number of seeds. This increase in nanocrystal size leads to red-shifts in their localized surface plasmon resonance. Additionally, seed shape directs the overgrowth process during SMCR so the resultant nanocrystals adopt related symmetries. The ability to tune structure is important due to the size-, shape- and composition-dependent optical properties of bimetallic nanocrystals. Using this toolkit, the light scattering and absorption properties of Au

  4. Brassinosteroid functions in Arabidopsis seed development

    PubMed Central

    Jiang, Wen-Bo; Lin, Wen-Hui

    2013-01-01

    Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differencies between monocot and eudicot. Total seed number depends on sillique number and seed number per sillique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per sillique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production. PMID:24270689

  5. Seed Architecture Shapes Embryo Metabolism in Oilseed Rape[W][OA

    PubMed Central

    Borisjuk, Ljudmilla; Neuberger, Thomas; Schwender, Jörg; Heinzel, Nicolas; Sunderhaus, Stephanie; Fuchs, Johannes; Hay, Jordan O.; Tschiersch, Henning; Braun, Hans-Peter; Denolf, Peter; Lambert, Bart; Jakob, Peter M.; Rolletschek, Hardy

    2013-01-01

    Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase–bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro– versus in planta–grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space. PMID:23709628

  6. Maternal Gametophyte Effects on Seed Development in Maize

    PubMed Central

    Chettoor, Antony M.; Phillips, Allison R.; Coker, Clayton T.; Dilkes, Brian; Evans, Matthew M. S.

    2016-01-01

    Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed. PMID:27466227

  7. Enterprise Information Architecture for Mission Development

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne

    2007-01-01

    This slide presentation reviews the concept of an information architecture to assist in mission development. The integrate information architecture will create a unified view of the information using metadata and the values (i.e., taxonomy).

  8. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.

    PubMed

    Link, Bruce M; Busse, James S; Stankovic, Bratislav

    2014-10-01

    Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. PMID:25317938

  9. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity

    PubMed Central

    Link, Bruce M.; Busse, James S.

    2014-01-01

    Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938

  10. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  11. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  12. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2014-01-01

    Architecture development is conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this presentation characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  13. Seed Development in Lesquerellar fendleri (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphological, physiological and biochemical changes during seed development of Lesquerella fendleri was investigated from 7 days after pollination (DAP) to desiccation. The entire course of seed development lasted about 49 days and it can be divided to seven continuous stages (I to VII). During...

  14. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  15. Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis

    PubMed Central

    Yang, Yuhua; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2016-01-01

    Seed number per pod (SNPP) is one of the major yield components and breeding targets in rapeseed that shows great variation and is invaluable for genetic improvement. To elucidate the genetic architecture and uncover the mechanism of SNPP, we identified five quantitative trait loci (QTLs) using the BnaZNRIL population, which were integrated with those of previous studies by physical map to demonstrate a complex and relatively complete genetic architecture of SNPP. A major QTL, qSN.A6, was successfully fine-mapped from 1910 to 267 kb using near-isogenic line (NIL). In addition, qSN.A6 exhibited an antagonistic pleiotropy on seed weight (SW), which is caused by a physiological interaction in which SNPP acts “upstream” of SW. Because the negative effect of qSN.A6 on SW cannot fully counteract its positive effect on SNPP, it also enhanced the final yield (17.4%), indicating its great potential for utilization in breeding. The following genetic and cytological experiments further confirmed that the different rate of ovule abortion was responsible for the ~5 seed difference between Zhongshuang11 and NIL-qSN.A6. This systematic approach to dissecting the comprehensive genetic architecture of SNPP and characterizing the underlying mechanism has advanced the understanding of SNPP and will facilitate the development of high-yield cultivars. PMID:27067010

  16. Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis.

    PubMed

    Yang, Yuhua; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2016-01-01

    Seed number per pod (SNPP) is one of the major yield components and breeding targets in rapeseed that shows great variation and is invaluable for genetic improvement. To elucidate the genetic architecture and uncover the mechanism of SNPP, we identified five quantitative trait loci (QTLs) using the BnaZNRIL population, which were integrated with those of previous studies by physical map to demonstrate a complex and relatively complete genetic architecture of SNPP. A major QTL, qSN.A6, was successfully fine-mapped from 1910 to 267 kb using near-isogenic line (NIL). In addition, qSN.A6 exhibited an antagonistic pleiotropy on seed weight (SW), which is caused by a physiological interaction in which SNPP acts "upstream" of SW. Because the negative effect of qSN.A6 on SW cannot fully counteract its positive effect on SNPP, it also enhanced the final yield (17.4%), indicating its great potential for utilization in breeding. The following genetic and cytological experiments further confirmed that the different rate of ovule abortion was responsible for the ~5 seed difference between Zhongshuang11 and NIL-qSN.A6. This systematic approach to dissecting the comprehensive genetic architecture of SNPP and characterizing the underlying mechanism has advanced the understanding of SNPP and will facilitate the development of high-yield cultivars. PMID:27067010

  17. Transcript profiling of developing peanut seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate regulatory processes and mechanisms underlying the development of peanut seeds, 8 x 15k microarrays were used to monitor changes in the transcriptome of a runner peanut genotype. Developing peanut pods from six development stages corresponding R2 through R8 stages were profiled. Sever...

  18. Bypassing genomic imprinting allows seed development.

    PubMed

    Nowack, Moritz K; Shirzadi, Reza; Dissmeyer, Nico; Dolf, Andreas; Endl, Elmar; Grini, Paul E; Schnittger, Arp

    2007-05-17

    In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm-a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger. PMID:17468744

  19. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  20. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  1. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  2. [Mitochondria respiration in developing sunflower seeds].

    PubMed

    Zaĭtseva, M G; Kasumova, I V; Kasumov, E A; Borisova, M A; Il'chishina, N V

    2002-01-01

    We studied the oxidative and phosphorylative activity of mitochondria in the seeds of three sunflower cultivars (Polevik, Peredovik, and Yubileinyi) during development of the seed embryo within 1 to 54 days after flowering. The rates of succinate oxidation by the mitochondria were 1.5-2 times those of malate or alpha-ketoglutarate oxidation. The ratio of substrate oxidation rates underwent changes during the seed growth. The differences were recorded between cultivars as concerns the times when the maximum oxidation rates were reached. Oxidation was coupled with phosphorylation during the entire period of seed development: the value of respiratory control after Chang changed from 1.4 to 7. By the time of transition to maturation, the rates of oxidation of both substrates and the values of respiratory control and ADP/O decreased. The results we obtained suggest that by days 13-15 of seed embryo growth, the rate of ATP production decreases upon oxidation of Krebs cycle products. PMID:12561330

  3. Developing a taxonomy for mission architecture definition

    NASA Technical Reports Server (NTRS)

    Neubek, Deborah J.

    1990-01-01

    The Lunar and Mars Exploration Program Office (LMEPO) was tasked to define candidate architectures for the Space Exploration Initiative to submit to NASA senior management and an externally constituted Outreach Synthesis Group. A systematic, structured process for developing, characterizing, and describing the alternate mission architectures, and applying this process to future studies was developed. The work was done in two phases: (1) national needs were identified and categorized into objectives achievable by the Space Exploration Initiative; and (2) a program development process was created which both hierarchically and iteratively describes the program planning process.

  4. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  5. Architecture and Development: Two Case Studies

    ERIC Educational Resources Information Center

    Bechhoefer, William B.

    1975-01-01

    An American Fulbright lecturer finds lessons learned about the growth of architectural education in Tunisia and Afghanistan relevant for other developing nations. He emphasizes the responsibility that accompanies the imposition of a foreign system: recognition of local variations from the model and evaluation of programs and curriculum responsive…

  6. Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture.

    PubMed

    Sornay, E; Dewitte, W; Murray, J A H

    2016-07-01

    The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo, endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed number in each silique and leading to increased seed size. A similar effect on seed size was observed with other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines with unmodified inflorescences, and also upon removal of side branches and axillary stems. This phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we conclude that plant architecture is a further important factor to consider in appraising seed phenotypes. PMID:27286190

  7. Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture

    PubMed Central

    Sornay, E.; Dewitte, W.; Murray, J. A. H.

    2016-01-01

    ABSTRACT The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo, endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed number in each silique and leading to increased seed size. A similar effect on seed size was observed with other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines with unmodified inflorescences, and also upon removal of side branches and axillary stems. This phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we conclude that plant architecture is a further important factor to consider in appraising seed phenotypes. PMID:27286190

  8. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  9. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  10. Development of a clinical data architecture.

    PubMed Central

    Beeler, G. W.; Gibbons, P. S.; Chute, C. G.

    1992-01-01

    This paper presents a methodology for developing a data architecture for clinical medicine. The methodology uses an object-oriented analysis approach that takes advantage of the domain expertise of practicing physicians. The resulting high-level data model combines a structured, event-based model of clinical information with the process-oriented structures usually associated with problem lists and practice protocols. PMID:1482875

  11. Proteomic analysis of the testa from developing soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr. cv Jack) seed development was separated into nine defined stages (S1 to S9). Testa (seed coats) were removed from developing seeds at stages S2, 4, 6, 8, and 9, and subjected to shotgun proteomic profiling. For each stage "total proteins” were isolated from 150 mg dry...

  12. Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and Solanaceae1[C][W][OA

    PubMed Central

    Lee, Kieran J.D.; Dekkers, Bas J.W.; Steinbrecher, Tina; Walsh, Cherie T.; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J. Paul

    2012-01-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics. PMID:22961130

  13. Impact of heat stress during seed development on soybean seed metabolome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  14. Millimeterwave Space Power Grid architecture development 2012

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  15. Effect of GA3 Treatment on Seed Development and Seed-Related Gene Expression in Grape

    PubMed Central

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D.; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    Background The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. Methodology/Principal Findings In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars (‘Kyoho’ and ‘Red Globe’), along with a seedless cultivar (‘Thompson Seedless’), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both ‘Kyoho’ and ‘Red Globe’ seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Conclusion Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development. PMID:24224035

  16. Developing a Distributed Computing Architecture at Arizona State University.

    ERIC Educational Resources Information Center

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  17. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  18. High-temperature LDV seed particle development

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Pierce, Vicky G.

    1989-01-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  19. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    SciTech Connect

    Krishnan, P. Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  20. Architectural Drafting. Curriculum Development. Bulletin 1779.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…

  1. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    SciTech Connect

    P Yu

    2011-12-31

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop

  2. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    PubMed Central

    Lee, Hye-Jung; Jo, Yeong-Min; Lee, Jong-Yeol; Lim, Sun-Hyung; Kim, Young-Mi

    2015-01-01

    The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi), which was generated with RNA interference (RNAi)-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs. PMID:26133242

  3. Genetic architecture and regulatory networks in oilseed development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic analysis of global gene expression level variation provides evidence for transcriptional regulators and gene network relationships. Plant seeds are an important source of oil and protein, and a genome-wide assessment of transcriptional regulation during seed development offers insight into t...

  4. Lipid Biosynthesis in Developing Mustard Seed

    PubMed Central

    Mukherjee, Kumar D.

    1983-01-01

    Cotyledons of developing mustard (Sinapis alba L.) seed have been found to synthesize lipids containing the common plant fatty acids and very long-chain monounsaturated (icosenoic, erucic, and tetracosenic) and saturated (icosanoic, docosanoic, and tetracosanoic) fatty acids from various radioactive precursors. The in vivo pattern of labeling of acyl lipids, either from fatty acids synthesized `endogenously' from radioactive acetate or malonate, or from radioactive fatty acids added `exogenously', indicates the involvement of the following pathways in the biosynthesis of triacylglycerols. Palmitic, stearic, and oleic acid, synthesized in the acyl carrier protein-track, are channeled to the Coenzyme A (CoA)-track and converted to triacylglycerols via the glycerol-3-phosphate pathway. Pools of stearoyl-CoA and oleoyl-CoA are elongated to very long-chain saturated and monounsaturated acyl-CoA, respectively. Most of the very long-chain saturated acyl-CoAs acylate preformed diacylglycerols. Very long-chain monounsaturated acyl-CoAs are converted to triacylglycerols, partly via phosphatidic acids and diacylglycerols, and partly by acylation of preformed diacylglycerols. PMID:16663345

  5. Paternal regulation of seed development in wheat hybrids.

    PubMed

    Gill, B S; Waines, J G

    1978-11-01

    Diallel crosses among Triticum boeoticum (4 lines from different geographical areas), T.urartu, Aegilops squarrosa and Ae. speltoides exhibited reciprocal differences in hybrid seed morphology, endosperm development, and embryo viability. T. urartu and Ae. squarrosa as females with T. boeotiaum and Ae. speltoides lead to shrivelled inviable seed. T.boeoticum accessions as female with Ae.speltoides also lead to shrivelled seeds. The reciprocal crosses produced plump seeds which either resembled the maternal parent or showed size differences. By altering the endospermic genome ratios, hybrid seeds with 1 (PF)/1 (PM) showed extreme shrivelling whereas those with 4 (PF)/1 (PM) were medium shrivelled to plump. Genetic experiments involving hybrids of T. boeoticum, T. urartu and T. monococcum showed that a factor is present in pollen or male gametes, which shows dosage effect and which, by interacting with the maternal genome, leads to endosperm abortion. PMID:24317899

  6. Using an Integrated Distributed Test Architecture to Develop an Architecture for Mars

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2016-01-01

    The creation of a crew-rated spacecraft architecture capable of sending humans to Mars requires the development and integration of multiple vehicle systems and subsystems. Important new technologies will be identified and matured within each technical discipline to support the mission. Architecture maturity also requires coordination with mission operations elements and ground infrastructure. During early architecture formulation, many of these assets will not be co-located and will required integrated, distributed test to show that the technologies and systems are being developed in a coordinated way. When complete, technologies must be shown to function together to achieve mission goals. In this presentation, an architecture will be described that promotes and advances integration of disparate systems within JSC and across NASA centers.

  7. Architecture-Centric Development in Globally Distributed Projects

    NASA Astrophysics Data System (ADS)

    Sauer, Joachim

    In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.

  8. [Development strategies on seed seedling of Chinese medicinal materials].

    PubMed

    Li, Longyun; Peng, Rui; Li, Hongli; Wu, Yekuan; Cui, Guanglin

    2010-01-01

    This paper analyzed the development status, industrialization system, standardization system and new variety breeding of seed and seedling of Chinese medicinal materials. Based on the development status and problems facing to the seed and seedling industry in China, some reasonable countermeasures are proposed in this article. The main measures include strengthening new variety breeding, establishing experiment site, protecting new variety and standardizing the market and quality management. PMID:20394305

  9. Water Relations of Seed Development and Germination in Muskmelon (Cucumis melo L.) : IV. Characteristics of the Perisperm during Seed Development.

    PubMed

    Welbaum, G E; Bradford, K J

    1990-04-01

    We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue. PMID:16667368

  10. A proteomic analysis of seed development in Brassica campestri L.

    PubMed

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants. PMID:23189193

  11. A Proteomic Analysis of Seed Development in Brassica campestri L

    PubMed Central

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants. PMID:23189193

  12. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  13. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology.

    PubMed

    Fromstein, Joanna D; Zandstra, Peter W; Alperin, Cecilia; Rockwood, Danielle; Rabolt, John F; Woodhouse, Kimberly A

    2008-03-01

    A successful regenerative therapy to treat damage incurred after an ischemic event in the heart will require an integrated approach including methods for appropriate revascularization of the infarct site, mechanical recovery of damaged tissue, and electrophysiological coupling with native cells. Cardiomyocytes are the ideal cell type for heart regeneration because of their inherent electrical and physiological properties, and cardiomyocytes derived from embryonic stem cells (ESCs) represent an attractive option for tissue-engineering therapies. An important step in developing tissue engineering-based approaches to cardiac cell therapy is understanding how scaffold architecture affects cell behavior. In this work, we generated large numbers of ESC-derived cardiomyocytes in bioreactors and seeded them on porous, 3-dimensional scaffolds prepared using 2 different techniques: electrospinning and thermally induced phase separation (TIPS). The effect of material macro-architecture on the adhesion, viability, and morphology of the seeded cells was determined. On the electrospun scaffolds, cells were elongated in shape, a morphology typical of cultured ESC-derived cardiomyocytes, whereas on scaffolds fabricated using TIPS, the cells retained a rounded morphology. Despite these gross phenotypic and physiological differences, sarcomeric myosin and connexin 43 expression was evident, and contracting cells were observed on both scaffold types, suggesting that morphological changes induced by material macrostructure do not directly correlate to functional differences. PMID:18333789

  14. Seed development and differentiation: a role for metabolic regulation.

    PubMed

    Borisjuk, L; Rolletschek, H; Radchuk, R; Weschke, W; Wobus, U; Weber, H

    2004-07-01

    During seed growth, the filial organs, Vicia embryos and barley endosperm, differentiate into highly specialized storage tissues. Differentiation is evident on structural and morphological levels and is reflected by the spatial distribution of metabolites. In Vicia embryos, glucose is spatially correlated to mitotic activity whereas elongating and starch accumulating cells contain high levels of sucrose. Seed development is also regulated by phytohormones. In pea seeds, GA-deficiency stops seed growth before maturation. In Arabidopsis seeds, ABA regulates differentiation and inhibits cell division activity. The ABA pathway, in turn, is linked to sugar responses. In young Vicia embryos, invertases in maternal tissues control both concentration and composition of sugars. Embryonic and endospermal transfer cell formation represents an early differentiation step. Establishing an epidermis-localised sucrose uptake system renders the embryo independent from maternal control. cDNA array analysis in barley seeds revealed a massive transcriptional re-programming of gene expression during the transition stage, when gene clusters related to transport and energy metabolism are highly transcribed. Sucrose represents a signal for differentiation and up-regulates storage-associated gene expression. Sucrose signalling involves protein phosphorylation. Sucrose non-fermenting-1-related protein kinases are apparently induced in response to high cellular sucrose, and could act as mediators of sucrose-specific signals. Energy metabolism changes during seed development. In Vicia embryos metabolic responses upon hypoxia and low energy charge levels are characteristic for young undifferentiated stages when energy demand and respiration are high. During the transition stage, the embryo becomes adapted to low energy availability and metabolism becomes energetically more economic and tightly controlled. These adaptations are embedded in the embryo's differentiation program and coupled with

  15. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. PMID:26503031

  16. Proteome analysis of the inner integument from developing Jatropha curcas L. seeds.

    PubMed

    Soares, Emanoella L; Shah, Mohibullah; Soares, Arlete A; Costa, José H; Carvalho, Paulo; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2014-08-01

    In this study, we performed a systematic proteomic analysis of the inner integument from developing seeds of Jatropha curcas and further explored the protein machinery responsible for generating the carbon and nitrogen sources to feed the growing embryo and endosperm. The inner integument of developing seeds was dissected into two sections called distal and proximal, and proteins were extracted from these sections and from the whole integument and analyzed using an EASY-nanoLC system coupled to an ESI-LTQ-Orbitrap Velos mass spectrometer. We identified 1526, 1192, and 1062 proteins from the proximal, distal, and whole inner integuments, respectively. The identifications include those of peptidases and other hydrolytic enzymes that play a key role in developmental programmed cell death and proteins associated with the cell-wall architecture and modification. Because many of these proteins are differentially expressed within the integument cell layers, these findings suggest that the cells mobilize an array of hydrolases to produce carbon and nitrogen sources from proteins, carbohydrates, and lipids available within the cells. Not least, the identification of several classes of seed storage proteins in the inner integument provides additional evidence of the role of the seed coat as a transient source of reserves for the growing embryo and endosperm. PMID:25010673

  17. MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage1[OPEN

    PubMed Central

    Voiniciuc, Cătălin; Schmidt, Maximilian Heinrich-Wilhelm; Berger, Adeline; Yang, Bo; Ebert, Berit; Scheller, Henrik V.; North, Helen M.; Usadel, Björn; Günl, Markus

    2015-01-01

    Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods. PMID:26220953

  18. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  19. Architectures of small satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2014-04-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.

  20. Microspot target development with seeded and patterned plasma polymers

    SciTech Connect

    Letts, S.A.; Miller, D.E.; Corley, R.A.; Tillotson, T.M.; Witt, L.A.

    1984-12-10

    A new class of targets for laser fusion experiments was fabricated using plasma-deposition and etching technology. Plasma polymer coatings seeded with silicon or sulfur were deposited as 300..mu..m diameter microspots inside holes of equal diameter in a pure hydrocarbon polymer film. The target was designed to study large-scale plasma instabilities and measure the temperature and density histories of laser induced plasmas. The microspot target required three new development: freestanding stress-free CH films, technology to define and form holes in CH films, and development of seeded films deposited as 300..mu..m diameter discs, nested tightly in the precision holes. Hydrocarbon films were deposited by plasma polymerization or by solution casting (polystyrene in dichloromethane) onto potassium-chloide-coated glass slides. Holes were defined either by masking with a 300..mu..m diameter disc or by reactive ion etching through a washer mask. Sulfur or silicon seeded CH polymer microspots were deposited through a mask using plasma polymerization. Seeded polymer films were prepared with compositions as high as 12 atomic percent, with most diagnostic targets made with 2 a/o. Silicon seeded polymers, when deposited at 750 mtorr (100 Pa) pressure, wer transparent and colorless.

  1. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  2. Proteomics of seed development, desiccation tolerance, germination and vigor.

    PubMed

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. PMID:25461695

  3. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    SciTech Connect

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  4. An open systems architecture for development of a physician's workstation.

    PubMed Central

    Young, C. Y.; Tang, P. C.; Annevelink, J.

    1991-01-01

    We are developing a physician's workstation consisting of highly integrated information management tools for use by physicians in patient care. We have designed and implemented an open systems, client/server architecture as a development platform which allows new applications to be easily added to the system. Applications cooperate by exchanging messages via a broadcast message server. PMID:1807649

  5. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis.

    PubMed

    Du, Qian; Wang, Huanzhong

    2016-07-20

    Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth. PMID:27477025

  6. The Circadian Clock-Controlled Transcriptome of Developing Soybean Seeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables the plant to anticipate daily changes in the environment. Microarray expression profiling was used to identify circadian clock controlled genes expressed in developing soybean seeds. 1.8...

  7. Molecular characterization of a GA-inducible gene, Cvsus1, in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Jun, Sung-Hoon; Kang, Hong-Gyu; Lee, Jinwon; An, Gynheung

    2002-10-31

    To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals. PMID:12442898

  8. The genetic architecture of fitness in a seed beetle: assessing the potential for indirect genetic benefits of female choice

    PubMed Central

    2008-01-01

    Background Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity). Results We used the bio model to estimate six components of genetic and environmental variance in fitness. We found sizeable additive and non-additive genetic variance in F1 productivity, but lower genetic variance in egg-to-adult survival, which was strongly influenced by maternal and paternal effects. Conclusion Our results show that, in order to gain a relevant understanding of the genetic architecture of fitness, measures of offspring fitness should be inclusive and should include quantifications of offspring reproductive success. We note that our estimate of additive genetic variance in F1 productivity (CVA = 14%) is sufficient to generate indirect selection on female choice. However, our results also show that the major determinant of offspring fitness is the genetic interaction between parental genomes, as indicated by large amounts of non-additive genetic variance (dominance and/or epistasis) for F1 productivity. We

  9. TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis1[C][W

    PubMed Central

    Chen, Mingxun; Xuan, Lijie; Wang, Zhong; Zhou, Longhua; Li, Zhilan; Du, Xue; Ali, Essa; Zhang, Guoping; Jiang, Lixi

    2014-01-01

    Fatty acids (FAs) and FA-derived complex lipids play important roles in plant growth and vegetative development and are a class of prominent metabolites stored in mature seeds. The factors and regulatory networks that control FA accumulation in plant seeds remain largely unknown. The role of TRANSPARENT TESTA8 (TT8) in the regulation of flavonoid biosynthesis and the formation of seed coat color is extensively studied; however, its function in affecting seed FA biosynthesis is poorly understood. In this article, we show that Arabidopsis (Arabidopsis thaliana) TT8 acts maternally to affect seed FA biosynthesis and inhibits seed FA accumulation by down-regulating a group of genes either critical to embryonic development or important in the FA biosynthesis pathway. Moreover, the tt8 mutation resulted in reduced deposition of protein in seeds during maturation. Posttranslational activation of a TT8-GLUCOCORTICOID RECEPTOR fusion protein and chromatin immunoprecipitation assays demonstrated that TT8 represses the activities of LEAFY COTYLEDON1, LEAFY COTYLEDON2, and FUSCA3, the critical transcriptional factors important for seed development, as well as CYTIDINEDIPHOSPHATE DIACYLGLYCEROL SYNTHASE2, which mediates glycerolipid biosynthesis. These results help us to understand the entire function of TT8 and increase our knowledge of the complicated networks regulating the formation of FA-derived complex lipids in plant seeds. PMID:24722549

  10. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  11. Architectures for Developing Multiuser, Immersive Learning Scenarios

    ERIC Educational Resources Information Center

    Nadolski, Rob J.; Hummel, Hans G. K.; Slootmaker, Aad; van der Vegt, Wim

    2012-01-01

    Multiuser immersive learning scenarios hold strong potential for lifelong learning as they can support the acquisition of higher order skills in an effective, efficient, and attractive way. Existing virtual worlds, game development platforms, and game engines only partly cater for the proliferation of such learning scenarios as they are often…

  12. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. PMID:26595445

  13. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice.

    PubMed

    Wang, Xin; Zhou, Wei; Lu, Zhanhua; Ouyang, Yidan; O, Chol Su; Yao, Jialing

    2015-10-01

    Storage lipid is a vital component for maintaining structure of seed storage substances and valuable for rice quality and food texture. However, the knowledge of lipid transporting related genes and their function in seed development have not been well elucidated yet. In this study, we identified OsLTPL36, a homolog of putative lipid transport protein, and showed specific expression in rice developing seed. Transcriptional profiling and in situ hybridization analysis confirmed that OsLTPL36 was exclusively expressed in developing seed coat and endosperm aleurone cells. Down-regulated expression of OsLTPL36 led to decreased seed setting rate and 1000-grain weight in transgenic plants. Further studies showed that suppressed expression of OsLTPL36 caused chalky endosperm and resulted in reduced fat acid content in RNAi lines as compared with wild type (WT). Histological analysis showed that the embryo development was delayed after down regulation of OsLTPL36. Moreover, impeded seed germination and puny seedling were also observed in the OsLTPL36 RNAi lines. The data demonstrated that OsLTPL36, a lipid transporter, was critical important not only for seed quality but also for seed development and germination in rice. PMID:26398804

  14. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  15. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  16. Using a cognitive architecture to examine what develops.

    PubMed

    Jones, G; Ritter, F E; Wood, D J

    2000-03-01

    Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying "what develops." PMID:11273427

  17. Development of x-ray laser architectural components

    SciTech Connect

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.

    1994-06-01

    This paper describes the recent experimental and computational development of short-pulse, enhanced-coherence, and high-brilliance x-ray lasers (XRLs). The authors will describe the development of an XRL cavity by injecting laser photons back into an amplifying XRL plasma. Using a combination of LASNEX/GLF/SPECTRE-BEAM3 codes, they obtained good agreement with experimental results. They will describe the adaptive spatial filtering technique used to design small-aperture shaped XRLs with near diffraction-limited output. Finally they will discuss issues concerning the development of high-brilliance XRL architecture, with emphasis on scaling the XRL aperture. Combining these advances in XRL architectural components allows them to develop a short-pulse, high-brilliance, coherent XRL suitable for applications in areas such as biological holography, plasma interferometry, and nonlinear optics.

  18. Development of the nuclear weapons complex EP architecture

    SciTech Connect

    Murray, C.; Halbleib, L.

    1996-07-01

    The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

  19. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  20. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  1. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  2. Seed Development in Ipomoea lacunosa (Convolvulaceae), with Particular Reference to Anatomy of the Water Gap

    PubMed Central

    Gehan Jayasuriya, K. M. G.; Baskin, Jerry M.; Geneve, Robert L.; Baskin, Carol C.

    2007-01-01

    Background and Aims Disruption of one or both of the bulges (water gap) in the seed coat adjacent to the micropyle is responsible for breaking physical dormancy (PY) in seeds of Ipomoea lacunosa and other taxa of Convolvulaceae. Hitherto, neither ontogeny of these bulges nor onset of PY together with anatomical development and maturation drying of the seed had been studied in this family. The aims of this study were to monitor physiological and anatomical changes that occur during seed development in I. lacunosa, with particular reference to ontogeny of the water gap. Methods Developmental anatomy (ontogeny) of seed coat and dry mass, length, moisture content, germinability and onset of seed coat impermeability to water were monitored from pollination to seed maturity. Blocking/drying and dye-tracking experiments were done to identify site of moisture loss during the final stages of seed drying. Key Results Physiological maturity of seeds occurred 22 d after pollination (DAP), and 100 % of seeds germinated 24 DAP. Impermeability of the seed coat developed 27–30 DAP, when seed moisture content was 13 %. The hilar fissure was identified as the site of moisture loss during the final stages of seed drying. The entire seed coat developed from the two outermost layers of the integument. A transition zone, i.e. a weak margin where seed coat ruptures during dormancy break, formed between the bulge and hilar ring and seed coat away from the bulge. Sclereid cells in the transition zone were square, whereas they were elongated under the bulge. Conclusions Although the bulge and other areas of the seed coat have the same origin, these two cell layers underwent a different series of periclinal and anticlinal divisions during bulge development (beginning a few hours after pollination) than they did during development of the seed coat away from the bulge. Further, the boundary between the square sclereids in the transition zone and the elongated ones of the bulge delineate the

  3. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication.

    PubMed

    Lu, Xiang; Li, Qing-Tian; Xiong, Qing; Li, Wei; Bi, Ying-Dong; Lai, Yong-Cai; Liu, Xin-Lei; Man, Wei-Qun; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2016-06-01

    Cultivated soybean has undergone many transformations during domestication. In this paper we report a comprehensive assessment of the evolution of gene co-expression networks based on the analysis of 40 transcriptomes from developing soybean seeds in cultivated and wild soybean accessions. We identified 2680 genes that are differentially expressed during seed maturation and established two cultivar-specific gene co-expression networks. Through analysis of the two networks and integration with quantitative trait locus data we identified two potential key drivers for seed trait formation, GA20OX and NFYA. GA20OX encodes an enzyme in a rate-limiting step of gibberellin biosynthesis, and NFYA encodes a transcription factor. Overexpression of GA20OX and NFYA enhanced seed size/weight and oil content, respectively, in seeds of transgenic plants. The two genes showed significantly higher expression in cultivated than in wild soybean, and the increases in expression were associated with genetic variations in the promoter region of each gene. Moreover, the expression of GA20OX and NFYA in seeds of soybean accessions correlated with seed weight and oil content, respectively. Our study reveals transcriptional adaptation during soybean domestication and may identify a mechanism of selection by expression for seed trait formation, providing strategies for future breeding practice. PMID:27062090

  4. Systems Engineering Education Development(SEED)Case Study

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  5. Investigation of network architecture development and properties in thermoset matrices

    NASA Astrophysics Data System (ADS)

    Swanson, Jeremy Owen

    Matrices employed in composite materials directly influence overall composite properties. In all thermoset materials, molecular level interactions and transformations during cure result in heterogeneous architecture. Variability in connectivity results from the often dramatic spatial and topological changes that occur during the crosslinking process. Compatibility (fillers, pigments, additives), temperature gradients and reactivity differences in the precursors only serve to increase the complexity of network formation. The objective of the research herein is to characterize and understand the relationships between cure conditions, conversion, connectivity, network architecture and properties in glassy thermosetting matrix resins. In this research, epoxy and vinyl ester resins (VERs) were characterized to identify controlling factors in the development of network architecture and understand how they affect the mechanical properties. VERs cure under low temperature conditions (< 50°C) via redox catalysis resulted in vitrification limiting conversion with resulting glass transition temperatures (Tgs) approximately 15°C above the cure temperature. Subsequently, in situ ligand exchange altered the activity of the metal catalyst, and the reduced connectivity of the resulting networks translated into a 30% reduction in stiffness above Tg. Network architecture was further manipulated by changing the chemical composition of the backbone. Incorporation of POSS nanoparticles into VERs resulted in changes to initial network development, with higher levels of conversion prior to vitrification. 3,3'-DDS was cured with a variety of epoxies and examined for conversion, connectivity and mechanical properties. Comparison with 4,4'-DDS revealed significant correlations between molecular level structure and properties. The research established relationships between cure conditions, conversion, connectivity and properties in glassy thermosetting matrix resins. Specifically, the

  6. Development of a satellite structural architecture for operationally responsive space

    NASA Astrophysics Data System (ADS)

    Arritt, Brandon J.; Buckley, Steven J.; Ganley, Jeffrey M.; Welsh, Jeffry S.; Henderson, Benjamin K.; Lyall, M. Eric; Williams, Andrew D.; Preble, Jeffrey C.; DiPalma, John; Mehle, Greg; Roopnarine, R.

    2008-03-01

    The Air Force Research Laboratory/Space Vehicles Directorate (AFRL/RV) is developing a satellite structural architecture in support of the Department of Defense's Operationally Responsive Space (ORS) initiative. Such a structural architecture must enable rapid Assembly, Integration, and Test (AI&T) of the satellite, accommodate multiple configurations (to include structural configurations, components, and payloads), and incorporate structurally integrated thermal management and electronics, while providing sufficient strength, stiffness, and alignment accuracy. The chosen approach will allow a wide range of satellite structures to be assembled from a relatively small set of structural components. This paper details the efforts of AFRL, and its contractors, to develop the technology necessary to realize these goals.

  7. The Genetic Architecture of Seed Composition in Soybean Is Refined by Genome-Wide Association Scans Across Multiple Populations

    PubMed Central

    Vaughn, Justin N.; Nelson, Randall L.; Song, Qijian; Cregan, Perry B.; Li, Zenglu

    2014-01-01

    Soybean oil and meal are major contributors to world-wide food production. Consequently, the genetic basis for soybean seed composition has been intensely studied using family-based mapping. Population-based mapping approaches, in the form of genome-wide association (GWA) scans, have been able to resolve loci controlling moderately complex quantitative traits (QTL) in numerous crop species. Yet, it is still unclear how soybean’s unique population history will affect GWA scans. Using one of the populations in this study, we simulated phenotypes resulting from a range of genetic architectures. We found that with a heritability of 0.5, ∼100% and ∼33% of the 4 and 20 simulated QTL can be recovered, respectively, with a false-positive rate of less than ∼6×10−5 per marker tested. Additionally, we demonstrated that combining information from multi-locus mixed models and compressed linear-mixed models improves QTL identification and interpretation. We applied these insights to exploring seed composition in soybean, refining the linkage group I (chromosome 20) protein QTL and identifying additional oil QTL that may allow some decoupling of highly correlated oil and protein phenotypes. Because the value of protein meal is closely related to its essential amino acid profile, we attempted to identify QTL underlying methionine, threonine, cysteine, and lysine content. Multiple QTL were found that have not been observed in family-based mapping studies, and each trait exhibited associations across multiple populations. Chromosomes 1 and 8 contain strong candidate alleles for essential amino acid increases. Overall, we present these and additional data that will be useful in determining breeding strategies for the continued improvement of soybean’s nutrient portfolio. PMID:25246241

  8. Integrity Constraint Monitoring in Software Development: Proposed Architectures

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.

    1997-01-01

    In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.

  9. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  10. A multiagent architecture for developing medical information retrieval agents.

    PubMed

    Walczak, Steven

    2003-10-01

    Information that is available on the world wide web (WWW) is already more vast than can be comprehensibly studied by individuals and this quantity is increasing at a staggering pace. The quality of service delivered by physicians is dependent on the availability of current information. The agent paradigm offers a means for enabling physicians to filter information and retrieve only information that is relevant to current patient treatments. As with many specialized domains, agent-based information retrieval in medical domains must satisfy several domain-dependent constraints. A multiple agent architecture is developed and described in detail to efficiently provide agent-based information retrieval from the WWW and other explicit information resources. A simulation of the proposed multiple agent architecture shows a 97% decrease in information overload and an 85% increase in information relevancy over existing meta-search tools (with even larger gains over standard search engines). PMID:14584625

  11. SpaceWire model development technology for satellite architecture.

    SciTech Connect

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  12. Sex differences in the genetic architecture of lifespan in a seed beetle: extreme inbreeding extends male lifespan

    PubMed Central

    Bilde, Trine; Maklakov, Alexei A; Meisner, Katrine; la Guardia, Lucia; Friberg, Urban

    2009-01-01

    Background Sex differences in lifespan are ubiquitous throughout the animal kingdom but the causes underlying this phenomenon remain poorly understood. Several explanations based on asymmetrical inheritance patterns (sex chromosomes or mitochondrial DNA) have been proposed, but these ideas have rarely been tested experimentally. Alternatively, sexual dimorphism in lifespan could result from sex-specific selection, caused by fundamental differences in how males and females optimize their fitness by allocating resources into current and future reproduction. Results Here we used sex-specific responses to inbreeding to study the genetic architecture of lifespan and mortality rates in Callosobruchus maculatus, a seed beetle that shows sexual dimorphism in lifespan. Two independent assays revealed opposing sex-specific responses to inbreeding. The combined data set showed that inbred males live longer than outbred males, while females show the opposite pattern. Both sexes suffered reduced fitness measured as lifetime reproductive success as a result of inbreeding. Conclusion No model based on asymmetrical inheritance can explain increased male lifespan in response to inbreeding. Our results are however compatible with models based on sex-specific selection on reproductive strategies. We therefore suggest that sex-specific differences in lifespan in this species primarily result from sexually divergent selection. PMID:19200350

  13. Two Additional Phosphorylases in Developing Maize Seeds 12

    PubMed Central

    Tsai, C. Y.; Nelson, O. E.

    1969-01-01

    Two additional phosphorylases (III and IV) have been detected in developing seeds of maize. Phosphorylase IV is found only in the embryo (with scutellum). It is also present in the embryo of the germinating seed where its activity is 90-fold greater than the activity in the developing embryo 22 days after pollination. Phosphorylase IV is eluted from a DEAE-cellulose column in the same fraction as phosphorylase I of the endosperm, and the 2 enzymes are similar in many respects. Phosphorylase IV is distinguished from phosphorylase I by electrophoretic mobility, by pH optimum, and because its properties are not affected by the shrunken-4 mutation. Phosphorylase III is found both in the endosperms and embryos of developing seeds. Activity for this enzyme is not detected in crude homogenates nor eluates from a DEAE-cellulose column apparently because it complexes with a non-dialyzable, heat-labile inhibitor. High activity is found after protamine sulfate fractionation. Phosphorylase III is bound to protamine sulfate and is then removed by washing with 0.3 m phosphate buffer. Phosphorylase III activity in the endosperm is not detectable 8 days after pollination but is present 12 days after pollination. Phosphorylase III differs from phosphorylases I, II, and IV in several respects—pH optimum, pH-independent ATP inhibition, time of appearance in the endosperm, and because purine and pyrimidine nucleotides are equally inhibitory. In common with phosphorylase II, phosphorylase III apparently does not require a primer to initiate the synthesis of an amylose-like polymer. PMID:5774172

  14. Development of an unmanned maritime system reference architecture

    NASA Astrophysics Data System (ADS)

    Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.

    2014-06-01

    The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.

  15. Leucoplast Pyruvate Kinase from Developing Castor Oil Seeds 1

    PubMed Central

    Plaxton, William C.

    1991-01-01

    Leucoplast pyruvate kinase (PKp; EC 2.7.1.40) from endosperm of developing castor oil seeds (Ricinus communis L. cv Baker 296) appears to be highly susceptible to limited degradation by a cysteine endopeptidase during the purification of the enzyme or incubation of clarified homogenates at 4°C. Purified castor seed PKp was previously reported to consist of immunologically related 57.5 and 44 kilodalton subunits (Plaxton WC, Dennis DT, Knowles VL [1990] Plant Physiol 94: 1528-1534). By contrast, immunoreactive polypeptides of about 63.5 and 54 kilodaltons were observed when a western blot of an extract prepared under denaturing conditions was probed with affinity purified rabbit anti-(castor seed PKp) immunoglobulin G. Proteolytic activity against PKp was estimated by the disappearance of the 63.5 and 54 kilodalton subunits and the concomitant appearance of lower molecular mass immunoreactive degradation products during the incubation of clarified homogenates at 4°C. The presence of 2 millimolar dithiothreitol accelerated the degradation of PKp. The conservation of the 63.5 and 54 kilodalton subunits was observed after extraction of the enzyme in the presence of 1 millimolar p-hydroxymecuribenzoate, or 1 millimolar Nα-p-tosyl-l-lysine chloromethyl ketone, or 10 millimolar iodoacetate. These results reveal that a cysteine endopeptidase was responsible for the in vitro proteolysis of PKp. This endopeptidase is present throughout all stages of endosperm development. Its PKp-degrading activity, however, appears to be most pronounced in preparations from older endosperm. When lysates of purified leucoplasts were incubated at 4°C for up to 21 hours, no degradation of PKp was observed; this indicated an extra-leucoplastic localization for the cysteine endopeptidase. Although the in vivo subunit structure of PKp remains uniform throughout all stages of endosperm development, the large decrease in PK activity that accompanies castor seed maturation coincides with a

  16. Seed Phosphorus and the development of low-phytate crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6) represents 60% to 80% of mature seed total phosphorus (P), and is important to the nutritional quality of seeds when used in foods and feeds. Studies of the biochemistry of seed phytic acid synthesis indicates a complex, multibranched...

  17. Development of a space universal modular architecture (SUMO)

    NASA Astrophysics Data System (ADS)

    Collins, Bernie F.

    This concept paper proposes that the space community should develop and implement a universal standard for spacecraft modularity - to improve interoperability of spacecraft components. Pursuing a global industry consensus standard for open and modular spacecraft architecture will encourage trade, remove standards-related market barriers, and in the long run increase both value provided to customers and profitability of the space industrial sector. This concept paper sets out: (1) the goals for a SUMO standard and how it will benefit the space community; (2) background on spacecraft modularity and existing related standards; (3) the proposed technical scope of the current standardization effort; and (4) an approach for creating a SUMO standard.

  18. Texture development in SiC-seeded AlN

    SciTech Connect

    Sandlin, M.S.; Bowman, K.J.; Root, J.

    1997-01-01

    Polycrystalline AlN specimens containing 15 volume percent SiC seed particles were slip-cast then hot-pressed at 1,800 C. These processing steps resulted in oriented SiC platelets in a nearly random AlN matrix. Samples were then annealed for up to 18 hours at 2,150 C under nitrogen. Quantitative texture measurements of the AlN and SiC basal poles, and powder diffraction measurements were performed using neutron and X-ray diffraction. The results indicate that SiC platelets effectively seed AlN-SiC alloy textures by a coalescence and growth mechanism during annealing. Texture intensification does not occur in AlN specimens without SiC platelet additions, or in specimens containing non-oriented SiC powder. The most effective seeing was observed in specimens containing 15 volume percent SiC platelets. Optical microscopy and electron microscopy were used in conjunction with texture analysis to elucidate texture development mechanisms.

  19. Hormonal Regulation of Dormancy in Developing Sorghum Seeds.

    PubMed Central

    Steinbach, H. S.; Benech-Arnold, R. L.; Sanchez, R. A.

    1997-01-01

    The role of abscisic acid (ABA) and gibberellic acid (GA) in determining the dormancy level of developing sorghum (Sorghum bicolor [L.] Moench.) seeds from varieties presenting contrasting preharvest sprouting behavior (Redland B2, susceptible; IS 9530, resistant) was investigated. Panicles from both varieties were sprayed soon after pollination with fluridone or paclobutrazol to inhibit ABA and GA synthesis, respectively. Fluridone application to the panicles increased germinability of Redland B2 immature caryopses, whereas early treatment with paclobutrazol completely inhibited germination of this variety during most of the developmental period. Incubating caryopses in the presence of 100 [mu]M GA4+7 overcame the inhibitory effect of paclobutrazol, but also stimulated germination of seeds from other treatments. IS 9530 caryopses presented germination indices close to zero until physiological maturity (44 d after pollination) in control and paclobutrazol-treated particles. However, fluridone-treated caryopses were released from dormancy earlier than control and paclobutrazol-treated caryopses. Incubation in the presence of GA4+7 stimulated germination of caryopses from all treatments. Our results support the proposition that a low dormancy level (which is related to a high preharvest sprouting susceptibility) is determined not only by a low embryonic sensitivity to ABA, but also by a high GA content or sensitivity. PMID:12223597

  20. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. PMID:25142352

  1. Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh 2 sweet corn*

    PubMed Central

    Cao, Dong-dong; Hu, Jin; Huang, Xin-xian; Wang, Xian-ju; Guan, Ya-jing; Wang, Zhou-fei

    2008-01-01

    The changes of kernel nutritive components and seed vigor in F1 seeds of sh 2 sweet corn during seed development stage were investigated and the relationships between them were analyzed by time series regression (TSR) analysis. The results show that total soluble sugar and reducing sugar contents gradually declined, while starch and soluble protein contents increased throughout the seed development stages. Germination percentage, energy of germination, germination index and vigor index gradually increased along with seed development and reached the highest levels at 38 d after pollination (DAP). The TSR showed that, during 14 to 42 DAP, total soluble sugar content was independent of the vigor parameters determined in present experiment, while the reducing sugar content had a significant effect on seed vigor. TSR equations between seed reducing sugar and seed vigor were also developed. There were negative correlations between the seed reducing sugar content and the germination percentage, energy of germination, germination index and vigor index, respectively. It is suggested that the seed germination, energy of germination, germination index and vigor index could be predicted by the content of reducing sugar in sweet corn seeds during seed development stages. PMID:19067464

  2. Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh2 sweet corn.

    PubMed

    Cao, Dong-dong; Hu, Jin; Huang, Xin-xian; Wang, Xian-ju; Guan, Ya-jing; Wang, Zhou-fei

    2008-12-01

    The changes of kernel nutritive components and seed vigor in F1 seeds of sh2 sweet corn during seed development stage were investigated and the relationships between them were analyzed by time series regression (TSR) analysis. The results show that total soluble sugar and reducing sugar contents gradually declined, while starch and soluble protein contents increased throughout the seed development stages. Germination percentage, energy of germination, germination index and vigor index gradually increased along with seed development and reached the highest levels at 38 d after pollination (DAP). The TSR showed that, during 14 to 42 DAP, total soluble sugar content was independent of the vigor parameters determined in present experiment, while the reducing sugar content had a significant effect on seed vigor. TSR equations between seed reducing sugar and seed vigor were also developed. There were negative correlations between the seed reducing sugar content and the germination percentage, energy of germination, germination index and vigor index, respectively. It is suggested that the seed germination, energy of germination, germination index and vigor index could be predicted by the content of reducing sugar in sweet corn seeds during seed development stages. PMID:19067464

  3. Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1992-01-01

    Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.

  4. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  5. The role of falsification in the development of cognitive architectures: insights from a lakatosian analysis.

    PubMed

    Cooper, Richard P

    2007-05-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories that develop over time. However, Newell's own candidate cognitive architecture adhered only loosely to Lakatosian principles. This paper reconsiders the role of falsification and the potential utility of Lakatosian principles in the development of cognitive architectures. It is argued that a lack of direct falsifiability need not undermine the scientific development of a cognitive architecture if broadly Lakatosian principles are adopted. Moreover, it is demonstrated that the Lakatosian concepts of positive and negative heuristics for theory development and of general heuristic power offer methods for guiding the development of an architecture and for evaluating the contribution and potential of an architecture's research program. PMID:21635306

  6. Developing Integrated Taxonomies for a Tiered Information Architecture

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne E.

    2006-01-01

    This viewgraph presentation reviews the concept of developing taxonomies for an information architecture. In order to assist people in accessing information required to access information and retrieval, including cross repository searching, a system of nested taxonomies is being developed. Another facet of this developmental project is collecting and documenting attributes about people, to allow for several uses: access management, i.e., who are you and what can you see?; targeted content delivery i.e., what content helps you get your work done?; w ork force planning i.e., what skill sets do you have that we can appl y to work?; and IT Services i.e., How can we provision you with the proper IT services?

  7. Free and glycosylated sterol bioaccumulation in developing Cycas micronesica seeds

    PubMed Central

    Marler, Thomas E.; Shaw, Christopher A.

    2010-01-01

    The bioaccumulation of free and glycosylated forms of stigmasterol and β-sitosterol were determined from Cycas micronesica K.D. Hill seeds throughout seed ontogeny. Per-seed pool of the four compounds increased linearly from 2 to 24 months, indicating no developmental period elicited a major shift in the rate of bioaccumulation. The slopes were not homogeneous, signifying a change in relative sterol profile concomitant with seed maturation. This shift was in favour of the glucosides, as their rate of accumulation exceeded that of the free sterols. Stigmasterol content exceeded that of β-sitosterol, but ontogeny did not influence the ratio of these dominant sterols. The quantity and quality of sterol exposure during consumption of foods prepared from gametophytes by humans is strongly influenced by age of harvested seeds. Results are critical for a further understanding of the link between human neurodegenerative diseases and historical consumption of foods derived from the seed gametophyte tissue. PMID:20157628

  8. The Visible Nulling Coronagraph--Architecture Definition and Technology Development

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Liu, Duncan T.; Schmidtlin, Edouard; Serabyn, Eugene; Mennesson, Bertrand; Green, Joseph J.; Aguayo, Francisco; Fregoso, S. Felipe; Lane, Benjamin F.; Samuele, Rocco; Tuttle, Carl

    2005-01-01

    This paper describes the advantages of visible direct detection and spectroscopy of Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the telescope pupil, with the resultant producing a deep null. We describe nulling configurations that also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of single mode fibers, and post-starlight suppression wavefront sensing and control. With diffraction limited telescope optics and similar quality components in the optical train (lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features of the architecture and analysis, present latest results of laboratory measurements demonstrating achievable null depth and component development, and discuss future key technical milestones.

  9. Evolving concepts of lunar architecture: The potential of subselene development

    NASA Technical Reports Server (NTRS)

    Daga, Andrew W.; Daga, Meryl A.; Wendel, Wendel R.

    1992-01-01

    In view of the superior environmental and operational conditions that are thought to exist in lava tubes, popular visions of permanent settlements built upon the lunar surface may prove to be entirely romantic. The factors that will ultimately come together to determine the design of a lunar base are complex and interrelated, and they call for a radical architectural solution. Whether lunar surface-deployed superstructures can answer these issues is called into question. One particularly troublesome concern in any lunar base design is the need for vast amounts of space, and the ability of man-made structures to provide such volumes in a reliable pressurized habitat is doubtful. An examination of several key environmental design issues suggests that the alternative mode of subselene development may offer the best opportunity for an enduring and humane settlement.

  10. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds.

    PubMed

    Begcy, Kevin; Walia, Harkamal

    2015-11-01

    Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat. PMID:26475192

  11. Development of a seed cotton reclaimer for roller gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the roller ginning process there is always a small percentage of seed cotton that is not or only ginned and passes through with the ginned cottonseed. The unginned seed cotton in the cottonseed stream is called carryover. The carryover is reclaimed from the cottonseed and returned to the se...

  12. Factors to consider in developing variable rate seeding prescriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growing number of variable rate seeding (VRS)-enabled planters and wide-spread on-farm use of GPS technology make it easier than ever to deploy a VRS strategy. However, growers still need reliable methods to identify candidate fields, select appropriate seeding rates and evaluate whether their s...

  13. Development of Kentucky Bluegrass for Non-Burn Seed Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ban on burning of post-harvest grass seed residue has been implemented in Washington and Idaho and restrictions are in place in Oregon, USA. Without residue burning, Kentucky bluegrass (Poa pratensis L.) seed yield decreases over time. Growers have implemented yearly mechanical residue removal (ra...

  14. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking

  15. Seed development and viviparous germination in one accession of a tomato rin mutant.

    PubMed

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-06-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  16. Seed development and viviparous germination in one accession of a tomato rin mutant

    PubMed Central

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-01-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  17. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  18. RELAP5-3D Architectural Developments in 2004

    SciTech Connect

    Dr. George L. Mesina

    2004-08-01

    Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

  19. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. PMID:21803444

  20. Soybean Hydrophobic Protein is Present in a Matrix Secreted by the Endocarp Epidermis during Seed Development

    PubMed Central

    Enstone, Daryl E.; Peterson, Carol A.; Gijzen, Mark

    2015-01-01

    Hydrophobic protein from soybean (HPS) is present in soybean dust and is an allergen (Gly m 1) that causes asthma in allergic individuals. Past studies have shown that HPS occurs on the seed surface. To determine the microscopic localization of HPS during seed development, monoclonal antibodies to HPS were used to visualize the protein by fluorescence and transmission electron microscopy. Seed coat and endocarp sections were also examined for pectin, cellulose, callose, starch, and protein by histochemical staining. HPS is present in the endocarp epidermal cells at 18 to 28 days post anthesis. At later stages of seed development, HPS occurs in extracellular secretions that accumulate unevenly on the endocarp epidermis and seed surface. HPS is synthesized by the endocarp epidermis and deposited on the seed surface as part of a heterogeneous matrix. PMID:26455712

  1. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  2. MicroRNAs as regulators of root development and architecture.

    PubMed

    Khan, Ghazanfar A; Declerck, Marie; Sorin, Céline; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2011-09-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, roots play essential roles in their anchorage to the soil as well as in nutrient and water uptake. In this review, we present recent advances made in the identification of miRNAs involved in embryonic root development, radial patterning, vascular tissue differentiation and formation of lateral organs (i.e., lateral and adventitious roots and symbiotic nitrogen-fixing nodules in legumes). Certain mi/siRNAs target members of the Auxin Response Factors family involved in auxin homeostasis and signalling and participate in complex regulatory loops at several crucial stages of root development. Other miRNAs target and restrict the action of various transcription factors that control root-related processes in several species. Finally, because abiotic stresses, which include nutrient or water deficiencies, generally modulate root growth and branching, we summarise the action of certain miRNAs in response to these stresses that may be involved in the adaptation of the root system architecture to the soil environment. PMID:21607657

  3. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  4. Pigmented Soybean (Glycine max) Seed Coats Accumulate Proanthocyanidins during Development.

    PubMed Central

    Todd, J. J.; Vodkin, L. O.

    1993-01-01

    The dominant I gene inhibits accumulation of anthocyanin pigments in the epidermal layer of soybean (Glycine max) seed coats. Seed-coat color is also influenced by the R locus and by the pubescence color alleles (T, tawny; t, gray). Protein and RNA from cultivars with black (i,R,T) and brown (i,r,T) seed coats are difficult to extract. To determine the nature of the interfering plant products, we examined seed-coat extracts from Clark isogenic lines for flavonoids, anthocyanins, and possible proanthocyanidins by thin-layer chromatography. We show that yellow seed-coat varieties (I) do not accumulate anthocyanins (anthocyanidin glycosides) or proanthocyanidins (polymeric anthocyanidins). Mature, black (i,R,T) and imperfect-black (i,R,t) seed coats contained anthocyanins, whereas mature, brown (i,r,T) and buff (i,r,t) seed coats did not contain anthocyanins. In contrast, all colored (i) genotypes tested positive for the presence of proanthocyanidins by butanol/ HCl and 0.5% vanillin assays. Immature, black (i,R,T) and brown (i,r,T) seed coats contained significant amounts of procyanidin, a 3[prime],4[prime]-hydroxylated proanthocyanidin. Immature, black (i,R,T) or brown (i,r,T) seed-coat extracts also tested positive for the ability to precipitate proteins in a radial diffusion assay and to bind RNA in vitro. Imperfect-black (i,R,t) or buff (i,r,t) seed coats contained lesser amounts of propelargonidin, a 4[prime]-hydroxylated proanthocyanidin. Seed-coat extracts from these genotypes did not have the ability to precipitate protein or bind to RNA. In summary, the dominant I gene controls inhibition of not only anthocyanins but also proanthocyanidins in soybean seed coats. In homozygous recessive i genotypes, the T-t gene pair determines the types of proanthocyanidins present, which is consistent with the hypothesis that the T locus encodes a microsomal 3[prime]-flavonoid hydroxylase. PMID:12231856

  5. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking

  6. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1–35 weeks and 12–24 months.

  7. Adaptation of pancreatic islet cyto-architecture during development.

    PubMed

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2016-01-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months. PMID:27063927

  8. Developing a scalable modeling architecture for studying survivability technologies

    NASA Astrophysics Data System (ADS)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  9. Ethylene involvement in silique and seed development of canola, Brassica napus L.

    PubMed

    Walton, Linda J; Kurepin, Leonid V; Yeung, Edward C; Shah, Saleh; Emery, R J Neil; Reid, David M; Pharis, Richard P

    2012-09-01

    A wide range of plant hormones, including gibberellins (GAs) and auxins are known to be involved in regulating seed and fruit growth and development. Changes in ethylene biosynthesis are also associated with seed and fruit development, but ethylene's role in these processes is poorly understood, as is its possible interaction with the other plant hormones. A major complication of investigating ethylene-induced regulation of developmental processes is ethylene's biphasic mode of action. To investigate ethylene's actions and interactions we used a 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase transgenic canola line. This line evolves significantly less ethylene from its siliques and seeds, relative to plants from a wild type (WT) background. Plants of the transgenic line also had smaller siliques which were associated with reductions in both seed size and seed number. Application of ethephon, a compound that produces ethylene, to plants of the transgenic line restored the WT phenotype for both siliques and seeds. Application of the same dose of ethephon to WT plants diminished both silique and seed development, showing ethylene's biphasic effect and effectively producing the ACC deaminase transgenic phenotype. There were significant decreases in endogenous concentrations of GA(1) and GA(4) and also of indole-3-acetic acid (IAA), between WT seeds and seedless siliques and seeds and siliques from the transgenic line plants. These differences were emphasized during early stages (10-20 days after pollination) of seed and silique development. The above results strongly suggest that ethylene interacts with other endogenous plant hormones in regulating silique and seed development and growth in WT lines of canola. PMID:22809685

  10. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads.

    PubMed

    Terrasson, Emmanuel; Darrasse, Armelle; Righetti, Karima; Buitink, Julia; Lalanne, David; Ly Vu, Benoit; Pelletier, Sandra; Bolingue, William; Jacques, Marie-Agnès; Leprince, Olivier

    2015-07-01

    Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence. PMID:25922487

  11. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  12. Using RNA-Seq to Profile Soybean Seed Development from Fertilization to Maturity

    PubMed Central

    Jones, Sarah I.; Vodkin, Lila O.

    2013-01-01

    To understand gene expression networks leading to functional properties and compositional traits of the soybean seed, we have undertaken a detailed examination of soybean seed development from a few days post-fertilization to the mature seed using Illumina high-throughput transcriptome sequencing (RNA-Seq). RNA was sequenced from seven different stages of seed development, yielding between 12 million and 78 million sequenced transcripts. These have been aligned to the 79,000 gene models predicted from the soybean genome recently sequenced by the Department of Energy Joint Genome Institute. Over one hundred gene models were identified with high expression exclusively in young seed stages, starting at just four days after fertilization. These were annotated as being related to many basic components and processes such as histones and proline-rich proteins. Genes encoding storage proteins such as glycinin and beta-conglycinin had their highest expression levels at the stages of largest fresh weight, confirming previous knowledge that these storage products are being rapidly accumulated before the seed begins the desiccation process. Other gene models showed high expression in the dry, mature seeds, perhaps indicating the preparation of pathways needed later, in the early stages of imbibition. Many highly-expressed gene models at the dry seed stage are, as expected, annotated as hydrophilic proteins associated with low water conditions, such as late embryogenesis abundant (LEA) proteins and dehydrins, which help preserve the cellular structures and nutrients within the seed during desiccation. More significantly, the power of RNA-Seq to detect genes expressed at low levels revealed hundreds of transcription factors with notable expression in at least one stage of seed development. Results from a second biological replicate demonstrate high reproducibility of these data revealing a comprehensive view of the transciptome of seed development in the cultivar Williams, the

  13. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  14. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.

  15. Functional Architecture of the Retina: Development and Disease

    PubMed Central

    Hoon, Mrinalini; Okawa, Haruhisa; Santina, Luca Della; Wong, Rachel O.L.

    2014-01-01

    Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. PMID:24984227

  16. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds.

    PubMed

    Zhou, Yuchan; Setz, Nathan; Niemietz, Christa; Qu, Hongxia; Offler, Christina E; Tyerman, Stephen D; Patrick, John W

    2007-12-01

    Nutrients are imported into developing legume seeds by mass flow through the phloem, and reach developing embryos following secretion from their symplasmically isolated coats. To sustain homeostasis of seed coat water relations, phloem-delivered nutrients and water must exit seed coats at rates commensurate with those of import through the phloem. In this context, coats of developing French bean seeds were screened for expression of aquaporin genes resulting in cloning PvPIP1;1, PvPIP2;2 and PvPIP2;3. These genes were differentially expressed in all vegetative organs, but exhibited their strongest expression in seed coats. In seed coats, expression was localized to cells of the nutrient-unloading pathway. Transport properties of the PvPIPs were characterized by expression in Xenopus oocytes. Only PvPIP2;3 showed significant water channel activity (Pos = 150-200 microm s(-1)) even when the plasma membrane intrinsic proteins (PIPs) were co-expressed in various combinations. Permeability increases to glycerol, methylamine and urea were not detected in oocytes expressing PvPIPs. Transport active aquaporins in native plasma membranes of seed coats were demonstrated by measuring rates of osmotic shrinkage of membrane vesicles in the presence and absence of mercuric chloride and silver nitrate. The functional significance of aquaporins in nutrient and water transport in developing seeds is discussed. PMID:17927694

  17. Flux in the coding and small RNA transcriptomes during soybean seed and seedling development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cotyledons undergo major developmental transitions during seed development. Changes in the transcriptome of seed tissues from a few days after flowering through maturation, and in the cotyledons during germination and early seedling growth, have been revealed using cDNA and 70-mer oligonucle...

  18. Brachypodium seed - a potential model for studying grain development of cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses...

  19. A Proteomics-Based Platform for Systems Biology Analysis of Soybean Seed Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A system based on fresh weight and color was used to define eight stages of soybean (Glycine max (L.) Merrill, cv. Jack) seed development. Storage protein, oil, and starch were quantified from each stage, and used along with the morphological characteristics to establish a first-stage model of seed...

  20. Monitoring viability of seeds in gene banks: developing software tools to increase efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring the decline of seed viability is essential for effective long term seed storage in ex situ collections. Recent FAO Genebank Standards recommend monitoring intervals at one-third the time predicted for viability to fall to 85% of initial viability. This poster outlines the development of ...

  1. Development of turf-type Poa pratensis l. germplasm for seed production without field burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-field burning of Kentucky bluegrass (Poa pratensis L.) post- harvest residue, which maintains grass seed yield and stand longevity, has been eliminated in Washington and is restricted in Idaho and Oregon, USA. Our objective was to develop Kentucky bluegrass germplasm that has sustainable seed y...

  2. Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1991-01-01

    This cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution, by the end of March, 1990, of approximately 132,000 space exposed experiment developed for students (SEEDS) kits to 64,000 teachers representing 40,000 classrooms and 3.3 million kindergarden through university students. Kits were sent to every state, as well as to 30 foreign countries. Preliminary radiation data indicates that layer A received 725 rads, while layer D received 350 rads. Germination rate was reported to be 73.8 percent for space exposed seeds and 70.3 percent for earth based control seeds. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while earth based control seeds' average germination rate was 8.3 days. Some mutations (assumed to be radiation induced) reported by students and Park Seed include plants that added a leaf instead of the usual flower at the end of the flower front and fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds produced green plants.

  3. Optimization of Liver Decellularization Maintains Extracellular Matrix Micro-Architecture and Composition Predisposing to Effective Cell Seeding

    PubMed Central

    Maghsoudlou, Panagiotis; Georgiades, Fanourios; Smith, Holly; Milan, Anna; Shangaris, Panicos; Urbani, Luca; Loukogeorgakis, Stavros P.; Lombardi, Benedetta; Mazza, Giuseppe; Hagen, Charlotte; Sebire, Neil J.; Turmaine, Mark; Eaton, Simon; Olivo, Alessandro; Godovac-Zimmermann, Jasminka; Pinzani, Massimo; Gissen, Paul; De Coppi, Paolo

    2016-01-01

    Hepatic tissue engineering using decellularized scaffolds is a potential therapeutic alternative to conventional transplantation. However, scaffolds are usually obtained using decellularization protocols that destroy the extracellular matrix (ECM) and hamper clinical translation. We aim to develop a decellularization technique that reliably maintains hepatic microarchitecture and ECM components. Isolated rat livers were decellularized by detergent-enzymatic technique with (EDTA-DET) or without EDTA (DET). Histology, DNA quantification and proteomics confirmed decellularization with further DNA reduction with the addition of EDTA. Quantification, histology, immunostaining, and proteomics demonstrated preservation of extracellular matrix components in both scaffolds with a higher amount of collagen and glycosaminoglycans in the EDTA-DET scaffold. Scanning electron microscopy and X-ray phase contrast imaging showed microarchitecture preservation, with EDTA-DET scaffolds more tightly packed. DET scaffold seeding with a hepatocellular cell line demonstrated complete repopulation in 14 days, with cells proliferating at that time. Decellularization using DET preserves microarchitecture and extracellular matrix components whilst allowing for cell growth for up to 14 days. Addition of EDTA creates a denser, more compact matrix. Transplantation of the scaffolds and scaling up of the methodology are the next steps for successful hepatic tissue engineering. PMID:27159223

  4. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing

  5. Postdispersal Infection and Disease Development of Pyrenophora semeniperda in Bromus tectorum Seeds.

    PubMed

    Finch-Boekweg, Heather; Gardner, John S; Allen, Phil S; Geary, Brad

    2016-03-01

    The Ascomycete fungus, Pyrenophora semeniperda, attacks a broad range of cool-season grasses. While leaf and predispersal infection of seeds (i.e., florets containing caryopses) have been previously characterized, little is known about the pathogenesis of mature seeds following dispersal. In this study, we examined infection and disease development of P. semeniperda on dormant seeds of Bromus tectorum. Inoculated seeds were hydrated at 20°C for up to 28 days. Disease development was characterized using scanning electron and light microscopy. P. semeniperda conidia germinated on the seed surface within 5 to 8 h. Hyphae grew on the seed surface and produced extracellular mucilage that eventually covered the seed. Appressoria formed on the ends of hyphae and penetrated through the lemma and palea, stomatal openings, and broken trichomes. The fungus then catabolized the endosperm, resulting in a visible cavity by 8 days. Pathogenesis of the embryo was associated with progressive loss of cell integrity and proliferation of mycelium. Beginning at approximately day 11, one to several stromata (approximately 150 μm in diameter and up to 4 mm in length) emerged through the lemma and palea. Degradation of embryo tissue was completed near 14 days. Conidiophores produced conidia between 21 and 28 days and often exhibited "Y-shaped" branching. This characterization of disease development corrects previous reports which concluded that P. semeniperda is only a weak seed pathogen with infection limited to the outermost seed tissues. In addition, the time required for disease development explains why infected dormant or slow-germinating seeds are most likely to experience mortality. PMID:26645644

  6. HIGHLY METHYL ESTERIFIED SEEDS Is a Pectin Methyl Esterase Involved in Embryo Development1[OPEN

    PubMed Central

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D.; Haughn, George W.

    2015-01-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. PMID:25572606

  7. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  8. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  9. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions.

    PubMed

    Nguyen, Quoc Thien; Kisiala, Anna; Andreas, Peter; Neil Emery, R J; Narine, Suresh

    2016-06-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  10. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  11. The role of the testa during development and in establishment of dormancy of the legume seed.

    PubMed

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W; Soukup, Aleš; Thompson, Richard D

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural

  12. Seed yield, development, and variation in diverse poa pratensis accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Post harvest residue removal is critical for continued high seed production of Kentucky bluegrass (Poa pratensis L.). Previous work showed some accessions have little or no yield reduction with mechanical residue removal compared with the controversial practice of open field burning. Using 10 of t...

  13. Seed oil development of pennycress under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi sp) has been targeted as a potential oilseed for the biofuels industry. Its seeds contain ~36% oil, where erucic acid is the major fatty acid presented with 38.1%. Additionally, the physical proprieties of the methyl esters are in the range to satisfy the needs of the biodiesel m...

  14. Seed Oil and Composition Development in Two Sunflower Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. Currently, it is recommended that desiccants such as glyphosate and paraquat be applied at 35% or less seed moisture at physiological maturity (PM). Recently, Johnson and Gesch (2009) showed that PM for two commerci...

  15. NUTRITIONAL PHYSIOLOGY AND GENOMICS OF DEVELOPING LEGUME SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds are an important source of dietary nutrients for humans throughout the world. They provide basic energy in the form of starches and lipids, they are a source of amino acids for protein, and also provide essential minerals, fatty acids, vitamins, and various health-promoting phytochemic...

  16. PHYSIOLOGICAL ASPECTS OF SEED DEVELOPMENT IN A HAWAIIAN PALM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity of palms (Arecaceae) is threatened and ex situ conservation efforts are hampered by a poor understanding of their seed biology and storage behavior. Pritchardia remota is fan palm endemic to Hawaii (subtribe Corypheae). Flowering of P. remota occurs mostly during the dry seas...

  17. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development. PMID:26613898

  18. Design and development of desiccant seed dryer with airflow inversion and recirculation.

    PubMed

    Gill, R S; Singh, Sukhmeet; Singh, Parm Pal

    2014-11-01

    A desiccant seed dryer has been developed to dry seed in deep bed at safe temperatures for good shelf life and germination. The dryer consists of two chambers viz., air conditioning control unit and seed drying chamber. It operates in seed drying mode and desiccant regeneration mode. It has provision for recirculation of the drying air to minimise the moisture removal from drying air. Also, it has provision of airflow inversion through deep seed bed for uniform drying. Moisture removal from drying air has been done using silica gel desiccant. Chilly 'Punjab Surakh', Chilly 'Punjab Guchhedaar', Paddy, Coriander, Fenugreek and Radish seeds was dried with hot air at 38 °C from initial moisture content of 26.9 to 5 % (wb) in 2 h, 46.52 to 4.19 % (wb) in 4.25 h, 13.3 to 2.61 % (wb) in 4 h, 13.4 to 10.08 % (wb) in 3 h, 12.4 to 8.22 % (wb) in 4¼ h and 10.6 to 6.08 % (wb) in 4 h respectively. The statistical analysis based on paired t-test showed that seed drying in this dryer has no adverse effect on seed germination. PMID:26396340

  19. Effect of seed on ripening control components during avocado fruit development.

    PubMed

    Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E; Feygenberg, Oleg; Pesis, Edna

    2011-12-15

    Seedless avocado fruit are produced alongside seeded fruit in the cultivar Arad, and both reach maturity at the same time. Using this system, it was possible to show that avocado seed inhibits the ripening process: seedless fruits exhibited higher response to exogenous ethylene already at the fruitlet stage, and also at the immature and mature fruit stages. They produced higher CO₂ levels, and the ethylene peak was apparent at the fruitlet stage of seedless fruit, but not of seeded ones. The expression levels of PaETR, PaERS1 and PaCTR1 on the day of harvest at all developmental stages were very similar between seeded and seedless fruit, except that PaCTR1 was higher in seedless fruit only at very early stages. This expression pattern suggests that the seed does not have an effect on components of the ethylene response pathway when fruits are just picked. The expression of MADS-box genes, PaAG1 and PaAGL9, preceded the increase in ethylene production of mature seeded fruit, but not at earlier stages. However, only PaAGL9 was induced in seedless fruit at early stages of development. Taken together, these data suggest that these genes are perhaps involved in climacteric response in seeded fruit, and the seed is responsible for their induction at normal fruit ripening. PMID:21930327

  20. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g

  1. Programmed cell death (PCD): an essential process of cereal seed development and germination.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  2. Programmed cell death (PCD): an essential process of cereal seed development and germination

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  3. Water Relations of Seed Development and Germination in Muskmelon (Cucumis melo L.) 1

    PubMed Central

    Welbaum, Gregory E.; Bradford, Kent J.

    1990-01-01

    We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue. Images Figure 5 PMID:16667368

  4. The Role of Falsification in the Development of Cognitive Architectures: Insights from a Lakatosian Analysis

    ERIC Educational Resources Information Center

    Cooper, Richard P.

    2007-01-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories…

  5. EVALUATION OF SOYASAPONIN, ISOFLAVONE, PROTEIN, LIPID, AND FREE SUGAR ACCUMULATION IN DEVELOPING SOYBEAN SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combination of analytical techniques were used to examine and quantify seed compositional components (protein content, lipid content, carbohydrates, isoflavones, and saponins) during bean development and maturation in two Korean soy cultivars. Protein accumulation was rapid during reproductive st...

  6. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil and meal are major contributors to world-wide food production. Consequently, the genetic basis for soybean seed composition has been intensely studied using family-based mapping. Population-based mapping approaches, in the form of genome-wide association (GWA) scans, have been able to re...

  7. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    PubMed

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use. PMID:25994087

  8. Cytometrical evidence that the lossof seed weight in the minature 1 seed mutant of maize associated with reduced mitotic activity in the developing endosperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The miniature1 (mn1) seed mutant is the most drastic nonlethal single gene mutation wherein the mutants loose >70% of the seed weight relative to the wild type. The causal basis of it is the loss of the Mn1-encoded cell wall invertase in developing endosperm (Plant Cell 4:297-305 and 8:971-83). We r...

  9. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  10. Disasters and development in agricultural input markets: bean seed markets in Honduras after Hurricane Mitch.

    PubMed

    Mainville, Denise Y

    2003-06-01

    The bulk of developing countries' populations and poor depend on agriculture for food and income. While rural economies and people are generally the most severely affected by natural disasters, little is known about how disasters and subsequent relief activities affect agricultural markets with differing levels of development. The article addresses this gap, drawing evidence from bean seed markets in Honduras after Hurricane Mitch. Case studies are used to address hypotheses about a disaster's effects on supply and demand in seed markets, farmers' responses and the performance of relief interventions in markets showing differing levels of development. The results show the importance of tailoring relief interventions to the markets that they will affect and to the specific effects of a disaster; the potential to use local and emerging seed distribution channels in a relief intervention; and opportunities for relief activities to strengthen community seed systems. PMID:12825438

  11. Methodology for characterizing seeds under development for brachytherapy by means of radiochromic and photographic films.

    PubMed

    Meira-Belo, L C; Rodrigues, E J T; Grynberg, S E

    2013-04-01

    The development of new medical devices possess a number of challenges, including designing, constructing, and assaying prototypes. In the case of new brachytherapy seeds, this is also true. In this paper, a methodology for rapid dosimetric characterization of (125)I brachytherapy seeds during the early stages of their development is introduced. The characterization methodology is based on the joint use of radiochromic and personal monitoring photographic films in order to determine the planar anisotropy due to the radiation field produced by the seed under development, by means of isodose curves. To evaluate and validate the process, isodose curves were obtained with both types of films after irradiation with a commercial (125)I brachytherapy seed. PMID:23353089

  12. Mother-plant-mediated pumping of zinc into the developing seed.

    PubMed

    Olsen, Lene Irene; Hansen, Thomas H; Larue, Camille; Østerberg, Jeppe Thulin; Hoffmann, Robert D; Liesche, Johannes; Krämer, Ute; Surblé, Suzy; Cadarsi, Stéphanie; Samson, Vallerie Ann; Grolimund, Daniel; Husted, Søren; Palmgren, Michael

    2016-01-01

    Insufficient intake of zinc and iron from a cereal-based diet is one of the causes of 'hidden hunger' (micronutrient deficiency), which affects some two billion people(1,2). Identifying a limiting factor in the molecular mechanism of zinc loading into seeds is an important step towards determining the genetic basis for variation of grain micronutrient content and developing breeding strategies to improve this trait(3). Nutrients are translocated to developing seeds at a rate that is regulated by transport processes in source leaves, in the phloem vascular pathway, and at seed sinks. Nutrients are released from a symplasmic maternal seed domain into the seed apoplasm surrounding the endosperm and embryo by poorly understood membrane transport processes(4-6). Plants are unique among eukaryotes in having specific P1B-ATPase pumps for the cellular export of zinc(7). In Arabidopsis, we show that two zinc transporting P1B-ATPases actively export zinc from the mother plant to the filial tissues. Mutant plants that lack both zinc pumps accumulate zinc in the seed coat and consequently have vastly reduced amounts of zinc inside the seed. Blockage of zinc transport was observed at both high and low external zinc supplies. The phenotype was determined by the mother plant and is thus due to a lack of zinc pump activity in the seed coat and not in the filial tissues. The finding that P1B-ATPases are one of the limiting factors controlling the amount of zinc inside a seed is an important step towards combating nutritional zinc deficiency worldwide. PMID:27243644

  13. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  14. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients.

    PubMed

    Van Dongen, Joost T; Ammerlaan, Ankie M H; Wouterlood, Medleine; Van Aelst, Adriaan C; Borstlap, Adrianus C

    2003-05-01

    An important function of the seed coat is to deliver nutrients to the embryo. To relate this function to anatomical characteristics, the developing seed coat of pea (Pisum sativum L.) was examined by light- and cryo-scanning electron microscopy (cryo-SEM) from the late pre-storage phase until the end of seed filling. During this time the apparently undifferentiated seed coat tissues evolve into the epidermal macrosclereids, the hypodermal hourglass cells, chlorenchyma, ground parenchyma and branched parenchyma. Using the fluorescent symplast tracer 8-hydroxypyrene-1,3,6-trisulfonic acid, it could be demonstrated that solutes imported by the phloem move into the chlorenchyma and ground parenchyma, but not into the branched parenchyma. From a comparison with literature data of common bean (Phaseolus vulgaris L.) and broad bean (Vicia faba L.), it is concluded that in the three species different parenchyma layers, but not the branched parenchyma, may be involved in the post-phloem symplasmic transport of nutrients in the seed coat. In pea, the branched parenchyma dies during the storage phase, and its cell wall remnants then form the boundary layer between the living seed coat parenchyma cells and the cotyledons. Using cryo-SEM, clear images were obtained of this boundary layer which showed that many intracellular spaces in the seed coat parenchyma are filled with an aqueous solution. This is suggested to facilitate the diffusion of nutrients from the site of unloading towards the cotyledons. PMID:12714370

  15. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  16. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination.

    PubMed

    Lang, Sirui; Liu, Xiaoxia; Ma, Gang; Lan, QinYing; Wang, Xiaofeng

    2014-10-01

    To investigate regulatory processes and protective mechanisms leading to desiccation tolerance (DT) in seeds, cDNA amplified fragment length polymorphism (cDNA-AFLP) in conjunction with 128 primer combinations was used to detect differential gene expression in rape seeds in response to DT during seed development and germination. We obtained approximately 8000 transcript-derived fragments (TDFs), of which 394 TDFs with differential expression patterns ("sustained expression", "up-regulated", "couple with seed DT", and "down-regulated") were excised from gels and re-amplified by polymerase chain reaction (PCR). After sequencing and comparison with the National Center for Biotechnology Information database, 176 TDFs presented significant similarity with known genes that could be classified into the following categories: metabolism and energy, stress resistance and defense, storage, signal transduction, and other functional categories. Using semiquantitative reverse-transcription PCR and real-time PCR approaches, the significance of the differences was further confirmed in fresh seeds and dehydrated seeds. The genes that encode superoxide dismutase, peroxiredoxin, caleosin, oleosin S3, steroleosin, late embryogenesis abundant protein, glutathione reductase, β-glucosidase, S23 transcriptional repressor, and some heat-shock proteins could be associated with DT. The results of this study will aid in the identification of candidate genes for future experiments that seek to understand seed DT. PMID:25221920

  17. Structure of the Developing Pea Seed Coat and the Post‐phloem Transport Pathway of Nutrients

    PubMed Central

    VAN DONGEN, JOOST T.; AMMERLAAN, ANKIE M. H.; WOUTERLOOD, MADELEINE; VAN AELST, ADRIAAN C.; BORSTLAP, ADRIANUS C.

    2003-01-01

    An important function of the seed coat is to deliver nutrients to the embryo. To relate this function to anatomical characteristics, the developing seed coat of pea (Pisum sativum L.) was examined by light‐ and cryo‐scanning electron microscopy (cryo‐SEM) from the late pre‐storage phase until the end of seed filling. During this time the apparently undifferentiated seed coat tissues evolve into the epidermal macrosclereids, the hypodermal hourglass cells, chlorenchyma, ground parenchyma and branched parenchyma. Using the fluorescent symplast tracer 8‐hydroxypyrene‐1,3,6‐trisulfonic acid, it could be demonstrated that solutes imported by the phloem move into the chlorenchyma and ground parenchyma, but not into the branched parenchyma. From a comparison with literature data of common bean (Phaseolus vulgaris L.) and broad bean (Vicia faba L.), it is concluded that in the three species different parenchyma layers, but not the branched parenchyma, may be involved in the post‐phloem symplasmic transport of nutrients in the seed coat. In pea, the branched parenchyma dies during the storage phase, and its cell wall remnants then form the boundary layer between the living seed coat parenchyma cells and the cotyledons. Using cryo‐SEM, clear images were obtained of this boundary layer which showed that many intracellular spaces in the seed coat parenchyma are filled with an aqueous solution. This is suggested to facilitate the diffusion of nutrients from the site of unloading towards the cotyledons. PMID:12714370

  18. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A

  19. Lipid analysis of developing Camelina sativa seeds and cultured embryos.

    PubMed

    Pollard, Mike; Martin, Tina M; Shachar-Hill, Yair

    2015-10-01

    Camelina sativa is a cultivated oilseed rich in triacylglycerols containing oleic, linoleic, α-linolenic and eicosenoic acids. As it holds promise as a model species, its lipid synthesis was characterized in vivo and in culture. Lipid accumulates at a maximum rate of about 26 μg/day/seed (11.5 mg lipid/day/g fresh seed weight), a rate comparable with other oilseeds. Noteworthy is a late stage surge in α-linolenic acid accumulation. Small amounts of unusual epoxy and hydroxy fatty acids are also present in the triacylglycerols. These include 15,16-epoxy- and 15-hydroxy-octadecadienoic acids and homologous series of ω7-hydroxy-alk-ω9-enoic and ω9/10-hydroxy-alkanoic acids. Mid-maturation embryos cultured in vitro have growth and lipid deposition rates and fatty acid compositions that closely match that of seeds, but extended culture periods allow these rates to rise and surpass those observed in planta. Optimized thin layer chromatography systems for characterization of labeled products from acetate or glycerol labeling are described. Glycerol label is only found in acylglycerols, largely as the intact glyceryl backbone, but acetate can label acyl groups and sterols, the latter to a much higher relative specific activity. This presumably occurs because mevalonic acid precursor is derived from the non-plastid pool of acetyl-CoA that is also the source for malonyl-CoA to drive FAE1-dependent chain elongation. Particular attention has been paid to the separation of sterols and diacylglycerols, and to hydrogenation of triacylglycerols to simplify their analysis. These improved methods will allow more accurate analyses of the fluxes of lipid metabolism in cultured plant embryos. PMID:26262674

  20. Effects of temperature during soybean seed development on defense-related gene expression and fungal pathogen accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr] plants were exposed to three temperature regimens during seed development to investigate the effect of temperature on the expression of eight defense-related genes and the accumulation of two fungal pathogens in inoculated seeds. In seeds prior to inoculation, either...

  1. Hardware additions to microprocessor architecture aid software development

    NASA Technical Reports Server (NTRS)

    Sievers, M. W.

    1976-01-01

    An address trap (breakpoint) mechanism and last-in-first-out (LIFO) address stack are suggested as two additions to the basic microprocessor architecture whose functions are solely to aid the programmer. These devices provide the programmer with the ability to specify address breakpoints and to trace program execution back through N instructions, where N is the depth of the stack. Both devices, plus interface logic and buffering, have been designed for an INTEL 8080-based system using approximately 25 integrated-circuit packages.

  2. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana.

    PubMed

    Molina, Isabel; Ohlrogge, John B; Pollard, Mike

    2008-02-01

    Mature seeds of Arabidopsis thaliana and Brassica napus contain complex mixtures of aliphatic monomers derived from non-extractable lipid polyesters. Most of the monomers are deposited in the seed coat, and their compositions suggest the presence of both cutin and suberin layers. The location of these polyesters within the seed coat, and their contributions to permeability of the seed coat and other functional properties are unknown. Polyester deposition was followed over Brassica seed development and distinct temporal patterns of monomer accumulation were observed. Octadecadiene-1,18-dioate, the major leaf cutin monomer, was transiently deposited. In contrast, the saturated dicarboxylates maintained a constant level during seed desiccation, whereas the fatty alcohols and saturated omega-hydroxy fatty acids continually increased. Dissection and analysis of Brassica seed coats showed that suberization is not specific to the chalaza. Analysis of the Arabidopsis ap2-7 mutant suggested that suberin monomers are preferentially associated with the outer integument. Several Arabidopsis knockout mutant lines for genes involved in polyester biosynthesis (att1, fatB and gpat5) were examined for seed monomer load and composition. The variance in polyester monomers of these mutants is correlated with dye penetration assays. Furthermore, stable transgenic plants expressing promoter::YFP fusions showed ATT1 promoter activity in the inner integument, whereas GPAT5 promoter is active in the outer integument. Together, the Arabidopsis data indicated that there is a suberized layer associated with the outer integument and a cutin-like polyester layer associated with the inner seed coat. PMID:18179651

  3. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  4. SCB1, a BURP-domain protein gene, from developing soybean seed coats.

    PubMed

    Batchelor, Anthea K; Boutilier, Kim; Miller, S Shea; Hattori, Jiro; Bowman, Lu Anne; Hu, Ming; Lantin, Sylviane; Johnson, Douglas A; Miki, Brian L A

    2002-08-01

    We describe a gene, SCB1 (Seed Coat BURP-domain protein 1), that is expressed specifically within the soybean (Glycine max [L.] Merrill) seed coat early in its development. Northern blot analysis and mRNA in situ hybridization revealed novel patterns of gene expression during seed development. SCB1 mRNA accumulated first within the developing thick-walled parenchyma cells of the inner integument and later in the thick- and thin-walled parenchyma cells of the outer integument. This occurred prior to the period of seed coat maturation and seed filling and before either of the layers started to degrade. SCB1 may therefore play a role in the differentiation of the seed coat parenchyma cells. In addition, the protein product appears to be located within cell walls. The SCB1 gene codes for a new member of a class of modular proteins that possess a carboxy-terminal BURP domain and a variety of different repeated sequences. The sequence of the genomic clone revealed the insertion of a Tgm transposable element in the upstream promoter region but it is not certain whether it contributes to the tissue-specific pattern of SCB1 expression. PMID:12172833

  5. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed. PMID:25119487

  6. New IRCMOS architecture applied to uncooled microbolometers developed at LETI

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Tchagaspanian, M.; Arnaud, A.; Imperinetti, P.; Chammings, G.; Yon, J. J.; Tissot, J. L.

    2007-04-01

    Thermal imaging market is today more and more attracted by systems with "instant-on" and low power consumption. Therefore the "TECless" operation of uncooled microbolometer detectors, that is where no Peltier module is needed, is the major step to fulfill the market requirement. In order to fulfill this trend, LETI/SLIR is working on a new IRCMOS architecture. This new design is based on a differential reading implemented with current mirrors that simultaneously reduces focal plane temperature sensitivity and simplifies the detector driving. An IRCMOS prototype (320 x 240 with a pitch of 25 μm) has been designed, processed, and characterized. This paper presents an overall view of this new design and the preliminary characterization results got from this focal plane array.

  7. Software Architecture for Simultaneous Process Control and Software Development/Modification

    SciTech Connect

    Lenarduzzi, Roberto; Hileman, Michael S; McMillan, David E; Holmes Jr, William; Blankenship, Mark; Wilder, Terry

    2011-01-01

    A software architecture is described that allows modification of some application code sections while the remainder of the application continues executing. This architecture facilitates long term testing and process control because the overall process need not be stopped and restarted to allow modifications or additions to the software. A working implementation using National Instruments LabVIEW{trademark} sub-panel and shared variable features is described as an example. This architecture provides several benefits in both the program development and execution environments. The software is easier to maintain and it is not necessary to recompile the entire program after a modification.

  8. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    PubMed Central

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  9. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    PubMed

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation. PMID:24402568

  10. Effect of high pressure on green pea seeds germination and plantlets development

    NASA Astrophysics Data System (ADS)

    Alexandre, Elisabete M. C.; Carvalho, Andreia M.; Saraiva, Jorge A.

    2014-01-01

    The aim of this work was to study the impact of high pressure (50 MPa, 10 min) on germination of pea seeds with different imbibition times (0, 12 and 36 h). The parameters analysed were the percentage of germinated seeds, length of roots and stems, number of leaves developed and the weight of young plantlets. Peroxidase (POD), polyphenol oxidase (PPO), pectin methylesterase (PME) and total proteolytic activity were analysed in seeds after the pressure treatment and in leaves after the germination period. Results showed that 50 MPa applied during 10 min retarded the germination onset and inhibited seeds to germinate. The pressure treatment increased and decreased the length of roots and stems, respectively. The number of leaves per germinated seed decreased with the pressure treatment. Enzymatic activities of seeds showed that only total proteolytic activity was significantly reduced by pressure and only for 0 h of imbibition. POD and PPO activities determined in leaves of the plantlets increased with the pressure treatment, while PME activity also increased but only for 12 h of imbibition and total proteolytic activity decreased.

  11. Isolation and Characterization of Mutants Defective in Seed Coat Mucilage Secretory Cell Development in Arabidopsis1

    PubMed Central

    Western, Tamara L.; Burn, Joanne; Tan, Wei Ling; Skinner, Debra J.; Martin-McCaffrey, Luke; Moffatt, Barbara A.; Haughn, George W.

    2001-01-01

    In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage synthesis, and secondary cell wall production. We have tested the potential of Arabidopsis seed coat epidermal cells as a model system for the genetic analysis of these processes. A screen for mutants defective in seed mucilage identified five novel genes (MUCILAGE-MODIFIED [MUM]1–5). The seed coat development of these mutants, and that of three previously identified ones (TRANSPARENT TESTA GLABRA1, GLABRA2, and APETALA2) were characterized. Our results show that the genes identified define several events in seed coat differentiation. Although APETALA2 is needed for differentiation of both outer layers of the seed coat, TRANSPARENT TESTA GLABRA1, GLABRA2, and MUM4 are required for complete mucilage synthesis and cytoplasmic rearrangement. MUM3 and MUM5 may be involved in the regulation of mucilage composition, whereas MUM1 and MUM2 appear to play novel roles in post-synthesis cell wall modifications necessary for mucilage extrusion. PMID:11706181

  12. Development of hardwood seed zones for Tennessee using a geographic information system

    USGS Publications Warehouse

    Post, L.S.; Schlarbaum, S.E.; Van Manen, F.; Cecich, R.A.; Saxton, A.M.; Schneider, J.F.

    2003-01-01

    For species that have no or limited information on genetic variation and adaptability to nonnative sites, there is a need for seed collection guidelines based on biological, climatological, and/or geographical criteria. Twenty-eight hardwood species are currently grown for reforestation purposes at the East Tennessee State Nursery. The majority of these species have had no genetic testing to define guidelines for seed collection location and can be distributed to sites that have a very different environment than that of seed origin(s). Poor survival and/or growth may result if seedlings are not adapted to environmental conditions at the planting location. To address this problem, 30 yr of Tennessee county precipitation and minimum temperature data were analyzed and grouped using a centroid hierarchical cluster analysis. The weather data and elevational data were entered into a Geographic Information System (GIS) and separately layered over Bailey's Ecoregions to develop a seed zone system for Tennessee. The seed zones can be used as a practical guideline for collecting seeds to ensure that the resulting seedlings will be adapted to planting environments.

  13. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus

    PubMed Central

    Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li

    2015-01-01

    Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factorfamilies were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds

  14. Bidirectional promoters in seed development and related hormone/stress responses

    PubMed Central

    2013-01-01

    Background Bidirectional promoters are common in genomes but under-studied experimentally, particularly in plants. We describe a targeted identification and selection of a subset of putative bidirectional promoters to identify genes involved in seed development and to investigate possible coordinated responses of gene pairs to conditions important in seed maturation such as desiccation and ABA-regulation. Results We combined a search for 100–600 bp intergenic regions in the Arabidopsis genome with a cis-element based selection for those containing multiple copies of the G-box motif, CACGTG. One of the putative bidirectional promoters identified also contained a CE3 coupling element 5 bp downstream of one G-box and is identical to that characterized previously in the HVA1 promoter of barley. CE3 elements are significantly under-represented and under-studied in Arabidopsis. We further characterized the pair of genes associated with this promoter and uncovered roles for two small, previously uncharacterized, plant-specific proteins in Arabidopsis seed development and stress responses. Conclusions Using bioinformatics we identified putative bidirectional promoters involved in seed development and analysed expression patterns for a pair of plant-specific genes in various tissues and in response to hormones/stress. We also present preliminary functional analysis of these genes that is suggestive of roles in seed development. PMID:24261334

  15. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu.

    PubMed

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  16. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu

    PubMed Central

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A.; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  17. Architecture & Environment

    ERIC Educational Resources Information Center

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  18. Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa.

    PubMed

    Aivalakis, Georgios; Dimou, Maria; Flemetakis, Emmanouil; Plati, Fotini; Katinakis, Panagiotis; Drossopoulos, J B

    2004-03-01

    To investigate the role of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) during Medicago sativa seed development, the distribution of both proteins was examined using an immunohistological approach. Both enzymes are co-localized in most ovular and embryonic tissues. In early stages of seed development, both proteins were abundant in embryo and integuments, while at subsequent stages both proteins are accumulated in endosperm, nucellus and integuments. At late stages of seed development when both endosperm and nucellus are degraded, significant accumulation of both proteins was observed in the embryo proper. Chlorophyll was found to accumulate in embryos after the heart stage and reached a maximum at mature stage. It is suggested that CA and PEPC play a role in respiratory carbon dioxide refixation while generating malate to support amino acid and/or fatty acids biosynthesis. PMID:15051041

  19. The impact of seed treatment on early crop development and ield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful establishment of cotton (Gossypium hirsutum L.) seedlings is critical for early crop development and productivity. Past research has shown that an application of the plant growth regulator, ethylene, to seed or seedlings can improve root development, increase hypocotyl diameters and ...

  20. Project S.E.E.D.S. (Student Excellence through Educational Development of Staff).

    ERIC Educational Resources Information Center

    Richardson, Chris

    Scheduled for implementation in 1985, Student Excellence through Educational Development of Staff (SEEDS) is a 3-year cooperative partnership between four rural Southwest Iowa school districts to provide comprehensive, long-term staff development that promises to heighten student achievement through increasing instructional/supervision skills of…

  1. [Morphology and anatomy of the fruit and seed in development of Guarea macrophylla Vahl. (Meltaceae)].

    PubMed

    Dias Pinto, Daniela; Mourio, Káthia S M; de Souza, Luiz A; Moscheta, Ismar S

    2003-01-01

    Morphology and anatomy of the fruit and seed in development of Guarea macrophylla Vahl. were studied in flowers and fruits collected in secondary forests of Maringá, Paraná, Brazil. Pericarp originates from the wall of the ovary and is constituted of epidermic exocarp, parenchymatous mesocarp with brachysclereids and fibrous and lignified endocarp. The seed develops from the hemianatropous, bitegmic and crassinucellate ovule and it is classified as an exotegmic and exalbuminous one. Exotesta and mesotesta constitute the red sarcotesta, with oily content. PMID:15916178

  2. Pyrimidine nucleoside phosphorylation in developing seeds and germinating seedlings of wheat

    SciTech Connect

    Rowe, M.L.

    1988-01-01

    Uridine- and thymidine-phosphorylating enzymes were measured in developing and germinating seeds of Triticum aestivum v. Arthur and T. aestivum v. Lemhi. Because crude extracts were to be used in the developmental study, characteristics of unpurified nucleoside phosphotransferase (NPTase) were examined. In the developmental study with two varieties of wheat, NPTase activity was found to be very low in all of the true seed tissues during seed maturation. Uridine-phosphorylating activity was due to primarily to uridine kinase. Thymidine phosphorylation was very low in all tissues throughout seed maturation, with a brief appearance by thymidine kinase in the developing embryo. In germinating seeds, uridine-phosphorylating activity was present from earliest stages of germination but showed a decrease in activity followed by a recovery after 48 hours inbibition. Experiments using ({alpha}-{sup 32}P)ATP indicated that uridine kinase was present during early germination but had disappeared by 96 hours. Uridine phosphorylation at later stages of germination was accomplished by NTPase. Thymidine phosphorylation did not begin until after 36 hours of germination and was the result of NPTase activity.

  3. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin

    PubMed Central

    Locascio, Antonella; Roig-Villanova, Irma; Bernardi, Jamila; Varotto, Serena

    2014-01-01

    The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species. PMID:25202316

  4. Development of the seeding system used for laser velocimeter surveys of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Hathaway, Michael D.

    1993-01-01

    An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.

  5. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina.

    PubMed

    Sebastián, Fracchia; Vanesa, Silvani; Eduardo, Flachsland; Graciela, Terada; Silvana, Sede

    2014-01-01

    Aa achalensis is an endangered terrestrial orchid endemic from Argentina. In vitro symbiotic seed germination was evaluated for its propagation. Five different fungal strains were isolated from this species: two Rhizoctonia-like related to Thanatephorus cucumeris and three ascomicetaceous fungi belonging to Phialophora graminicola and one to an uncultured Pezizaceae. All five isolates promoted seed germination being one T. cucumeris strain the most effective. After 16 weeks of growth, 30% of A. achalensis protocorms developed until seedlings with two/four leaves in this treatment. These findings open an opportunity to the knowledge and preservation of this species. PMID:23780616

  6. Architectural Considerations for an Educational Research Center for Child Development (ERCCD).

    ERIC Educational Resources Information Center

    Linder, Ronald

    Architectural considerations and recommendations to facilitate the work of an Educational Research Center for Child Development are presented. The purposes of the center are to demonstrate model programs for children, train student and child development professionals, and facilitate and disseminate research on young children. Program…

  7. Developing a New Framework for Integration and Teaching of Computer Aided Architectural Design (CAAD) in Nigerian Schools of Architecture

    ERIC Educational Resources Information Center

    Uwakonye, Obioha; Alagbe, Oluwole; Oluwatayo, Adedapo; Alagbe, Taiye; Alalade, Gbenga

    2015-01-01

    As a result of globalization of digital technology, intellectual discourse on what constitutes the basic body of architectural knowledge to be imparted to future professionals has been on the increase. This digital revolution has brought to the fore the need to review the already overloaded architectural education curriculum of Nigerian schools of…

  8. [Modification of Barley Development at Early Stages after Exposure of Seeds to γ-Irradiation].

    PubMed

    Geras'kin, S A; Churukin, R S; Kazakova, E A

    2015-01-01

    The reaction of barley seeds (Nur and Grace varieties) to γ-irradiation in the dose range of 2-50 Gy was studied. The length and weight of a root, the length of a seedling and germination rate were investigated. The dose range in which we observed stimulation of plant development was evaluated. It was shown that the increase of root and seedling sizes after irradiation of seeds at stimulating doses is associated with the rise in the developmental speed, rather than with their earlier germination. Also the effects of a dose rate, a quality of seeds, humidity and a period of storage on the manifestation of radiation exposure were studied. PMID:26964346

  9. Autism Spectrum Disorder Symptoms Among Children Enrolled in the Study to Explore Early Development (SEED)

    PubMed Central

    Levy, Susan E.; Daniels, Julie; Schieve, Laura; Croen, Lisa A.; DiGuiseppi, Carolyn; Blaskey, Lisa; Giarelli, Ellen; Lee, Li-Ching; Pinto-Martin, Jennifer; Reynolds, Ann; Rice, Catherine; Rosenberg, Cordelia Robinson; Thompson, Patrick; Yeargin-Allsopp, Marshalyn; Young, Lisa; Schendel, Diana

    2015-01-01

    This study examined the phenotypic profiles of children aged 30–68 months in the Study to Explore Early Development (SEED). Children classified as autism spectrum disorder (ASD), developmental delay (DD) with ASD symptoms, DD without ASD symptoms, and population comparison (POP) differed significantly from each other on cognitive, adaptive, behavioral, and social functioning and the presence of parent-reported conditions. Children with ASD and DD with ASD symptoms had mild to severe ASD risk on several measures compared to children with other DD and POP who had little ASD risk across measures. We conclude that children in SEED have varying degrees of ASD impairment and associated deficits. SEED thus provides a valuable sample to explore ASD phenotypes and inform risk factor analyses. PMID:26048040

  10. Autism spectrum disorder symptoms among children enrolled in the Study to Explore Early Development (SEED).

    PubMed

    Wiggins, Lisa D; Levy, Susan E; Daniels, Julie; Schieve, Laura; Croen, Lisa A; DiGuiseppi, Carolyn; Blaskey, Lisa; Giarelli, Ellen; Lee, Li-Ching; Pinto-Martin, Jennifer; Reynolds, Ann; Rice, Catherine; Rosenberg, Cordelia Robinson; Thompson, Patrick; Yeargin-Allsopp, Marshalyn; Young, Lisa; Schendel, Diana

    2015-10-01

    This study examined the phenotypic profiles of children aged 30-68 months in the Study to Explore Early Development (SEED). Children classified as autism spectrum disorder (ASD), developmental delay (DD) with ASD symptoms, DD without ASD symptoms, and population comparison (POP) differed significantly from each other on cognitive, adaptive, behavioral, and social functioning and the presence of parent-reported conditions. Children with ASD and DD with ASD symptoms had mild to severe ASD risk on several measures compared to children with other DD and POP who had little ASD risk across measures. We conclude that children in SEED have varying degrees of ASD impairment and associated deficits. SEED thus provides a valuable sample to explore ASD phenotypes and inform risk factor analyses. PMID:26048040

  11. Development of "Naked-Tufted" Seed Coat Mutants for Potential Use in Cotton Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of chemical mutagenesis has been highly successful in most major crops but has only recently been used in improving cotton. The objective of this research was to develop ‘naked-tufted’ seed mutants and to incorporate this genetic trait into cotton to enhance crop quality and reduce processing co...

  12. Autism Spectrum Disorder Symptoms among Children Enrolled in the Study to Explore Early Development (SEED)

    ERIC Educational Resources Information Center

    Wiggins, Lisa D.; Levy, Susan E.; Daniels, Julie; Schieve, Laura; Croen, Lisa A.; DiGuiseppi, Carolyn; Blaskey, Lisa; Giarelli, Ellen; Lee, Li-Ching; Pinto-Martin, Jennifer; Reynolds, Ann; Rice, Catherine; Rosenberg, Cordelia Robinson; Thompson, Patrick; Yeargin-Allsopp, Marshalyn; Young, Lisa; Schendel, Diana

    2015-01-01

    This study examined the phenotypic profiles of children aged 30-68 months in the Study to Explore Early Development (SEED). Children classified as autism spectrum disorder (ASD), developmental delay (DD) with ASD symptoms, DD without ASD symptoms, and population comparison (POP) differed significantly from each other on cognitive, adaptive,…

  13. Assisted Imitation: First Steps in the Seed Model of Language Development

    ERIC Educational Resources Information Center

    Zukow-Goldring, Patricia

    2012-01-01

    In this article, I present the theoretical and empirical grounding for the SEED ("situated", culturally "embodied", "emergent", "distributed") model of early language development. A fundamental prerequisite to the emergence of language behavior/communication is a hands-on, active understanding of everyday events (, and ). At the heart of this…

  14. Vitamin E homologs and ¿-oryzanol levels in rice (Oryza sativa L.) during seed development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin E homologs (tocopherols and tocotrienols) and gamma-oryzanol have gained significant attention due to their proposed health benefits and ability to increase vegetable oil stability. Changes in the levels of these phytochemicals were examined during seed development. Rapid accumulation of toc...

  15. Hydroxy fatty acid synthesis and lipid gene expression during seed development in Lesquerella fendleri (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella fendleri is a developing oilseed crop in U.S. Its seed oil is rich in hydroxy fatty acid (HFA), lesquerolate (C20:1OH), suitable as a raw material for many industrial applications. To understand regulatory mechanism underlying synthesis and accumulation of the lesquerolate, we have inves...

  16. Embryology of Cardiopteris (Cardiopteridaceae, Aquifoliales), with emphasis on unusual ovule and seed development.

    PubMed

    Tobe, Hiroshi

    2016-09-01

    Cardiopteris (Cardiopteridaceae), a twining herb of two or three species distributed from Southeast Asia to Northern Australia, requires an embryological study for better understanding of its reproductive features. The present study of C. quinqueloba showed that the ovule and seed development involves a number of unusual structures, most of which are unknown elsewhere in angiosperms. The ovule pendant from the apical placenta is straight (not orthotropous), ategmic, and tenuinucellate, developing a monosporic seven-celled/eight-nucleate female gametophyte with an egg apparatus on the funicular side. Fertilization occurs by a pollen tube entering from the funicular side, resulting in a zygote on the funicular side. The endosperm is formed by the cell on the funicular side in the two endosperm cell stage. While retaining a (pro)embryo/endosperm as it is, the raphe (differentiating late in pre-fertilization stages) elongates toward the antiraphal side during post-fertilization stages, resulting in an anatropous seed. The two-cell-layered nucellar epidermis (belatedly forming by periclinal divisions), along with the raphe, envelops the embryo/endosperm entirely as the seed coat. The possibility was discussed that the arrested integument development triggers a series of the subsequent unusual structures of ovule and seed development. The fertilization mode in Cardiopteris underpins the hypothesis that the Polygonum‒type female gametophyte comprises two four-celled archegonia. PMID:27333873

  17. Soybean Seed Lipoxygenase Genes: Molecular Characterization and Development of Molecular Marker Assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background - Soybean seeds contain three lipoxygenase enzymes that are controlled by three separate genes, Lox1, Lox2 and Lox3. Lipoxygenases play a role in the development of unpleasant flavors in foods containing soybean by oxidation of polyunsaturated fatty acids. Null alleles for all three enz...

  18. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality.

    PubMed

    Hojsgaard, Diego H; Martínez, Eric J; Quarin, Camilo L

    2013-01-01

    Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality. PMID:23127139

  19. Initial description of the developing soybean seed protein-Lys-Ne-acetylome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of the myriad protein posttranslational modifications (PTM) is a key aspect of proteome profiling. While there have been previous studies of the developing soybean seed phospho-proteome, herein we present the first analysis of protein Lys-Ne-acetylation (PKA) in this system. In rece...

  20. Accelerating Seed Germination and seedling development of Sorghum (Sorghum bicolor L. Moench) through hydro-priming

    NASA Astrophysics Data System (ADS)

    Dembele, S., Jr.

    2015-12-01

    Mali, a West Africa Sahelian country, is characterized by a strong dependence on rain-fed agriculture and a low adaptive capacity, making it one of the most vulnerable regions to climate change worldwide. Moreover, although with high uncertainties, most climate models used for the region recognize a growing uncertainty in the onset of the rainy season, which demands urgent adaptation measures. Early-season drought limits crops germination, and hence growth, and yield during rainfed depending production as is common now in Mali, West Africa. Crops germination and establishment could be improved by using seed priming, a process that dry seeds take up water to initiate the primary stages of germination, but the amount of water added is not enough for completing germination. The effects of hydro-priming (distilled, tap, rain, river and well water) were evaluated for three priming durations (4, 8 and 12 hour) in 2014 and 2015. Monitored were seed germination and seedling development of nine sorghum genotypes. Preliminary results showed that hydro-priming significantly improved germination rate, germination speed, number of seminal root, rate of survival and seedling vigour index, compared to non-primed seed treatments. However, seedling length, root length, shoot length and seedling dry weight did not differ significantly. Four out of the nine genotypes evaluated were attributed good seed quality and good response to hydro-priming. The priming with different sources of water resulted in higher seed germination (90%) and seedling development with well and river water, compared to the others. Seed germination rate, uniformity and speed were also enhanced by hydro-priming. It is argued that hydro-priming is a simple but effective method for improving seed germination and seedling development of sorghum. In addition hydro-priming is a safe, simple and inexpensive method to enhance germination. The most promising genotypes have consequently been included in consequent pot

  1. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  2. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  4. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  5. Void space inside the developing seed of Brassica napus and the modelling of its function

    PubMed Central

    Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy

    2013-01-01

    The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271

  6. Space station needs, attributes, and architectural options: Technology development

    NASA Technical Reports Server (NTRS)

    Robert, A. C.

    1983-01-01

    The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

  7. Amino Acid Export in Developing Arabidopsis Seeds Depends on UmamiT Facilitators.

    PubMed

    Müller, Benedikt; Fastner, Astrid; Karmann, Julia; Mansch, Verena; Hoffmann, Thomas; Schwab, Wilfried; Suter-Grotemeyer, Marianne; Rentsch, Doris; Truernit, Elisabeth; Ladwig, Friederike; Bleckmann, Andrea; Dresselhaus, Thomas; Hammes, Ulrich Z

    2015-12-01

    Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated, i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality. PMID:26628011

  8. Impacts of Greening Materials and Seed Pretreatment on Vegetation Development at an initial stage

    NASA Astrophysics Data System (ADS)

    Obriejetan, Michael

    2015-04-01

    Slope protection using greening measures as an integral part of soil-bioengineering is characterized by an increasing demand in research and practice. However, successful greening is a very complex issue due to the vast variety in specific slope characteristics such as morphology, soil properties and environmental factors. Because of practical experience in the greening of slopes and the results of further investigations in small-scale tests, it can be stated that the use of appropriate planting techniques, the quality of the materials used and the proper implementation of potential needed auxiliary materials at difficult locations are seen as key success criteria for sustainable vegetation development. Within this framework small-scale testing series were conducted regarding the influence of specific soil-properties, the use of auxiliary greening materials (fertilizer, mycorrhiza fungi, Bonded fiber matrix (BFM)…), application of different seed-pretreatment methods and influences of specific environmental factors (inclination, seeding depth) on vegetational development in an early phase. The aim of the series is to quantitatively and thus economically optimize the use of different greening-components and seed mixtures for practical application, while ensuring optimal development of vegetation. To quantify the influence of the treatment systems, vegetation cover ratio, biomass production (aboveground and belowground) and the germination of plant seeds served as main criteria for assessing the development in an initial stage. Selected findings for instance show that the admixture of mycorrhiza fungi can increase the cover ratio up to 23 % compared to untreated plots. In addition, pretreatment of seeds showed distinct effects too by shortening germination phase and increasing the capability of producing a higher amount of healthy sprouts. From a bioengineering perspective the results will serve as potential decisive advantage for successful implementation of

  9. Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt

    2004-01-01

    This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003

  10. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    PubMed

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation. PMID:26745886

  11. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development

    PubMed Central

    Brown, Ashley S.; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R.; McElroy, Steven J.

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation. PMID:26745886

  12. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  13. Long Chain (C20 and C22) Fatty Acid Biosynthesis in Developing Seeds of Tropaeolum majus

    PubMed Central

    Pollard, Michael R.; Stumpf, Paul K.

    1980-01-01

    The storage triacylglycerols of nasturtium (Tropaeolum majus) seeds are composed principally of cis-11-eicosenoate and cis-13-docosenoate. To investigate the biosynthesis of these C20 and C22 fatty acids, developing seed tissue was incubated with various 14C-labeled precursors. Incubation with [1-14C]acetate produced primarily cis-11-[1-14C]eicosenoate and cis-13-[1,3-14C]docosenoate in the triacylglycerol fraction, the odd-carbon [U-14C]oleate also formed from [14C] acetate was in the polar lipid fraction. Kinetic data showed that this oleate was not channeled into cis-11-eicosenoate nor cis-13-docosenoate over a 24-hour period. Under suitable conditions, nasturtium seed could also produce [14C]stearate, [14C]eicosenoate, and [14C]docosenoate from [1-14C]acetate. The results are discussed in terms of the number of pathways producing fatty acids. From pool size and other considerations, the results can be rationalized only in terms of different de novo systems for oleate biosythesis, one supplying oleate for incorporation into phospholipids and the other supplying oleate for chain elongation and subsequent esterification into triacylglycerols. Because of the probable heterogeneous nature of the seed tissue, it is not known if these two systems are operating in different cell types, in the same cell type at different stages of development, or in the same cell type concurrently. PMID:16661495

  14. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  15. Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary

    2004-01-01

    This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.

  16. Architecture for computer vision application development within the HORUS system

    NASA Astrophysics Data System (ADS)

    Eckstein, Wolfgang; Steger, Carsten T.

    1997-04-01

    An integrated program development environment for computer vision tasks is presented. The first component of the system is concerned with the visualization of 2D image data. This is done in an object-oriented manner. Programming of the visualization process is achieved by arranging the representations of iconic data in an interactively customizable hierarchy that establishes an intuitive flow of messages between data representations seen as objects. The visualization objects called displays, are designed for different levels of abstraction, starting from direct iconic representation down to numerical features, depending on the information needed. Two types of messages are passed between these displays, which yield a clear and intuitive semantics. The second component of the system is an interactive tool for rapid program development. It helps the user in selecting appropriate operators in many ways. For example, the system provides context sensitive selection of possible alternative operators as well as suitable successors and required predecessors. For the task of choosing appropriate parameters several alternatives exist. For example, the system provides default values as well as lists of useful values for al parameters of each operator. To achieve this, a knowledge base containing facts about the operators and their parameters is used. Second, through the tight coupling of the two system components, parameters can be determined quickly by data exploration within the visualization components.

  17. Radioactive Chernobyl environment has produced high-oil flax seeds that show proteome alterations related to carbon metabolism during seed development.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Rashydov, Namik M; Hajduch, Martin

    2013-11-01

    Starting in 2007, we have grown soybean (Glycine max [L.] Merr. variety Soniachna) and flax (Linum usitatissimum, L. variety Kyivskyi) in the radio-contaminated Chernobyl area and analyzed the seed proteomes. In the second-generation flax seeds, we detected a 12% increase in oil content. To characterize the bases for this increase, seed development has been studied. Flax seeds were harvested in biological triplicate at 2, 4, and 6 weeks after flowering and at maturity from plants grown in nonradioactive and radio-contaminated plots in the Chernobyl area for two generations. Quantitative proteomic analyses based on 2-D gel electrophoresis (2-DE) allowed us to establish developmental profiles for 199 2-DE spots in both plots, out of which 79 were reliably identified by tandem mass spectrometry. The data suggest a statistically significant increased abundance of proteins associated with pyruvate biosynthesis via cytoplasmic glycolysis, L-malate decarboxylation, isocitrate dehydrogenation, and ethanol oxidation to acetaldehyde in early stages of seed development. This was followed by statistically significant increased abundance of ketoacyl-[acylcarrier protein] synthase I related to condensation of malonyl-ACP with elongating fatty acid chains. On the basis of these and previous data, we propose a preliminary model for plant adaptation to growth in a radio-contaminated environment. One aspect of the model suggests that changes in carbon assimilation and fatty acid biosynthesis are an integral part of plant adaptation. PMID:24111740

  18. Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean.

    PubMed Central

    Hamada, S; Nozaki, K; Ito, H; Yoshimoto, Y; Yoshida, H; Hiraga, S; Onodera, S; Honma, M; Takeda, Y; Matsui, H

    2001-01-01

    The nature and enzymic properties of starch-branching enzyme (SBE) are two of the dominant factors influencing the fine structure of starch. To understand the role of this enzyme's activity in the formation of starch in kidney bean (Phaseolus vulgaris L.), a study was undertaken to identify the major SBE sequences expressed during seed development and to characterize the enzymic properties of the coded recombinant enzymes. Two SBE cDNA species (designated pvsbe2 and pvsbe1) that displayed significant similarity (more than 70%) to other family A and B SBEs respectively were isolated. Northern blot analysis revealed that pvsbe1 and pvsbe2 were differentially expressed during seed development. pvsbe2 showed maximum steady-state transcript levels at the mid-stage of seed maturation, whereas pvsbe1 reached peak levels at a later stage. Western blot analysis with antisera raised against both recombinant proteins (rPvSBE1 and rPvSBE2) showed that these two SBEs were located in different amyloplast fractions of developing seeds of kidney bean. PvSBE2 was present in the soluble fraction, whereas PvSBE1 was associated with the starch granule fraction. The differences in location suggest that these two SBE isoenzymes have different roles in amylopectin synthesis in kidney bean seeds. rPvSBE1 and rPvSBE2 were purified from Escherichia coli and their kinetic properties were determined. The affinity of rPvSBE2 for amylose (K(m) 1.27 mg/ml) was lower than that of rPvSBE1 (0.46 mg/ml). The activity of rPvSBE2 was stimulated more than 3-fold in the presence of 0.3 M citrate, whereas rPvSBE1 activity was not affected. The implications of the enzymic properties and the distribution of SBEs and amylopectin structure are discussed. PMID:11563966

  19. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  20. Directed Assembly and Development of Material-Free Tissues with Complex Architectures.

    PubMed

    Vrij, Erik; Rouwkema, Jeroen; LaPointe, Vanessa; van Blitterswijk, Clemens; Truckenmüller, Roman; Rivron, Nicolas

    2016-06-01

    Material-free tissues are assembled using solely cells. Microstructured hydrogel templates and high content screening allow the formation of centimeter-scale tissues with precise architectures. Similar to developing tissues, these contract autonomously, controllably shift shape, self-scaffold by secreting extracellular matrix, and undergo morphogenesis. PMID:27000493

  1. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    ERIC Educational Resources Information Center

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A., III.

    2010-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain…

  2. Architecture, Design, and Development of an HTML/JavaScript Web-Based Group Support System.

    ERIC Educational Resources Information Center

    Romano, Nicholas C., Jr.; Nunamaker, Jay F., Jr.; Briggs, Robert O.; Vogel, Douglas R.

    1998-01-01

    Examines the need for virtual workspaces and describes the architecture, design, and development of GroupSystems for the World Wide Web (GSWeb), an HTML/JavaScript Web-based Group Support System (GSS). GSWeb, an application interface similar to a Graphical User Interface (GUI), is currently used by teams around the world and relies on user…

  3. The Intranet as a Cognitive Architecture for Training and Education: Basic Assumptions and Development Issues.

    ERIC Educational Resources Information Center

    Seffah, Ahmed; Bouchard, Robert Maurice

    This paper makes basic assumptions regarding the development of an intranet architecture that will actively promote the cognitive apprenticeship of a new community of learners. The authors consider the intranet as a dynamic and virtual environment in which individuals may communicate, share resources, and reciprocally generate and organize…

  4. CAPTAN: A hardware architecture for integrated data acquisition, control, and analysis for detector development

    SciTech Connect

    Turqueti, Marcos; Rivera, Ryan A.; Prosser, Alan; Andresen, Jeffry; Chramowicz, John; /Fermilab

    2008-11-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the needs of a variety of high energy physics applications. The system described in this paper is called CAPTAN (Compact And Programmable daTa Acquisition Node) and its architecture and capabilities are presented in detail here. The three most important characteristics of this system are flexibility, versatility and scalability. These three main features are supported by key architectural features; a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and the core group of boards that provide specific capabilities for the system. In this paper, we describe the system architecture, give an overview of its capabilities and point out possible applications.

  5. Acquisition of physical dormancy and ontogeny of the micropyle–water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae)

    PubMed Central

    Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.

    2011-01-01

    Background and Aims The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Methods Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Key Results Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Conclusions Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’. PMID:21546433

  6. Green Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Ho

    Today, the environment has become a main subject in lots of science disciplines and the industrial development due to the global warming. This paper presents the analysis of the tendency of Green Architecture in France on the threes axes: Regulations and Approach for the Sustainable Architecture (Certificate and Standard), Renewable Materials (Green Materials) and Strategies (Equipments) of Sustainable Technology. The definition of 'Green Architecture' will be cited in the introduction and the question of the interdisciplinary for the technological development in 'Green Architecture' will be raised up in the conclusion.

  7. Expression of Storage Protein Genes in Developing Wheat (Triticum aestivum L.) Seeds 1

    PubMed Central

    Greene, Frank C.

    1983-01-01

    Ribonucleic acid and protein synthesis in developing wheat kernels have been studied through in vivo labeling of wheat heads in culture. In INIA 66R wheat labeled with [5-3H]uridine for 24-hour periods between 9 and 33 days after flowering, the total rate of RNA accumulation in endosperm/testa pericarp tissues was highest in the youngest seeds, and declined with increasing seed age. In contrast, the rate of accumulation of poly(A)+ RNA approximately doubled between 12 and 15 days after flowering, reached a maximum between 15 and 18 days, and declined to half the maximum rate by 24 days. Protein synthetic capacity, measured by in vitro translation of extracted seed RNA, increased in a developmental pattern similar to that of poly(A)+ RNA accumulation, but remained near maximal through 24 days after flowering. Gliadins were prominent in the in vitro translation products. When seed protein was labeled in vivo with l-[3H]leucine, extracted, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a significant change in the protein synthesis profile was apparent between 12 and 15 days after flowering, and was coincident with a marked increase in storage protein synthesis. Qualitatively similar characteristics were exhibited by the cultivar Cheyenne, although in a shorter developmental period. These results are consistent with a direct relation between levels of mRNA and rates of protein synthesis in developing wheat seeds, with a relatively long storage protein mRNA lifetime, and with control of storage protein gene expression primarily at the level of mRNA transcription. Images Fig. 4 Fig. 6 PMID:16662795

  8. Developing Architectures and Technologies for an Evolvable NASA Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey

    2004-01-01

    Space communications architecture concepts play a key role in the development and deployment of NASA's future exploration and science missions. Once a mission is deployed, the communication link to the user needs to provide maximum information delivery and flexibility to handle the expected large and complex data sets and to enable direct interaction with the spacecraft and experiments. In human and robotic missions, communication systems need to offer maximum reliability with robust two-way links for software uploads and virtual interactions. Identifying the capabilities to cost effectively meet the demanding space communication needs of 21st century missions, proper formulation of the requirements for these missions, and identifying the early technology developments that will be needed can only be resolved with architecture design. This paper will describe the development of evolvable space communication architecture models and the technologies needed to support Earth sensor web and collaborative observation formation missions; robotic scientific missions for detailed investigation of planets, moons, and small bodies in the solar system; human missions for exploration of the Moon, Mars, Ganymede, Callisto, and asteroids; human settlements in space, on the Moon, and on Mars; and great in-space observatories for observing other star systems and the universe. The resulting architectures will enable the reliable, multipoint, high data rate capabilities needed on demand to provide continuous, maximum coverage of areas of concentrated activities, such as in the vicinity of outposts in-space, on the Moon or on Mars.

  9. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  10. Soybean roots retain the seed urease isozyme synthesized during embryo development

    SciTech Connect

    Torisky, R.S.; Polacco, J.C. )

    1990-05-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, ({sup 35}S) methionine labelling shows no {und de novo} synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root.

  11. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  12. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera)

    PubMed Central

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development. PMID:27375629

  13. High-throughput sequencing-based genome-wide identification of microRNAs expressed in developing cotton seeds.

    PubMed

    Wang, YanMei; Ding, Yan; Yu, DingWei; Xue, Wei; Liu, JinYuan

    2015-08-01

    MicroRNAs (miRNAs) have been shown to play critical regulatory roles in gene expression in cotton. Although a large number of miRNAs have been identified in cotton fibers, the functions of miRNAs in seed development remain unexplored. In this study, a small RNA library was constructed from cotton seeds sampled at 15 days post-anthesis (DPA) and was subjected to high-throughput sequencing. A total of 95 known miRNAs were detected to be expressed in cotton seeds. The expression pattern of these identified miRNAs was profiled and 48 known miRNAs were differentially expressed between cotton seeds and fibers at 15 DPA. In addition, 23 novel miRNA candidates were identified in 15-DPA seeds. Putative targets for 21 novel and 87 known miRNAs were successfully predicted and 900 expressed sequence tag (EST) sequences were proposed to be candidate target genes, which are involved in various metabolic and biological processes, suggesting a complex regulatory network in developing cotton seeds. Furthermore, miRNA-mediated cleavage of three important transcripts in vivo was validated by RLM-5' RACE. This study is the first to show the regulatory network of miRNAs that are involved in developing cotton seeds and provides a foundation for future studies on the specific functions of these miRNAs in seed development. PMID:26117827

  14. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera).

    PubMed

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development. PMID:27375629

  15. Changes in nutrient distribution are part of the mechanism that promotes seed development under severe nutrient restriction.

    PubMed

    Coello, Patricia; Martínez-Barajas, Eleazar

    2016-02-01

    When bean fruits are detached from a plant at 20 days after anthesis (DAA), the material accumulating in the pod is relocalized to the seeds. This mobilization is more active during the first five days after the fruits are removed, which allows some seeds to continue their development. In freshly removed fruits, (14)C-sucrose was evenly distributed among seeds; however, in fruits that were removed three days before, the labeled sugar was concentrated in 1-2 seeds. In addition, in removed pods, embryos dissected from seeds that no longer continue development can assimilate and efficiently use sucrose for protein and starch synthesis. Our results support the hypothesis that most embryos in removed fruits are forced to stop developing by removal of the nutrient supply. We also observed that SnRK1 activity increased in embryos that were subjected to nutrient deprivation, supporting the role of SnRK1 in the metabolic adaptation to stress conditions. PMID:26713548

  16. Rapid Development of Adaptive, Climate-Driven Clinal Variation in Seed Mass in the Invasive Annual Forb Echium plantagineum L.

    PubMed Central

    Konarzewski, Tara K.; Murray, Brad R.; Godfree, Robert C.

    2012-01-01

    We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid. PMID:23284621

  17. Spatial organisation and biomass development after relaying of mussel seed

    NASA Astrophysics Data System (ADS)

    Capelle, Jacob J.; Wijsman, Jeroen W. M.; Schellekens, Tim; van Stralen, Marnix R.; Herman, Peter M. J.; Smaal, Aad C.

    2014-01-01

    It is not known whether and by what factors spatial heterogeneity in mussels (Mytilus edulis L.) affects mussel production in human-created mussel beds. In a field experiment, the same number of mussels was relayed on four different areas within plots of the same size, resulting in four treatments with different mussel densities. Density, individual weight and spatial structure of mussels were followed per treatment. The uniformly placed mussels on different areas redistributed into new patches, but mussels did not spread out over a larger area. Initial mussel density affected redistribution and mussel survival. At high densities mussels redistributed into a uniform matrix or in a few larger patches, that showed larger losses than at low densities, where mussels redistributed into a high number of patches. Growth rate and condition index of the mussels did not differ between treatments and no relation was found between treatment and number of foraging shore crabs, which was the major predator of mussels in this experiment. We hypothesise that the relation between initial mussel density and mussel loss after relaying is associated with redistribution, with less competition for space when mussels are positioned at the edge of a mussel patch. The very high mussel losses that we observed in the experiment within four weeks after relaying were the major factor in biomass development. Mussel bed formation concerns mussel growers and managers involved in natural mussel bed restoration. Initial mussel survival determines the success of these activities. The present study shows the effects of mussel relaying on spatial redistribution for the first time under field conditions, and underlines the importance of edge effects in understanding mussel loss in redistribution. Mussel survival after relaying will be higher when the mussels are distributed homogeneously and in relatively low density.

  18. Identification of differentially expressed genes between developing seeds of different soybean cultivars.

    PubMed

    Lin, Rongshuang; Glazebrook, Jane; Katagiri, Fumiaki; Orf, James H; Gibson, Susan I

    2015-12-01

    Soybean is a major source of protein and oil and a primary feedstock for biodiesel production. Research on soybean seed composition and yield has revealed that protein, oil and yield are controlled quantitatively and quantitative trait loci (QTL) have been identified for each of these traits. However, very limited information is available regarding the genetic mechanisms controlling seed composition and yield. To help address this deficiency, we used Affymetrix Soybean GeneChips® to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean cultivars, which differ in seed weight, yield, protein content and oil content. A total of 700 probe sets were found to be expressed at significantly different (defined as having an adjusted p-value below or equal to 0.05 and an at least 2-fold difference) levels between the two cultivars at one or more of the three developmental stages and in at least one of the two years assayed. Comparison of data from soybeans collected in two different years revealed that 97 probe sets were expressed at significantly different levels in both years. Functional annotations were assigned to 78% of these 97 probe sets based on the SoyBase Affymetrix™ GeneChip® Soybean Genome Array Annotation. Genes involved in receptor binding/activity and protein binding are overrepresented among the group of 97 probe sets that were differentially expressed in both years assayed. Probe sets involved in growth/development, signal transduction, transcription, defense/stress response and protein and lipid metabolism were also identified among the 97 probe sets and their possible implications in the regulation of agronomic traits are discussed. As the Minsoy and Archer soybean cultivars differ with respect to seed size, yield, protein content and lipid content, some of the differentially expressed probe sets identified in this study may thus play important roles in controlling these traits. Others of these probe

  19. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds.

    PubMed

    Weber, H; Borisjuk, L; Heim, U; Sauer, N; Wobus, U

    1997-06-01

    To analyze sugar transport processes during seed development of fava bean, we cloned cDNAs encoding one sucrose and one hexose transporter, designated VfSUT1 and VfSTP1, respectively. sugar uptake activity was confirmed after heterologous expression in yeast. Gene expression was studied in relation to seed development. Transcripts were detected in both vegetative and seed tissues. In the embryo, VfSUT1 and VfSTP1 mRNAs were detected only in epidermal cells, but in a different temporal and spatial pattern. VfSTP1 mRNA accumulates during the midcotyledon stage in epidermal cells covering the mitotically active parenchyma, whereas the VfSUT1 transcript was specific to outer epidermal cells showing transfer cell morphology and covering the storage parenchyma. Transfer cells developed at the contact area of the cotyledonary epidermis and the seed coat, starting first at the early cotyledon stage and subsequently spreading to the abaxial region at the late cotyledon stage. Feeding high concentrations of sugars suppressed both VfSUT1 expression and transfer cell differentiation in vitro, suggesting a control by carbohydrate availability. PMID:9212465

  20. Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development

    PubMed Central

    Hu, Rui-Bo; Zhang, Xiao-Mei; Chen, Jian-Xin; Fu, Yong-Fu

    2013-01-01

    The MADS family is an ancient and best-studied transcription factor and plays fundamental roles in almost every developmental process in plants. In the plant evolutionary history, the whole genome duplication (WGD) events are important not only to the plant species evolution, but to expansion of members of the gene families. Soybean as a model legume crop has experience three rounds of WGD events. Members of some MIKCC subfamilies, such as SOC, AGL6, SQUA, SVP, AGL17 and DEF/GLO, were expanded after soybean three rounds of WGD events. And some MIKCC subfamilies, MIKC* and type I MADS families had experienced faster birth-and-death evolution and their traces before the Glycine WGD event were not found. Transposed duplication played important roles in tandem arrangements among the members of different subfamilies. According to the expression profiles of type I and MIKC paralog pair genes, the fates of MIKC paralog gene pairs were subfunctionalization, and the fates of type I MADS paralog gene pairs were nonfunctionalization. 137 out of 163 MADS genes were close to 186 loci within 2 Mb genomic regions associated with seed-relative QTLs, among which 115 genes expressed during the seed development. Although MIKCC genes kept the important and conserved functions of the flower development, most MIKCC genes showed potentially essential roles in the seed development as well as the type I MADS. PMID:23638026

  1. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds.

    PubMed

    Gangola, Manu P; Jaiswal, Sarita; Kannan, Udhaya; Gaur, Pooran M; Båga, Monica; Chibbar, Ravindra N

    2016-05-01

    To understand raffinose family oligosaccharides (RFO) metabolism in chickpea (Cicer arietinum L.) seeds, RFO accumulation and corresponding biosynthetic enzymes activities were determined during seed development of chickpea genotypes with contrasting RFO concentrations. RFO concentration in mature seeds was found as a facilitator rather than a regulating step of seed germination. In mature seeds, raffinose concentrations ranged from 0.38 to 0.68 and 0.75 to 0.99 g/100 g, whereas stachyose concentrations varied from 0.79 to 1.26 and 1.70 to 1.87 g/100 g indicating significant differences between low and high RFO genotypes, respectively. Chickpea genotypes with high RFO concentration accumulated higher concentrations of myo-inositol and sucrose during early seed developmental stages suggesting that initial substrate concentrations may influence RFO concentration in mature seeds. High RFO genotypes showed about two to three-fold higher activity for all RFO biosynthetic enzymes compared to those with low RFO concentrations. RFO biosynthetic enzymes activities correspond with accumulation of individual RFO during seed development. PMID:26953100

  2. Development of an Automated Seed Sowing and Induced Germination System for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Kliss, Mark

    1995-01-01

    The successful utilization of higher plants in space flight is likely to require the effective transition of plants through all phases of growth and development. A particularly sensitive and critical stage in this cycle is seed germination. The present inflight capability to manipulate seed from a state of dormancy to germination and the performance of such activity under aseptic conditions is extremely limited. An Automated Sowing Mechanism (ASM) has been designed to address this area of science and technology. The self-contained system is readily compatible with the existing Shuttle middeck locker Plant Growth Unit (PGU) and planned Plant Growth Facility (PGF), presenting an opportunity to extend the experimental capability of these systems. The ASM design encompasses the controlled transition of seed from a dry to hydrated state utilizing solid media substrate as the source of water and nutrient support. System activation has been achieved with both photo and timing mechanisms. Controlled induced germination and development of various plant species has been achieved in ground-based trials. The system is presently being prepared for a KC-135 flight test.

  3. Coordinated changes in storage proteins during development and germination of elite seeds of Pongamia pinnata, a versatile biodiesel legume

    PubMed Central

    Kesari, Vigya; Rangan, Latha

    2011-01-01

    Background and aims The oleaginous legume Pongamia pinnata is a rapidly growing and economically important tree. The seeds are used increasingly as feedstock for biodiesel production, with the protein-rich residue providing valuable supplement to farm animal diets. However, little is known about seed development and the characteristics of germination. We therefore studied morphological, protein and ultrastructural changes during seed maturation and germination using seeds from a tree selected for superior morphological and reproductive characters (candidate plus tree). Methodology Phenology, sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), and scanning and transmission electron microscopy were used to investigate seed development from 90 to 350 days after flowering (DAF), and germination and seedling development from 0 to 45 days after the start of imbibition (DAI) (Stages 0–VII). Principal results Seven distinct developmental stages were identified during seed development. Fresh weight, length, breadth and thickness increased from Stage I (90 DAF) to V (270 DAF) and decreased at Stages VI (315 DAF) and VII (350 DAF), when the seeds were fully ripe. Marked changes in total soluble protein content and SDS–PAGE profile were observed in vegetative and reproductive tissues and in the cotyledons of germinating seedlings. Polypeptide fragments of 150–14 kDa were observed during seed maturation and germination. In SDS–PAGE the expression of three main polypeptide bands (50, 18 and 14 kDa) increased from Stage I to Stage V and then almost became the same until Stage VII during seed maturation. During germination the expression of 50 kDa polypeptide decreased and that of 18 and 14 kDa increased from Stage 0 (ungerminated seed) to Stage VI (30 DAI), respectively; however, all three polypeptides (50, 18 and 14 kDa) completely disappeared at Stage VII (45 DAI). Ultrastructural changes during four stages of seed maturation (early immature, 90

  4. A Low Phytic Acid Barley Mutation Alters Gene Expression in Early Seed Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) low phytic acid (lpa) mutants have reduced levels of seed phytate, the most abundant form of phosphorus in seeds, and increases in seed inorganic phosphorus. To understand how lpa mutations affect metabolic and developmental processes during seed growth, gene expression ...

  5. Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development

    PubMed Central

    Cournède, Paul-Henry; Mathieu, Amélie; Houllier, François; Barthélémy, Daniel; de Reffye, Philippe

    2008-01-01

    Background and Aims The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x–y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. Methods The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). Key Results and Conclusions The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production ( Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source–sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model

  6. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    ScienceCinema

    Goldberg, Robert [UCLA

    2013-01-22

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  7. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    SciTech Connect

    Goldberg, Robert

    2012-03-21

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  8. Aviation Safety Program: Weather Accident Prevention (WxAP) Development of WxAP System Architecture And Concepts of Operation

    NASA Technical Reports Server (NTRS)

    Grantier, David

    2003-01-01

    This paper presents viewgraphs on the development of the Weather Accident Prevention (WxAP) System architecture and Concept of Operation (CONOPS) activities. The topics include: 1) Background Information on System Architecture/CONOPS Activity; 2) Activity Work in Progress; and 3) Anticipated By-Products.

  9. Communications System Architecture Development for Air Traffic Management and Aviation Weather Information Dissemination

    NASA Technical Reports Server (NTRS)

    Gallagher, Seana; Olson, Matt; Blythe, Doug; Heletz, Jacob; Hamilton, Griff; Kolb, Bill; Homans, Al; Zemrowski, Ken; Decker, Steve; Tegge, Cindy

    2000-01-01

    This document is the NASA AATT Task Order 24 Final Report. NASA Research Task Order 24 calls for the development of eleven distinct task reports. Each task was a necessary exercise in the development of comprehensive communications systems architecture (CSA) for air traffic management and aviation weather information dissemination for 2015, the definition of the interim architecture for 2007, and the transition plan to achieve the desired End State. The eleven tasks are summarized along with the associated Task Order reference. The output of each task was an individual task report. The task reports that make up the main body of this document include Task 5, Task 6, Task 7, Task 8, Task 10, and Task 11. The other tasks provide the supporting detail used in the development of the architecture. These reports are included in the appendices. The detailed user needs, functional communications requirements and engineering requirements associated with Tasks 1, 2, and 3 have been put into a relational database and are provided electronically.

  10. Development of the Lymphoma Enterprise Architecture Database: a caBIG Silver level compliant system.

    PubMed

    Huang, Taoying; Shenoy, Pareen J; Sinha, Rajni; Graiser, Michael; Bumpers, Kevin W; Flowers, Christopher R

    2009-01-01

    Lymphomas are the fifth most common cancer in United States with numerous histological subtypes. Integrating existing clinical information on lymphoma patients provides a platform for understanding biological variability in presentation and treatment response and aids development of novel therapies. We developed a cancer Biomedical Informatics Grid (caBIG) Silver level compliant lymphoma database, called the Lymphoma Enterprise Architecture Data-system (LEAD), which integrates the pathology, pharmacy, laboratory, cancer registry, clinical trials, and clinical data from institutional databases. We utilized the Cancer Common Ontological Representation Environment Software Development Kit (caCORE SDK) provided by National Cancer Institute's Center for Bioinformatics to establish the LEAD platform for data management. The caCORE SDK generated system utilizes an n-tier architecture with open Application Programming Interfaces, controlled vocabularies, and registered metadata to achieve semantic integration across multiple cancer databases. We demonstrated that the data elements and structures within LEAD could be used to manage clinical research data from phase 1 clinical trials, cohort studies, and registry data from the Surveillance Epidemiology and End Results database. This work provides a clear example of how semantic technologies from caBIG can be applied to support a wide range of clinical and research tasks, and integrate data from disparate systems into a single architecture. This illustrates the central importance of caBIG to the management of clinical and biological data. PMID:19492074

  11. Judicious use of custom development in an open source component architecture

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.

    2014-12-01

    Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.

  12. Stenospermy and seed development in the "Brazilian seedless" variety of sugar apple (Annona squamosa).

    PubMed

    Santos, Rayane C Dos; Ribeiro, Leonardo M; Mercadante-Simões, Maria Olívia; Costa, Márcia R; Nietsche, Silvia; Pereira, Marlon C T

    2014-11-14

    Stenospermy was identified in naturally occurring sugar-apple (Annona squamosa) mutants with great potential for use in genetic improvement programs. However, to date, there have been no detailed studies of the development of aspermic fruit in this species. The aim of the present study was to characterize the anatomy of developing fruit in the 'Brazilian Seedless' mutant. Flower buds in pre-anthesis and developing fruits were subjected to common plant anatomy techniques. The abnormal ovules are unitegmic and orthotropic and have a long funiculus. There is evidence of fertilization, including the presence of embryos in early development and the proliferation of starch grains in the embryo sac. However, the embryos and embryo sac degenerate, although this does not affect pericarp development. Ovule abortion does not occur. The perisperm, which is formed from the peripheral layers of the nucellus, fills the cavity left by the embryo sac. The mature fruit contains numerous small sterile seeds with abundant perisperm and unlignified integument that is restricted to the micropylar region. The majority of perisperm cells are living and appear to be metabolically active in the periphery. Therefore, stenospermy leads to the formation of sterile seeds in A. squamosa, and the perisperm possibly play an important role in fruit development. PMID:25409766

  13. Stenospermy and seed development in the "Brazilian seedless" variety of sugar apple (Annona squamosa).

    PubMed

    Dos Santos, Rayane C; Ribeiro, Leonardo M; Mercadante-Simões, Maria Olívia; Costa, Márcia R; Nietsche, Silvia; Pereira, Marlon C T

    2014-12-01

    Stenospermy was identified in naturally occurring sugar-apple (Annona squamosa) mutants with great potential for use in genetic improvement programs. However, to date, there have been no detailed studies of the development of aspermic fruit in this species. The aim of the present study was to characterize the anatomy of developing fruit in the 'Brazilian Seedless' mutant. Flower buds in pre-anthesis and developing fruits were subjected to common plant anatomy techniques. The abnormal ovules are unitegmic and orthotropic and have a long funiculus. There is evidence of fertilization, including the presence of embryos in early development and the proliferation of starch grains in the embryo sac. However, the embryos and embryo sac degenerate, although this does not affect pericarp development. Ovule abortion does not occur. The perisperm, which is formed from the peripheral layers of the nucellus, fills the cavity left by the embryo sac. The mature fruit contains numerous small sterile seeds with abundant perisperm and unlignified integument that is restricted to the micropylar region. The majority of perisperm cells are living and appear to be metabolically active in the periphery. Therefore, stenospermy leads to the formation of sterile seeds in A. squamosa, and the perisperm possibly play an important role in fruit development. PMID:25590744

  14. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    PubMed

    Tan, Helin; Xie, Qingjun; Xiang, Xiaoe; Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue

    2015-01-01

    Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil

  15. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus

    PubMed Central

    Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue

    2015-01-01

    Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil

  16. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  17. Development of a structured observational method for the systematic assessment of school food-choice architecture.

    PubMed

    Ozturk, Orgul D; McInnes, Melayne M; Blake, Christine E; Frongillo, Edward A; Jones, Sonya J

    2016-01-01

    The objective of this study is to develop a structured observational method for the systematic assessment of the food-choice architecture that can be used to identify key points for behavioral economic intervention intended to improve the health quality of children's diets. We use an ethnographic approach with observations at twelve elementary schools to construct our survey instrument. Elements of the structured observational method include decision environment, salience, accessibility/convenience, defaults/verbal prompts, number of choices, serving ware/method/packaging, and social/physical eating environment. Our survey reveals important "nudgeable" components of the elementary school food-choice architecture, including precommitment and default options on the lunch line. PMID:26654767

  18. The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana.

    PubMed

    Papenfus, H B; Naidoo, D; Pošta, M; Finnie, J F; Van Staden, J

    2016-03-01

    Plant-derived smoke and smoke-isolated compounds stimulate germination in seeds from over 80 genera. It has also been reported that smoke affects overall plant vigour and has a stimulatory effect on pollen growth. The effect of smoke on orchid seeds, however, has not been assessed. In South Africa, orchid seeds from several genera may be exposed to smoke when they are released from their seedpods. It is therefore possible that smoke may affect their germination and growth. Therefore, the effects of smoke [applied as smoke-water (SW)] and two smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB), were investigated on the germination and growth of orchid seeds in vitro. The effect of SW, KAR1 and TMB were investigated on the endangered epiphytic orchid, Ansellia africana, which is indigenous to tropical areas of Africa. Smoke-water, KAR1 and TMB were infused in half-strength MS medium. The number of germinated seeds and number of seeds and protocorm bodies to reach predetermined developmental stages were recorded on a weekly basis using a dissecting microscope for a 13-week period. Infusing SW 1:250 (v:v) into half-strength MS medium significantly increased the germination rate index (GRI) and the development rate index (DRI) of the A. africana seeds. All the SW treatments significantly increased the number of large protocorm bodies at the final stage of development. Infusing KAR1 into the growing medium had no significant effect on germination or development of the seeds. The TMB treatment, however, significantly reduced the GRI and DRI of A. africana seeds. PMID:26206372

  19. A development architecture for serious games using BCI (brain computer interface) sensors.

    PubMed

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  20. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    PubMed Central

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  1. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

    PubMed Central

    2011-01-01

    Background Field observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR) was used to study this process. Results A comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia) throughout different developmental stages (S1, S2, S3 and S4) evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein), a PR (pathogenesis-related) protein, a prunin and LEA (Late Embryogenesis Abundant) protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively. The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin) or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on. Conclusions In this research, genes were identified marking different phases of seed and mesocarp

  2. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed Central

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-01-01

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609

  3. Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and Ds Insertion Mutagenesis

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2011-01-01

    Rice pollen and seed development are directly related to grain yield. To further improve rice yield, it is important for us to functionally annotate the genes controlling pollen/seed development and to use them for rice breeding. Here we first carried out a genome-wide expression analysis with an emphasis on genes being involved in rice pollen and seed development. Based on the transcript profiling, we have identified and functionally classified 82 highly expressed pollen-specific, 12 developing seed-specific and 19 germinating seed-specific genes. We then presented the utilization of the maize transposon Dissociation (Ds) insertion lines for functional genomics of rice pollen and seed development and as alternative germplasm resources for rice breeding. We have established a two-element Activator/Dissociation (Ac/Ds) gene trap tagging system and generated around 20,000 Ds insertion lines. We have subjected these lines for screens to obtain high and low yield Ds insertion lines. Some interesting lines have been obtained with higher yield or male sterility. Flanking Sequence Tags (FSTs) analyses showed that these Ds-tagged genes encoded various proteins including transcription factors, transport proteins, unknown functional proteins and so on. They exhibited diversified expression patterns. Our results suggested that rice could be improved not only by introducing foreign genes but also by knocking out its endogenous genes. This finding might provide a new way for rice breeder to further improve rice varieties. PMID:21209789

  4. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    PubMed

    Mizzotti, Chiara; Ezquer, Ignacio; Paolo, Dario; Rueda-Romero, Paloma; Guerra, Rosalinda Fiorella; Battaglia, Raffaella; Rogachev, Ilana; Aharoni, Asaph; Kater, Martin M; Caporali, Elisabetta; Colombo, Lucia

    2014-12-01

    The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. PMID:25521508

  5. SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat

    PubMed Central

    Paolo, Dario; Rueda-Romero, Paloma; Guerra, Rosalinda Fiorella; Battaglia, Raffaella; Rogachev, Ilana; Aharoni, Asaph; Kater, Martin M.; Caporali, Elisabetta; Colombo, Lucia

    2014-01-01

    The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. PMID:25521508

  6. Proteome analysis of plastids from developing seeds of Jatropha curcas L.

    PubMed

    Pinheiro, Camila B; Shah, Mohibullah; Soares, Emanoella L; Nogueira, Fábio C S; Carvalho, Paulo C; Junqueira, Magno; Araújo, Gabriel D T; Soares, Arlete A; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we performed a proteomic analysis of plastids isolated from the endosperm of developing Jatropha curcas seeds that were in the initial stage of deposition of protein and lipid reserves. Proteins extracted from the plastids were digested with trypsin, and the peptides were applied to an EASY-nano LC system coupled inline to an ESI-LTQ-Orbitrap Velos mass spectrometer, and this led to the identification of 1103 proteins representing 804 protein groups, of which 923 proteins were considered as true identifications, and this considerably expands the repertoire of J. curcas proteins identified so far. Of the identified proteins, only five are encoded in the plastid genome, and none of them are involved in photosynthesis, evidentiating the nonphotosynthetic nature of the isolated plastids. Homologues for 824 out of 923 identified proteins were present in PPDB, SUBA, or PlProt databases while homologues for 13 proteins were not found in any of the three plastid proteins databases but were marked as plastidial by at least one of the three prediction programs used. Functional classification showed that proteins belonging to amino acids metabolism comprise the main functional class, followed by carbohydrate, energy, and lipid metabolisms. The small and large subunits of Rubisco were identified, and their presence in the plastids is considered to be an adaptive feature counterbalancing for the loss of one-third of the carbon as CO2 as a result of the conversion of carbohydrate to oil through glycolysis. While several enzymes involved in the biosynthesis of several precursors of diterpenoids were identified, we were unable to identify any terpene synthase/cyclase, which suggests that the plastids isolated from the endosperm of developing seeds do not synthesize phorbol esters. In conclusion, our study provides insights into the major biosynthetic pathways and certain unique features of the plastids from the endosperm of developing seeds at the whole proteome

  7. Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica

    PubMed Central

    Wu, Guo-Zhang; Shi, Qiu-Ming; Niu, Ya; Xing, Mei-Qing; Xue, Hong-Wei

    2008-01-01

    The Shanghai RAPESEED Database (RAPESEED, http://rapeseed.plantsignal.cn/) was created to provide the solid platform for functional genomics studies of oilseed crops with the emphasis on seed development and fatty acid metabolism. The RAPESEED includes the resource of 8462 unique ESTs, of which 3526 clones are with full length cDNA; the expression profiles of 8095 genes and the Serial Analysis of Gene Expression (SAGE, 23 895 unique tags) and tag-to-gene data during seed development. In addition, a total of ∼14 700 M3 mutant populations were generated by ethylmethanesulfonate (EMS) mutagenesis and related seed quality information was determined using the Foss NIR System. Further, the TILLING (Targeting Induced Local Lesions IN Genomes) platform was established based on the generated EMS mutant population. The relevant information was collected in RAPESEED database, which can be searched through keywords, nucleotide or protein sequences, or seed quality parameters, and downloaded. PMID:17916574

  8. Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg.

    PubMed

    Huang, You-Jun; Zhou, Qin; Huang, Jian-Qin; Zeng, Yan-Ru; Wang, Zheng-Jia; Zhang, Qi-Xiang; Zhu, Yi-Hang; Shen, Chen; Zheng, Bing-Song

    2015-06-01

    Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory. PMID:25863888

  9. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    PubMed

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-01-01

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development. PMID:24085427

  10. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    SciTech Connect

    Davis, W.J.; Macro, J.G.; Brook, A.L.

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  11. The Development and Testing of a New Method to Evaluate the Operational Cloud-Seeding Programs in Texas.

    NASA Astrophysics Data System (ADS)

    Woodley, William L.; Rosenfeld, Daniel

    2004-02-01

    A method for the objective evaluation of short-term, nonrandomized operational convective cloud-seeding projects on a floating-target-area basis has been developed and tested in the context of the operational cloud-seeding projects of Texas. The computer-based method makes use of the Next-Generation Radar (NEXRAD) mosaic radar data to define fields of circular (25-km radius) floating-target analysis units with lifetimes from the first echo to the disappearance of all echoes and then superimposes the track and seeding actions of the project seeder aircraft onto the unit fields to define seeded (S) and nonseeded (NS) analysis units. Objective criteria (quantified herein) are used to identify “control” (C) matches for each of the seed units from the archive of NS units. To minimize potential contamination by seeding, no matching is allowed for any control unit if its perimeter came within 25 km of the perimeter of a seed unit during its lifetime. The methodology was used to evaluate seeding effects in the High Plains Underground Water Conservation District (HP) and Edwards Aquifer Authority (EA) programs during the 1999, 2000, and 2001 (EA only) seasons. Objective unit matches were selected from within and outside each operational target within 12, 6, 3, and 2 h of the time on a given day that seeding of a particular unit took place. These were done to determine whether selection biases and the diurnal convective cycle confounded the results. Matches were also drawn from within and outside each target using the entire archive of days on which seeding was done. Although the results of all analyses are subjected to statistical testing, the resulting probability (P) values were used solely to determine the relative strength of the various findings. In the absence of treatment, randomization P values cannot be used as proof of seeding efficacy. The apparent effect of seeding in both programs was large—even after determining the effect of selection biases and the

  12. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria

    PubMed Central

    Mauro-Herrera, Margarita; Doust, Andrew N.

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990

  13. Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture

    NASA Astrophysics Data System (ADS)

    Etchells, R. D.; Grinberg, J.; Nudd, G. R.

    1981-12-01

    This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.

  14. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    PubMed

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990

  15. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  16. Project Integration Architecture: Architectural Overview

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2001-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. By being a single, self-revealing architecture, the ability to develop single tools, for example a single graphical user interface, to span all applications is enabled. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications becomes possible, Object-encapsulation further allows information to become in a sense self-aware, knowing things such as its own dimensionality and providing functionality appropriate to its kind.

  17. Traits and QTLs for development of dry direct-seeded rainfed rice varieties.

    PubMed

    Sandhu, Nitika; Torres, Rolando O; Sta Cruz, Ma Teresa; Maturan, Paul Cornelio; Jain, Rajinder; Kumar, Arvind; Henry, Amelia

    2015-01-01

    The development of rice varieties for dry direct-seeded conditions can be accelerated by selecting suitable traits. In the present investigation, traits hypothesized to be important for direct-seeded conditions in rainfed systems, including seedling emergence, early vegetative vigour, nutrient uptake, nodal root number, and root hair length and density, were characterized to study the genetic control of these traits and their relationship with grain yield under seedling- and reproductive-stage drought stress. Two BC₂F₄ mapping populations derived from crosses of Aus276, a drought-tolerant aus variety, with MTU1010 and IR64, high-yielding indica mega-varieties, were developed and studied to identify quantitative trait loci (QTLs) that showed large and consistent effects. A total of 26 QTLs associated with 23 traits and 20 QTLs associated with 13 traits were mapped in the Aus276/3*IR64 and Aus276/3*MTU1010 populations, respectively. qGY₆.₁, qGY₁₀.₁, qGY₁.₁, and qEVV₉.₁ were found to be effective in both populations under a wide range of conditions. QTLs for several seedling-stage traits co-located with QTLs for grain yield, including early vegetative vigour and root hair length. On chromosome 5, several QTLs for nutrient uptake co-located with QTLs for root hair density and nematode gall rating. Six lines were selected from both populations based on grain yield and the presence of QTLs, and these lines typically showed improved seedling-stage traits (nodal root number, dry shoot weight, and root hair length and density). The co-located QTLs identified here can be used in research aimed at increasing the yield and adaptability of rainfed rice to direct-seeded conditions. PMID:25336682

  18. Traits and QTLs for development of dry direct-seeded rainfed rice varieties

    PubMed Central

    Sandhu, Nitika; Torres, Rolando O.; Sta Cruz, Ma. Teresa; Maturan, Paul Cornelio; Jain, Rajinder; Kumar, Arvind; Henry, Amelia

    2015-01-01

    The development of rice varieties for dry direct-seeded conditions can be accelerated by selecting suitable traits. In the present investigation, traits hypothesized to be important for direct-seeded conditions in rainfed systems, including seedling emergence, early vegetative vigour, nutrient uptake, nodal root number, and root hair length and density, were characterized to study the genetic control of these traits and their relationship with grain yield under seedling- and reproductive-stage drought stress. Two BC2F4 mapping populations derived from crosses of Aus276, a drought-tolerant aus variety, with MTU1010 and IR64, high-yielding indica mega-varieties, were developed and studied to identify quantitative trait loci (QTLs) that showed large and consistent effects. A total of 26 QTLs associated with 23 traits and 20 QTLs associated with 13 traits were mapped in the Aus276/3*IR64 and Aus276/3*MTU1010 populations, respectively. qGY6.1, qGY10.1, qGY1.1, and qEVV9.1 were found to be effective in both populations under a wide range of conditions. QTLs for several seedling-stage traits co-located with QTLs for grain yield, including early vegetative vigour and root hair length. On chromosome 5, several QTLs for nutrient uptake co-located with QTLs for root hair density and nematode gall rating. Six lines were selected from both populations based on grain yield and the presence of QTLs, and these lines typically showed improved seedling-stage traits (nodal root number, dry shoot weight, and root hair length and density). The co-located QTLs identified here can be used in research aimed at increasing the yield and adaptability of rainfed rice to direct-seeded conditions. PMID:25336682

  19. Soybean roots retain the seed urease isozyme synthesized during embryo development. [Glycine max (L. ) Merr

    SciTech Connect

    Torisky, R.S.; Polacco, J.C. )

    1990-10-01

    Roots of young soybean (Glycine max (L.) Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from ({sup 35}S)methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root.

  20. Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Kuang, A.; Smith, P. J.; Crispi, M. L.; Musgrave, M. E.

    1999-01-01

    Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.

  1. Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development.

    PubMed

    Tang, Yong; Tan, Shutang; Xue, Hongwei

    2013-07-01

    Inositol 1,3,4-trisphosphate 5/6 kinase (ITPK) phosphorylates inositol 1,3,4-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate which can be finally transferred to inositol hexaphosphate (IP₆) and play important roles during plant growth and development. There are 4 putative ITPK members in Arabidopsis. Expression pattern analysis showed that ITPK2 is constitutively expressed in various tissues. A T-DNA knockout mutant of ITPK2 was identified and scanning electron microscopy (SEM) analysis showed that the epidermis structure of seed coat was irregularly formed in seeds of itpk2-1 mutant, resulting in the increased permeability of seed coat to tetrazolium salts. Further analysis by gas chromatography coupled with mass spectrometry of lipid polyester monomers in cell wall confirmed a dramatic decrease in composition of suberin and cutin, which relate to the permeability of seed coat and the formation of which is accompanied with seed coat development. These results indicate that ITPK2 plays an essential role in seed coat development and lipid polyester barrier formation. PMID:23595027

  2. Development of methodologies for virus detection in soybean and wheat seeds.

    PubMed

    Botelho, Stephanie R A; Martins, Thais P; Duarte, Macária F; Barbosa, Andreza V; Lau, Douglas; Fernandes, Fernanda R; Sanches, Marcio M

    2016-01-01

    Seeds that contain large amounts of oil, starch, fibers and phenols are the most difficult tissues for RNA extraction. Currently, there are some reports of virus detection in seeds using commercial kits for RNA extraction. However, individual seeds were used, which may not be always suitable for analyses that deal with large amounts of seeds. Sangha [1] described a simple, quick and efficient protocol for RNA extraction and downstream applications in a group of seeds of jatropha (Jatropha curcas), mustard (Brassica sp.) and rice (Oryza sativa). We tested this protocol for soybean (Glycine max), maize (Zea mays), wheat (Triticum aestivum) and triticale (×Triticosecale) seeds and further reverse transcription PCR (RT-PCR)/quantitative real-time PCR (qPCR) in order to have a faster and more practical method for virus detection from seeds than the traditional scheme of seed planting and subsequent Elisa/RT-PCR from leaves. The essential points in the method are:•Some modifications in the protocol [1] were done in order to increase performance: Wheat and triticale seeds are incubated with water prior to maceration. An amount of 1.2 g of dry soybean seeds is used to maceration.•RT-PCR is used for detection of Wheat streak mosaic virus from wheat seeds and RT-qPCR for detection of Soybean mosaic virus from soybean seeds.•The method may be tested for other viruses, however, pre-validation will be needed. PMID:27408831

  3. Development of Groundwater Modeling Support System Based on Service-Oriented Architecture

    NASA Astrophysics Data System (ADS)

    WANG, Y.; Tsai, J. P.; Hsiao, C. T.; Chang, L. C.

    2014-12-01

    Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre and post processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing function. The model buildings are still implemented independently case to case when using these packages. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater model developing system to assist model simulation. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. Other functions include the database management and variety of model developing assisted web services including auto digitalizing of geology profile map、groundwater missing data recovery assisting、graphic data demonstration and auto generation of MODFLOW input files from database that is the most important function of the system. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.

  4. Development of an ease-of-use remote healthcare system architecture using RFID and networking technologies.

    PubMed

    Lin, Shih-Sung; Hung, Min-Hsiung; Tsai, Chang-Lung; Chou, Li-Ping

    2012-12-01

    The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems. PMID:22382524

  5. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  6. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance.

    PubMed

    Nguyen, Tung C T; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R; Snowdon, Rod J

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  7. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance

    PubMed Central

    Nguyen, Tung C. T.; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R.; Snowdon, Rod J.

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  8. The Differential Expression of Sucrose Synthase in Relation to Diverse Patterns of Carbon Partitioning in Developing Cotton Seed.

    PubMed Central

    Ruan, Y. L.; Chourey, P. S.; Delmer, D. P.; Perez-Grau, L.

    1997-01-01

    Developing cotton (Gossypium hirsutum L.) seed exhibits complex patterns of carbon allocation in which incoming sucrose (Suc) is partitioned to three major sinks: the fibers, seed coat, and cotyledons, which synthesize cellulose, starch, and storage proteins or oils, respectively. In this study we investigated the role of Suc synthase (SuSy) in the mobilization of Suc into such sinks. Assessments of SuSy gene expression at various levels led to the surprising conclusion that, in contrast to that found for other plants, SuSy does not appear to play a role in starch synthesis in the cotton seed. However, our demonstration of functional symplastic connections between the phloem-unloading area and the fiber cells, as well as the SuSy expression pattern in fibers, indicates a major role of SuSy in partitioning carbon to fiber cellulose synthesis. SuSy expression is also high in transfer cells of the seed coat facing the cotyledons. Such high levels of SuSy could contribute to the synthesis of the thickened cell walls and to the energy generation for Suc efflux to the seed apoplast. The expression of SuSy in cotyledons also suggests a role in protein and lipid synthesis. In summary, the developing cotton seed provides an excellent example of the diverse roles played by SuSy in carbon metabolism. PMID:12223814

  9. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana.

    PubMed

    Wang, Youning; Li, Kexue; Li, Xia

    2009-10-15

    Auxin plays an important role in the modulation of root system architecture. The effect of salinity on primary root growth has been extensively studied. However, how salinity affects lateral root development and its underlying molecular mechanisms is still unclear. Here, we report that high salt exposure suppresses lateral root initiation and organogenesis, resulting in the abortion of lateral root development. In contrast, salt stress markedly promotes lateral root elongation. Histochemical staining showed that the quantity of auxin and its patterning in roots were both greatly altered by exposure to high concentrations of salt, as compared with those found in the untreated control. Physiological experiments using transport inhibitors and genetic analysis revealed that the auxin transport pathway is important for salt-induced root development. These results demonstrate that auxin transport activities are required for remodeling lateral root formation and elongation and for adaptive root system development under salt stress. PMID:19457582

  10. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    PubMed Central

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A.

    2009-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this paper a conceptual framework is provided for considering how the structure of early experience gets “under the skin.” The paper begins with a description of the genetic framework that lays the foundation for brain development, and then to the ways experience interacts with and modifies the structures and functions of the developing brain. Much of the attention is focused on early experience and sensitive periods, although it is made clear that later experience also plays an important role in maintaining and elaborating this early wiring diagram, which is critical to establishing a solid footing for development beyond the early years. PMID:20331653

  11. Architectural approach for semantic EHR systems development based on Detailed Clinical Models.

    PubMed

    Bernal, Juan G; Lopez, Diego M; Blobel, Bernd

    2012-01-01

    The integrative approach to health information in general and the development of pHealth systems in particular, require an integrated approach of formally modeled system architectures. Detailed Clinical Models (DCM) is one of the most promising modeling efforts for clinical concept representation in EHR system architectures. Although the feasibility of DCM modeling methodology has been demonstrated through examples, there is no formal, generic and automatic modeling transformation technique to ensure a semantic lossless transformation of clinical concepts expressed in DCM to either clinical concept representations based on ISO 13606/openEHR Archetypes or HL7 Templates. The objective of this paper is to propose a generic model transformation method and tooling for transforming DCM Clinical Concepts into ISO/EN 13606/openEHR Archetypes or HL7 Template models. The automation of the transformation process is supported by Model Driven-Development (MDD) transformation mechanisms and tools. The availability of processes, techniques and tooling for automatic DCM transformation would enable the development of intelligent, adaptive information systems as demanded for pHealth solutions. PMID:22942049

  12. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  13. Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.; Ehrlich, Nelson J.

    1992-01-01

    SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants.

  14. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression.

    PubMed

    Zhang, Hua; Lu, Yue; Zhao, Yu; Zhou, Dao-Xiu

    2016-07-01

    OsSRT1 is a NAD(+)-dependent histone deacetylase, closely related to the human SIRT6 that plays key roles in genome stability and metabolic homeostasis. In this work, we investigated the role of OsSRT1 in rice seed development. Down-regulation of OsSRT1 induced higher expression of Rice Starch Regulator1 (RSR1) and amylases genes in developing seeds, which resulted in a decrease of starch synthesis and an increase of starch degradation, leading to abnormal seed development. ChIP assay showed that OsSRT1 was required to reduce histone H3K9 acetylation on starch metabolism genes and transposons in developing seeds. In addition, OsSRT1 was detected to directly bind to starch metabolism genes such as OsAmy3B, OsAmy3E, OsBmy4, and OsBmy9. Our results suggested that OsSRT1-mediated histone deacetylation is involved in starch accumulation and transposon repression to regulate normal seed development. PMID:27181944

  15. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    PubMed

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. PMID:26824345

  16. Introgression of a rare haplotype from Southeastern Africa to breed California blackeyes with larger seeds

    PubMed Central

    Lucas, Mitchell R.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2015-01-01

    Seed size distinguishes most crops from their wild relatives and is an important quality trait for the grain legume cowpea. In order to breed cowpea varieties with larger seeds we introgressed a rare haplotype associated with large seeds at the Css-1 locus from an African buff seed type cultivar, IT82E-18 (18.5 g/100 seeds), into a blackeye seed type cultivar, CB27 (22 g/100 seed). Four recombinant inbred lines derived from these two parents were chosen for marker-assisted breeding based on SNP genotyping with a goal of stacking large seed haplotypes into a CB27 background. Foreground and background selection were performed during two cycles of backcrossing based on genome-wide SNP markers. The average seed size of introgression lines homozygous for haplotypes associated with large seeds was 28.7g/100 seed and 24.8 g/100 seed for cycles 1 and 2, respectively. One cycle 1 introgression line with desirable seed quality was selfed for two generations to make families with very large seeds (28–35 g/100 seeds). Field-based performance trials helped identify breeding lines that not only have large seeds but are also desirable in terms of yield, maturity, and plant architecture when compared to industry standards. A principal component analysis was used to explore the relationships between the parents relative to a core set of landraces and improved varieties based on high-density SNP data. The geographic distribution of haplotypes at the Css-1 locus suggest the haplotype associated with large seeds is unique to accessions collected from Southeastern Africa. Therefore this quantitative trait locus has a strong potential to develop larger seeded varieties for other growing regions which is demonstrated in this work using a California pedigree. PMID:25852699

  17. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination.

    PubMed

    Toh, Shigeo; Kamiya, Yuji; Kawakami, Naoto; Nambara, Eiji; McCourt, Peter; Tsuchiya, Yuichiro

    2012-01-01

    Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones. PMID:22173099

  18. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta

    PubMed Central

    Newton, Rosemary J.; Hay, Fiona R.; Ellis, Richard H.

    2013-01-01

    Background and Aims Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Key Results Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Conclusions Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal. PMID:23478943

  19. Development and evaluation of tamarind seed xyloglucan-based mucoadhesive buccal films of rizatriptan benzoate.

    PubMed

    Avachat, Amelia M; Gujar, Kishore N; Wagh, Kishor V

    2013-01-16

    Mucoadhesive buccal films were developed using tamarind seed xyloglucan (TSX) as novel mucoadhesive polysaccharide polymer for systemic delivery of rizatriptan benzoate through buccal route. Formulations were prepared based on 3(2) factorial design with concentrations of TSX and carbopol 934P (CP) as independent variables. Three dependent variables considered were tensile strength, bioadhesion force and drug release. DSC analysis revealed no interaction between drug and polymers. Ex vivo diffusion studies were carried out using Franz diffusion cell, while bioadhesive properties were evaluated using texture analyzer with porcine buccal mucosa as model tissue. Results revealed that bilayer film containing 4% (w/v) TSX and 0.5% (w/v) CP in the drug layer and 1% (w/v) ethyl cellulose in backing layer demonstrated diffusion of 93.45% through the porcine buccal mucosa. Thus, this study suggests that tamarind seed polysaccharide can act as a potential mucoadhesive polymer for buccal delivery of a highly soluble drug like rizatriptan benzoate. PMID:23121942

  20. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. PMID:25940928

  1. UBIQUITIN-SPECIFIC PROTEASE 26 Is Required for Seed Development and the Repression of PHERES1 in Arabidopsis

    PubMed Central

    Luo, Ming; Luo, Ming-Zhu; Buzas, Diana; Finnegan, Jean; Helliwell, Chris; Dennis, Elizabeth S.; Peacock, W. J.; Chaudhury, Abed

    2008-01-01

    The Arabidopsis mutant Atubp26 initiates autonomous endosperm at a frequency of ∼1% in the absence of fertilization and develops arrested seeds at a frequency of ∼65% when self-pollinated. These phenotypes are similar to those of the FERTILIZATION INDEPENDENT SEED (FIS) class mutants, mea, fis2, fie, and Atmsi1, which also show development of the central cell into endosperm in the absence of fertilization and arrest of the embryo following fertilization. Atubp26 results from a T-DNA insertion in the UBIQUITIN-SPECIFIC PROTEASE gene AtUBP26, which catalyzes deubiquitination of histone H2B and is required for heterochromatin silencing. The paternal copy of AtUBP26 is able to complement the loss of function of the maternal copy in postfertilization seed development. This contrasts to the fis class mutants where the paternal FIS copy does not rescue aborted seeds. As in the fis class mutants, the Polycomb group (PcG) complex target gene PHERES1 (PHE1) is expressed at higher levels in Atubp26 ovules than in wild type; there is a lower level of H3K27me3 at the PHE1 locus. The phenotypes suggest that AtUBP26 is required for normal seed development and the repression of PHE1. PMID:18723879

  2. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.

    PubMed

    Yu, Yanhao; Li, Jianye; Geng, Dalong; Wang, Jialiang; Zhang, Lushuai; Andrew, Trisha L; Arnold, Michael S; Wang, Xudong

    2015-01-27

    Three-dimensional (3D) nanowire (NW) architectures are considered as superior electrode design for photovoltaic devices compared to NWs or nanoparticle systems in terms of improved large surface area and charge transport properties. In this paper, we report development of lead iodide perovskite solar cells based on a novel 3D TiO2 NW architectures. The 3D TiO2 nanostructure was synthesized via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique that also implemented the Kirkendall effect for complete ZnO NW template conversion. It was found that the film thickness of 3D TiO2 can significantly influence the photovoltaic performance. Short-circuit current increased with the TiO2 length, while open-circuit voltage and fill factor decreased with the length. The highest power conversion efficiency (PCE) of 9.0% was achieved with ∼ 600 nm long 3D TiO2 NW structures. Compared to other 1D nanostructure arrays (TiO2 nanotubes, TiO2-coated ZnO NWs and ZnO NWs), 3D TiO2 NW architecture was able to achieve larger amounts of perovskite loading, enhanced light harvesting efficiency, and increased electron-transport property. Therefore, its PCE is 1.5, 2.3, and 2.8 times higher than those of TiO2 nanotubes, TiO2-coated ZnO NWs, and ZnO NWs, respectively. The unique morphological advantages, together with the largely suppressed hysteresis effect, make 3D hierarchical TiO2 a promising electrode selection in designing high-performance perovskite solar cells. PMID:25549153

  3. The distribution of fruit and seed toxicity during development for eleven neotropical trees and vines in Central Panama.

    PubMed

    Beckman, Noelle G

    2013-01-01

    Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965

  4. The Distribution of Fruit and Seed Toxicity during Development for Eleven Neotropical Trees and Vines in Central Panama

    PubMed Central

    Beckman, Noelle G.

    2013-01-01

    Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions. PMID:23843965

  5. Seed coat phenolics and the developing silique transcriptome of Brassica carinata.

    PubMed

    Li, Xiang; Westcott, Neil; Links, Matthew; Gruber, Margaret Y

    2010-10-27

    Structures for nine compounds were elucidated in seed coats of two genetically related Brassica carinata lines. The yellow-seeded line accumulated monomeric kaempferols, phenylpropanoids, and lignans, while extractable and unextractable proanthocyanidins and a high-performance liquid chromatography peak containing polymeric-like quercetin/lignan structures were strongly reduced. The brown-seeded line accumulated large amounts of both types of proanthocyanidins (extractable and unextractable), as well as phenylpropanoids and lignans equivalent to the amounts in the yellow-seeded seed coats, but the brown-seeded seed coats lacked kaempferols. A Brassica napus 15K oligoarray experiment indicated that yellow-seeded siliques had more extreme gene expression changes and a 2.4-fold higher number of upregulated genes than brown-seeded siliques, including a host of transcription factors and genes with unknown function. Transcripts for six flavonoid genes (CHS, F3H, FOMT, DFR, GST, and TTG1) were lower and two (F3'H and FLS) were higher in yellow-seeded siliques, but expression of CHI, PAP1, and phenylpropanoid genes was unchanged. PMID:20925379

  6. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  7. Open architectures for formal reasoning and deductive technologies for software development

    NASA Technical Reports Server (NTRS)

    Mccarthy, John; Manna, Zohar; Mason, Ian; Pnueli, Amir; Talcott, Carolyn; Waldinger, Richard

    1994-01-01

    The objective of this project is to develop an open architecture for formal reasoning systems. One goal is to provide a framework with a clear semantic basis for specification and instantiation of generic components; construction of complex systems by interconnecting components; and for making incremental improvements and tailoring to specific applications. Another goal is to develop methods for specifying component interfaces and interactions to facilitate use of existing and newly built systems as 'off the shelf' components, thus helping bridge the gap between producers and consumers of reasoning systems. In this report we summarize results in several areas: our data base of reasoning systems; a theory of binding structures; a theory of components of open systems; a framework for specifying components of open reasoning system; and an analysis of the integration of rewriting and linear arithmetic modules in Boyer-Moore using the above framework.

  8. Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.

    2003-01-01

    Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.

  9. Model-Driven Development of Reliable Avionics Architectures for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas; Claypool, Ian; Clark, David; West, John; Somervill, Kevin; Odegard, Ryan; Suzuki, Nantel

    2010-01-01

    This paper discusses a method used for the systematic improvement of NASA s Lunar Surface Systems avionics architectures in the area of reliability and fault-tolerance. This approach utilizes an integrated system model to determine the effects of component failure on the system s ability to provide critical functions. A Markov model of the potential degraded system modes is created to characterize the probability of these degraded modes, and the system model is run for each Markov state to determine its status (operational or system loss). The probabilistic results from the Markov model are first produced from state transition rates based on NASA data for heritage failure rate data of similar components. An additional set of probabilistic results are created from a representative set of failure rates developed for this study, for a variety of component quality grades (space-rated, mil-spec, ruggedized, and commercial). The results show that careful application of redundancy and selected component improvement should result in Lunar Surface Systems architectures that exhibit an appropriate degree of fault-tolerance, reliability, performance, and affordability.

  10. Historical development of administration architecture in Malaysia (15th-21st century)

    NASA Astrophysics Data System (ADS)

    Mohidin, H. H. B.; Ismail, A. S.

    2014-02-01

    The main purpose of this paper is to document the development of the state administration building in Malaysia before and after the independence era, in relation to the evolutionary period of Malaysia's political, social and economic history. Multiple case study approach [19] is applied by referring to six prominent case studies to represent state administrative buildings from various phases of Malaysian history beginning from 14th century to 21st century as exemplar. Since this paper formulates new ways to approach and describes state administrative building design and factors that influence them, it uses interpretivism paradigm and (semiotics) as methodological approach to study the relationship between the building design and contextual elements. This paper, therefore, offers new insights, which not only add to knowledge in this field by widening and strengthening the understanding of state administrative architecture in Malaysia, but also are valuable for range of associated fields including architectural semiotics and non verbal communication. This is because this paper reveals deep understandings of the built form and material environment operating as a sign in a cultural and social context.

  11. Development of a controllable particle generator for LV seeding in hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Feller, W. V.; Meyers, J. F.

    1976-01-01

    The paper describes the considerations that went into the development of a controllable particle generator for laser velocimeter seeding in a hypersonic wind tunnel operating at 3.45 million N/sq m, 533 K, and stream speed of about 1000 m/sec. Operating conditions determined the choice of a silicone oil as the material, and the requirement that the particle follow the flow within a certain accuracy range put constraints on the allowable particle size range. The principle of the particle generating device chosen was that of the LaMer generator, in which a liquid is first vaporized, mixed with the carrier gas, and then condensed under carefully controlled conditions. Preliminary results of studies on the effect of various apparatus parameters on the particle median diameter are given.

  12. Influence of laser radiation on the growth and development of seeds of agricultural plants

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.

  13. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394.

    PubMed

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  14. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394

    PubMed Central

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus LEAF CURLING RESPONSIVENESS (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  15. Synthesis of multimetallic nanoparticles by seeded methods

    NASA Astrophysics Data System (ADS)

    Weiner, Rebecca Gayle

    This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as

  16. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach.

    PubMed

    R V, Sreedhar; Kumari, Priya; Rupwate, Sunny D; Rajasekharan, Ram; Srinivasan, Malathi

    2015-01-01

    Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was "Metabolism" (31.97%), of which the most prominent class was 'carbohydrate metabolism and transport' (5.81% of total KOG classifications) followed by 'secondary metabolite biosynthesis transport and catabolism' (5.34%) and 'lipid metabolism' (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research and

  17. LEAFY COTYLEDON1, a Key Regulator of Seed Development, Is Expressed in Vegetative and Sexual Propagules of Selaginella moellendorffii

    PubMed Central

    Kirkbride, Ryan C.; Fischer, Robert L.; Harada, John J.

    2013-01-01

    LEAFY COTYLEDON1 (LEC1) is a central regulator of seed development that plays a key role in controlling the maturation phase during which storage macromolecules accumulate and the embryo becomes tolerant of desiccation. We queried the genomes of seedless plants and identified a LEC1 homolog in the lycophyte, Selaginellamoellendorffii, but not in the bryophyte, Physcomitrellapatens. Genetic suppression experiments indicated that Selaginella LEC1 is the functional ortholog of Arabidopsis LEC1. Together, these results suggest that LEC1 originated at least 30 million years before the first seed plants appeared in the fossil record. The accumulation of Selaginella LEC1 RNA primarily in sexual and asexual reproductive structures suggests its involvement in cellular processes similar to those that occur during the maturation phase of seed development. PMID:23776713

  18. New architecture for TECless operation of uncooled microbolometers developed at LETI

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Tchagaspanian, M.; Arnaud, A.; Imperinetti, P.; Chammings, G.; Yon, J. J.; Tissot, J. L.; Destefanis, Gérard

    2008-03-01

    Thermal imaging market is today more and more attracted by systems with "instant-on" and low power consumption. "TECless" operation of uncooled microbolometer detectors, that is where no Peltier module is needed, is one of the major features required by the market. In order to fulfill this demand, LETI/SLIR is developing and optimizing a new IRCMOS architecture based on a differential reading implemented with current mirrors. This design simultaneously reduces focal plane temperature sensitivity and simplifies the detector driving. An IRCMOS prototype (320 × 240 with a pitch of 25 μm) has been designed, processed, and characterized. This paper presents an overall view of this new design and the latest characterization results of the prototype.

  19. The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development

    PubMed Central

    Chen, Xiao; Bracht, John R.; Goldman, Aaron David; Dolzhenko, Egor; Clay, Derek M.; Swart, Estienne C.; Perlman, David H.; Doak, Thomas G.; Stuart, Andrew; Amemiya, Chris T.; Sebra, Robert P.; Landweber, Laura F.

    2014-01-01

    SUMMARY Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci often interweave with each other. Single gene segments can contribute to multiple, distinct somatic loci. Terminal precursor segments from neighboring somatic loci map extremely close to each other, often overlapping. This genome assembly provides a draft of a scrambled genome and a powerful model for studies of genome rearrangement. PMID:25171416

  20. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  1. SEED GERMINATION AND ROOT ELONGATION TOXICITY TESTS IN HAZARDOUS WASTE SITE EVALUATION: METHODS DEVELOPMENT AND APPLICATIONS

    EPA Science Inventory

    Seed germination tests measure soil toxicity directly, while root elongation tests consider the indirect effects of water-soluble constituents which may be present in site-samples. n the seed germination toxicity test, site-soil is mixed with a reference soil to yield exposure co...

  2. Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...

  3. Development of soybean with novel sources of resistance to Phomopsis seed decay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis seed decay (PSD) is an important soybean disease that results in poor seed quality in most soybean production areas of the United States. PSD is caused primarily by the fungal pathogen Phomopsis longicolla. In 2009, due to the prevalence of hot and humid environments from pod fill to harve...

  4. Role of Tec1 in the Development, Architecture, and Integrity of Sexual Biofilms of Candida albicans

    PubMed Central

    Daniels, Karla J.; Srikantha, Thyagarajan; Pujol, Claude; Park, Yang-Nim

    2015-01-01

    MTL-homozygous (a/a or α/α) white cells form a complex sexual biofilm that exhibits the same architecture as that of MTL-heterozygous (a/α) pathogenic biofilms. However, the former is regulated by the mitogen-activated protein (MAP) kinase pathway, while the latter is regulated by the Ras1/cyclic AMP (cAMP) pathway. We previously demonstrated that in the formation of an MTL-homozygous, mature (48 h) sexual biofilm in RPMI 1640 medium, the MAP kinase pathway targets Tec1 rather than Cph1, the latter of which is the target of the same pathway, but for the opaque cell mating response. Here we continued our analysis of the role of Tec1 by comparing the effects of deleting TEC1 on initial adhesion to silicone elastomer, high-resolution confocal microscopy assessments of the stages and cellular phenotypes during the 48 h of biofilm development, human white cell penetration, and biofilm fragility. We show that although Tec1 plays only a minor role in initial adhesion to the silicone elastomer, it does play a major role in the growth of the basal yeast cell polylayer, vertical extension of hyphae and matrix deposition in the upper portion of the biofilm, final biofilm thickness, penetrability of human white blood cells, and final biofilm integrity (i.e., resistance to fluid flow). These results provide a more detailed description of normal biofilm development and architecture and confirm the central role played by the transcription factor Tec1 in the biofilm model employed here. PMID:25556183

  5. Changes in the Enzymes for Fatty Acid Synthesis and Desaturation during Acclimation of Developing Soybean Seeds to Altered Growth Temperature

    PubMed Central

    Cheesbrough, Thomas M.

    1989-01-01

    Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not. PMID:16666840

  6. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.

    PubMed

    Sramala, Issara; Pinket, Wichchunee; Pongwan, Pawinee; Jarussophon, Suwatchai; Kasemwong, Kittiwut

    2016-01-01

    In this study, tea (Camellia oleifera) seed oil was formulated into self-emulsifying oil formulations (SEOF) to enhance the aqueous dispersibility and intestinal retention to achieve higher bioavailability. Self-emulsifying tea seed oils were developed by using different concentrations of lecithin in combination with surfactant blends (Span(®)80 and Tween(®)80). The lecithin/surfactant systems were able to provide clear and stable liquid formulations. The SEOF were investigated for physicochemical properties including appearance, emulsion droplets size, PDI and zeta potential. The chemical compositions of tea seed oil and SEOF were compared using GC-MS techniques. In addition, the oil adsorption measurement on artificial membranes was performed using a Franz cell apparatus and colorimetric analysis. The microscopic structure of membranes was observed with scanning electron microscopy (SEM). After aqueous dilution with fed-state simulated gastric fluid (FeSSGF), the droplet size of all SEOF was close to 200 nm with low PDI values and the zeta potential was negative. GC-MS chromatograms revealed that the chemical compositions of SEOF were not significantly different from that of the original tea seed oil. The morphological study showed that only the SEOF could form film layers. The oil droplets were extracted both from membrane treated with tea seed oil and the SEOF in order to evaluate the chemical compositions by GC-MS. PMID:27136528

  7. Study of Dosimetric and Thermal Properties of a Newly Developed Thermo-brachytherapy Seed for Treatment of Solid Tumors

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj R.

    Studies on the curative effects of hyperthermia and radiation therapy on treatment of cancer show strong evidence of synergistic enhancement when both radiation and hyperthermia treatment modalities are applied simultaneously. A variety of tissue heating approaches developed to date still fail to overcome essential limitations such as inadequate temperature control, temperature non-uniformity, and prolonged time delay between hyperthermia and radiation treatments. We propose a new self-regulating Thermo-brachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The proposed seed is based on the BestRTM Iodine-125 seed model 2301, where the tungsten marker core and the air gap are replaced with ferromagnetic material. The ferromagnetic core produces heat when subjected to an alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (TC) of the ferromagnetic material, thus establishing temperature self-regulation. The seed has a ferromagnetic Ni-Cu alloy core having a Curie transition at a temperature of 52 °C. This study summarizes the design and development of the self regulating ferromagnetic core TB seed for the concurrent hyperthermia and brachytherapy treatments. An experimental study of the magnetic properties of the Ni1-xCu x (0.28≤ x ≤0.3) alloys, and the simulation studies of radiation and thermal distribution properties of the seed have been performed. A preliminary experiment for the ferromagnetic induction heating of Ni-Cu needles has been carried out to ensure the practical feasibility of the induction heating. Radiation dose characterizing parameters (dose rate constant and other TG-43 factors) were calculated using the Monte Carlo method. For the thermal characteristics, we studied a model consisting of single or multiple seeds placed in the central region of a cylindrical phantom using a finite-element analysis method

  8. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    PubMed

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts. PMID:26318006

  9. Architecture as a Metaphor for Development of Culturally Adapted Minority Education Programs. Final Report of the Regional Study Award Project.

    ERIC Educational Resources Information Center

    Klein, Thomas W.

    The use of metaphor offers considerable promise within scientific disciplines for encouraging creative thinking, drawing attention to important concepts or principles in a discipline, and developing new methodologies. Ferguson's description of architectural practice as a metaphor for the development of social programs is used to demonstrate these…

  10. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein.

    PubMed

    Zhu, Xiaolei; Liang, Wanqi; Cui, Xiao; Chen, Mingjiao; Yin, Changsong; Luo, Zhijing; Zhu, Jiaying; Lucas, William J; Wang, Zhiyong; Zhang, Dabing

    2015-05-01

    Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over-expression of the BR-synthesis gene D11 or a BR-signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non-transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop. PMID:25754973

  11. Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine

    PubMed Central

    Lee, Siwon; Shin, Yong-Gil

    2014-01-01

    Among imported plants, seeds are the items that have many latent pathogens and are difficult to inspect. Also, they are the import and export items whose market is expected to expand. The biggest problem with seeds is viruses. Prune dwarf virus (PDV) is the virus that is commonly inspected in Prunus cerasifera, P. persica, P. armeniaca, P. mandshurica, P. cerasus, P. avium or P. serotina seeds. In this study, two RT-PCR primer sets, which can promptly and specifically diagnose plant quarantine seed-transmitted PDV, were developed; and nested PCR primers, where products amplify 739 and 673 nucleotides (nt), and an nested PCR-product, 305 nt, can be obtained as these products are amplified again, were developed. Also, a modified-positive control plasmid was developed, where the restriction enzyme XhoI, which can identify the contamination of samples from the control, was inserted. The method developed in this study has detected PDV in 18 cases since 2007, and is expected to continuously contribute to the plant quarantine in Korea. PMID:25289000

  12. A comparative study of cytokinins in caryopsis development in the maize miniature 1 seed mutant and its wild type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here a comparative developmental profile of cytokinins, both total quantity and diversity of various forms, in relation to cell size, cell number and endoreduplication in developing caryopses of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. ...

  13. Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine.

    PubMed

    Lee, Siwon; Shin, Yong-Gil

    2014-06-01

    Among imported plants, seeds are the items that have many latent pathogens and are difficult to inspect. Also, they are the import and export items whose market is expected to expand. The biggest problem with seeds is viruses. Prune dwarf virus (PDV) is the virus that is commonly inspected in Prunus cerasifera, P. persica, P. armeniaca, P. mandshurica, P. cerasus, P. avium or P. serotina seeds. In this study, two RT-PCR primer sets, which can promptly and specifically diagnose plant quarantine seed-transmitted PDV, were developed; and nested PCR primers, where products amplify 739 and 673 nucleotides (nt), and an nested PCR-product, 305 nt, can be obtained as these products are amplified again, were developed. Also, a modified-positive control plasmid was developed, where the restriction enzyme XhoI, which can identify the contamination of samples from the control, was inserted. The method developed in this study has detected PDV in 18 cases since 2007, and is expected to continuously contribute to the plant quarantine in Korea. PMID:25289000

  14. Characterization of Arabidopsis thaliana GCN2 kinase roles in seed germination and plant development.

    PubMed

    Liu, Xiaoyu; Merchant, Azim; Rockett, Kristin S; McCormack, Maggie; Pajerowska-Mukhtar, Karolina M

    2015-01-01

    Eukaryotic GCN2 (general control nonderepressible 2) is a serine/threonine protein kinase that plays an essential role in modulating amino acid metabolism in response to nutrient deprivation. A wide spectrum of GCN2 functions in yeast and mammals has been characterized that spans from responses to amino acid deficiency, development, differentiation and proper functions of mammalian organs to organism's life span, tumor cell survival and immune responses. Here we demonstrate that Arabidopsis thaliana GCN2 (AtGCN2) plays crucial roles in plant growth and development. We present evidence that AtGCN2 negatively regulates seed germination under diverse environmental conditions. Our genetic data supported the notion that AtGCN2 is required for leaf morphology and normal cellular physiology by controlling chlorophyll contents. Our gene expression analyses revealed that AtGCN2 negatively regulates several transcription factor genes that play important roles in plant gibberellic acid-related crosstalk. We concluded that AtGCN2 plays pivotal roles in various cellular processes essential for normal growth and development, hence expanding the functions of this general regulator beyond being merely a stress player. PMID:25912940

  15. The interplay between inflorescence development and function as the crucible of architectural diversity

    PubMed Central

    Harder, Lawrence D.; Prusinkiewicz, Przemyslaw

    2013-01-01

    Background Most angiosperms present flowers in inflorescences, which play roles in reproduction, primarily related to pollination, beyond those served by individual flowers alone. An inflorescence's overall reproductive contribution depends primarily on the three-dimensional arrangement of the floral canopy and its dynamics during its flowering period. These features depend in turn on characteristics of the underlying branching structure (scaffold) that supports and supplies water and nutrients to the floral canopy. This scaffold is produced by developmental algorithms that are genetically specified and hormonally mediated. Thus, the extensive inflorescence diversity evident among angiosperms evolves through changes in the developmental programmes that specify scaffold characteristics, which in turn modify canopy features that promote reproductive performance in a particular pollination and mating environment. Nevertheless, developmental and ecological aspects of inflorescences have typically been studied independently, limiting comprehensive understanding of the relations between inflorescence form, reproductive function, and evolution. Scope This review fosters an integrated perspective on inflorescences by summarizing aspects of their development and pollination function that enable and guide inflorescence evolution and diversification. Conclusions The architecture of flowering inflorescences comprises three related components: topology (branching patterns, flower number), geometry (phyllotaxis, internode and pedicel lengths, three-dimensional flower arrangement) and phenology (flower opening rate and longevity, dichogamy). Genetic and developmental evidence reveals that these components are largely subject to quantitative control. Consequently, inflorescence evolution proceeds along a multidimensional continuum. Nevertheless, some combinations of topology, geometry and phenology are represented more commonly than others, because they serve reproductive function

  16. The development of microbatteries based on three-dimensional architectures for autonomous micro devices

    NASA Astrophysics Data System (ADS)

    Min, Hong-Seok

    2007-12-01

    The goal of fabricating three-dimensional (3D) microbatteries is to improve upon the performance of 2D microbatteries or thin-film batteries by reconfiguring existing materials in a more advanced architecture. 3D battery architectures offer a new approach for miniaturized power sources. These batteries are designed to have a small areal foot print and yet provide sufficient power and energy density to operate autonomous MEMS devices. The more convenient approaches for fabricating such batteries are based on micromachining techniques such as electrodeposition of high aspect ratio metal rods in an array configuration. Three types of three-dimensional microbatteries were fabricated and characterized: Ni-Zn, zinc-air, and Ag-Zn. These different types of microbatteries use different chemistries but all have the common feature of an out-of-plane array of micro-post electrodes. A 3D Ni-Zn microbattery was fabricated and demonstrated proper charge-discharge behavior for the first few cycles. The development of 3D zinc-air microbattery showed high discharge capability under various discharge conditions. Furthermore, performance of 3D zinc-air microbattery was demonstrated by successfully powering an electronic device. During discharge, the 3D zinc-air microbattery exhibited an electrode reaction which formed hollow ZnO electrodes by the Kirkendall effect. This electrode reaction strongly supports the functionality of the 3D microbattery. The fabrication of the Ag-Zn microbattery was accomplished by Ag electrode formation, separator coating, and Zn sedimentation. Due to imperfections in the separator coating, the 3D Ag-Zn microbattery had electrical shorts.

  17. DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.

    2015-12-01

    One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.

  18. Architectural Illusion.

    ERIC Educational Resources Information Center

    Doornek, Richard R.

    1990-01-01

    Presents a lesson plan developed around the work of architectural muralist Richard Haas. Discusses the significance of mural painting and gives key concepts for the lesson. Lists class activities for the elementary and secondary grades. Provides a photograph of the Haas mural on the Fountainbleau Hilton Hotel, 1986. (GG)

  19. Architectural Tops

    ERIC Educational Resources Information Center

    Mahoney, Ellen

    2010-01-01

    The development of the skyscraper is an American story that combines architectural history, economic power, and technological achievement. Each city in the United States can be identified by the profile of its buildings. The design of the tops of skyscrapers was the inspiration for the students in the author's high-school ceramic class to develop…

  20. Exploring Triacylglycerol Biosynthetic Pathway in Developing Seeds of Chia (Salvia hispanica L.): A Transcriptomic Approach

    PubMed Central

    Rupwate, Sunny D.; Rajasekharan, Ram; Srinivasan, Malathi

    2015-01-01

    Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was “Metabolism” (31.97%), of which the most prominent class was ‘carbohydrate metabolism and transport’ (5.81% of total KOG classifications) followed by ‘secondary metabolite biosynthesis transport and catabolism’ (5.34%) and ‘lipid metabolism’ (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome

  1. Transcriptome Characterization of Developing Bean (Phaseolus vulgaris L.) Pods from Two Genotypes with Contrasting Seed Zinc Concentrations.

    PubMed

    Astudillo-Reyes, Carolina; Fernandez, Andrea C; Cichy, Karen A

    2015-01-01

    Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts was determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequenced from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager. PMID:26367119

  2. Transcriptome Characterization of Developing Bean (Phaseolus vulgaris L.) Pods from Two Genotypes with Contrasting Seed Zinc Concentrations

    PubMed Central

    Astudillo-Reyes, Carolina; Fernandez, Andrea C.; Cichy, Karen A.

    2015-01-01

    Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts was determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequenced from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager. PMID:26367119

  3. Development of IP and SCAR markers linked to the yellow seed color gene in Brassica juncea L.

    PubMed

    Huang, Zhen; Liu, Lu; Lu, Hong; Lang, Lina; Zhao, Na; Ding, Juan; Xu, Aixia

    2016-03-01

    Previous studies showed that the yellow seed color gene of a yellow mustard was located on the A09 chromosome. In this study, the sequences of the molecular markers linked to the yellow seed color gene were analyzed, the gene was primarily mapped to an interval of 23.304 to 29.402M. Twenty genes and eight markers' sequences in this region were selected to design the IP and SCAR primers. These primers were used to screen a BC8S1 population consisting of 1256 individuals. As a result, five IP and five SCAR markers were successfully developed. IP4 and Y1 were located on either side of the yellow seed color gene at a distance of 0.1 and 0.3 cM, respectively. IP1, IP2 and IP3 derived from Bra036827, Bra036828, Bra036829 separately, co-segregated with the target gene. BLAST analysis indicated that the sequences of newly developed markers showed good collinearity with those of the A09 chromosome, and that the target gene might exist between 27.079 and 27.616M. In light of annotations of the genes in this region, only Bra036828 is associated with flavonoid biosynthesis. This gene has high similarity with the TRANSPARENT TESTA6 gene, Bra036828 was hence identified as being the gene possibly responsible for yellow seed color, in our research. PMID:27162489

  4. Development of IP and SCAR markers linked to the yellow seed color gene in Brassica juncea L.

    PubMed Central

    Huang, Zhen; Liu, Lu; Lu, Hong; Lang, Lina; Zhao, Na; Ding, Juan; Xu, Aixia

    2016-01-01

    Previous studies showed that the yellow seed color gene of a yellow mustard was located on the A09 chromosome. In this study, the sequences of the molecular markers linked to the yellow seed color gene were analyzed, the gene was primarily mapped to an interval of 23.304 to 29.402M. Twenty genes and eight markers’ sequences in this region were selected to design the IP and SCAR primers. These primers were used to screen a BC8S1 population consisting of 1256 individuals. As a result, five IP and five SCAR markers were successfully developed. IP4 and Y1 were located on either side of the yellow seed color gene at a distance of 0.1 and 0.3 cM, respectively. IP1, IP2 and IP3 derived from Bra036827, Bra036828, Bra036829 separately, co-segregated with the target gene. BLAST analysis indicated that the sequences of newly developed markers showed good collinearity with those of the A09 chromosome, and that the target gene might exist between 27.079 and 27.616M. In light of annotations of the genes in this region, only Bra036828 is associated with flavonoid biosynthesis. This gene has high similarity with the TRANSPARENT TESTA6 gene, Bra036828 was hence identified as being the gene possibly responsible for yellow seed color, in our research. PMID:27162489

  5. Environmental factors during seed development and their influence on pre-harvest sprouting in wheat

    NASA Technical Reports Server (NTRS)

    Ciha, A. J. (Principal Investigator)

    1981-01-01

    The problem of pre-harvest sprouting of wheat is surveyed and a literature review of the effects of environmental conditions on pre-harvest sprouting is presenting. Physiological, biochemical, and morphological changes occurring within the wheat seed during germination, harvest, and storage are discussed. The effects of moisture, humidity, and temperature, particularly on seed dormancy, are considered. Procedures used in Europe for predicting the potential for sprouting are evaluated.

  6. Exploring Diverse Data Sets and Developing New Theories and Ideas With Project Integration Architecture

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.; Jones, William H.

    2005-01-01

    The development of new ideas is the essence of scientific research. This is frequently done by developing models of physical processes and comparing model predictions with results from experiments. With models becoming ever more complex and data acquisition systems becoming more powerful, the researcher is burdened with wading through data ranging in volume up to a level of many terabytes and beyond. These data often come from multiple, heterogeneous sources and usually the methods for searching through it are at or near the manual level. In addition, current documentation methods are generally limited to researchers pen-and-paper style notebooks. Researchers may want to form constraint-based queries on a body of existing knowledge that is, itself, distributed over many different machines and environments and from the results of such queries then spawn additional queries, simulations, and data analyses in order to discover new insights into the problem being investigated. Currently, researchers are restricted to working within the boundaries of tools that are inefficient at probing current and legacy data to extend the knowledge of the problem at hand and reveal innovative and efficient solutions. A framework called the Project Integration Architecture is discussed that can address these desired functionalities.

  7. A Step Towards Developing Adaptive Robot-Mediated Intervention Architecture (ARIA) for Children With Autism

    PubMed Central

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R.; Crittendon, Julie A.; Warren, Zachary E.; Sarkar, Nilanjan

    2013-01-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child’s head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  8. A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism.

    PubMed

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R; Crittendon, Julie A; Warren, Zachary E; Sarkar, Nilanjan

    2013-03-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child's head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  9. Three-Dimensional Visualization of Developing Neurovascular Architecture in the Craniofacial Region of Embryonic Mice.

    PubMed

    Sugimoto, Toshiaki; Taya, Yuji; Shimazu, Yoshihito; Soeno, Yuuichi; Sato, Kaori; Aoba, Takaaki

    2015-11-01

    Recent studies have highlighted the mechanism of vascular and axonal guidance to ensure proper morphogenesis and organogenesis. We aimed to perform global mapping of developing neurovascular networks during craniofacial development of embryonic mice. To this end, we developed histology-based three-dimensional (3D) reconstructions using paraffin-embedded serial sections obtained from mouse embryos. All serial sections were dual-immunolabeled with Pecam1 and Pgp9.5/Gap43 cocktail antibodies. All immunolabeled serial sections were digitized with virtual microscopy to acquire high spatial resolution images. The 3D reconstructs warranted superior positional accuracy to trace the long-range connectivity of blood vessels and individual cranial nerve axons. It was feasible to depict simultaneously the details of angiogenic sprouting and axon terminal arborization and to assess quantitatively the locoregional proximity between blood vessels and cranial nerve axons. Notably, 3D views of the craniofacial region revealed the following: Branchial arch arteries and blood capillary plexi were formed without accompanying nerves at embryonic day (E) 9.5. Cranial nerve axons began to grow into the branchial arches, developing a labyrinth of small blood vessels at E10.5. Vascular remodeling occurred, and axon terminals of the maxillary, mandibular, chorda tympani, and hypoglossal nerve axons had arborized around the lateral lingual swellings at E11.5. The diverged patterning of trigeminal nerves and the arterial branches from the carotid artery became congruent at E11.5. The overall results support the advantage of dual-immunolabeling and 3D reconstruction technology to document the architecture and wiring of the developing neurovascular networks in mouse embryos. PMID:26054056

  10. Design and development of annatto (Bixa orellana L.) seed separator machine.

    PubMed

    Math, R G; Ramesh, G; Nagender, A; Satyanarayana, A

    2016-01-01

    A small, continuous power operated machine with a capacity of 132 kg/h was designed, fabricated and evaluated its performance for separation of annatto (Bixa orellana L.) seeds from freshly harvested pods. Physical and engineering parameters of annatto pods and seeds were evaluated to design a machine. The densities of pod, seed, and husk are 134.7 to 186.0 kg/m(3), 1206 to 1253.9 kg/m(3), 317 to 381.4 kg/m(3) respectively. The moisture content of seeds were in the range 18.83 - 20.1 % (db) and pod 8 to 10 % (db). Bixin content of seed was in the range 1.34 to 1.765 %. The friction angle for pod, seed, and husk lies between angle 30.15° to 35.76°. Breaking force was 98 N at a span of 14.5 mm. The machine consisted of concentric cylinders and beaters with different pitch of 40, 45 and 50 mm and a length of shaft is 800 mm. The actual machine output was observed to be 132.5 kg/h. Maximum bixin content was found to be retained at 300 rpm. PMID:26787990

  11. Cattle and sheep develop preference for drinking water containing grape seed tannin.

    PubMed

    Kronberg, S L; Schauer, C S

    2013-10-01

    Ingestion of small amounts of some types of condensed tannins (CTs) by ruminant livestock can provide nutritional, environmental and economic benefits. However, practical methods are needed to make these tannins more available to ruminant livestock. Results from previous trials with crude quebracho and black wattle tannin indicated that cattle and/or sheep would not preferentially drink water containing these tannins. Therefore, we conducted preference trials to determine if cattle and sheep would learn to prefer water containing purified grape seed tannin (GST) that provided up to 2% of their daily dry matter (DM) intake. After gradual exposure to increasing amounts of this tannin in water during a pre-trial period, five adult ewes and five yearling heifers fed lucerne (Medicago sativa) pellets (19% CP) were offered water and several concentrations of GST solutions for either 15 (sheep trial) or 20 days (cattle trial). We measured intake of all liquids daily. Concentrations of blood urea were also measured for heifers when they drank only tannin solutions or water. Both sheep and cattle developed preferences for water with GST in it over water alone (P < 0.01) although this preference appeared earlier in the trial for sheep than for cattle. For the sheep, mean daily intake of water alone and all tannin solutions (in total) was 0.6 and 6.1 l, respectively. For the cattle, mean daily intake of water and all tannin solutions in total was 21.8 and 20.6 l, respectively, in the first half of the trial and 10.8 and 26.1 l, respectively, in the second half of the trial. Compared with the other tannin solutions, both sheep and cattle drank more of the solution with the highest tannin concentration (2% of daily DM intake as GST) than of water on more trial days (P < 0.05). Ingestion of water with the highest concentration of GST reduced blood plasma urea concentration in the cattle by 9% to 14% (P ≤ 0.10) compared with ingestion of water alone. Results from the trials

  12. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development. PMID:12552151

  13. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  14. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar

    2013-11-01

    In this work, calcium pectinate-jackfruit (Artocarpus heterophyllus Lam.) seed starch (JFSS) mucoadhesive beads containing metformin HCl were developed through ionotropic-gelation. Effects of pectin and JFSS amounts on drug encapsulation efficiency (DEE), and cumulative drug release after 10 h (R10 h) were optimized using 3(2) factorial design. The optimized calcium pectinate-JFSS beads containing metformin HCl showed DEE of 94.11 ± 3.92%, R10 h of 48.88 ± 2.02%, and mean diameter of 2.06 ± 0.20 mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The pH of test mediums was found critical for swelling and mucoadhesion of these beads. The optimized calcium pectinate-JFSS beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. PMID:23994792

  15. Seed germination and seedling development ecology in world-wide populations of a circumboreal Tertiary relict

    PubMed Central

    Walck, Jeffrey L.; Karlsson, Laila M.; Milberg, Per; Hidayati, Siti N.; Kondo, Tetsuya

    2012-01-01

    Background and aims Temperate forests are disjunct in the Northern Hemisphere, having become fragmented from the earlier widespread (Tertiary) boreotropical forest. We asked ‘What are the contemporary patterns of population variation in ecological traits of a Tertiary relict in a macroecological context?’. This issue underpins our understanding of variation in populations occurring in the same biome but on different continents. Methodology We examined characters associated with root and shoot emergences among populations of Viburnum opulus in temperate forests of Asia, North America and Europe. This species has complex seedling emergence extending over several years and requiring various temperature cues. Principal results Populations varied in germination responses and clustered into groups that were only partly related to varietal status. Whereas roots (at warm temperatures) and shoots (following a cold period) simultaneously emerged from seeds of all populations when simulated dispersal occurred in winter, they were delayed in some populations when dispersal occurred in summer. Conclusions Viburnum opulus populations, some separated by 10 300 km, showed high similarity in seedling development and in germination phenology, and we suggest that stabilizing selection has played a key role in maintaining similar dormancy mechanisms. Nevertheless, there was some degree of variation in other germination characters, suggesting local adaptation. PMID:22514787

  16. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications. PMID:24832986

  17. Development of antibodies against secoisolariciresinol--application to the immunolocalization of lignans in Linum usitatissimum seeds.

    PubMed

    Attoumbré, Jacques; Bienaimé, Christophe; Dubois, Frédéric; Fliniaux, Marc-André; Chabbert, Brigitte; Baltora-Rosset, Sylvie

    2010-12-01

    Lignans are widely distributed plant metabolites associated with a large range of biological activities. In order to gain insight into their biosynthesis and their spatio-temporal accumulation an immunological probe was developed. Secondary metabolites generally have too small molecular weight to be antigenic and have to be associated with a carrier protein. Secoisolariciresinol was chosen as the hapten and was linked to bovine serum albumin via a spacer arm, the p-aminohippuric acid. The artificial antigen was injected to New Zealand rabbits. The successful production of polyclonal antibodies against secoisolariciresinol was assessed with indirect enzyme immunosorbent assay (ELISA) by comparison with pre-immune serum and by competitive assays using dilutions of secoisolariciresinol standards. The antibodies had an IC(50) value of 94 μg/ml and showed moderate cross-reactivities with structurally related compounds. They were thus used to immunolocalize lignans in flaxseed (Linum usitatissimum), one of the richest sources of lignans. The immunohistochemical labeling allowed us to localize for the first time lignans in planta. They are mainly localized in the secondary wall of the sclerite cells of the outer integument of the seed. A very light labeling is also observed in cytoplasmic inclusions of the endosperm. The results were correlated with HPLC analytical results which enabled to evaluate the relative lignan quantities: in flaxseed about 90% of the metabolites are localized in the outer integument. PMID:20888604

  18. Abnormal etioplast development in barley seedlings infected with BSMV by seed transmission.

    PubMed

    Harsányi, Anett; Böddi, Béla; Bóka, Károly; Almási, Asztéria; Gáborjányi, Richard

    2002-01-01

    The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley (Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus. PMID:11982946

  19. Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus.

    PubMed Central

    Ben-Cheikh, W.; Perez-Botella, J.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1997-01-01

    Reproductive and vegetative tissues of the seeded Pineapple cultivars of sweet orange (Citrus sinensis L.) contained the following C-13 hydroxylated gibberellins (GAs): GA53, GA17, GA19, GA20, GA1, GA29, and GA8, as well as GA97, 3-epi-GA1, and several uncharacterized GAs. The inclusion of 3-epi-GA1 as an endogenous substance was based on measurements of the isomerization rates of previously added [2H2]GA1. Pollination enhanced amounts of GA19, GA20, GA29, and GA8 in developing ovaries. Levels of GA1 increased from 5.0 to 9.5 ng/g dry weight during anthesis and were reduced thereafter. The amount of GA in mature pollen was very low. Emasculation reduced GA levels and caused a rapid 100% ovary abscission. This effect was partially counteracted by either pollination or application of GA3. In pollinated ovaries, repeated paclobutrazol applications decreased the amount of GA and increased ovary abscission, although the pattern of continuous decline was different from the sudden abscission induced by emasculation. The above results indicate that, in citrus, pollination increases GA levels and reduces ovary abscission and that the presence of exogenous GA3 in unpollinated ovaries also suppresses abscission. Evidence is also presented that pollination and GAs do not, as is generally assumed, suppress ovary abscission through the reactivation of cell division. PMID:12223728

  20. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  1. Genetic Influences on the Seed Yielding Ability of Carrot Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carrot seed production characteristics of four different threeway carrot hybrids were evaluated over three years during seed production from transplanted roots in Madison, Wisconsin. Components of seed yielding ability and plant architecture were measured. Both the male sterile seed parent and inbr...

  2. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    PubMed

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  3. Development and validation of the Screen for Early Eating Disorder Signs (SEEDS) in persons with type 1 diabetes.

    PubMed

    Powers, Margaret A; Richter, Sara; Ackard, Diann; Craft, Cheryl

    2016-01-01

    This study's objective was to develop and validate an instrument to identify those at risk of developing an eating disorder (ED) in persons with type 1 diabetes. The Screen for Early Eating Disorder Signs (SEEDS) instrument was developed using a multi-phase process including focus groups, cognitive interviews, and mailed questionnaires. Factor analysis revealed 20 items across three factors (Body Image, Feelings, Quality of Life) demonstrating strong psychometric properties. Scoring guidelines and interpretation are provided. SEEDS is a brief (20-item; 2-5 minutes to complete), self-administered, screen designed for use in clinical practice or research to identify or confirm suspicions of ED risk and does not include weight-control behavior items. PMID:26467220

  4. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    PubMed

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed. PMID:26628196

  5. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  6. Evaluation of Seeds of Science/Roots of Reading: Effective Tools for Developing Literacy through Science in the Early Grades-Light Energy Unit. CRESST Report 781

    ERIC Educational Resources Information Center

    Goldschmidt, Pete; Jung, Hyekyung

    2011-01-01

    This evaluation focuses on the Seeds of Science/Roots of Reading: Effective Tools for Developing Literacy through Science in the Early Grades ("Seeds/Roots") model of science-literacy integration. The evaluation is based on a cluster randomized design of 100 teachers, half of which were in the treatment group. Multi-level models are employed to…

  7. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  8. The qSD12 Underlying Gene Promotes Abscisic Acid Accumulation in Early Developing Seeds to Induce Primary Dormancy in Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is considered to play a role in inducing the dormancy. qSD12 is a major seed dormancy QTL identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidat...

  9. Development of a low-latency scalar communication routine on message-passing architectures

    SciTech Connect

    Pai, R.

    1994-01-11

    One of the most significant advances in computer systems over the past decade is parallel processing. To be scalable to a large number of processing nodes and to be able to support multiple levels and forms of parallelism and its flexible use, new parallel machines have to be multicomputer architectures that have general networking support and extremely low internode communication latencies. The performance of a program when ported to a parallel machine is limited mainly by the internode communication latencies of the machine. Therefore, the best parallel applications are those that seldom require communications which must be routed through the nodes. Thus the ratio of computation time to that of communication time is what determines, to a large extent, the performance metrics of an algorithm. The cost of synchronization and load imbalance appear secondary to that of the time required for internode communication and I/O, for communication intensive applications. This thesis is organized in chapters. The first chapter deals with the communication strategies in various message-passing computers. A taxonomy of inter-node communication strategies is presented in the second chapter and a comparison of the strategies in some existing machines is done. The implementation of communication in nCUBE Vertex O.S is explained in the third chapter. The fourth chapter deals with the communication routines in the Vertex O.S, and the last chapter explains the development and implementation of the scalar communication call. Finally some conclusions are presented.

  10. Independent SCPS-TP development for fault-tolerant, end-to-end communication architectures

    NASA Astrophysics Data System (ADS)

    Edwards, E.; Lamorie, J.; Younghusband, D.; Brunet, C.; Hartman, L.

    2002-07-01

    A fully networked architecture provides for the distribution of computing elements, of all mission components, through the spacecraft. Each node is individually addressable through the network, and behaves as an independent entity. This level of communication also supports individualized Command and Data Handling (C&DH), as well as one-to-one transactions between spacecraft nodes and individual ground segment users. To be effective, fault-tolerance must be applied at the network data transport level, as well as the supporting layers below it. If the network provides fail-safe characteristics independent of the mission applications being executed, then developers need not build in their own systems to ensure network reliability. The Space Communications Protocol Standards (SCPS) were developed to provide robust communications in a space environment, while retaining compatibility with Internet data transport at the ground segment. Although SCPS is a standard of the Consultative Committee for Space Data Systems (CCSDS), the adoption of SCPS was initially delayed by US export regulations that prevented the distribution of reference code. This paper describes the development and test of a fully independent implementation of the SCSP Transport Protocol, SCPS-TP, which has been derived directly from the CCSDS specification. The performance of the protocol is described for a set of geostationary satellite tests, and these results will be compared with those derived from network simulation and laboratory emulation. The work is placed in the context of a comprehensive, fault-tolerant network that potentially surpasses the failsafe performance of a traditional spacecraft control system under similar circumstances.

  11. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors

    SciTech Connect

    Gautam, Bhoj; Parsai, E. Ishmael; Shvydka, Diana; Feldmeier, John; Subramanian, Manny

    2012-04-15

    Purpose: Studies of the curative effects of hyperthermia and radiation therapy on treatment of cancer show a strong evidence of a synergistic enhancement when both radiation and hyperthermia modalities are applied simultaneously. Varieties of tissue heating approaches developed up to date still fail to overcome such essential limitations as an inadequate temperature control, temperature nonuniformity, and prolonged time delay between hyperthermia and radiation treatments. The authors propose a new self-regulating thermobrachytherapy seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. Methods: The proposed seed is based on the BEST Medical, Inc., Seed Model 2301-I{sup 125}, where tungsten marker core and the air gap are replaced with a ferromagnetic material. The ferromagnetic core produces heat when subjected to alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (T{sub C}) of the ferromagnetic material thus realizing the temperature self-regulation. The authors present a Monte Carlo study of the dose rate constant and other TG-43 factors for the proposed seed. For the thermal characteristics, the authors studied a model consisting of 16 seeds placed in the central region of a cylindrical water phantom using a finite-element partial differential equation solver package ''COMSOL Multiphysics.''Results: The modification of the internal structure of the seed slightly changes dose rate and other TG-43 factors characterizing radiation distribution. The thermal modeling results show that the temperature of the thermoseed surface rises rapidly and stays constant around T{sub C} of the ferromagnetic material. The amount of heat produced by the ferromagnetic core is sufficient to raise the temperature of the surrounding phantom to the therapeutic range. The phantom volume reaching the therapeutic temperature range increases with increase in frequency or

  12. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    PubMed Central

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  13. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development.

    PubMed

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  14. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.)

    PubMed Central

    2014-01-01

    Background The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the “genome-phenome challenge”. Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. Results After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 μM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. Conclusions Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing

  15. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants.

    PubMed

    Rahman, Habibur; Singer, Stacy D; Weselake, Randall J

    2013-06-01

    Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops. PMID:23475317

  16. Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae)

    PubMed Central

    2010-01-01

    Background Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the

  17. Federal Data Repository Research: Recent Developments in Mercury Search System Architecture

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.

    2015-12-01

    New data intensive project initiatives needs new generation data system architecture. This presentation will discuss the recent developments in Mercury System [1] including adoption, challenges, and future efforts to handle such data intensive projects. Mercury is a combination of three main tools (i) Data/Metadata registration Tool (Online Metadata Editor): The new Online Metadata Editor (OME) is a web-based tool to help document the scientific data in a well-structured, popular scientific metadata formats. (ii) Search and Visualization Tool: Provides a single portal to information contained in disparate data management systems. It facilitates distributed metadata management, data discovery, and various visuzalization capabilities. (iii) Data Citation Tool: In collaboration with Department of Energy's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service. Mercury is a open source system, developed and managed at Oak Ridge National Laboratory and is currently being funded by three federal agencies, including NASA, USGS and DOE. It provides access to millions of bio-geo-chemical and ecological data; 30,000 scientists use it each month. Some recent data intensive projects that are using Mercury tool: USGS Science Data Catalog (http://data.usgs.gov/), Next-Generation Ecosystem Experiments (http://ngee-arctic.ornl.gov/), Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/), Oak Ridge National Laboratory - Distributed Active Archive Center (http://daac.ornl.gov), SoilSCAPE (http://mercury.ornl.gov/soilscape). References: [1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  18. Development of a small single-ring OpenPET prototype with a novel transformable architecture.

    PubMed

    Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga

    2016-02-21

    The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using (11)C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement. PMID:26854528

  19. Development of a small single-ring OpenPET prototype with a novel transformable architecture

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga

    2016-02-01

    The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using 11C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement.

  20. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid

    PubMed Central

    Jiang, Wenbo; Yu, Diqiu

    2009-01-01

    Background Plant WRKY DNA-binding transcription factors are key regulators in certain developmental programs. A number of studies have suggested that WRKY genes may mediate seed germination and postgermination growth. However, it is unclear whether WRKY genes mediate ABA-dependent seed germination and postgermination growth arrest. Results To determine directly the role of Arabidopsis WRKY2 transcription factor during ABA-dependent seed germination and postgermination growth arrest, we isolated T-DNA insertion mutants. Two independent T-DNA insertion mutants for WRKY2 were hypersensitive to ABA responses only during seed germination and postgermination early growth. wrky2 mutants displayed delayed or decreased expression of ABI5 and ABI3, but increased or prolonged expression of Em1 and Em6. wrky2 mutants and wild type showed similar levels of expression for miR159 and its target genes MYB33 and MYB101. Analysis of WRKY2 expression level in ABA-insensitive and ABA-deficient mutants abi5-1, abi3-1, aba2-3 and aba3-1 further indicated that ABA-induced WRKY2 accumulation during germination and postgermination early growth requires ABI5, ABI3, ABA2 and ABA3. Conclusion ABA hypersensitivity of the wrky2 mutants during seed germination and postgermination early seedling establishment is attributable to elevated mRNA levels of ABI5, ABI3 and ABI5-induced Em1 and Em6 in the mutants. WRKY2-mediated ABA responses are independent of miR159 and its target genes MYB33 and MYB101. ABI5, ABI3, ABA2 and ABA3 are important regulators of the transcripts of WRKY2 by ABA treatment. Our results suggest that WRKY2 transcription factor mediates seed germination and postgermination developmental arrest by ABA. PMID:19622176

  1. Water Relations of Seed Development and Germination in Muskmelon (Cucumis melo L.) 1

    PubMed Central

    Welbaum, Gregory E.; Bradford, Kent J.

    1990-01-01

    The initiation of radicle growth during seed germination may be driven by solute accumulation and increased turgor pressure, by cell wall relaxation, or by weakening of tissues surrounding the embryo. To investigate these possibilities, imbibition kinetics, water contents, and water (Ψ) and solute (ψs) potentials of intact muskmelon (Cucumis melo L.) seeds, decoated seeds (testa removed, but a thin perisperm/endosperm envelope remains around the embryo), and isolated cotyledons and embryonic axes were measured. Cotyledons and embryonic axes excised and imbibed as isolated tissues attained water contents 25 and 50% greater, respectively, than the same tissues hydrated within intact seeds. The effect of the testa and perisperm on embryo water content was due to mechanical restriction of embryo swelling and not to impermeability to water. The Ψ and ψs of embryo tissues were measured by psychrometry after excision from imbibed intact seeds. For intact or decoated seeds and excised cotyledons, Ψ values were >−0.2 MPa just prior to radicle emergence. The Ψ of excised embryonic axes, however, averaged only −0.6 MPa over the same period. The embryonic axis apparently is mechanically constrained within the testa/perisperm, increasing its total pressure potential until axis Ψ is in equilibrium with cotyledon Ψ, but reducing its water content and resulting in a low Ψ when the constraint is removed. There was no evidence of decreasing ψs or increasing turgor pressure (Ψ-ψs) prior to radicle growth for either intact seeds or excised tissues. Given the low relative water content of the axes within intact seeds, cell wall relaxation would be ineffective in creating a Ψ gradient for water uptake. Rather, axis growth may be initiated by weakening of the perisperm, thus releasing the external pressure and creating a Ψ gradient for water uptake into the axis. The perisperm envelope contains a cap of small, thin-walled endosperm cells adjacent to the radicle tip. We

  2. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  3. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method.

    PubMed

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-03-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios

  4. Characterization of starch synthase I and II expressed in early developing seeds of kidney bean (Phaseolus vulgaris L.).

    PubMed

    Senoura, Takeshi; Isono, Naoto; Yoshikawa, Motoyo; Asao, Ayako; Hamada, Shigeki; Watanabe, Kenji; Ito, Hiroyuki; Matsui, Hirokazu

    2004-09-01

    Plant starch synthase (SS) contributes to the elongation of glucan chains during starch biosynthesis and hence plays an essential role in determining the fine structure of amylopectin. To elucidate the role of SS activity in the formation of amylopectin in kidney bean (Phaseolus vulgaris L.), a study was undertaken to isolate cDNA clones for SS and to characterize the enzymatic properties of the coded recombinant enzymes. Two SS cDNAs, designated pvss1 and pvss21, which were isolated from early developing seeds, encoded SSI and SSII (designated PvSSI and PvSSII-1) that displayed significant identity (more than 65%) with other SSI and SSII members, respectively. RNA gel blot analysis indicated that both transcripts accumulate in leaves and developing seeds at the early stage. Immunoblot analysis with antisera raised against both recombinant proteins (rPvSSI and rPvSSII-1) showed that the accumulation of both proteins parallels the gene expression profiles, although both were detectable only in starch-granule fractions. Recombinant enzymes expressed by Escherichia coli cells showed distinct chain-length specificities for the extension of glucan chains. Our results suggest that these SS isozymes for synthesis of transitory starch are also responsible for synthesis of storage starch in early developing seeds of kidney bean. PMID:15388972

  5. Study of Dosimetric and Thermal Properties of a Newly Developed Thermo-brachytherapy Seed for Treatment of Solid Tumors

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj R.

    Studies on the curative effects of hyperthermia and radiation therapy on treatment of cancer show strong evidence of synergistic enhancement when both radiation and hyperthermia treatment modalities are applied simultaneously. A variety of tissue heating approaches developed to date still fail to overcome essential limitations such as inadequate temperature control, temperature non-uniformity, and prolonged time delay between hyperthermia and radiation treatments. We propose a new self-regulating Thermo-brachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The proposed seed is based on the BestRTM Iodine-125 seed model 2301, where the tungsten marker core and the air gap are replaced with ferromagnetic material. The ferromagnetic core produces heat when subjected to an alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (TC) of the ferromagnetic material, thus establishing temperature self-regulation. The seed has a ferromagnetic Ni-Cu alloy core having a Curie transition at a temperature of 52 °C. This study summarizes the design and development of the self regulating ferromagnetic core TB seed for the concurrent hyperthermia and brachytherapy treatments. An experimental study of the magnetic properties of the Ni1-xCu x (0.28≤ x ≤0.3) alloys, and the simulation studies of radiation and thermal distribution properties of the seed have been performed. A preliminary experiment for the ferromagnetic induction heating of Ni-Cu needles has been carried out to ensure the practical feasibility of the induction heating. Radiation dose characterizing parameters (dose rate constant and other TG-43 factors) were calculated using the Monte Carlo method. For the thermal characteristics, we studied a model consisting of single or multiple seeds placed in the central region of a cylindrical phantom using a finite-element analysis method

  6. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  7. The Swedish strategy and method for development of a national healthcare information architecture.

    PubMed

    Rosenälv, Jessica; Lundell, Karl-Henrik

    2012-01-01

    "We need a precise framework of regulations in order to maintain appropriate and structured health care documentation that ensures that the information maintains a sufficient level of quality to be used in treatment, in research and by the actual patient. The users shall be aided by clearly and uniformly defined terms and concepts, and there should be an information structure that clarifies what to document and how to make the information more useful. Most of all, we need to standardize the information, not just the technical systems." (eHälsa - nytta och näring, Riksdag report 2011/12:RFR5, p. 37). In 2010, the Swedish Government adopted the National e-Health - the national strategy for accessible and secure information in healthcare. The strategy is a revision and extension of the previous strategy from 2006, which was used as input for the most recent efforts to develop a national information structure utilizing business-oriented generic models. A national decision on healthcare informatics standards was made by the Swedish County Councils, which decided to follow and use EN/ISO 13606 as a standard for the development of a universally applicable information structure, including archetypes and templates. The overall aim of the Swedish strategy for development of National Healthcare Information Architecture is to achieve high level semantic interoperability for clinical content and clinical contexts. High level semantic interoperability requires consistently structured clinical data and other types of data with coherent traceability to be mapped to reference clinical models. Archetypes that are formal definitions of the clinical and demographic concepts and some administrative data were developed. Each archetype describes the information structure and content of overarching core clinical concepts. Information that is defined in archetypes should be used for different purposes. Generic clinical process model was made concrete and analyzed. For each decision

  8. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  9. Development of ionic polymer transducers as flow shear stress sensors: effects of electrode architecture

    NASA Astrophysics Data System (ADS)

    Griffiths, David; Dominic, Justin; Akle, Barbar J.; Vlachos, Pavlos P.; Leo, Donald J.

    2007-04-01

    Ionomeric polymer transducers (IPTs) have recently received a great deal of attention. As actuators, IPT have the ability to generate large bending strain and moderate stress at low applied voltages. Although the actuation capabilities of IPTs have been studied extensively, the sensing performance of these transducers has not received much attention. The work presented herein aims to develop a wall shear stress sensor for aero/hydrodynamic and biomedical applications. Ionic polymers are generally created by an impregnation-reduction process in an ion exchange membrane, typically Nafion, and then coated with a flexible electrode. The traditional impregnation-reduction fabrication technique of IPTs has little control on the electrode thickness. However, the new Direct Assembly Process (DAP) for fabrication of IPTs allows for experimentation with varying conducting materials and direct control of electrode architecture. The thickness of the electrode is controlled by altering the amount of the ionomer/metal mix sprayed on the membrane. Transducers with varied electrode and membrane thicknesses are fabricated. The sensitivity of the transducer is characterized using two basic experiments. First, the electric impedance of the transducer is measured and its capacitive properties are computed. Earlier studies have demonstrated that capacitance has been strongly correlated to actuation performance in IPTs. Subsequently, the sensing capability of the IPTs in bending is measured using a fixed-pined cantilever configuration. Finally the shear stress sensing performance in fluid flow is quantified through a detailed calibration procedure. This is accomplished using two dynamic shear stress calibration apparatuses. In this study we demonstrate a strong correlation between the electrode thickness and the sensing performance of an IPT.

  10. Development of a Thermal Control Architecture for the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Novak, Keith S.; Phillips, Charles J.; Birur, Gajanana C.; Sunada, Eric T.; Pauken, Michael T.

    2003-01-01

    In May and June of 2003, the National Aeronautics and Space Administration (NASA) will launch two roving science vehicles on their way to Mars. They will land on Mars in January and February of 2004 and carry out 90-Sol missions. This paper addresses the thermal design architecture of the Mars Exploration Rover (MER) developed for Mars surface operations. The surface atmosphere temperature on Mars can vary from 0°C in the heat of the day to -100°C in the early morning, prior to sunrise. Heater usage at night must be minimized in order to conserve battery energy. The desire to minimize nighttime heater energy led to a design in which all temperature sensitive electronics and the battery were placed inside a well-insulated (carbon-opacified aerogel lined) Warm Electronics Box (WEB). In addition, radioisotope heater units (RHU's, non-electric heat sources) were mounted on the battery and electronics inside the WEB. During the Martian day, the electronics inside the WEB dissipate a large amount of energy (over 710 W*hrs). This heat energy raises the internal temperatures inside the WEB. Hardware items that have similar temperature limits were conductively coupled together to share heat and concentrate thermal mass. Thermal mass helped to minimize temperature increases in the hot case (with maximum internal dissipation) and minimize temperature decreases in the cold case (with minimum internal dissipation). In order to prevent the battery from exceeding its maximum allowable flight temperature, wax-actuated passive thermal switches were placed between the battery and an external radiator. This paper discusses the design philosophies and system requirements that resulted in a successful Mars rover thermal design.

  11. "Development of an interactive crop growth web service architecture to review and forecast agricultural sustainability"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Walden, V. P.

    2014-12-01

    As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology - accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers - for both

  12. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    NASA Technical Reports Server (NTRS)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  13. Development of sunflower oil and composition with respect to seed moisture and physiological maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. The current recommendation is to apply a desiccant (e.g., glyphosate and paraquat) at 35% or less seed moisture at physiological maturity (PM). Desiccating as early as possible without sacrificing yield may be a des...

  14. Characterization of glycolytic pathway genes using RNA-Seq in developing seeds of Eucommia ulmoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eucommia ulmoides Oliver, the only member of the Eucommiaceae family, is a rare and valuable tree used to produce a highly valued traditional Chinese medicine and contains a-linolenic acid up to 60% of the total fatty acids in the seeds. Glycolysis provides both cellular energy and the intermediate...

  15. Development of a qPCR assay for quantification of verticillium dahliae in spinach seed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is an important disease of lettuce and other specialty crops in the Salinas Valley of California. Although spinach is not affected by Verticillium wilt in commercial production, spinach seed infected with V. dahliae from locatio...

  16. Development of a fescue toxicosis model using a fescue seed extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to examine the efficacy of a fescue seed extract for inducing fescue toxicosis in cattle. Four growing Holstein steers (BW = 309±36kg) surgically fitted with ruminal cannulas were utilized in a four phase crossover design experiment. The basal diet consisted of endophyte fr...

  17. Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Char produced from the gasification of post-seed harvest Kentucky bluegrass residues could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might h...

  18. Effects of nitrogen and planting seed size on cotton growth, development, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standardized experiment was conducted during 2009 and 2010 at 20 location-years across U.S. cotton (Gossypium hirsutum L.)-producing states to compare the N use requirement of contemporary cotton cultivars based on their planting seed size. Treatments consisted of three cotton varieties with plant...

  19. Development of an air knife to remove seed coat fragments during lint cleaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An air knife is a tool commonly used to blow off debris in a manufacturing line. The knife may also be used to break the attachment force between a lint cleaner saw and a seed coat fragment (SCF) with attached fiber, and remove them. Work continued on evaluating an auxiliary air knife mounted on t...

  20. Three-Dimensional Imaging of the Developing Vasculature within Stem Cell-Seeded Scaffolds Cultured in ovo

    PubMed Central

    Woloszyk, Anna; Liccardo, Davide; Mitsiadis, Thimios A.

    2016-01-01

    Successful tissue engineering requires functional vascularization of the three-dimensional constructs with the aim to serve as implants for tissue replacement and regeneration. The survival of the implant is only possible if the supply of oxygen and nutrients by developing capillaries from the host is established. The chorioallantoic membrane (CAM) assay is a valuable tool to study the ingrowth and distribution of vessels into scaffolds composed by appropriate biomaterials and stem cell populations that are used in cell-based regenerative approaches. The developing vasculature of chicken embryos within cell-seeded scaffolds can be visualized with microcomputed tomography after intravenous injection of MicroFil®, which is a radiopaque contrast agent. Here, we provide a step-by-step protocol for the seeding of stem cells into silk fibroin scaffolds, the CAM culture conditions, the procedure of MicroFil® perfusion, and finally the microcomputed tomography scanning. Three-dimensional imaging of the vascularized tissue engineered constructs provides an important analytical tool for studying the potential of cell seeded scaffolds to attract vessels and form vascular networks, as well as for analyzing the number, density, length, branching, and diameter of vessels. This in ovo method can greatly help to screen implants that will be used for tissue regeneration purposes before their in vivo testing, thereby reducing the amount of animals needed for pre-clinical studies. PMID:27148081

  1. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana.

    PubMed

    Edstam, Monika M; Edqvist, Johan

    2014-09-01

    The non-specific lipid transfer proteins (nsLTPs) constitute a large protein family specific for plants. Proteins from the family are found in all land plants but have not been identified in green algae. Their in vivo functions are still disputed although evidence is accumulating for a role of these proteins in cuticle development. In a previous study, we performed a co-expression analysis of glycosylphosphatidylinositol (GPI)-anchored nsLTPs (LTPGs), which suggested that these proteins are also involved in the accumulation of suberin and sporopollenin. Here, we follow up the previous co-expression study by characterizing the phenotypes of Arabidopsis thaliana lines with insertions in LTPG genes. The observed phenotypes include an inability to limit tetrazolium salt uptake in seeds, development of hair-like structures on seeds, altered pollen morphologies and decreased levels of ω-hydroxy fatty acids in seed coats. The observed phenotypes give further support for a role in suberin and sporopollenin biosynthesis or deposition in A. thaliana. PMID:24460633

  2. Development of impurity seeding and radiation enhancement in the helical divertor of LHD

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Masuzaki, S.; Peterson, B. J.; Akiyama, T.; Kobayashi, M.; Suzuki, C.; Tanaka, H.; Pandya, S. N.; Sano, R.; Motojima, G.; Ohno, N.; Morisaki, T.; Murakami, I.; Miyazawa, J.; Tamura, N.; Yoshimura, S.; Yamada, I.; Yasuhara, R.; Funaba, H.; Tanaka, K.

    2015-08-01

    Impurity seeding to reduce the divertor heat load was conducted in the large helical device (LHD) using neon (Ne) and krypton (Kr) puffing. Radiation enhancement and reduction of the divertor heat load were observed. In the LHD, the ratio between the total radiated power and the heating power, f rad = Prad/Pheating, is limited up to around 30% in hydrogen plasmas even for high density plasma just below the radiative collapse (ne, bar  >  1   ×   1020 m-3), where ne, bar is the line averaged density. With Ne seeding, the ratio could be raised to 52% at ne, bar ~ 1.3   ×   1019 m-3, albeit with a slight reduction in confinement. f rad ~ 30% could be sustained for 3.4 s using multi-pulse Ne seeding at ne, bar ~ 4   ×   1019 m-3. The localized supplemental radiation was observed along the helical divertor X-points (HDXs) which is similar to the estimated structure by the EMC3-EIRENE code. Kr seeding was also conducted at ne, bar ~ 3.1   ×   1019 m-3. f rad ~ 25% was obtained without a significant change in stored energy. The radiation enhancement had a slower time constant. The supplemental radiation area of the Kr seeded plasma moved from the HDXs to the core plasma. Highly charged states of Kr ions are considered to be the dominant radiators from the plasma core region.

  3. A Comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes

    PubMed Central

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    The goal of this study was to determine material effects on cartilage regeneration for scaffolds with the same controlled architecture. The 3D polycaprolactone (PCL), poly (glycerol sebacate) (PGS), and poly (1,8 octanediol-co-citrate) (POC) scaffolds of the same design were physically characterized and tissue regeneration in terms of cell phenotype, cellular proliferation and differentiation, and matrix production were compared to find which material would be most optimal for cartilage regeneration in vitro. POC provided the best support for cartilage regeneration in terms of tissue ingrowth, matrix production, and relative mRNA expressions for chondrocyte differentiation (Col2/Col1). PGS was seen as the least favorable material for cartilage based on its relatively high de-differentiation (Col1), hypertrophic mRNA expression (Col10) and high matrix degradation (MMP13, MMP3) results. PCL still provided microenvironments suitable for cells to be active yet it seemed to cause de-differentiation (Col1) of chondrocytes inside the scaffold while many cells migrated out, growing cartilage outside the scaffold. PMID:20219243

  4. The Transition from Primary siRNAs to Amplified Secondary siRNAs That Regulate Chalcone Synthase During Development of Glycine max Seed Coats

    PubMed Central

    Cho, Young B.; Jones, Sarah I.; Vodkin, Lila

    2013-01-01

    The I locus is a 27-kb inverted repeat cluster of chalcone synthase genes CHS1-3-4 that mediates siRNA down-regulation of CHS7 and CHS8 target mRNAs during seed development leading to yellow seed coats lacking anthocyanin pigments. Here, we report small RNA sequencing of ten stages of seed development from a few days post fertilization through maturity, revealing the amplification from primary to secondary short interfering RNAs (siRNAs) occurring during development. The young seed populations had a higher proportion of siRNAs representing the CHS1-3-4 gene family members, consistent with this region as the origin of the primary siRNAs. More intriguingly, the very young seed had a higher proportion of 22-nt CHS siRNAs than did the mid-maturation seed. We infer that the primary CHS siRNAs increase during development to levels sufficient to trigger amplification of secondary CHS siRNAs from the CHS7/8 target mRNAs, enabling the total levels of 21-nt CHS siRNAs to rise dramatically. Further, we demonstrate that the soybean system exhibits tissue-specific CHS siRNA production because primary CHS siRNA levels are not sufficient to trigger secondary amplification in tissues other than the seed coat. PMID:24204712

  5. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    SciTech Connect

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed for highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.

  6. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 3: Programmatic options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.

  7. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    DOE PAGESBeta

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) modelmore » and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch

  8. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    PubMed Central

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content. PMID

  9. Protein Disulfide Isomerase-Like Protein 1-1 Controls Endosperm Development through Regulation of the Amount and Composition of Seed Proteins in Rice

    PubMed Central

    Kim, Yeon Jeong; Yeu, Song Yion; Park, Bong Soo; Koh, Hee-Jong; Song, Jong Tae; Seo, Hak Soo

    2012-01-01

    Protein disulfide isomerase (PDI) is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER). A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1) during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species) scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components. PMID:22970232

  10. Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed

    PubMed Central

    Fatima, Tahira; Snyder, Crystal L.; Schroeder, William R.; Cram, Dustin; Datla, Raju; Wishart, David; Weselake, Randall J.; Krishna, Priti

    2012-01-01

    Background Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18∶2ω-6) and α-linolenic (18∶3ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16∶1ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1∶1 ratio, which is beneficial for human health. These data provide the foundation for further studies on

  11. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    NASA Technical Reports Server (NTRS)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  12. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    PubMed

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development. PMID:11867694

  13. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  14. Seed Transmission of Pseudoperonospora cubensis

    PubMed Central

    Cohen, Yigal; Rubin, Avia E.; Galperin, Mariana; Ploch, Sebastian; Runge, Fabian; Thines, Marco

    2014-01-01

    Pseudoperonospora cubensis, an obligate biotrophic oomycete causing devastating foliar disease in species of the Cucurbitaceae family, was never reported in seeds or transmitted by seeds. We now show that P. cubensis occurs in fruits and seeds of downy mildew-infected plants but not in fruits or seeds of healthy plants. About 6.7% of the fruits collected during 2012–2014 have developed downy mildew when homogenized and inoculated onto detached leaves and 0.9% of the seeds collected developed downy mildew when grown to the seedling stage. This is the first report showing that P. cubensis has become seed-transmitted in cucurbits. Species-specific PCR assays showed that P. cubensis occurs in ovaries, fruit seed cavity and seed embryos of cucurbits. We propose that international trade of fruits or seeds of cucurbits might be associated with the recent global change in the population structure of P. cubensis. PMID:25329308

  15. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway

    PubMed Central

    2010-01-01

    Background The coordinated activity of different flavonoid biosynthesis genes in Arabidopsis thaliana results in tissue-specific accumulation of flavonols, anthocyanins and proanthocyanidins (PAs). These compounds possess diverse functions in plants including light-attenuation and oxidative stress protection. Flavonoids accumulate in a stimulus- and/or development-dependent manner in specific parts of the plant. PAs accumulate in the seed coat (testa). Findings We describe the biological material and the preparation of total RNA for the AtGenExpress developmental silique and seed series. AtGenExpress ATH1 GeneChip expression data from the different stages were reanalyzed and verified using quantitative real time PCR (qPCR). We observed organ-specific transcript accumulation of specific flavonoid biosynthetic genes consistent with previously published data and our PA compound accumulation data. In addition, we investigated the regulation of PA accumulation in developing A. thaliana seeds by correlating gene expression patterns of specific flavonoid biosynthesis genes with different seed embryonic developmental stages and organs and present two useful marker genes for isolated valve and replum organs, as well as one seed-specific marker. Conclusions Potential caveats of array-based expression data are discussed based on comparisons with qPCR data. Results from ATH1 microarray and qPCR experiments revealed a shift in gene activity from general flavonoid biosynthesis at early stages of seed development to PA synthesis at late (mature) stages of embryogenesis. The examined PA accumulation-associated genes, including biosynthetic and regulatory genes, were found to be exclusively expressed in immature seeds. Accumulation of PAs initiates at the early heart stage of silique and seed development. Our findings provide new insights for further studies targeting the PA pathway in seeds. PMID:20929528

  16. Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development.

    PubMed

    Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Zeng, Songjun; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V

    2015-07-01

    The genus Dendrobium is one of the largest genera of the Orchidaceae Juss. family, although some of its members are the most threatened today. The reason why many species face a vulnerable or endangered status is primarily because of anthropogenic interference in natural habitats and commercial overexploitation. The development and application of modern techniques and strategies directed towards in vitro propagation of orchids not only increases their number but also provides a viable means to conserve plants in an artificial environment, both in vitro and ex vitro, thus providing material for reintroduction. Dendrobium seed germination and propagation are challenging processes in vivo and in vitro, especially when the extreme specialization of these plants is considered: (1) their biotic relationships with pollinators and mycorrhizae; (2) adaptation to epiphytic or lithophytic life-styles; (3) fine-scale requirements for an optimal combination of nutrients, light, temperature, and pH. This review also aims to summarize the available data on symbiotic in vitro Dendrobium seed germination. The influence of abiotic factors as well as composition and amounts of different exogenous nutrient substances is examined. With a view to better understanding how to optimize and control in vitro symbiotic associations, a part of the review describes the strong biotic relations of Dendrobium with different associative microorganisms that form microbial communities with adult plants, and also influence symbiotic seed germination. The beneficial role of plant growth-promoting bacteria is also discussed. PMID:25940846

  17. Succession of Bacterial Communities during Early Plant Development: Transition from Seed to Root and Effect of Compost Amendment

    PubMed Central

    Green, Stefan J.; Inbar, Ehud; Michel, Frederick C.; Hadar, Yitzhak; Minz, Dror

    2006-01-01

    Compost amendments to soils and potting mixes are routinely applied to improve soil fertility and plant growth and health. These amendments, which contain high levels of organic matter and microbial cells, can influence microbial communities associated with plants grown in such soils. The purpose of this study was to follow the bacterial community compositions of seed and subsequent root surfaces in the presence and absence of compost in the potting mix. The bacterial community compositions of potting mixes, seed, and root surfaces sampled at three stages of plant growth were analyzed via general and newly developed Bacteroidetes-specific, PCR-denaturing gradient gel electrophoresis methodologies. These analyses revealed that seed surfaces were colonized primarily by populations detected in the initial potting mixes, many of which were not detected in subsequent root analyses. The most persistent bacterial populations detected in this study belonged to the genus Chryseobacterium (Bacteroidetes) and the family Oxalobacteraceae (Betaproteobacteria). The patterns of colonization by populations within these taxa differed significantly and may reflect differences in the physiology of these organisms. Overall, analyses of bacterial community composition revealed a surprising prevalence and diversity of Bacteroidetes in all treatments. PMID:16751505

  18. Gibberellins in Embryo-Suspensor of Phaseolus coccineus Seeds at the Heart Stage of Embryo Development 1

    PubMed Central

    Piaggesi, Alberto; Picciarelli, Piero; Lorenzi, Roberto; Alpi, Amedeo

    1989-01-01

    Gibberellins (GAs) in suspensors and embryos of Phaseolus coccineus seeds at the heart stage of embryo development were analyzed by combined gas chromatography-mass spectrometry (GC-MS). From the suspensor four C19-GAs, GA1, GA4, GA5, GA6, and one C20 GA, GA44, were identified. From the embryo, five C19-GAs GA1, GA4, GA5, GA6, GA60 and two C20 GAs, GA19 and GA44 were identified. The data, in relation to previous results, suggest a dependence of the embryo on the suspensor during early stages of development. PMID:16667026

  19. Seed germination and seedling development in response to submergence in tree species of the Central Amazonian floodplains.

    PubMed

    de Melo, Risolandia Bezerra; Franco, Augusto César; Silva, Clovis Oliveira; Piedade, Maria Teresa Fernandez; Ferreira, Cristiane Silva

    2015-01-01

    Successful germination and seedling establishment are crucial steps for maintenance and expansion of plant populations and recovery from perturbations. Every year the Amazon River and its tributaries overflow and flood the adjacent forest, exerting a strong selective pressure on traits related to seedling recruitment. We examined seed characteristics, stored reserves, germination, seedling development and survival under water of eight representative tree species from the lower portions of the flood-level gradient to identify adaptive strategies that contribute to their regeneration in this extreme ecosystem. Submerged seedlings were assessed for longevity and survival until they showed symptoms of injury. At this point, the remaining healthy seedlings were planted in unsaturated soil to monitor recovery after re-exposure to air over 30 days. All small (seed mass ≤0.17 g) seeds had epigeal phanerocotylar-type germination, a trait that would allow plants to acquire light and CO2 in the shortest time. Cell wall storage polysaccharide was a major component of all seeds, suggesting plant investment in structural reserves. Seven of the eight species germinated and formed healthy seedlings under water that endured submersion without any apparent injury for periods of 20-115 days, depending on the species. Seedlings of some species changed the direction of root growth and grew towards the surface of the water, which might have increased the uptake of oxygen to the tissues. Only one of the seven species did not survive re-exposure to air. Species able to germinate and produce seedlings under submersion, which subsequently are able to establish in aerated soils, would have more time available for terrestrial growth. This is critical for colonization of lower portions of the flood-level gradient where establishment is constrained by the short terrestrial phase that precedes the next flood. PMID:25922297

  20. Seed germination and seedling development in response to submergence in tree species of the Central Amazonian floodplains

    PubMed Central

    de Melo, Risolandia Bezerra; Franco, Augusto César; Silva, Clovis Oliveira; Piedade, Maria Teresa Fernandez; Ferreira, Cristiane Silva

    2015-01-01

    Successful germination and seedling establishment are crucial steps for maintenance and expansion of plant populations and recovery from perturbations. Every year the Amazon River and its tributaries overflow and flood the adjacent forest, exerting a strong selective pressure on traits related to seedling recruitment. We examined seed characteristics, stored reserves, germination, seedling development and survival under water of eight representative tree species from the lower portions of the flood-level gradient to identify adaptive strategies that contribute to their regeneration in this extreme ecosystem. Submerged seedlings were assessed for longevity and survival until they showed symptoms of injury. At this point, the remaining healthy seedlings were planted in unsaturated soil to monitor recovery after re-exposure to air over 30 days. All small (seed mass ≤0.17 g) seeds had epigeal phanerocotylar-type germination, a trait that would allow plants to acquire light and CO2 in the shortest time. Cell wall storage polysaccharide was a major component of all seeds, suggesting plant investment in structural reserves. Seven of the eight species germinated and formed healthy seedlings under water that endured submersion without any apparent injury for periods of 20–115 days, depending on the species. Seedlings of some species changed the direction of root growth and grew towards the surface of the water, which might have increased the uptake of oxygen to the tissues. Only one of the seven species did not survive re-exposure to air. Species able to germinate and produce seedlings under submersion, which subsequently are able to establish in aerated soils, would have more time available for terrestrial growth. This is critical for colonization of lower portions of the flood-level gradient where establishment is constrained by the short terrestrial phase that precedes the next flood. PMID:25922297

  1. Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition.

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Hoppula, Kati B; Karhu, Saila T; Yang, Baoru; Kallio, Heikki P

    2016-04-01

    Oils with sufficient contents of fatty acids, which can be metabolized into precursors of anti-inflammatory eicosanoids, have potential health effects. Ribes sp. seed oil is rich in α-linolenic, γ-linolenic and stearidonic acids belonging to this fatty acid group. Only a few previous studies exist on Ribes sp. gene expression. We followed the seed oil biosynthesis of four Ribes nigrum and two Ribes rubrum cultivars at different developmental stages over 2 years in Southern and Northern Finland with a 686 km latitudinal difference. The species and the developmental stage were the most important factors causing differences in gene expression levels and oil composition. Differences between cultivars were detected in some cases, but year and location had only small effects. However, expression of the gene encoding Δ(9)-desaturase in R. nigrum was affected by location. Triacylglycerol biosynthesis in Ribes sp. was distinctly buffered and typically followed a certain path, regardless of growth environment. PMID:26593580

  2. Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings.

    PubMed

    Griffith, Stephen M; Banowetz, Gary M; Gady, David

    2013-08-01

    Seed mill screenings would be a considerable biofeedstock source for bioenergy and char production. Char produced from the gasification of residues resulting from cleaning of grass seed and small grains could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might harm the environment, crop growth or yield. Previous reports have shown that char derived from the pyrolysis of a variety of biomass feedstocks has potential to enhance soil quality by pH adjustment, mineral amendment, and improved soil porosity. The objective of this research was to characterize char produced from Kentucky bluegrass seed mill screenings (KBss) by a small-scale gasification unit, operated at temperatures between 600 and 650°C, with respect to polycyclic aromatic hydrocarbons, selected heavy metals, as well as other physical and chemical characteristics, and determine its suitability for agricultural application as a soil amendment. We utilized KBss as a model for seed and grain-cleaning residues with the understanding that chemical and physical characteristics of char produced by gasification or other cleaning residues may differ based on soil and environmental conditions under which the crops were produced. Our results support the hypothesis that KBss char could be applied in a cropping system without toxic environmental consequences and serve multiple purposes, such as; recycling critical plant macro- and micro-nutrients back to existing cropland, enhancing soil carbon sequestration, managing soil pH, and improving water holding capacity. Crop field trails need to be implemented to further test these hypotheses. PMID:23591135

  3. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W

    PubMed Central

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and β-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  4. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.

    PubMed

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C

    2010-09-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and beta-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  5. Development of melamine-formaldehyde resin microcapsules with low formaldehyde emission suited for seed treatment.

    PubMed

    Yuan, Huizhu; Li, Guangxing; Yang, Lijuan; Yan, Xiaojing; Yang, Daibin

    2015-04-01

    To reduce the application frequency and improve the efficacy of insecticides, melamine-formaldehyde (MF) resin microcapsules suited for seed treatment containing a mixture of fipronil and chlorpyrifos were prepared by in situ polymerization. A formaldehyde/melamine molar ratio of 4:1 yielded microcapsules with the smallest size and the most narrow size distribution. The level of unreacted formaldehyde in the microcapsule suspension increased proportionally with the F/M molar ratio. When the MF resin microcapsule suspension was used as a seed treatment to coat peanut seeds, the unreacted formaldehyde did not significantly inhibit the seedling emergence, but the ongoing release of formaldehyde generated from the degradation of MF resins played an important role in inhibiting emergence. Melamine was shown to be an effective formaldehyde scavenger that mitigated this inhibition when it was incorporated within the microcapsule wall. Field experiments showed that MF-resin-encapsulated mixtures of fipronil and chlorpyrifos have much greater efficacies against white grubs than the conventional formulation. PMID:25734968

  6. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  7. Synthetic-vision application: concept, validation, and development in integrated modular avionics architecture

    NASA Astrophysics Data System (ADS)

    Stuetz, Peter; Braemer, Emanuel; Schulte, Axel; White, Colin; Kloeckner, Wolfgang

    2001-08-01

    Enhanced and synthetic vision applications for flight guidance are on the verge of commercialisation and wide-scale employment. The paper will first give an overview at the characteristics and benefits of these types of displays, and focus afterwards on their implementation in an integrated modular avionics environment. The Enhanced/Synthetic Flight Guidance Display is a promising approach to the solution for the problems of poor visibility low-level flight. It yields a computer-generated three-dimensional cockpit view and can optionally be combined with an imaging sensor (e.g. FLIR, mmWR, LL-TV). The paper will provide details on the technical concept and the evaluation of a functional prototype in flight trials. After functional validation, a enhanced/synthetic vision display was chosen to be ESGs first avionics application to be transferred into an integrated modular avionics architecture. This software prototype implementation takes into account the results so far achieved in the Allied Standard Avionics Architecture Council (ASAAC) programme. The effort of this programme to define an open system architecture will be addressed in the paper. The architecture's characteristics of a clearly defined layer structure and its strict hardware-software separation will be explained. Finally the paper addresses the allocation of the functions necessary for the synthetic vision display. It explains how database access, I/O to other systems, numerical calculation and graphics generation are mapped to IMA-based mass memory, data processing and graphics processing components. The paper finishes with the presentation of first successful implementation results.

  8. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    PubMed

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm. PMID:26809209

  9. GROWING SEEDS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN ELEMENTARY…

  10. Development of cycad ovules and seeds. 2. Histological and ultrastructural aspects of ontogeny of the embryo in Encephalartos natalensis (Zamiaceae).

    PubMed

    Woodenberg, Wynston Ray; Berjak, Patricia; Pammenter, N W; Farrant, Jill M

    2014-07-01

    Development of the embryo of Encephalartos natalensis from a rudimentary meristematic structure approximately 700 μm in length extends over 6 months after the seed is shed from the strobilus. Throughout its development, the embryo remains attached to a long suspensor. Differentiation of the shoot meristem flanked by two cotyledonary protuberances occurs over the first 2 months, during which peripheral tannin channels become apparent. Tannins, apparently elaborated by the endoplasmic reticulum, first accumulate in the large central vacuole and ultimately fill the channel. By the fourth month of development, the root meristem is apparent and procambial tissue forming discrete vascular bundles can be discerned in the elongating cotyledons. Between 4 and 6 months, mucilage ducts differentiate; after 6 months, when the seed becomes germinable, the embryo is characterised by cotyledons far longer than the axis. Shoot and root meristem cells remain ultrastructurally similar throughout embryo ontogeny, containing small vacuoles, many well-differentiated mitochondria and endoplasmic reticulum (ER) profiles, abundant polysomes, plastids containing small starch deposits and Golgi bodies. Unusually, however, Golgi bodies are infrequent in other cells including those elaborating mucilage which is accumulated in distended ER and apparently secreted into the duct lumen directly by ER-derived vesicles. The non-meristematic cells accumulate massive starch deposits to the exclusion of any protein bodies and only very sparse lipid, features which are considered in terms of the prolonged period of embryo development and the high atmospheric oxygen content of the Carboniferous Period, when cycads are suggested to have originated. PMID:24240517

  11. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees

    NASA Astrophysics Data System (ADS)

    Gross-Camp, Nicole D.; Kaplin, Beth A.

    2011-11-01

    fate, and may be helpful in developing models to predict seed shadows and recruitment patterns of large-seeded trees.

  12. Muscle architecture during the course of development of Diplostomum pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomidae) from cercariae to metacercariae.

    PubMed

    Petrov, A; Podvyaznaya, I

    2016-05-01

    Recent confocal microscopy studies have greatly expanded our knowledge of muscle systems in cercariae and adult digeneans, but the gross anatomy and development of metacercarial musculature remain relatively little known. To further our understanding of metacercarial development, this study used phalloidin staining and confocal microscopy to examine changes in muscle architecture over the course of development from cercariae to infective metacercariae in Diplostomum pseudospathaceum Niewiadomska, 1984. The paper describes muscle development in the body wall, anterior organ (oral sucker), acetabulum, pharynx and midgut and in the musculo-glandular organs that first appear in metacercariae (lappets and holdfast). The muscle architecture of the cercarial tail is also described. The results of the study support previously reported observations that diplostomid musculature undergoes substantial transformation during metacercarial development. The most profound changes, involving extensive remodelling and replacement of cercarial muscles, were seen in the body-wall musculature and in the anterior organ as it developed into the oral sucker. Muscle systems of other cercarial organs showed more gradual changes. The adaptive importance of developmental changes in musculature is discussed. PMID:25997697

  13. Rapid EHR development and implementation using web and cloud-based architecture in a large home health and hospice organization.

    PubMed

    Weaver, Charlotte A; Teenier, Pamela

    2014-01-01

    Health care organizations have long been limited to a small number of major vendors in their selection of an electronic health record (EHR) system in the national and international marketplace. These major EHR vendors have in common base systems that are decades old, are built in antiquated programming languages, use outdated server architecture, and are based on inflexible data models [1,2]. The option to upgrade their technology to keep pace with the power of new web-based architecture, programming tools and cloud servers is not easily undertaken due to large client bases, development costs and risk [3]. This paper presents the decade-long efforts of a large national provider of home health and hospice care to select an EHR product, failing that to build their own and failing that initiative to go back into the market in 2012. The decade time delay had allowed new technologies and more nimble vendors to enter the market. Partnering with a new start-up company doing web and cloud based architecture for the home health and hospice market, made it possible to build, test and implement an operational and point of care system in 264 home health locations across 40 states and three time zones in the United States. This option of "starting over" with the new web and cloud technologies may be posing a next generation of new EHR vendors that retells the Blackberry replacement by iPhone story in healthcare. PMID:24943570

  14. Development of a Subcell Based Modeling Approach for Modeling the Architecturally Dependent Impact Response of Triaxially Braided Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.

    2016-01-01

    Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work

  15. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    PubMed Central

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C.

    2012-01-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases. PMID:23185681

  16. Seed proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cel...

  17. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  18. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed.

    PubMed

    Gonzalez-Jorge, Sabrina; Mehrshahi, Payam; Magallanes-Lundback, Maria; Lipka, Alexander E; Angelovici, Ruthie; Gore, Michael A; DellaPenna, Dean

    2016-07-01

    Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224

  19. Development of a Computer Architecture to Support the Optical Plume Anomaly Detection (OPAD) System

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1996-01-01

    The NASA OPAD spectrometer system relies heavily on extensive software which repetitively extracts spectral information from the engine plume and reports the amounts of metals which are present in the plume. The development of this software is at a sufficiently advanced stage where it can be used in actual engine tests to provide valuable data on engine operation and health. This activity will continue and, in addition, the OPAD system is planned to be used in flight aboard space vehicles. The two implementations, test-stand and in-flight, may have some differing requirements. For example, the data stored during a test-stand experiment are much more extensive than in the in-flight case. In both cases though, the majority of the requirements are similar. New data from the spectrograph is generated at a rate of once every 0.5 sec or faster. All processing must be completed within this period of time to maintain real-time performance. Every 0.5 sec, the OPAD system must report the amounts of specific metals within the engine plume, given the spectral data. At present, the software in the OPAD system performs this function by solving the inverse problem. It uses powerful physics-based computational models (the SPECTRA code), which receive amounts of metals as inputs to produce the spectral data that would have been observed, had the same metal amounts been present in the engine plume. During the experiment, for every spectrum that is observed, an initial approximation is performed using neural networks to establish an initial metal composition which approximates as accurately as possible the real one. Then, using optimization techniques, the SPECTRA code is repetitively used to produce a fit to the data, by adjusting the metal input amounts until the produced spectrum matches the observed one to within a given level of tolerance. This iterative solution to the original problem of determining the metal composition in the plume requires a relatively long period of time

  20. Albendazole in environment: faecal concentrations in lambs and impact on lower development stages of helminths and seed germination.

    PubMed

    Prchal, Lukáš; Podlipná, Radka; Lamka, Jiří; Dědková, Tereza; Skálová, Lenka; Vokřál, Ivan; Lecová, Lenka; Vaněk, Tomáš; Szotáková, Barbora

    2016-07-01

    Albendazole (ABZ), widely used benzimidazole anthelmintic, administered to animals enters via excrements into environment and may impact non-target organisms. Moreover, exposure of lower development stages of helminths to anthelmintics may also encourage the development of drug-resistant strains of helminths. In present project, the kinetics of ABZ (10 mg kg(-1) p.o.) and its metabolite (ABZ.SO, ABZSO2) elimination in faeces from treated Texel lambs were studied using UHPLC/MS/MS with the aim to find out their concentrations achievable in the environment. Consequently, the effect of these compounds on lower development stages of Barber's pole worm (Haemonchus contortus) and on germination of white mustard (Sinapis alba) seeds was evaluated. The results showed that ABZ concentrations in faeces excreted in 4-60 h after treatment were above the concentrations lethal for H. contortus eggs. Moreover, pre-incubation with sub-lethal doses of ABZ and ABZ.SO did not increase the resistance of H. contortus eggs and larvae to anthelmintics. On the other hand, concentrations of ABZ and ABZ.SO in faeces are so high that might have negative influence on non-target soil invertebrates. As neither ABZ nor its metabolites affect the germination of mustard seeds, phytoremediation could be considered as potential tool for detoxification of ABZ in the environment. PMID:26996913

  1. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.

    PubMed

    Zhang, Yang; Mulpuri, Sujatha; Liu, Aizhong

    2016-05-01

    Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment. PMID:26589321

  2. Transcriptome characterization of developing bean (Phaseolus vulgaris L.) pods from two genotypes with contrasting seed zinc concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two c...

  3. Seeds: A Celebration of Science.

    ERIC Educational Resources Information Center

    Melton, Bob

    The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…

  4. A guide to forest seed handling

    SciTech Connect

    Willan, R.L.

    1986-01-01

    This guide to forest seed handling focuses on seed quality, i.e., the physiological viability and vigor of the seeds. Seed and fruit development, germination, and dormancy and the fundamentals of planning seed collections are covered. The guide includes discussions on seed collection of fallen fruits or seeds from the forest floor from the crowns of felled trees, and from standing trees with access from the ground and with other means of access. Also considered are precautions to be followed during fruit and seed handling between collection and processing. The different stages in seed processing are detailed, including extraction, depulping, drying, tumbling and threshing, dewinging, cleaning, grading, and mixing. Factors affecting seed longevity in storage and the choice of storage methods are reviewed. Different forms of seed pretreatment and seed testing methods are described.

  5. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.

    PubMed

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-03-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F(2) seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein. PMID:19939888

  6. Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes.

    PubMed

    Carter, Amanda M; Tegeder, Mechthild

    2016-08-01

    Legumes are able to access atmospheric di-nitrogen (N2) through a symbiotic relationship with rhizobia that reside within root nodules. In soybean, following N2 fixation by the bacteroids, ammonia is finally reduced in uninfected cells to allantoin and allantoic acid [1]. These ureides present the primary long-distance transport forms of nitrogen (N), and are exported from nodules via the xylem for shoot N supply. Transport of allantoin and allantoic acid out of nodules requires the function of ureide permeases (UPS1) located in cells adjacent to the vasculature [2, 3]. We expressed a common bean UPS1 transporter in cortex and endodermis cells of soybean nodules and found that delivery of N from nodules to shoot, as well as seed set, was significantly increased. In addition, the number of transgenic nodules was increased and symbiotic N2 fixation per nodule was elevated, indicating that transporter function in nodule N export is a limiting step in bacterial N acquisition. Further, the transgenic nodules showed considerable increases in nodule N assimilation, ureide synthesis, and metabolite levels. This suggests complex adjustments of nodule N metabolism and partitioning processes in support of symbiotic N2 fixation. We propose that the transgenic UPS1 plants display metabolic and allocation plasticity to overcome N2 fixation and seed yield limitations. Overall, it is demonstrated that transporter function in N export from nodules is a key step for enhancing atmospheric N2 fixation and nodule function and for improving shoot N nutrition and seed development in legumes. PMID:27451897

  7. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  8. Information architecture. Volume 3: Guidance

    SciTech Connect

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  9. The MADS29 Transcription Factor Regulates the Degradation of the Nucellus and the Nucellar Projection during Rice Seed Development[W

    PubMed Central

    Yin, Lin-Lin; Xue, Hong-Wei

    2012-01-01

    The MADS box transcription factors are critical regulators of rice (Oryza sativa) reproductive development. Here, we here report the functional characterization of a rice MADS box family member, MADS29, which is preferentially expressed in the nucellus and the nucellar projection. Suppressed expression of MADS29 resulted in abnormal seed development; the seeds were shrunken, displayed a low grain-filling rate and suppressed starch biosynthesis, and contained abnormal starch granules. Detailed analysis indicated that the abnormal seed development is due to defective programmed cell death (PCD) of the nucellus and nucellar projection, which was confirmed by a TUNEL assay and transcriptome analysis. Further studies showed that expression of MADS29 is induced by auxin and MADS29 protein binds directly to the putative promoter regions of genes that encode a Cys protease and nucleotide binding site–Leu-rich repeat proteins, thereby stimulating the PCD. This study identifies MADS29 as a key regulator of early rice seed development by regulating the PCD of maternal tissues. It provides informative clues to elucidate the regulatory mechanism of maternal tissue degradation after fertilization and to facilitate the studies of endosperm development and seed filling. PMID:22408076

  10. Genetic architecture of olfactory behavior in Drosophila melanogaster: differences and similarities across development

    PubMed Central

    Lavagnino, N.J.; Arya, G.H.; Korovaichuk, A.; Fanara, J.J.

    2013-01-01

    In the holometabolous insect Drosophila melanogaster, genetic, physiological and anatomical aspects of olfaction are well known in the adult stage, while larval stages olfactory behavior has received some attention it has been less studied than its adult counterpart. Most of these studies focus on olfactory receptors (Or) genes that produce peripheral odor recognition. In this paper, through a loss-of-function screen using P-element inserted lines and also by means of expression analyses of larval olfaction candidate genes, we extended the uncovering of the genetic underpinnings of D. melanogaster larval olfactory behavior by demonstrating that larval olfactory behavior is, in addition to Or genes, orchestrated by numerous genes with diverse functions. Also, our results points out that the genetic architecture of olfactory behavior in D. melanogaster presents a dynamic and changing organization across environments and ontogeny. PMID:23563598

  11. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination

    PubMed Central

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-01-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV–V when coleoptiles initiate the formation of the photosynthetic tissues. PMID:27194739

  12. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    PubMed

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. PMID:27194739

  13. Project Integration Architecture: Application Architecture

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications is enabled.

  14. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  15. Structure and physicochemical properties of starches from kidney bean seeds at immature, premature and mature stages of development.

    PubMed

    Yoshida, Hironori; Nozaki, Koichi; Hanashiro, Isao; Yagi, Fumio; Ito, Hiroyuki; Honma, Mamoru; Matsui, Hirokazu; Takeda, Yasuhito

    2003-02-14

    Starches from kidney bean (Phaseolus vulgaris L. cv. Toramame) seeds at the immature, premature, mature stages of development were examined. The starch content increased from 94, 219 to 265 mg per seed. Starches showed the C(a)-crystalline type composed of small (<5 micrometer) and large (10-35 micrometer) granules, with the large granules largely increasing with maturity. The amylose content increased from 21, 26 to 27%, and rapid viscograms and DSC thermograms suggested that the mature-stage starch was gelatinized with ease. The amylose increased in size from DPn 820, 1000 to 1080 and a number of chains per molecule (NC) from 3.3, 4.2 to 4.5. The branched amylose was a minor component (11-18% by mole) with NC 20-22. The amylopectin was similar in CL (23), beta-amylolysis limit (59%), and chain-length distribution, but reduced in size (DPn 17,100-5270) and increased in content of phosphorus (114-174 ppm) with an increase in the amount of phosphorus linked to C-6 of the glucose residue (8-66%). PMID:12559751

  16. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  17. Tools for describing the reference architecture for space data systems

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Yamada, Takahiro

    2004-01-01

    This paper has briefly presented the Reference Architecture for Space Data Systems (RASDS) that is being developed by the CCSDS Systems Architecture Working Group (SAWG). The SAWG generated some sample architectures (spacecraft onboard architectures, space link architectures, cross-support architectures) using this RASDS approach, and RASDS was proven to be a powerful tool for describing and relating different space data system architectures.

  18. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development.

    PubMed

    Van Son, Le; Tiedemann, Jens; Rutten, Twan; Hillmer, Stefan; Hinz, Giselbert; Zank, Thorsten; Manteuffel, Renate; Bäumlein, Helmut

    2009-11-01

    BURP domain proteins comprise a broadly distributed, plant-specific family of functionally poorly understood proteins. VfUSP (Vicia faba Unknown Seed Protein) is the founding member of this family. The BURP proteins are characterized by a highly conserved C-terminal protein domain with a characteristic cysteine-histidine pattern. The Arabidopsis genome contains five BURP-domain encoding genes. Three of them are similar to the non-catalytic beta-subunit of the polygalacturonase of tomato and form a distinct subgroup. The remaining two genes are AtRD22 and AtUSPL1. The deduced product of AtUSPL1 is similar in size and sequence to VfUSP and that of the Brassica napus BNM2 gene which is expressed during microspore-derived embryogenesis. The protein products of BURP genes have not been found, especially that of VfUSP despite a great deal of interest arising from copious transcription of the gene in seeds. Here, we demonstrate that VfUSP and AtUSPL1 occur in cellular compartments essential for seed protein synthesis and storage, like the Golgi cisternae, dense vesicles, prevaculoar vesicles and the protein storage vacuoles in the parenchyma cells of cotyledons. Ectopic expression of AtUSPL1 leads to a shrunken seed phenotype; these seeds show structural alterations in their protein storage vacuoles and lipid vesicles. Furthermore, there is a reduction in the storage protein content and a perturbation in the seed fatty acid composition. However, loss of AtUSP1 gene function due to T-DNA insertions does not lead to a phenotypic change under laboratory conditions even though the seeds have less storage proteins. Thus, USP is pertinent to seed development but its role is likely shared by other proteins that function well enough under the laboratory growth conditions. PMID:19639386

  19. A Tool for Managing Software Architecture Knowledge

    SciTech Connect

    Babar, Muhammad A.; Gorton, Ian

    2007-08-01

    This paper describes a tool for managing architectural knowledge and rationale. The tool has been developed to support a framework for capturing and using architectural knowledge to improve the architecture process. This paper describes the main architectural components and features of the tool. The paper also provides examples of using the tool for supporting wellknown architecture design and analysis methods.

  20. Developing Enterprise Architectures to Address the Enterprise Dilemma of Deciding What Should Be Sustained versus What Should Be Changed

    ERIC Educational Resources Information Center

    Harrell, J. Michael

    2011-01-01

    Enterprise architecture is a relatively new concept that arose in the latter half of the twentieth century as a means of managing the information technology resources within the enterprise. Borrowing from the disciplines of brick and mortar architecture, software engineering, software architecture, and systems engineering, the enterprise…

  1. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  2. Framework design and development of an informatics architecture for a systems biology approach to traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Kim, Dongkyu; Levine, Betty; Cleary, Kevin; Federoff, Howard J.; Mhyre, Timothy

    2010-03-01

    Traumatic Brain Injury (TBI) is a problem of major medical and socioeconomic significance, although the pathogenesis of its sequelae is not completely understood. As part of a large, multi-center project to study mild and moderate TBI, a database and informatics system to integrate a wide-range of clinical, biological, and imaging data is being developed. This database constitutes a systems-based approach to TBI with the goals of developing and validating biomarker panels that might be used to diagnose brain injury, predict clinical outcome, and eventually develop improved therapeutics. This paper presents the architecture for an informatics system that stores the disparate data types and permits easy access to the data for analysis.

  3. Branch Architecture, Light Interception and Crown Development in Saplings of a Plagiotropically Branching Tropical Tree, Polyalthia jenkinsii (Annonaceae)

    PubMed Central

    OSADA, NORIYUKI; TAKEDA, HIROSHI

    2003-01-01

    To investigate crown development patterns, branch architecture, branch‐level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves (‘bare’ branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of ‘leafy’ parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch‐level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first‐order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch‐level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species. PMID:12495920

  4. Branch architecture, light interception and crown development in saplings of a plagiotropically branching tropical tree, Polyalthia jenkinsii (Annonaceae).

    PubMed

    Osada, Noriyuki; Takeda, Hiroshi

    2003-01-01

    To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species. PMID:12495920

  5. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  6. Workflow automation architecture standard

    SciTech Connect

    Moshofsky, R.P.; Rohen, W.T.

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  7. Clinical document architecture.

    PubMed

    Heitmann, Kai

    2003-01-01

    The Clinical Document Architecture (CDA), a standard developed by the Health Level Seven organisation (HL7), is an ANSI approved document architecture for exchange of clinical information using XML. A CDA document is comprised of a header with associated vocabularies and a body containing the structural clinical information. PMID:15061557

  8. Increases in the longevity of desiccation-phase developing rice seeds: response to high-temperature drying depends on harvest moisture content

    PubMed Central

    Whitehouse, K. J.; Hay, F. R.; Ellis, R. H.

    2015-01-01

    Background and Aims Previous studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying and low-temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results. Methods Seeds of rice, Oryza sativa, were produced according to normal regeneration procedures at IRRI. They were harvested at different times [harvest date and days after anthesis (DAA), once for each accession] and dried either in a drying room (DR; 15 % relative humidity, 15 °C) or in a flat-bed heated-air batch dryer (BD; 45 °C, 8 h d–1) for up to six daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10·9 % moisture content and 45 °C. Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50 % for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372·2 % for these accessions. The seed lots that responded the most were those that were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions. Conclusions Seeds harvested at a moisture content where, according to the moisture desorption isotherm, they could still be metabolically active (>16·2 %) may be in the first stage of the post-mass maturity, desiccation phase of seed development and thus able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should therefore be reconsidered. PMID:26133688

  9. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds1

    PubMed Central

    Ke, Jinshan; Behal, Robert H.; Back, Stephanie L.; Nikolau, Basil J.; Wurtele, Eve Syrkin; Oliver, David J.

    2000-01-01

    Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. PMID:10859180

  10. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    PubMed

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  11. Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum