Science.gov

Sample records for arctic lake correlate

  1. Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source

    PubMed Central

    Crump, Byron C.; Kling, George W.; Bahr, Michele; Hobbie, John E.

    2003-01-01

    Seasonal shifts in bacterioplankton community composition in Toolik Lake, a tundra lake on the North Slope of Alaska, were related to shifts in the source (terrestrial versus phytoplankton) and lability of dissolved organic matter (DOM). A shift in community composition, measured by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes, occurred at 4°C in near-surface waters beneath seasonal ice and snow cover in spring. This shift was associated with an annual peak in bacterial productivity ([14C]leucine incorporation) driven by the large influx of labile terrestrial DOM associated with snow meltwater. A second shift occurred after the flux of terrestrial DOM had ended in early summer as ice left the lake and as the phytoplankton community developed. Bacterioplankton communities were composed of persistent populations present throughout the year and transient populations that appeared and disappeared. Most of the transient populations could be divided into those that were advected into the lake with terrestrial DOM in spring and those that grew up from low concentrations during the development of the phytoplankton community in early summer. Sequencing of DNA in DGGE bands demonstrated that most bands represented single ribotypes and that matching bands from different samples represented identical ribotypes. Bacteria were identified as members of globally distributed freshwater phylogenetic clusters within the α- and β-Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides group, and the Actinobacteria. PMID:12676708

  2. Archaea in Arctic Thermokarst Lake Sediments

    NASA Astrophysics Data System (ADS)

    Matheus Carnevali, P. B.; Rohrssen, M.; Dodsworth, J. A.; Kuhn, E.; Williams, M.; Adams, H. E.; Berisford, D. F.; Hand, K. P.; Priscu, J. C.; Walter Anthony, K.; Love, G. D.; Hedlund, B. P.; Murray, A. E.

    2011-12-01

    , which include, in part, a methanogenic community. These findings suggest that the archaeal community in lake sediments of the Northern Slope of Alaska may be more relevant to estimates of methane release from the Arctic than previously thought. Our work will set the grounds to further the understanding of the effect of temperature increases on microbial activities that directly affect the greenhouse gas inventory, and it will expand the census of psychrophiles that thrive in permafrost environments.

  3. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen (NH4+-N, p < 0.01), silicate silicon (SiO42--Si, p < 0.01), nitrite nitrogen (NO2--N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  4. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area.

    PubMed

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen ([Formula: see text]-N, p < 0.01), silicate silicon ([Formula: see text]-Si, p < 0.01), nitrite nitrogen ([Formula: see text]-N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  5. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  6. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-07-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69, p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter ‘ocean-effect’ snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  7. How to Assess Trajectories of Arctic Ponds and Lakes: a Circum-Arctic Perspective

    NASA Astrophysics Data System (ADS)

    Muster, S.; Roth, K.; Cresto Aleina, F.; Langer, M.; Bartsch, A.; Morgenstern, A.; Grosse, G.; Lange, S.; Boike, J.

    2015-12-01

    Arctic ponds, i. e. water bodies with a surface area equal to or smaller than 10⁴ m² (1 ha), are currently not inventoried on a circum-arctic scale. However, they are a key element of the water, energy, and carbon balance and abundant in Arctic permafrost lowlands. Ponds and lakes have been subject to both wetting and drying in a warming climate yet studies remain ambivalent regarding the causes of these changes. Goals of this study are to (i) investigate the variability of water body size distributions as a function of landscape characteristics, and (ii) assess the vulnerability of water bodies in different landscapes to scenarios of wetting and drying. Ponds and lakes were mapped from high-resolution aerial and satellite imagery with resolutions of 4 m or better in 14 regions in Alaska, Canada, and Siberia covering a total area of ca. 1.6*104 km². Whereas lake distributions are similar, pond distributions in our study regions vary significantly with the area-normalized number of ponds differing up to 3 orders of magnitude. Landscape characteristics that may explain the current water body distributions include climate (eg., precipitation, evapotranspiration, temperature), permafrost (eg., ground ice content, maximum thaw depth) and terrain characteristics (eg., topography, glaciation, landscape age) which we derive from in situ, remote sensing and modeling data sources. Multivariate regression analysis are used to relate landscape characteristics to distribution parameters. This study for the first time allows to quantify the circum-arctic variability of pond distribution. The current maps are the start of a high-resolution circum-arctic water body inventory and present a baseline for future surface inundation mapping and modelling. We present representative regional probability density functions (pdf) and assess the potential to upscale pdfs using spatial landscape characteristics. We then discuss the vulnerability of water bodies to wetting or drying based

  8. Reproduction of Pisidium casertanum (Poli, 1791) in Arctic lake

    PubMed Central

    Bespalaya, Yulia; Bolotov, Ivan; Aksenova, Olga; Kondakov, Alexander; Paltser, Inga; Gofarov, Mikhail

    2015-01-01

    Freshwater invertebrates are able to develop specific ecological adaptations that enable them to successfully inhabit an extreme environment. We investigated the brooding bivalve of Pisidium casertanum in Talatinskoe Lake, Vaigach Island, Arctic Russia. Here, quantitative surveys were conducted, with the collection and dissections of 765 molluscs, on the basis of which analyses on the brood sacs length (marsupia) and the number and size of embryos, were performed. In this study, the number of brooded embryos was positively correlated with the parent's shell length. The number of extramarsupial embryos was much lower than the number of intramarsupial embryos. Our research also showed that the brood sac length and embryos within one individual can vary significantly. Thus, we detected that P. casertanum has a specific brooding mechanism, accompanied by asynchronous development and embryos release by the parent. We suggest that such a mode could result in the coin-flipping effect that, presumably, increases the population breeding success in the harsh environment of the Arctic lake. PMID:26064579

  9. A Pan-Arctic Assessment of High-Latitude Lake Change ~25 Years Apart

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E. A.; Wang, J.

    2011-12-01

    The Arctic and Sub-Arctic regions are the home to the world's largest quantity of terrestrial lakes. These lakes play a preeminent role in the global water cycle and balance, are sensitive to global warming, and are vital for human and animal water supply. However, they are poorly observed, and a uniform lake inventory is unavailable at the pan-Arctic scale. Though there have been studies of Arctic lake dynamics at local scales, the general picture of Arctic lake change stays unclear. A systematic regional-scale assessment of Arctic lake change in the past ~30 years is crucial for us to address "How have Arctic lakes responded to global warming?" The presentation reports a systematic effort of high-latitude (45N and north) lake inventory using recently available high-resolution satellite imagery. Since Arctic lakes are abundant in small-size classes and their seasonality varies from region to region, pan-Arctic lake mapping requires the use of thousands of cloud-free Landsat images acquired in lake-stable seasons. Nearly eight million lakes have been mapped in various landscapes of the pan-Arctic using automated lake identification algorithms with high replicability. Lake-abundant regions are selected using a systematic sampling strategy to detect decadal lake change using the mid-1970s and circa-2000 Landsat imagery. Spatial patterns of the observed lake dynamics are analyzed at regional scales and the relationship between lake abundance and size distribution is investigated.

  10. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  11. Arctic epishelf lakes as sentinel ecosystems: Past, present and future

    NASA Astrophysics Data System (ADS)

    Veillette, Julie; Mueller, Derek R.; Antoniades, Dermot; Vincent, Warwick F.

    2008-12-01

    Ice shelves are a prominent but diminishing feature of the northern coastline of Ellesmere Island in the Canadian High Arctic (latitude 82-83°N). By blocking embayments and fiords, this thick coastal ice can create epishelf lakes, which are characterized by a perennially ice-capped water column of freshwater overlying seawater. The goal of this study was to synthesize new, archived, and published data on Arctic epishelf lakes in the context of climate change. Long-term changes along this coastline were evaluated using historical reports, cartographic analysis, RADARSAT imagery, and field measurements. These data, including salinity-temperature profiling records from Disraeli Fiord spanning 54 years, show the rapid decline and near disappearance of this lake type in the Arctic. Salinity-temperature profiling of Milne Fiord, currently blocked by the Milne Ice Shelf, confirmed that it contained an epishelf lake composed of a 16-m thick freshwater layer overlying seawater. A profiling survey along the coast showed that there was a continuum of ice-dammed lakes from shallow systems dammed by multiyear landfast sea ice to deep epishelf lakes behind ice shelves. The climate warming recently observed in this region likely contributed to the decline of epishelf lakes over the last century, and the air temperature trend predicted for the Arctic over the next several decades implies the imminent loss of this ecosystem type. Our results underscore the distinctive properties of coastal ice-dammed lakes and their value as sentinel ecosystems for the monitoring of regional and global climate change.

  12. Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago.

    PubMed

    Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter

    2005-12-01

    Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes. PMID:16165187

  13. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    PubMed

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region. PMID:27454863

  14. Factors Controlling Methane in Arctic Lakes of Southwest Greenland

    PubMed Central

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region. PMID:27454863

  15. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  16. Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Sauer, Peter E.; Peng, Yongbo; Goldman, Amy E.; Pratt, Lisa M.

    2016-08-01

    Microbial oxidation of methane (CH4) plays a central role in carbon cycling in Arctic lakes, reducing potential CH4 emissions associated with warming. Isotopic signatures of CH4 (δ13C and δ2H) are indicators of microbial oxidation, wherein the process strongly enriches 13C and 2H in residual CH4. We present δ13C and δ2H measurements obtained from sampling the water column and sediment for dissolved CH4 from three, small Arctic lakes in western Greenland under both open-water and ice-covered conditions from 2013 to 2014. Despite substantial variations in aquatic chemistry among the lakes, δ13C and δ2H of CH4 suggested that CH4 was produced predominantly by acetoclastic methanogenesis in the littoral sediments and hydrogenotrophic methanogenesis in the profundal sediments in all of the lakes. Surprisingly large variations for both δ13C and δ2H of CH4 were observed, with δ13C extending from -72‰ to +7.4‰ and δ2H from -390‰ to +250‰. The CH4 isotopic values reported here were significantly more enriched (p < 0.0001) in both 13C and 2H than values reported from other Arctic freshwater environments. As is characteristic of methanotrophy, the enrichment in 13C and 2H was associated with low CH4 concentrations. We suggest that the CH4 most enriched in 13C and 2H may reflect unusually efficient methanotrophic communities in Arctic ice-margin lakes. This study provides the first measurement of δ2H for CH4 in an Arctic freshwater environment at concentrations <10 μM. The extreme enrichment of 13C and 2H of CH4 from Arctic methanotrophy has significant implications for interpreting sources and sinks of CH4. Without knowledge of local geology, stable isotope values of CH4 higher than -30‰ for δ13C and -150‰ for δ2H could be misinterpreted as thermogenic, geothermal, or abiogenic origins. Given crystalline bedrock and the strong positive correlation between δ13C and δ2H throughout the water columns in three Arctic lakes confirms that CH4 heavily

  17. Arctic lakes are continuous methane sources to the atmosphere under warming conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-05-01

    Methane is the second most powerful carbon-based greenhouse gas in the atmosphere and its production in the natural environment through methanogenesis is positively correlated with temperature. Recent field studies showed that methane emissions from Arctic thermokarst lakes are significant and could increase by two- to four-fold due to global warming. But the estimates of this source are still poorly constrained. By using a process-based climate-sensitive lake biogeochemical model, we estimated that the total amount of methane emissions from Arctic lakes is 11.86 Tg yr-1, which is in the range of recent estimates of 7.1-17.3 Tg yr-1 and is on the same order of methane emissions from northern high-latitude wetlands. The methane emission rate varies spatially over high latitudes from 110.8 mg CH4 m-2 day-1 in Alaska to 12.7 mg CH4 m-2 day-1 in northern Europe. Under Representative Concentration Pathways (RCP) 2.6 and 8.5 future climate scenarios, methane emissions from Arctic lakes will increase by 10.3 and 16.2 Tg CH4 yr-1, respectively, by the end of the 21st century.

  18. Modelling Lake Ice and the Future of the Arctic Lake Ice Cover

    NASA Astrophysics Data System (ADS)

    Brown, L.; Derksen, C.; Duguay, C. R.; Samuelsson, P.

    2014-12-01

    Lake ice cover is a robust indicator of climate variability and change. Recent studies have demonstrated that ice break-up dates, in particular, have been occurring earlier in many parts of the Northern Hemisphere over the last 50 years in response to warmer climatic conditions in the winter and spring seasons. It is important to compare the observed impacts of variability and trends in air temperature and precipitation over the last five decades, with projected trends from climate models in order to quantify future changes in the timing and duration of ice cover (and ice thickness) on Arctic lakes. The Canadian Lake Ice Model (CLIMo) was used to simulate both the contemporary and future lake ice conditions throughout the Arctic. The contemporary climate simulations were driven by both ECMWF ERA-Interim and ERA-40 reanalysis data (1958 - 2011). The future simulations were driven by CORDEX scenarios (Arc-44, 1951-2100), which were produced by the Rossby Centre regional atmospheric model (RCA4) and the Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4). An ensemble of simulated lake ice data was created from five regional model output scenarios using the RCP8.5 emission scenario for the future climate conditions. The 30-year mean ice break-up, freeze-up, and thickness was compared between the scenarios for the entire Arctic region for 1981 - 2010 and 2071 - 2100 to examine the possible changes to the ice cover regimes. Results suggest a mean pan-Arctic reduction in ice cover duration ranging from 42 - 57 days, and a reduction in ice thickness ranging from 0.4 m to 0.7 m, depending on the snow conditions and lake depth used in the simulation. These projected changes could have an important feedback effect on energy, water, and biogeochemical cycling throughout the pan-Arctic region.

  19. HEAVY METAL ACCUMULATION IN SEDIMENT AND FRESHWATER FISH IN U.S. ARCTIC LAKES

    EPA Science Inventory

    Metal concentrations in sediment and two species of freshwater fish (lake trout [Salvelinus namaycush], and grayling [Thymallus arcticus]} were examined in four Arctic lakes in Alaska. Concentrations of several metals were naturally high in the sediment relative to uncontaminated...

  20. Microbial nutrient limitation in Arctic lakes in a permafrost landscape of southwest Greenland

    NASA Astrophysics Data System (ADS)

    Burpee, B.; Saros, J. E.; Northington, R. M.; Simon, K. S.

    2016-01-01

    Permafrost is degrading across regions of the Arctic, which can lead to increases in nutrient concentrations in surface freshwaters. The oligotrophic state of many Arctic lakes suggests that enhanced nutrient inputs may have important effects on these systems, but little is known about microbial nutrient limitation patterns in these lakes. We investigated microbial extracellular enzyme activities (EEAs) to infer seasonal nutrient dynamics and limitation across 24 lakes in southwest Greenland during summer (June and July). From early to late summer, enzyme activities that indicate microbial carbon (C), nitrogen (N), and phosphorus (P) demand increased in both the epilimnia and hypolimnia by 74 % on average. Microbial investment in P acquisition was generally higher than that for N. Interactions among EEAs indicated that microbes were primarily P-limited. Dissolved organic matter (DOM, measured as dissolved organic carbon) was strongly and positively correlated with microbial P demand (R2 = 0.84 in July), while there were no relationships between DOM and microbial N demand. Microbial P limitation in June epilimnia (R2 = 0.67) and July hypolimnia (R2 = 0.57) increased with DOM concentration. The consistency of microbial P limitation from June to July was related to the amount of DOM present, with some low-DOM lakes becoming N-limited in July. Our results suggest that future changes in P or DOM inputs to these lakes are likely to alter microbial nutrient limitation patterns.

  1. Microbial nutrient limitation in arctic lakes in a permafrost landscape of southwest Greenland

    NASA Astrophysics Data System (ADS)

    Burpee, B.; Saros, J. E.; Northington, R. M.; Simon, K. S.

    2015-07-01

    Permafrost is degrading across regions of the Arctic, which can lead to increases in nutrient concentrations in surface freshwaters. The oligotrophic state of many arctic lakes suggests that enhanced nutrient inputs may have important effects on these systems, but little is known about microbial nutrient limitation patterns in these lakes. We investigated microbial extracellular enzyme activities (EEAs) to infer seasonal nutrient dynamics and limitation across 24 lakes in southwest Greenland during summer (June and July). From early to late summer, enzyme activities that indicate microbial carbon (C), nitrogen (N), and phosphorus (P) demand increased in both the epilimnia and hypolimnia by 74 % on average. Microbial investment in P acquisition was generally higher than that for N. Interactions among EEAs indicated that bacteria were primarily P limited. Dissolved organic matter (DOM, measured as dissolved organic carbon) was strongly and positively correlated with microbial P demand (R2 = 0.84 in July), while there were no relationships between DOM and microbial N demand. Microbial P limitation in June epilimnia (R2 = 0.67) and July hypolimnia (R2 = 0.57) increased with DOM concentration. The consistency of microbial P limitation from June to July was related to the amount of DOM present, with some low DOM lakes becoming N-limited in July. Our results suggest that future changes in P or DOM inputs to these lakes are likely to alter microbial nutrient limitation patterns.

  2. An assessment of leaf wax hydrogen isotopes as a climate proxy in proglacial arctic lake sediments

    NASA Astrophysics Data System (ADS)

    Thomas, E. K.; Huang, Y.; Briner, J. P.; McGrane, S.

    2010-12-01

    High-resolution (sub-decadal), Holocene quantitative climate records can be difficult to obtain from lakes in the arctic. Varved lake sediments, which yield annual climate records, rarely extend beyond the past millennium. Paleoecological-based climate reconstructions (e.g., from pollen and chironomid taxa) are time-consuming to obtain, require large amounts of sediment, and in some cases do not respond at high-resolution time scales (e.g., pollen). Therefore, sub-decadally resolved ecological records can be produced only from organic-rich sediments with very high sedimentation rates, which is uncommon in most of the arctic. Compound-specific isotopes of leaf waxes are more rapid to measure and require less sediment than many other climate proxies. Furthermore, current analytical abilities detect measurable concentrations of leaf waxes even in mineral-rich proglacial lake sediments. Proglacial lakes have orders of magnitude higher sedimentation rates than non-glacial lakes, and thus offer great potential for novel, high-resolution arctic climate records. Here, we isolate and analyze leaf wax (n-acid) hydrogen isotope ratios (δDlw) from sediments from three proglacial lakes on Baffin Island, Arctic Canada. Leaf waxes reflect δDprecip, which is controlled by several factors including temperature and precipitation source area. Although extensive work has been conducted on leaf wax isotopes as a climate proxy at low latitudes, there has been much less research near the poles. We analyzed samples at three different resolutions: one lake at annual or biennial resolution (from varved sediments) spanning the past 50 years, one at sub-centennial resolution spanning the past 2.5 kyr, and the last at sub-millennial resolution spanning the past 8 kyr. We compare each of these records to existing regional instrumental and reconstructed climate records. On the millennial scale, δDlw is more enriched when glacier extent was smaller during the middle Holocene, indicating that

  3. Exploratory hydrocarbon drilling impacts to Arctic lake ecosystems.

    PubMed

    Thienpont, Joshua R; Kokelj, Steven V; Korosi, Jennifer B; Cheng, Elisa S; Desjardins, Cyndy; Kimpe, Linda E; Blais, Jules M; Pisaric, Michael F J; Smol, John P

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  4. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    PubMed Central

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  5. Ice Regime and Melt-out Timing Cause Divergent Hydrologic Responses among Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Bondurant, A.; Arp, C. D.; Jones, B. M.; Liljedahl, A. K.; Hinkel, K. M.; Welker, J. M.

    2015-12-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Because many lakes are shallow and ice grows thick (historically 2-m or greater), lakes often freeze solid (bedfast ice) and this condition fundamentally alters lake energy balance and melt-out processes compared to deeper lakes with perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-off in bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-off in adjacent floating ice lakes (9-July). Earlier melt in bedfast ice lakes caused higher open-water evaporation, 28 % on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Specific conductivity and water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes and associated ice-out timing currently create a strong hydrologic divergence among Arctic lakes, which makes understanding the distribution and dynamics of lakes by ice regime essential for predicting regional hydrology. An observed trend towards more floating ice lakes due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes is in spite of an overall projected increase in evapotranspiration as the Arctic climate warms. The unusually warm spring observed in 2015 caused much earlier lake ice-out throughout Arctic Alaska, thus providing perfect conditions to test these hypotheses concerning differential lake hydrologic responses.

  6. Ice Processes and Growth History on Arctic and Sub-Arctic Lakes Using ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Morris, K.; Jeffries, M. O.; Weeks, W. F.

    1995-01-01

    A survey of ice growth and decay processes on a selection of shallow and deep sub-Arctic and Arctic lakes was conducted using radiometrically calibrated ERS-1 SAR images. Time series of radar backscatter data were compiled for selected sites on the lakes during the period ot ice cover (September to June) for the years 1991-1992 and 1992-1993. A variety of lake-ice processes could be observed, and significant changes in backscatter occurred from the time of initial ice formation in autumn until the onset of the spring thaw. Backscatter also varied according to the location and depth of the lakes. The spatial and temporal changes in backscatter were most constant and predictable at the shallow lakes on the North Slope of Alaska. As a consequence, they represent the most promising sites for long-term monitoring and the detection of changes related to global warming and its effects on the polar regions.

  7. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  8. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    NASA Astrophysics Data System (ADS)

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-12-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2 m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22 June) than ice-out on adjacent floating ice lakes (9 July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus, understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  9. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2013-12-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on arctic tundra lowlands, but their present-day dynamic states are seldom investigated. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located near Prudhoe Bay, Alaska where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area analyzed exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs analyzed exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on arctic coastal lowlands.

  10. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  11. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  12. Latitudinal trends in fluxes and congener patterns of PCBs inferred from lake sediment cores from mid-latitude and Arctic Lakes

    SciTech Connect

    Muir, D.; Omelchenko, A.; Grift, N.; Lockhart, L.; Wilkinson, P.; Brunskill, G.; Robbins, J.A.

    1995-12-31

    Sediment cores collected from 9 remote lakes in central and Arctic Canada (49{degree}N to 82{degree}N and from 71{degree} to 136{degree}W) were analyzed for PCBs with the objective of examining latitudinal and temporal trends in deposition. Core slices (1--1.3 cm) were dated with {sup 210}Pb and {sup 137}Cs using the Robbins rapid steady-state mixing model and sediment focusing factors were determined with the aid of soil cores or predictions of historical radionuclide deposition. Slices were freeze-dried, Soxhlet extracted with DCM and chromatographed on Florisil, then analyzed by high resolution GC-ECD with confirmation by GC-HRMS. {Sigma}PCB concentrations in surface sediments were low ranging from 8 to 40 ng{center_dot}g{sup {minus}1} (dry wt) in southern mid-continental sites (49--63{degree}N) to 2 ng{center_dot}g{sup {minus}1} in Lake Hazen, the most northerly location (82{degree}N). Highest concentrations were found in the most recent slices (1980s) of cores from high Arctic lakes (at 75 and 82{degree}N) whereas peak concentrations were reached earlier (in the 1970s) at more southerly locations. Principal components analysis revealed that sediments from high Arctic lakes could be distinguished by greater proportions of lower chlorinated PCBs in comparison with published results for Lakes Ontario and Superior. Focus corrected {Sigma}PCBs fluxes ranged from 305 to 920 ng{center_dot}m{sup 2}{center_dot}yr{sup {minus}1} in the 9 lakes and were negatively correlated with latitude (r{sup 2} = 0.53). Fluxes of Cl{sup 8} CBs had a strong negative correlation with latitude (r2 = 0.88) while Cl{sup 3} CBs showed no latitudinal trend. The results generally support several of the predictions of the cold condensation hypothesis.

  13. Methane-derived carbon flow through microbial communities in arctic lake sediments.

    PubMed

    He, Ruo; Wooller, Matthew J; Pohlman, John W; Tiedje, James M; Leigh, Mary Beth

    2015-09-01

    Aerobic methane (CH4 ) oxidation mitigates CH4 release and is a significant pathway for carbon and energy flow into aquatic food webs. Arctic lakes are responsible for an increasing proportion of global CH4 emissions, but CH4 assimilation into the aquatic food web in arctic lakes is poorly understood. Using stable isotope probing (SIP) based on phospholipid fatty acids (PLFA-SIP) and DNA (DNA-SIP), we tracked carbon flow quantitatively from CH4 into sediment microorganisms from an arctic lake with an active CH4 seepage. When 0.025 mmol CH4 g(-1) wet sediment was oxidized, approximately 15.8-32.8% of the CH4 -derived carbon had been incorporated into microorganisms. This CH4 -derived carbon equated to up to 5.7% of total primary production estimates for Alaskan arctic lakes. Type I methanotrophs, including Methylomonas, Methylobacter and unclassified Methylococcaceae, were most active at CH4 oxidation in this arctic lake. With increasing distance from the active CH4 seepage, a greater diversity of bacteria incorporated CH4 -derived carbon. Actinomycetes were the most quantitatively important microorganisms involved in secondary feeding on CH4 -derived carbon. These results showed that CH4 flows through methanotrophs into the broader microbial community and that type I methanotrophs, methylotrophs and actinomycetes are important organisms involved in using CH4 -derived carbon in arctic freshwater ecosystems. PMID:25581131

  14. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment

    USGS Publications Warehouse

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2014-01-01

    Based on these patterns, we propose an overall model of primary controls on the distribution of fish on the Arctic Coastal Plain of Alaska. Harsh conditions, including lake freezing, limit occupancy in winter through extinction events while lake occupancy in spring and summer is driven by directional migration (large-bodied species) and undirected dispersal (small-bodied species).

  15. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2014-05-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  16. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G

    2015-03-01

    Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic. PMID:25604756

  17. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics.

    PubMed

    Leppi, Jason C; Arp, Christopher D; Whitman, Matthew S

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish. PMID:26467673

  18. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.

  19. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Jones, B. M.; Lu, Z.; Whitman, M. S.

    2012-08-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003-2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  20. Systematic High-Resolution (30 meter) Inventory of Global Lakes: Pan-Arctic and Beyond

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Wang, J.; Smith, L. C.; Lyons, E. A.; Te, G.; Woods, J.; Garibay, D.; Knox, B.

    2014-12-01

    [Abstract] Lakes play a crucial role in the global water cycle and balance, are sensitive to global warming, and are vital for human water supply. There clearly is a pressing need to understand temporal and spatial variations in lake water storage globally, especially in the lake-rich Arctic/Sub-Arctic regions. An accurate systematic lake inventory, however, is unavailable at global scales. Owing to its broad spatial coverage and repeat-pass monitoring capability, satellite remote sensing is the only feasible approach to inventory global lake dynamics. Global lake mapping at high resolutions is a rather challenging task. Since lakes are abundant in small-size classes and their seasonality varies from region to region, a huge number of high-resolution satellite images need to be acquired in "appropriate" seasons. The appropriate seasons refer to the period in a typical year when lakes are relatively stable, and are determined spatially using precipitation and temperature datasets. Thousands of cloud-free Landsat images at 30 m resolution have been acquired during lake-stable seasons. Satellite lake mapping succeeds at different levels from place to place and from season to season. A set of highly replicable automated lake mapping methods and tools have been developed to tackle various situations across the entire Earth and to handle such a large volume of satellite data. The current goal is to produce a circa 2000 high-resolution global lake database in a systematic way. Millions of lakes larger than 0.5 ha have been inventoried. The product is currently examined in an intensive quality control and quality assurance process. Over six million lakes in pan-Arctic (45 deg N and above) are captured in the database and have been validated for release.

  1. Glacial Lake Vitim, a 3000-km 3 outburst flood from Siberia to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Jansson, Krister N.; Stroeven, Arjen P.; Jansen, John D.

    2011-11-01

    A prominent lake formed when glaciers descending from the Kodar Range blocked the River Vitim in central Transbaikalia, Siberia. Glacial Lake Vitim, evidenced by palaeoshorelines and deltas, covered 23,500 km 2 and held a volume of ~ 3000 km 3. We infer that a large canyon in the area of the postulated ice dam served as a spillway during an outburst flood that drained through the rivers Vitim and Lena into the Arctic Ocean. The inferred outburst flood, of a magnitude comparable to the largest known floods on Earth, possibly explains a freshwater spike at ~ 13 cal ka BP inferred from Arctic Ocean sediments.

  2. Lake temperature and ice cover regimes in the Alaskan Subarctic and Arctic: Integrated monitoring, remote sensing, and modeling

    USGS Publications Warehouse

    Arp, C.D.; Jones, Benjamin M.; Whitman, Matthew; Larsen, A.; Urban, F.E.

    2010-01-01

    Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.

  3. Arctic Lake Water Temperature Patterns as Impacted by Climatic and Geomorphic Controls

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Sheng, Y.; Lenters, J. D.; Lyons, E. A.; Beck, R. A.

    2010-12-01

    Water temperature profile measurements were collected from 12 arctic lakes on the Arctic Coastal Plain of northern Alaska in summer 2010 as part of a network of lakes being studied. The lakes (> 1 km2) are underlain by permafrost and extend inland across some 150 km - from the Arctic coast near Barrow southward to the foothills of the Brooks Range. Regionally, lake water temperature patterns over the area are concordant and demonstrate rapid warming in late June and mid-August, with significant cooling in the second week of August. Locally, ice meltout occurs about 2-4 weeks later on lakes near the coast due to cooler temperatures and cloudy conditions associated with maritime conditions. Developed in flat marine silts, the coastal lake basins tend to be shallow (2-3 m) and of uniform depth; strong and persistent winds limit thermal stratification, and mid-summer (1 July - 15 Aug) near-surface water temperature averages 6.8°C. About 100 km further inland, in the sandy rolling topography near Atqasuk, lakes are characterized by broad shelves and deeper (2-4 m) central pools. Temperature stratification is minor (<0.5°C) and occurs only on calm, sunny days; mid-summer surface temperatures (11.6°C) are considerably warmer than lakes near the coast. Lakes here and farther south exhibit both diurnal and synoptic-scale variations in temperature. The southernmost lakes are warmest, averaging 13.0°C during the mid-summer period. Very shallow lakes (< 1 m) tend to become ice-free earlier and respond faster to air temperature forcing. Lakes in the south are developed in sand dunes and are generally 2-3 m deep. However, where the expanding lake encroaches on a dune flank at an actively eroding bluff, nearshore pools develop that can be 4-7 m deep. During calm and sunny periods lasting 7-10 days, thermal stratification occurs and the water temperature near the lake bed remains 4-7°C cooler than the surface. At one exposure, lacustrine silts were found beneath the aeolian

  4. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.

    2012-12-01

    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and

  5. Pliocene Climate variability at Lake El'gygytgyn, NE Arctic Russia, western Beringia

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Melles, M.; Minyuk, P. S.

    2013-12-01

    The new record from Lake El'gygytgyn, NE arctic Russia provides the first complete record of Pliocene climate change from the terrestrial Arctic. Lake El'gygytgyn evidence shows 3.6-3.4 Ma ago summer temperatures were ~8oC warmer than today when pCO2 was ~400 ppm. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene with low amplitude changes between cold and warm Milankovitch cycles consistent with the LR stack. Sudden stepped cooling events during the Pliocene-Pleistocene transition recorded at Lake E are consistent with marine proxies from the North Pacific and North Atlantic suggesting that polar amplification was recorded across the northern hemisphere in both marine and Arctic terrestrial environments. Summers warmer than present Arctic persisted until ~2.2 Ma, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was really insufficient to support large-scale ice sheets until the early Pleistocene.

  6. CYCLING OF DISSOLVED ELEMENTAL MERCURY IN ARCTIC ALASKAN LAKES. (R829796)

    EPA Science Inventory

    Aqueous production and water-air exchange of elemental mercury (Hg0) are important features of the environmental cycling of Hg. We investigated Hg0 cycling in ten Arctic Alaskan lakes that spanned a wide range in physicochemical characteristics. Dissolved...

  7. Surface water connectivity drives richness and composition of Arctic lake fish assemblages

    USGS Publications Warehouse

    Laske, Sarah M.; Haynes, Trevor B.; Rosenberger, Amanda E.; Koch, Joshua C.; Wipfli, Mark S.; Whitman, Matthew; Zimmerman, Christian E.

    2016-01-01

    This work provides useful baseline information on the processes that drive the relations between patch connectivity and fish species richness and assemblage composition. The environmental processes that organise fish assemblages in Arctic lakes are likely to change in a warming climate.

  8. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  9. Reconstructing Glacial Lake Vitim and its cataclysmic drainage to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Jansen, John D.; Gurinov, Artem L.; Codilean, Alexandru T.; Preusser, Frank

    2013-04-01

    A large glacial lake (23500 km2/3000 km3) was formed when the River Vitim, one of the largest tributaries of the Lena River in Siberia, Russia, was blocked by glaciers from the Kodar Mountains. This lake, Glacial Lake Vitim, was subsequently drained in a large outburst flood that followed the rivers Vitim and Lena to the Arctic Ocean. Evidence of a cataclysmic drainage was first identified in the form of a large bedrock canyon in the area of the postulated ice dam. The enormous dimensions of this feature (6 x 2 x 0.3 km) suggest formation via a drainage event of extreme magnitude, and field inspection downstream revealed giant bars >100 m above the valley floor, similar to those described from cataclysmic floods elsewhere. We present chronological constraints for the duration of the ice dam and for the timing of the flood based on terrestrial cosmogenic nuclides and optically stimulated luminescence. Given that the volume of Glacial Lake Vitim was significantly larger than other well known lakes associated with cataclysmic outbursts-glacial lakes Missoula (northwestern USA) and Chuja-Kuray (Altai Mountains, Russia)-it is pertinent to assess the possible climatic consequences of Lake Vitim's drainage. The outburst flood from Glacial Lake Vitim is likely among the largest floods documented on Earth thus far. Possible impacts include rapid change of climate and precipitation patterns in the area of the former glacial lake, major disturbance along the flood course to the Arctic, and perhaps even regional-scale climatic feedbacks linked to altered sea ice dynamics in the Arctic Ocean.

  10. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  11. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.

    PubMed

    Girard, Catherine; Leclerc, Maxime; Amyot, Marc

    2016-04-01

    Permafrost thaw ponds of the warming Eastern Canadian Arctic are major landscape constituents and often display high levels of methylmercury (MeHg). We examined photodegradation potentials in high-dissolved organic matter (DOC) thaw ponds on Bylot Island (BYL) and a low-DOC oligotrophic lake on Cornwallis Island (Char Lake). In BYL, the ambient MeHg photodemethylation (PD) rate over 48 h of solar exposure was 6.1 × 10(-3) m(2) E(-1), and the rate in MeHg amended samples was 9.3 × 10(-3) m(2) E(-1). In contrast, in low-DOC Char Lake, PD was only observed in the first 12 h, which suggests that PD may not be an important loss process in polar desert lakes. Thioglycolic acid addition slowed PD, while glutathione and chlorides did not impact northern PD rates. During an ecosystem-wide experiment conducted in a covered BYL pond, there was neither net MeHg increase in the dark nor loss attributable to PD following re-exposure to sunlight. We propose that high-DOC Arctic thaw ponds are more prone to MeHg PD than nearby oligotrophic lakes, likely through photoproduction of reactive species rather than via thiol complexation. However, at the ecosystem level, these ponds, which are widespread through the Arctic, remain likely sources of MeHg for neighboring systems. PMID:26938195

  12. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; Kirk, Jane L; O'Driscoll, Nelson J; Wang, Xiaowa; Muir, Derek C G

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. PMID:24909711

  13. Comparative molecular microbial ecology of the spring haptophyte bloom in a greenland arctic oligosaline lake.

    PubMed

    Theroux, Susanna; Huang, Yongsong; Amaral-Zettler, Linda

    2012-01-01

    The Arctic is highly sensitive to increasing global temperatures and is projected to experience dramatic ecological shifts in the next few decades. Oligosaline lakes are common in arctic regions where evaporation surpasses precipitation, however these extreme microbial communities are poorly characterized. Many oligosaline lakes, in contrast to freshwater ones, experience annual blooms of haptophyte algae that generate valuable alkenone biomarker records that can be used for paleoclimate reconstruction. These haptophyte algae are globally important, and globally distributed, aquatic phototrophs yet their presence in microbial molecular surveys is scarce. To target haptophytes in a molecular survey, we compared microbial community structure during two haptophyte bloom events in an arctic oligosaline lake, Lake BrayaSø in southwestern Greenland, using high-throughput pyrotag sequencing. Our comparison of two annual bloom events yielded surprisingly low taxon overlap, only 13% for bacterial and 26% for eukaryotic communities, which indicates significant annual variation in the underlying microbial populations. Both the bacterial and eukaryotic communities strongly resembled high-altitude and high latitude freshwater environments. In spite of high alkenone concentrations in the water column, and corresponding high haptophyte rRNA gene copy numbers, haptophyte pyrotag sequences were not the most abundant eukaryotic tag, suggesting that sequencing biases obscured relative abundance data. With over 170 haptophyte tag sequences, we observed only one haptophyte algal Operational Taxonomic Unit, a prerequisite for accurate paleoclimate reconstruction from the lake sediments. Our study is the first to examine microbial diversity in a Greenland lake using next generation sequencing and the first to target an extreme haptophyte bloom event. Our results provide a context for future explorations of aquatic ecology in the warming arctic. PMID:23251134

  14. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  15. Climate-driven regime shifts in the biological communities of arctic lakes

    PubMed Central

    Smol, John P.; Wolfe, Alexander P.; Birks, H. John B.; Douglas, Marianne S. V.; Jones, Vivienne J.; Korhola, Atte; Pienitz, Reinhard; Rühland, Kathleen; Sorvari, Sanna; Antoniades, Dermot; Brooks, Stephen J.; Fallu, Marie-Andrée; Hughes, Mike; Keatley, Bronwyn E.; Laing, Tamsin E.; Michelutti, Neal; Nazarova, Larisa; Nyman, Marjut; Paterson, Andrew M.; Perren, Bianca; Quinlan, Roberto; Rautio, Milla; Saulnier-Talbot, Émilie; Siitonen, Susanna; Solovieva, Nadia; Weckström, Jan

    2005-01-01

    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. PMID:15738395

  16. Large difference in carbon emission – burial balances between boreal and arctic lakes

    PubMed Central

    Lundin, E. J.; Klaminder, J.; Bastviken, D.; Olid, C.; Hansson, S. V.; Karlsson, J.

    2015-01-01

    Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic – arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink – source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes. PMID:26370519

  17. Large difference in carbon emission - burial balances between boreal and arctic lakes

    NASA Astrophysics Data System (ADS)

    Lundin, E. J.; Klaminder, J.; Bastviken, D.; Olid, C.; Hansson, S. V.; Karlsson, J.

    2015-09-01

    Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic - arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink - source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes.

  18. Declining Sea Ice Extent Links Early Winter Climate to Changing Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Arp, C. D.; Jones, B. M.; Cai, L.

    2015-12-01

    Lakes on the Alaskan North Slope regulate surface energy balance and interactions with permafrost as well as providing important habitat. Winter lake ice regimes (floating-ice or bedfast-ice conditions) determine whether lakes develop and maintain taliks and can support overwintering fish habitat. Lake ice thickness is a key variable determining whether a lake has a bedfast or floating-ice regime. Recent observations suggest a trend towards more lakes with floating-ice conditions due to thinner ice growth, but the broader scale associated climate conditions driving these regime shift are less certain. This study finds that the changing arctic summer/fall sea ice conditions might be affecting lake ice thickness on the North Slope. Late ocean freeze-up near the Alaskan coast leads to warmer weather and more snowfall in the early winter. Warmer early winters and thicker snowpack result in thinner lake ice the following winter thus potentially developing more ice-floating lakes before the start of the summer. Experiments with a regional atmospheric model WRF for two years with very different sea ice conditions indicate that the extent of open water next to the North Slope is a crucial factor for developing thicker snowpack, also warmer air temperature in early winter.

  19. Bubbles trapped in arctic lake ice: Potential implications for methane emissions

    NASA Astrophysics Data System (ADS)

    Wik, Martin; Crill, Patrick M.; Bastviken, David; Danielsson, Åsa; NorbäCk, Elin

    2011-09-01

    The amount of methane (CH4) emitted from northern lakes to the atmosphere is uncertain but is expected to increase as a result of arctic warming. A majority of CH4 is thought to be released through ebullition (bubbling), a pathway with extreme spatial variability that limits the accuracy of measurements. We assessed ebullition during early and late winter by quantifying bubbles trapped in the ice cover of two lakes in a landscape with degrading permafrost in arctic Sweden using random transect sampling and a digital image processing technique. Bubbles covered up to ˜8% of the lake area and were largely dominated by point source emissions with spatial variabilities of up to 1056%. Bubble occurrence differed significantly between early and late season ice, between the two lakes and among different zones within each lake (p < 0.001). Using a common method, we calculated winter fluxes of up to 129 ± 486 mg CH4 m-2 d-1. These calculations are, on average, two times higher than estimates from North Siberian and Alaskan lakes and four times higher than emissions measured from the same lakes during summer. Therefore, the calculations are likely overestimates and point to the likelihood that estimating CH4 fluxes from ice bubble distributions may be more difficult than believed. This study also shows that bubbles quantified using few transects will most likely be unsuitable in making large-scale flux estimates. At least 19 transects covering ˜1% of the lake area were required to examine ebullition with high precision in our studied lakes.

  20. Decadally resolved quantitative temperature reconstruction spanning 5.6 ka at Kurupa Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Boldt, B. R.; Kaufman, D. S.; Briner, J. P.

    2012-12-01

    Pre-instrumental quantitative temperature records, fundamental for placing recent warming in the context of long-term, natural climate variability, are scarce in Arctic Alaska. New non-destructive high-resolution core scanning methods provide a means of constructing downcore inference models for various paleoclimate signals. Here we use visible reflectance spectroscopy (VIS-RS) to measure organic pigment (chlorophyll derivative) concentration in sediments from Kurupa Lake to quantitatively reconstruct air temperature in the north-central Brooks Range, Alaska during the past 5.6 ka. Kurupa Lake (N 68.35°, W -154.61°) is 29.7 km2, 40 m at maximum depth, and is fed by several tributaries, including meltwater from eight rapidly disappearing cirque glaciers. A 6.2-m-long core composed of finely laminated (sub-mm to 5 cm) coarse-grained clays to medium-grained silts was collected in 2010 from the primary depocenter of Kurupa Lake (depth = 34 m). The age model for the core is based on six radiocarbon ages and a Pu profile to capture the 1963 spike and 1953 onset of Pu deposition from atmospheric weapons testing. The split-core face was scanned with a Konica Minolta CM-2600d spectrometer at 2 mm intervals, corresponding to 1-2 years. The relative absorption band depth at 660-670 nm (RABD660-670) was used to quantify total sedimentary organic pigments (primarily diagenetic products of chlorophyll-a) as a proxy for primary productivity. Gridded temperature data from the NCEP reanalysis dataset were used for this study because regional weather stations in the Brooks Range are scarce and records discontinuous. The gridded data perform well in this area and are highly correlated (r = 0.88) with the instrumental record from Barrow. Mean May-through-October (warm half-year) temperature (5-year smoothed) from NCEP reanalysis data (130 years) correlates with inferred organic pigment content from Kurupa Lake (r = 0.76, p < 0.001). We chose k-fold cross-validation (k = 10) to

  1. Spatial and Temporal Changes in the Number, and Area, of Permafrost Controlled Lakes in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Marsh, P.; Pohl, S.; Onclin, C.; Russell, M.

    2006-12-01

    Previous studies have considered lake formation and drainage in the continuous permafrost areas of the Western Canadian Arctic (Mackay, 1990; Marsh et al., 2003), and "disappearing arctic lakes" in Siberia (Smith et al., 2005). Smith et al. (2005) suggested that "the ultimate effect of continued climate warming on high- latitude, permafrost-controlled lakes and wetlands may well be their widespread disappearance". Given the vast number of permafrost controlled lakes in many Arctic regions, these studies raise the concern that climate change will have significant impacts on these lakes, with many lakes disappearing from the landscape, and with significant implications to arctic hydrology and ecology. This paper will discuss changes in both the area and number of permafrost dominated lakes in the Mackenzie Delta region of the Canadian Western Arctic. Like many arctic regions, the Western Canadian Arctic has a vast number of lakes and ponds. These permafrost dominated lakes developed due to a complex interaction of climate, permafrost, and hydrology. Although it is well known that climate warming may (a) increase the size, and number, of lakes due to thermokarst processes, as well as (b) decrease the number of lakes due to lake drainage, the relative importance of each process is not well known and therefore the impact of climate change on permafrost dominated lakes is unknown. The sensitivity of these processes, and complex interaction with climate, is demonstrated by the process of rapid lake drainage. Such drainage is common in the Mackenzie Delta region, and occurs when lakes melt new drainage channels through ice rich permafrost, resulting in the complete, or partial, drainage of the lake in a few hours. The effect of climate change on rapid lake drainage is controlled by a number of processes, with each having a different response to changes in climate. For example: (i) warmer and snowier winters typically result in decreased ice wedge cracking and therefore

  2. Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Vonk, Jorien E.; Holmes, R. Max; Giosan, Liviu; Zimov, Nikita; Eglinton, Timothy I.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high-latitude lakes. The comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter, riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil- and lake-calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. The application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high-latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.

  3. A Dissolved Oxygen Model to Help Manage Water Use in Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Binning, E. A.; White, D. M.; Kotlovenko, A.; Lilly, M. R.; Chambers, M. K.; Hilton, K. M.; Reichardt, D. A.

    2006-12-01

    Dissolved oxygen (DO) in arctic lakes is a key factor for winter survival of fish. Management of water use from lakes indirectly attempts to manage DO through volume limitations of water used on an annual basis, or during the winter ice-cover season. The relationship between water volume, DO budgets, and extraction of water through pumping has historically not been well understood or taken into account for managing water-extraction volumes and timing of extraction. DO budget modeling tools can be used to help predict the amount of DO available at the end of winter. Factors such as bathymetry, DO consumption in the water column and lake sediments, and timing of recharge should be taken into account in using a DO management model for regulating lake water use. The model being presented was developed to describe DO concentrations as they are affected by bacterial respiration, and freezing exclusion. Further development will include metals reduction and removal of water during periods of ice cover. The model was developed with data taken from 2 natural arctic thaw-lakes and 2 flooded gravel mine-site locations on the North Slope of Alaska.

  4. Modeling methane emissions from arctic lakes: Model development and site-level study

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai; Walter Anthony, Katey

    2015-06-01

    To date, methane emissions from lakes in the pan-arctic region are poorly quantified. In order to investigate the response of methane emissions from this region to global warming, a process-based climate-sensitive lake biogeochemical model was developed. The processes of methane production, oxidation, and transport were modeled within a one-dimensional sediment and water column. The sizes of 14C-enriched and 14C-depleted carbon pools were explicitly parameterized. The model was validated using observational data from five lakes located in Siberia and Alaska, representing a large variety of environmental conditions in the arctic. The model simulations agreed well with the measured water temperature and dissolved CH4 concentration (mean error less than 1°C and 0.2 μM, respectively). The modeled CH4 fluxes were consistent with observations in these lakes. We found that bubbling-rate-controlling nitrogen (N2) stripping was the most important factor in determining CH4 fraction in bubbles. Lake depth and ice cover thickness in shallow waters were also controlling factors. This study demonstrated that the thawing of Pleistocene-aged organic-rich yedoma can fuel sediment methanogenesis by supplying a large quantity of labile organic carbon. Observations and modeling results both confirmed that methane emission rate at thermokarst margins of yedoma lakes was much larger (up to 538 mg CH4 m-2 d-1) than that at nonthermokarst zones in the same lakes and a nonyedoma, nonthermokarst lake (less than 42 mg CH4 m-2 d-1). The seasonal variability of methane emissions can be explained primarily by energy input and organic carbon availability.

  5. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Catranis, Catharine; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Arctic lakes are a significant source of the greenhouse gas methane (CH4), but the role that methane oxidizing bacteria (methanotrophs) play in limiting the overall CH4 flux is poorly understood. Here, we used stable isotope probing (SIP) techniques to identify the metabolically active aerobic methanotrophs in upper sediments (0–1 cm) from an arctic lake in northern Alaska sampled during ice-free summer conditions. The highest CH4 oxidation potential was observed in the upper sediment (0–1 cm depth) with 1.59 μmol g wet weight-1 day-1 compared with the deeper sediment samples (1–3 cm, 3–5 cm and 5–10 cm), which exhibited CH4 oxidation potentials below 0.4 μmol g wet weight-1 day-1. Both type I and type II methanotrophs were directly detected in the upper sediment total communities using targeted primer sets based on 16S rRNA genes. Sequencing of 16S rRNA genes and functional genes (pmoA and mxaF) in the 13C-DNA from the upper sediment indicated that type I methanotrophs, mainly Methylobacter, Methylosoma, Methylomonas and Methylovulum miyakonense, dominated the assimilation of CH4. Methylotrophs, including the genera Methylophilus and/or Methylotenera, were also abundant in the 13CDNA. Our results show that a diverse microbial consortium acquired carbon from CH4 in the sediments of this arctic lake.

  6. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  7. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland.

    PubMed

    Trout-Haney, Jessica V; Wood, Zachary T; Cottingham, Kathryn L

    2016-01-01

    Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria-the predominant photoautotrophs found in polar lakes-is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin) across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L(-1) to >400 ng·L(-1) during summer, 2013-2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L(-1)) was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L(-1)). The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future. PMID:27589801

  8. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    NASA Astrophysics Data System (ADS)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovsky, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-06-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  9. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    USGS Publications Warehouse

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  10. Western Arctic Vulnerability to Warming over the past 3.6 Myr: Lessons from sediments drilled at Lake El'gygytgyn, Western Beringia

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Melles, M.; Minyuk, P.; Lake El'gygytgyn Science Team

    2011-12-01

    International Continental Deep drilling (ICDP) at Lake El'gygytgyn (67_30' N, 172_05' E; "Lake E"), recovered lacustrine sediments dating back to 3.6 Ma that provides the first time-continuous Pliocene-Pleistocene paleoclimate record of different interglacials from the terrestrial Arctic. While discontinuous, spatially diverse Pliocene and Pleistocene marine interglacial records are known from the arctic borderlands at the outcrop scale, the Lake El'gygytgyn record is critically important understanding the western Arctic landscape response to different forcing factors operating across the Arctic since the mid-Pliocene warm period. The record is important for evaluating the sensitivity of the Arctic region and to provide a template of Arctic climate variability that can be compared to other regions. Lake E modeling is framed around suites of sensitivity tests of Beringian climate response to the full range of forcing experienced over the last ~3.5 million years using a nested Global-Regional Climate Model (GCM-RCM). The Pliocene portion of the lake record (~3.6-3.0 Ma; a time when atmospheric CO2 levels may have been like today) has nearly twice the sedimentation rate as later Quaternary intervals, partly as a consequence of basin infilling but also presumably due to more rainfall and more active rivers at that time. Studies of spores and pollen from this portion of the core (samples every ~10k) show that the area was once dominated by trees, providing us with the pace of variability in Pliocene Arctic forests, which included species of pine, larch, spruce, fir, alder, and hemlock. Hemlock and tree pine pollen is exceptional for this latitude but the assemblage implies July temperatures nearly 8 degrees warmer than today with ~3 times the annual precipitation. Modeling suggests sustained forests at Lake E in both cold and warm orbits during this interval. The record includes a strong M2 cooling event to conditions like today at ~3.3 Ma, but not glacial climates as

  11. A holocene perspective on algal mercury scavenging to sediments of an Arctic lake.

    PubMed

    Cooke, Colin A; Wolfe, Alexander P; Michelutti, Neal; Balcom, Prentiss H; Briner, Jason P

    2012-07-01

    Anthropogenic activities have increased the amount of mercury (Hg) transported atmospherically to the Arctic. At the same time, recent climate warming is altering the limnology of arctic lakes and ponds, including increases in aquatic primary production. It has been hypothesized that climate-driven increases in aquatic production have enhanced Hg scavenging from the water column, and that this mechanism may account for much of the recent rise in lake sediment Hg. Here, we test the relationship between climate, algal production, and sediment Hg using a well-dated and multiproxy lake sediment record spanning the Holocene from Lake CF3 (Baffin Island, Nunavut, Canada). During the early Holocene, peak (summer) insolation drove July air temperatures higher than present, and resulted in increased autochthonous primary production as recorded by total organic matter, spectrally inferred Chl-a, diatom abundance, and carbon stable isotopic signatures. However, there are no relationships between any of these proxies and sediment Hg concentrations during this interval. Given that the behavior of preindustrial Hg was relatively stable during past intervals of naturally mediated high production, we surmise that postindustrial increases in Hg accumulation within CF3 reflect a multiplicative effect of atmospheric deposition of anthropogenic Hg and increased sedimentation rates. PMID:22687141

  12. Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Cuven, Stéphanie; Francus, Pierre; Lamoureux, Scott

    2011-09-01

    A long sedimentary sequence from East Lake, Cape Bounty, Melville Island (74°55'N; 109°30'W) contains a 4200 year-long clastic varved record of paleohydrologic variations at high resolution. Sedimentary elemental geochemistry from micro X-ray fluorescence (μ-XRF) and sediment fabric variability reflect changes in sediment sources and lacustrine conditions through time. The sedimentary environment progressed from marine in the mid-Holocene, to estuarian from 2195 BC to 243 AD, to fully lacustrine source after 244 AD. Correlation with local meteorological data indicates that varve thickness (VT) is positively correlated with snow depth on May 1st and negatively correlated with mean Sept-May temperatures. Our paleoclimatic reconstruction from VT series revealed high snow accumulation and warm Sept-May months before 1350 BC, and a period of low snow accumulation and cold Sept-May between 1600-1900 AD that may correspond to the Little Ice Age. The general trends of VT series from Cape Bounty are in phase with the δ 18O series in Agassiz Ice Cap, and in anti-phase with the VT series from Lower Murray Lake in the northeastern of Queen's Elizabeth Islands (QEI). Low mean Arctic temperatures coincide with clusters of high sediment yield events at East, Nicolay and South Sawtooth Lakes, especially during 1600-1750 AD and 1810-1910 AD. The East Lake record also exhibits the signature of the Atlantic Multidecadal Oscillation (AMO) for periods: 600-850 AD, 1400-1550 AD and 1750-1850 AD.

  13. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    PubMed Central

    Charvet, Sophie; Vincent, Warwick F.; Comeau, André; Lovejoy, Connie

    2012-01-01

    High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion) overlying a saline, anoxic water column (monimolimnion). The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However, the sequences of other taxa such as ciliates, chrysophytes, Cercozoa, and Telonema varied with depth, between years and during the transition to ice-free conditions. These seasonally active taxa in the surface waters of the lake are thus sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column. PMID:23267353

  14. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  15. Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska.

    PubMed

    Matheus Carnevali, P B; Rohrssen, M; Williams, M R; Michaud, A B; Adams, H; Berisford, D; Love, G D; Priscu, J C; Rassuchine, O; Hand, K P; Murray, A E

    2015-03-01

    The permafrost on the North Slope of Alaska is densely populated by shallow lakes that result from thermokarst erosion. These lakes release methane (CH4 ) derived from a combination of ancient thermogenic pools and contemporary biogenic production. Despite the potential importance of CH4 as a greenhouse gas, the contribution of biogenic CH4 production in arctic thermokarst lakes in Alaska is not currently well understood. To further advance our knowledge of CH4 dynamics in these lakes, we focused our study on (i) the potential for microbial CH4 production in lake sediments, (ii) the role of sediment geochemistry in controlling biogenic CH4 production, and (iii) the temperature dependence of this process. Sediment cores were collected from one site in Siqlukaq Lake and two sites in Sukok Lake in late October to early November. Analyses of pore water geochemistry, sedimentary organic matter and lipid biomarkers, stable carbon isotopes, results from CH4 production experiments, and copy number of a methanogenic pathway-specific gene (mcrA) indicated the existence of different sources of CH4 in each of the lakes chosen for the study. Analysis of this integrated data set revealed that there is biological CH4 production in Siqlukaq at moderate levels, while the very low levels of CH4 detected in Sukok had a mixed origin, with little to no biological CH4 production. Furthermore, methanogenic archaea exhibited temperature-dependent use of in situ substrates for methanogenesis, and the amount of CH4 produced was directly related to the amount of labile organic matter in the sediments. This study constitutes an important first step in better understanding the actual contribution of biogenic CH4 from thermokarst lakes on the coastal plain of Alaska to the current CH4 budgets. PMID:25612141

  16. Toolik Lake project: Terrestrial and freshwater research on change in the Arctic

    SciTech Connect

    Hobbie, J.E.; Peterson, B.J.; Shaver, G.R.

    1992-03-01

    The Toolik Lake research project in the foothills of the North Slope, Alaska, has collected data since 1975 with funding from the NSFs Division of Polar Programs and from the Long Term Ecological Research Program and Ecosystems Research Program of the Division of Biotic Systems and Resources. The broad goal is to understand and predict how ecosystems of tundra, lakes, and streams function and respond to change. One specific goal is to understand the extent of control by resources (bottom-up control) or by grazing and predation (top-down control). The processes and relationships are analyzed in both natural ecosystems and in ecosystems that have undergone long-term experimental manipulations to simulate effects of climate and human-caused change. These manipulations include the fertilization of lakes and steams, the addition and removal of lake trout from lakes, the changing of the abundance of arctic grayling in sections of rivers, the exclusion of grazers from tundra, and the shading, fertilizing, and heating of the tussock tundra. A second specific goal is to monitor year-to-year variability and to measure how rapidly long-term change occurs. The measurements include: for lakes, measurements of temperature, chlorophyll, primary productivity; for streams, nutrients, chlorophyll on riffle rocks, insect and fish abundance, and water flow; and for the tundra, amount of flowering, air temperature, solar radiation, and biomass. A third specific goal is to understand the exchange of nutrients between land and water.

  17. Cyanotoxins in arctic lakes of southwestern Greenland and the potential for toxin transfer within-lake and across the aquatic-terrestrial boundary

    NASA Astrophysics Data System (ADS)

    Trout-Haney, J. V.; Cottingham, K. L.

    2015-12-01

    Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (<5 ng/L) to moderate (>100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.

  18. Late Quaternary paleomagnetic secular variation, relative paleointensity, and environmental magnetism from Cascade Lake, Brooks Range, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Steen, D. P.; Kaufman, D. S.; Stoner, J. S.; Reilly, B. T.

    2015-12-01

    Two sediment cores from Cascade Lake (68.38°N, 154.60°W), Arctic Alaska were selected for paleomagnetic analysis to compare 14C age control with paleomagnetic secular variation (PSV) and relative paleointensity (RPI) age control derived from field models and other local sedimentary records. Rock magnetic experiments were performed to quantify variability in magnetic properties and to infer sediment sourcing during the late Quaternary. U-channels were studied through AF demagnetization of the natural remanent magnetization, and laboratory-induced magnetizations including anhysteretic remanent magnetization (ARM) acquisition, ARM demagnetization, and isothermal remanent magnetization (IRM). Maximum angular deviation values average <2°, indicating a strong, well-defined characteristic remanent magnetization dominated by a low-coercivity component that increases up core. Average inclinations are within 4° of the expected geocentric axial dipole, and major inclination features can be correlated across the two cores. Correlation of inclination changes with the Burial Lake record, 200 km to the west (Dorfman, 2013, unpub. thesis), indicates that the Cascade Lake sedimentary sequence overlying the basal diamicton likely spans at least 16 ka. Cascade Lake sediments may be suitable for RPI estimation using the ARM or IRM as a normalizer, following a more detailed examination of magnetic properties. A systematic offset between the Cascade Lake 14C chronology and PSV and RPI chronologies wiggle-matched to field models suggests a hard-water effect of ~1000 yr, although we cannot rule out the possibility that at least some of the age offset represents a post-depositional remanent magnetization lock-in effect at Cascade Lake. S-ratios (IRM0.3T/SIRM) and ARM-ratios (ARM/SIRM) show a sharp decrease in low-coercivity material across the transition from clastic sediments to organic-rich sediments, followed by an increase in the concentration of fine-grained magnetic material and

  19. Connecting Indigenous Knowledge to Thaw Lake Cycle Research on the Arctic Coastal Plain of Alaska

    NASA Astrophysics Data System (ADS)

    Eisner, W. R.; Cuomo, C. J.; Hinkel, K. M.; Jones, B. M.; Hurd, J.

    2005-12-01

    Thaw lakes cover about 20% of the Arctic Coastal Plain of Alaska. Another 26% is scarred by basins that form when lakes drain, and these drained thaw-lake basins are sites for preferential carbon accumulation as plant biomass. Recent studies in the continuous permafrost zone of Western Siberia suggest that lakes have been expanding in the past several decades in response to regional warming. Anticipated regional warming would likely mobilize sequestered soil organic carbon, resulting in the emission of CO2 and CH4. Our understanding of the processes leading to thaw lake formation, expansion, and drainage in northern Alaska has been limited because models are specific to the flat, young Outer (seaward) Coastal Plain comprising 1/3 of the region. Furthermore, spatial and temporal analysis of lake dynamics is largely restricted to the period since 1948, when aerial photographs first became available across large regions of the Coastal Plain. In order to fill these gaps, we have been interviewing Iñupiaq elders, hunters, and berry pickers from the villages of Atqasuk and Barrow. The objective of these interviews is to obtain accounts of lake formation, expansion and drainage that have occurred within living or oral memory, and extend the record back several generations. To date, we have interviewed fifteen Iñupiat; most of these are people who travel the tundra frequently and have done so for decades. They have first-hand experience of lake drainage, sea cliff and river bank erosion, permafrost degradation, and other landscape changes. Many informants expressed concern that landscape changes are occurring at an increasingly rapid rate. They have identified lakes that have drained, areas where the permafrost is thawing, and places where the sea and river coastline is eroding. We have been able to corroborate reports of lake drainage from our informants with a series of aerial photographs, satellite images, and radiocarbon dates. In many instances, the elders have

  20. A Survey of Submerged Aquatic Vegetation in Three Sub-arctic Lakes near Abisko, Sweden

    NASA Astrophysics Data System (ADS)

    Sampson, J.; Stilson, K.; Varner, R. K.; Crill, P. M.; Wik, M.; Crawford, M.

    2014-12-01

    We surveyed the submerged aquatic vegetation (SAV) in three sub-arctic lakes (Mellan Harrsjön, Inre Harrsjön, and Villasjön) located near Abisko in northern Sweden. Samples were collected using an extended rake, after which they were photographed and the plants identified. We also collected environmental data including temperature, dissolved oxygen, and secchi depth. Percent cover of SAV was taken twice using a 0.5 m. quadrat in shallow areas to track the changes in vegetation growth over time. In addition, we tested surface sediment samples for grain size and carbon, hydrogen, nitrogen, and sulfur composition. The percent cover of SAV in Mellan Harrsjön varied from 36%-49% and in Inre Harrsjön it averaged 19%. Across all three lakes, the average percent clay, silt, and sand was 3.8%, 50.1%, 46%, respectively. Because little research similar to this has been conducted in the area in such a comprehensive manner, these results are important to establish a baseline. Furthermore, these data will help establish how the SAV and environmental data may contribute to methane production and emission in these sub-arctic lakes.

  1. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake.

    PubMed

    Schütte, Ursel M E; Cadieux, Sarah B; Hemmerich, Chris; Pratt, Lisa M; White, Jeffrey R

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake. PMID:27458438

  2. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake

    PubMed Central

    Schütte, Ursel M. E.; Cadieux, Sarah B.; Hemmerich, Chris; Pratt, Lisa M.; White, Jeffrey R.

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake. PMID:27458438

  3. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-12-01

    The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in two ways: the warming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unified modeling framework. Here we adapt a region-specific lake evolution model to the pan-Arctic scale and couple it with a lake methane biogeochemical model to quantify the change of this freshwater methane source in the 21st century. Our simulations show that the extent of thaw lakes will increase throughout the 21st century in the northern lowlands of the pan-Arctic where the reworking of epigenetic ice in drained lake basins will continue. The projected methane emissions by 2100 are 28.3 ± 4.5 Tg CH4 yr-1 under a low warming scenario (Representative Concentration Pathways (RCPs) 2.6) and 32.7 ± 5.2 Tg CH4 yr-1 under a high warming scenario (RCP 8.5), which are about 2.5 and 2.9 times the simulated present-day emissions. Most of the emitted methane originates from nonpermafrost carbon stock. For permafrost carbon, the methanogenesis will mineralize a cumulative amount of 3.4 ± 0.8 Pg C under RCP 2.6 and 3.9 ± 0.9 Pg C under RCP 8.5 from 2006 to 2099. The projected emissions could increase atmospheric methane concentrations by 55.0-69.3 ppb. This study further indicates that the warming of lake sediments dominates the increase of methane emissions from pan-Arctic lakes in the future.

  4. From the Arctic Lake to the Arctic Ocean: Radiogenic Isotope Signature of Transitional Sediments

    NASA Astrophysics Data System (ADS)

    Poirier, A.; Hillaire-Marcel, C.; Veron, A. J.; Stevenson, R.; Carignan, J.

    2011-12-01

    The Arctic Ocean was once an enclosed basin with fresh surface water conditions during the Paleocene and most of the Eocene epochs (e.g. Moran et al. 2004), until a readjustment in high latitude plate tectonics allowed North Atlantic marine water to flow into the Arctic basin some 36 Ma ago (Poirier and Hillaire-Marcel, 2011). This first input was sufficient to overprint the earlier osmium isotopic composition in the basin (ibid.) and deposit marine sediments on the Lomonosov Ridge between 36 Ma and present day. Here, we present Sr and Pb isotope signatures in the transitional layers of the same ACEX sequence from Lomonosov Ridge (ca. 190 to 210 mcd). Bulk sediment samples were leached prior to total dissolution in order to remove the hydrogeneous Sr fraction of the sediment. The Sr isotopic signature of the residual fraction is thought to reflect the origin of the sedimentary load that was deposited before, during, and after the transition (source tracing). Leaching was not required for the Pb isotope analyses as leached residues and bulk sediments yielded similar isotopic composition for the oxic sediments. Moreover, correction for in-situ production is needed within the anoxic lacustrine section (see below), so bulk sediments were measured. Above and below the lacustrine/marine boundary, we note relatively constant source provenances (or mixture of sources). This implies that the relative contributions from regional detrital sedimentary sources, and thus relative erosion rates over surrounding continents, did not change much on the long term scale. On the other hand, a sharp change in the isotopic compositions highlights the transition level itself, with an abrupt shift to low 87Sr/88Sr isotope compositions and by a smaller excursion in all three 204Pb-normalised lead isotopes compositions (corrected for in-situ decay of U). In the light of the recently revised age of the transitional layer (~36 Ma at the lacustrine/marine transition), this isotopic excursion

  5. Drainage network structure and hydrologic behavior of three lake-rich watersheds on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Whitman, M.S.; Jones, Benjamin M.; Kemnitz, R.; Grosse, G.; Urban, F.E.

    2012-01-01

    Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrost and snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fish Creek drainage basin is composed of three watersheds that represent a gradient of the ACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevation model, and river gauging and climate records to better understand ACP watershed structure and processes. We show that connected lakes accounted for 19 to 26% of drainage density among watersheds and most all channels initiate from lake basins in the form of beaded streams. Of the > 2500 lakes in these watersheds, 33% have perennial streamflow connectivity, and these represent 66% of total lake area extent. Deeper lakes with over-wintering habitat were more abundant in the watershed with eolian sand deposits, while the watershed with marine silt deposits contained a greater extent of beaded streams and shallow thermokarst lakes that provide essential summer feeding habitat. Comparison of flow regimes among watersheds showed that higher lake extent and lower drained lake-basin extent corresponded with lower snowmelt and higher baseflow runoff. Variation in baseflow runoff among watersheds was most pronounced during drought conditions in 2007 with corresponding reduction in snowmelt peak flows the following year. Comparison with other Arctic watersheds indicates that lake area extent corresponds to slower recession of both snowmelt and baseflow runoff. These analyses help refine our understanding of how Arctic watersheds are structured and function hydrologically, emphasizing the important role of lake basins and suggesting how future lake change may impact hydrologic

  6. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  7. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  8. Water Balance of Lakes in the Continental Arctic: An Arid Zone Case Study

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; YI, Y.; Birks, S. J.

    2014-12-01

    Stable isotope mass balance using oxygen-18 and deuterium has been applied to study spatial evaporation and water balance trends across continental northern Canada, a remote region of greater than 275,000 km2 characterized by significant seasonal aridity and strong gradients in hydroclimate and vegetation. Calculated catchment-weighted evaporation losses based on a lake survey in the 1990s were estimated at ~10-15% in tundra areas draining into the Arctic Ocean to as high as 60% in forested subarctic areas draining to the Mackenzie River via Great Bear or Great Slave Lakes. Open-water evaporation was found to generally decrease with increasing latitude, accounting for 5 to 50% of total evapotranspiration. Two long-term studies initiated in the 1990s, and carried on for 20+ years, confirm many of the findings of the initial survey and now provide a complimentary perspective of temporal variations in water balance along two representative string-of-lakes drainages located in boreal and tundra settings. For a tundra watershed, the study reveals important lake-order-dependent patterns of evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/precipitation. For a boreal watershed, the analysis also reveals that fluctuations in effective drainage area due to intermittent connectivity between lakes during dry periods can be an important driver of downstream isotopic signals.

  9. Shifts in Identity and Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes

    PubMed Central

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of 37.5 μmol g−1 day−1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations. PMID:22522690

  10. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.

  11. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    NASA Astrophysics Data System (ADS)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  12. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    NASA Astrophysics Data System (ADS)

    Surdu, C. M.; Duguay, C. R.; Fernández Prieto, D.

    2015-11-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than ten months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons, greater biological production and diversity, are confined from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath and Landsat acquisitions were analysed. Results show that melt onset (MO) occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer-ice minimum and water-clear-of-ice dates (WCI), with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes that preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  13. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that

  14. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    SciTech Connect

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010

  15. Hydrogeomorphic contrast between inlet and outlet streams of a high arctic lake influence stream-groundwater exchange

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.; Whittinghill, K. A.

    2012-12-01

    Lakes have been shown to alter basic geomorphic and hydrologic characteristics of outlet streams, compared to inlet streams. However, it is not well understood how lake-influenced differences in channel structure, open-channel hydrology, and subsurface hydrology affect solute transport mechanisms in inlet and outlet streams. Two arctic headwater streams, underlain by continuous permafrost, on Alaska's North Slope were intensively monitored from June to September 2011. Sites were selected to focus on the influence of a single high arctic lake, known as I8-Lake: I8-Inlet, a 300m reach directly upstream of the lake is un-influenced by any upstream lakes, while I8-Outlet is a 300m reach located directly downstream of the lake. Width:depth ratio at I8-Outlet was 33.33 and 20 at I8-Inlet. I8-Outlet shows consistently higher Manning's n values at all discharge conditions. Outlet:inlet discharge ratio declines from 4 to 1 over a 4 month period (June through September) as lake storage from snowmelt drained throughout the thawed season. Shallow groundwater table dynamics at I8-Inlet were largely controlled by precipitation events, whereas I8-Outlet showed a more stable shallow groundwater table, which filled quickly in the spring and remained relatively constant throughout the season. A non-parametric analysis based on objective breakthrough curve decomposition methods was used to analyze over 50 small conservative slug injections from each stream to characterize solute transport differences. We found that more tracer mass was associated with the transient storage timescale on I8-Outlet compared to I8-Inlet (p = 0.005), while more tracer mass was associated with advection/dispersion timescales on I8-Inlet compared to I8-Outlet. Conclusions from this study are twofold: 1) A high arctic lake imposes measurable hydrologic and geomorphic changes along the down-valley river continuum. 2) Hydrogeomorphic differences amongst streams above and below a small arctic lake create

  16. Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters

    PubMed Central

    Comeau, André M.; Harding, Tommy; Galand, Pierre E.; Vincent, Warwick F.; Lovejoy, Connie

    2012-01-01

    Meromictic lakes are useful biogeochemical models because of their stratified chemical gradients and separation of redox reactions down the water column. Perennially ice-covered meromictic lakes are particularly stable, with long term constancy in their density profiles. Here we sampled Lake A, a deep meromictic lake at latitude 83°N in High Arctic Canada. Sampling was before (May) and after (August) an unusual ice-out event during the warm 2008 summer. We determined the bacterial and archaeal community composition by high-throughput 16S rRNA gene tag-pyrosequencing. Both prokaryote communities were stratified by depth and the Bacteria differed between dates, indicating locally driven selection processes. We matched taxa to known taxon-specific biogeochemical functions and found a close correspondence between the depth of functional specialists and chemical gradients. These results indicate a rich microbial diversity despite the extreme location, with pronounced vertical structure in taxonomic and potential functional composition, and with community shifts during ice-out. PMID:22930670

  17. Late Holocene Climate Change Inferred From Varved Proglacial Lake Sediments on Northeastern Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Thomas, E. K.; Briner, J. P.; Axford, Y.

    2007-12-01

    The Arctic has a disproportionately large response to changes in radiative forcing of climate, and glaciers and arctic lacustrine ecosystems respond sensitively to these changes. Lacustrine ecosystems throughout the Arctic are undergoing rapid regime shifts, including dramatically increased primary productivity and changing aquatic floral and faunal assemblages. Our work on organic lake sediments from northeast Baffin Island shows a large increase in primary productivity, changes in insect (Chironomidae) assemblages including the disappearance of cold stenotherms, and a rise in chironomid-inferred summer water temperatures of at least 1.5°C over the past 50 years, reaching temperatures that were unprecedented in the past 5000 years. Here, we pursue the use of varve thickness, an abiotic temperature proxy, to expand our understanding of late Holocene temperature changes on northeast Baffin Island. We obtained a 14C- and 239+240Pu-dated surface core/percussion core pair from a proglacial lake. Together these cores span > 8000 years and the sediments are varved, as verified by the 239+240Pu analysis, for at least the past 700 years. Magnetic susceptibility was high during the early Holocene, decreased to near-zero values during the mid-Holocene and increased during the past 2500 years to reach the highest values seen in the record around 1000 years ago. Loss-on- ignition had an opposite trend, with the highest values in the mid-Holocene. Sedimentation rate was constant during most of the Holocene (0.03 cm yr -1) and increased during the past 1000 years to 0.05 cm yr -1. These parameters indicate that following the absence of an active glacier during the middle Holocene, glacier activity initiated ~2500 years ago and reached peak activity over the last 1000 years. Our ongoing work to obtain a varve-thickness record for at least the last 700 years, and its calibration to a nearby weather station, will be presented.

  18. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean.

    PubMed

    Murton, Julian B; Bateman, Mark D; Dallimore, Scott R; Teller, James T; Yang, Zhirong

    2010-04-01

    The melting Laurentide Ice Sheet discharged thousands of cubic kilometres of fresh water each year into surrounding oceans, at times suppressing the Atlantic meridional overturning circulation and triggering abrupt climate change. Understanding the physical mechanisms leading to events such as the Younger Dryas cold interval requires identification of the paths and timing of the freshwater discharges. Although Broecker et al. hypothesized in 1989 that an outburst from glacial Lake Agassiz triggered the Younger Dryas, specific evidence has so far proved elusive, leading Broecker to conclude in 2006 that "our inability to identify the path taken by the flood is disconcerting". Here we identify the missing flood path-evident from gravels and a regional erosion surface-running through the Mackenzie River system in the Canadian Arctic Coastal Plain. Our modelling of the isostatically adjusted surface in the upstream Fort McMurray region, and a slight revision of the ice margin at this time, allows Lake Agassiz to spill into the Mackenzie drainage basin. From optically stimulated luminescence dating we have determined the approximate age of this Mackenzie River flood into the Arctic Ocean to be shortly after 13,000 years ago, near the start of the Younger Dryas. We attribute to this flood a boulder terrace near Fort McMurray with calibrated radiocarbon dates of over 11,500 years ago. A large flood into the Arctic Ocean at the start of the Younger Dryas leads us to reject the widespread view that Agassiz overflow at this time was solely eastward into the North Atlantic Ocean. PMID:20360738

  19. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments

    SciTech Connect

    Oswald, W W; Anderson, P M; Brown, T A; Brubaker, L B; Hu, F S; Lozhkin, A V; Tinner, W; Kaltenrieder, P

    2006-05-29

    Dating lake sediments by accelerator mass spectrometry (AMS) {sup 14}C analysis of plant macrofossils overcomes one of the main problems associated with dating bulk sediment samples, the presence of old organic matter. Even so, many AMS dates from arctic and boreal sites appear to misrepresent the age of the sediment. To understand the nature of these apparent dating anomalies better, we conducted a series of {sup 14}C dating experiments using samples from Alaskan and Siberian lake-sediment cores. First, to test whether our analytical procedures introduced a sample-mass bias, we obtained {sup 14}C dates for different-sized pieces of single woody macrofossils. In these sample-mass experiments, sized statistically equivalent ages were found for samples as small as 0.05 mg C. Second, to assess whether macrofossil type influenced dating results, we conducted sample-type experiments in which {sup 14}C dates were obtained for different macrofossil types sieved from the same depth in the sediment. We dated materials from multiple levels in sediment cores from Upper Capsule Lake (North Slope, northern Alaska) and Grizzly Lake (Copper River Basin, southern Alaska), and from single depths in other records from northern Alaska. In several of the experiments there were significant discrepancies between dates for different plant tissues, and in most cases wood and charcoal were older than other macrofossil types, usually by several hundred years. This pattern suggests that {sup 14}C dates for woody macrofossils may misrepresent the age of the sediment by centuries, perhaps due to their longer terrestrial residence time and the potential in-built age of long-lived plants. This study identifies why some {sup 14}C dates appear to be inconsistent with the overall age-depth trend of a lake-sediment record, and it may guide the selection of {sup 14}C samples in future studies.

  20. Algal pigments record shifts in dominant primary productivity through the Holocene in an arctic lake

    NASA Astrophysics Data System (ADS)

    Florian, C.; Miller, G. H.; Fogel, M. L.

    2011-12-01

    The character and magnitude of primary productivity in arctic lakes is largely controlled by climate. Organic compounds derived from pigments and preserved in lake sediments allow reconstruction of past abundances of algae that do not leave silicious microfossils. Fossil algal pigments are abundant in lake sediment and can be accurately quantified using High Pressure Liquid Chromatography (HPLC). Several groups of algae produce unique pigments that can be used to reconstruct their past abundance. In Qivitu Highlands Lake, eastern central Baffin Island, the ratio of pigments diatoxantin and lutein exhibits coherent changes through the Holocene. Diatoxanthin is produced by diatoms and chrysophytes, whereas lutein is produced by green algae and higher plants. Because these pigments are the dominant carotenoids in the sediment, they serve as proxies for the dominant group of primary producers. During the Holocene Thermal Maximum and the past century, lutein is much more abundant than diatoxanthin. During Neoglacial cooling and into the Little Ice Age, diatoxanthin becomes the dominant carotenoid. This shift reveals that there was a change in not only the magnitude of algal production, but also the most abundant type. The adaptation of aquatic algal assemblages to changing climate suggests that gross changes in primary productivity may not be suitable to track the abundance of one type of algal microfossil (such as diatoms) without considering the other algal groups. Higher plants also produce lutein, and its abundance is additionally influenced by the presence of terrestrial organic matter as well as aquatic macrophyte plants. We hypothesize that the prevalence of lutein during warm summers is due to a longer ice-free season, allowing the development of a greater biomass of green algae and macrophyte plants as well as possible increases of terrestrial higher plant communities. This is part of a larger study where the lutein to diatoxanthin ratio is compared to organic

  1. Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire, Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Halloran, M.; DeStasio, J.; Erickson, L.; Johnson, J. E.; Varner, R. K.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Lake sediments are an important global carbon sink of both allochthonous and autochthonous inputs. However, lakes are also known to emit carbon in gaseous form, most often as methane (CH4) or carbon dioxide (CO2), which are potent greenhouse gases. As northern latitudes warm, it is increasingly important to understand these gases and the sediments that store them. In July of 2013 we took 48 cores at 16 sites throughout three lakes surrounding a mire underlain by degrading permafrost in sub-arctic Sweden. The goal was to characterize the sedimentology and geochemistry of the lake sediments to better understand the production, distribution, and flux of CO2 and CH4 from these lakes. Villasjön is a shallow lake less than 1.5 meters deep, Mellan Harrsjön has a maximum depth of 7 meters and is stream-fed, and Inre Harrsjön has a maximum depth of 5 meters and is connected to Mellan Harrsjön. Published radiocarbon dates suggest that all three lakes formed approximately 3400 years ago. At each sample site, we retrieved 2 to 4 cores from the lake bottom, approximately 40-80 cm in length. The cores were sub-sampled for measurements of bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer, and grain size using a laser particle size analyzer. Headspace CO2 and CH4 by gas chromatography and infrared gas analysis (IRGA) yielded production rates and CH4 sediment concentrations. Dissolved inorganic carbon (DIC) from porewater extractions were analyzed using IRGA and stable carbon isotopes of DIC were analyzed via a Quantum Cascade Laser. The recovered sediments in the cores from all three lakes were composed of three layers: an upper layer of organic rich sediment (30-40 cm thick), a middle transition layer of mixed organic and lithogenic materials (5-10 cm thick), and a deep layer of grey lithogenic clay with less organic carbon (of variable thickness). Preliminary results from the 12 Villasjön sites indicate that CH4 is present and produced from the

  2. Distribution of total mercury and methylmercury in lake sediments in Arctic Ny-Ålesund.

    PubMed

    Jiang, Shan; Liu, Xiaodong; Chen, Qianqian

    2011-05-01

    The toxicities and bioavailabilities of total mercury (THg) and methylmercury (MeHg) in aquatic systems have made them the subjects of recent research. In this study, we collected a lake sediment core from Ny-Ålesund in Svalbard and analyzed the distributions of THg and MeHg in the sediments. The increased trend of THg was caused by anthropogenic contamination since the 14th century through long-range transportation, especially after the industrial era. However, the peak values of Hg in surface sediment samples could be explained by the increased algal scavenging process in recent decades. All the biogeochemical proxies (e.g., pigments and diatom biomass) revealed recent sharp increases in aquatic primary production due to the current climate warming. Rock-Eval analyses indicated that algal-derived organic matter took up a large portion, and quantitative calculation showed that 89.6-95.8% of the Hg in post-1950 could be explained by scavenging. The distribution of MeHg has a close relationship with total Hg and organic matter. The oxidation-reduction condition is one of the possible factors affecting the methylation rates in H2 lake sediments. Higher algal productivity and organic matter actually led to the increased trend of methylation in the uppermost sediment. This study supports some new key hypotheses on climate-driven factors affecting Hg and MeHg cycling in High Arctic lake sediments. PMID:21306754

  3. Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics.

    PubMed

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Paquet, Serge; Beaulne, Jean-Sébastien; Maury-Brachet, Régine; Lucotte, Marc; Nedjai, Rachid; Ferrari, Christophe P

    2011-04-15

    Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220mm, a standardized age of 5 years or for individualuals did not exceed the 0.5mg kg(-1) fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes. PMID:21371737

  4. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Hinkel, Kenneth M.; Jones, Benjamin M.; Eisner, Wendy R.; Cuomo, Chris J.; Beck, R.A.; Frohn, R.

    2007-01-01

    Thousands of lakes are found on the Arctic Coastal Plain of northern Alaska and northwestern Canada. Developed atop continuous permafrost, these thaw lakes and associated drained thaw lake basins are the dominant landscape elements and together cover 46% of the 34,570 km2western Arctic Coastal Plain (WACP). Lakes drain by a variety of episodic processes, including coastal erosion, stream meandering, and headward erosion, bank overtopping, and lake coalescence. Comparison of Landsat multispectral scanner (MSS) imagery from the mid-1970s to Landsat 7 enhanced thematic mapper (ETM+) imagery from around 2000 shows that 50 lakes completely or partially drained over the approximately 25 year period, indicating landscape stability. The lake-specific drainage mechanism can be inferred in some cases and is partially dependant on geographic settings conducive to active erosion such as riparian and coastal zones. In many cases, however, the cause of drainage is unknown. The availability of high-resolution aerial photographs for the Barrow Peninsula extends the record back to circa 1950; mapping spatial time series illustrates the dynamic nature of lake expansion, coalescence, and drainage. Analysis of these historical images suggests that humans have intentionally or inadvertently triggered lake drainage near the village of Barrow. Efforts to understand landscape processes and identify events have been enhanced by interviewing Iñupiaq elders and others practicing traditional subsistence lifestyles. They can often identify the year and process by which individual lakes drained, thereby providing greater dating precision and accuracy in assessing the causal mechanism. Indigenous knowledge has provided insights into events, landforms, and processes not previously identified or considered.

  5. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Hinkel, Kenneth M.; Jones, Benjamin M.; Eisner, Wendy R.; Cuomo, Chris J.; Beck, Richard A.; Frohn, Robert

    2007-06-01

    Thousands of lakes are found on the Arctic Coastal Plain of northern Alaska and northwestern Canada. Developed atop continuous permafrost, these thaw lakes and associated drained thaw lake basins are the dominant landscape elements and together cover 46% of the 34,570 km2 western Arctic Coastal Plain (WACP). Lakes drain by a variety of episodic processes, including coastal erosion, stream meandering, and headward erosion, bank overtopping, and lake coalescence. Comparison of Landsat multispectral scanner (MSS) imagery from the mid-1970s to Landsat 7 enhanced thematic mapper (ETM+) imagery from around 2000 shows that 50 lakes completely or partially drained over the approximately 25 year period, indicating landscape stability. The lake-specific drainage mechanism can be inferred in some cases and is partially dependant on geographic settings conducive to active erosion such as riparian and coastal zones. In many cases, however, the cause of drainage is unknown. The availability of high-resolution aerial photographs for the Barrow Peninsula extends the record back to circa 1950; mapping spatial time series illustrates the dynamic nature of lake expansion, coalescence, and drainage. Analysis of these historical images suggests that humans have intentionally or inadvertently triggered lake drainage near the village of Barrow. Efforts to understand landscape processes and identify events have been enhanced by interviewing Iñupiaq elders and others practicing traditional subsistence lifestyles. They can often identify the year and process by which individual lakes drained, thereby providing greater dating precision and accuracy in assessing the causal mechanism. Indigenous knowledge has provided insights into events, landforms, and processes not previously identified or considered.

  6. Response of ice cover on shallow Arctic lakes to contemporary climate conditions: Numerical modeling and remote sensing data analysis

    NASA Astrophysics Data System (ADS)

    Duguay, C.; Surdu, C.; Brown, L.; Samuelsson, P.

    2012-04-01

    Lake ice cover has been shown to be a robust indicator of climate variability and change. Recent studies have demonstrated that break-up dates, in particular, have been occurring earlier in many parts of the Northern Hemisphere over the last 50 years in response to warmer climatic conditions in the winter and spring seasons. The impacts of trends in air temperature and winter precipitation over the last five decades and those projected by global climate models will affect the timing and duration of ice cover (and ice thickness) on Arctic lakes. This will likely, in turn, have an important feedback effect on energy, water, and biogeochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that freeze to their bed in winter since thinner ice covers are expected to develop. Shallow lakes of the coastal plain of northern Alaska, and other similar regions of the Arctic, have likely been experiencing changes in seasonal ice thickness (and phenology) over the last few decades but these have not yet been documented. This paper presents results from a numerical lake ice modeling experiment and the analysis of ERS-1/2 synthetic aperture radar (SAR) data to elucidate the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA)to climate conditions over the last three decades. New downscaled data specific for the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre regional atmospheric model (RCA4) was used to force the Canadian Lake Ice Model (CLIMo) for the period 1979-2010. Output from CLIMo included freeze-up and break-up dates as well as ice thickness on a daily basis. ERS-1/2 data was used to map areas of shallow lakes that freeze to bed and when this happens (timing) in winter for the period 1991

  7. Arctic Summer Surface Energy Balance at Two Coastal Drained Lake Basins, Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Liljedahl, A.; Hinzman, L.; Harazono, Y.; Zona, D.; Oechel, W.

    2008-12-01

    We examined the partitioning of the summer surface energy balance at two coastal drained lake basins using measurements from two eddy covariance towers in Barrow, Alaska. Drained lake basins are a common land feature covering approximately one fourth of the Arctic Coastal Plain but have been given limited attention. Overall, wetlands are extensive in the region in spite of an annual precipitation close to a desert and a negative summer P-ET. Included in the analysis was summer 2007, which experienced unusually high air temperatures and low precipitation compared to the long term mean. During the five analyzed summers, most of the energy available at the ground surface was partitioned into sensible heat flux despite saturated or nearly saturated near-surface soils. The maritime conditions resulted in a cool and close to saturated air mass with a few exceptions on individual days. With a ground surface often warmer than the air above and limited air vapor pressure deficits, the dissipation of the available heat at the ground surface was mainly partitioned into sensible heat flux resulting in midday Bowen Ratios (sensible divided by latent heat flux) above unity. Total daily latent heat flux presented in mm of water varied between 0.2 - 4.2 mm/day with a Jun-Aug mean of 1.5 mm. In 80% of the analyzed days, mean midday evapotranspiration occurred below the equilibrium rate resulting in a Priestley-Taylor alpha value below unity. The equilibrium evaporation rates of inland arctic wetlands have previously shown to occur at or above equilibrium rate. Further, the energy balance partitioning of a wetland located in a maritime or continental climate show differences such as in the Bowen Ratio. It is therefore necessary to analyze coastal and inland areas separately when examining the hydrological response of wetlands to climate changes.

  8. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images

    USGS Publications Warehouse

    Zhan, Shengan; Beck, Richard A.; Hinkel, Kenneth M.; Liu, Hongxing; Jones, Benjamin M.

    2014-01-01

    The formation of oriented thermokarst lakes on the Arctic Coastal Plain of northern Alaska has been the subject of debate for more than half a century. The striking elongation of the lakes perpendicular to the prevailing wind direction has led to the development of a preferred wind-generated gyre hypothesis, while other hypotheses include a combination of sun angle, topographic aspect, and/or antecedent conditions. A spatio-temporal analysis of oriented thermokarst lake gyres with recent (Landsat 8) and historical (Landsat 4, 5, 7 and ASTER) satellite imagery of the Arctic Coastal Plain of northern Alaska indicates that wind-generated gyres are both frequent and regionally extensive. Gyres are most common in lakes located near the Arctic coast after several days of sustained winds from a single direction, typically the northeast, and decrease in number landward with decreasing wind energy. This analysis indicates that the conditions necessary for the Carson and Hussey (1962) wind-generated gyre for oriented thermokarst lake formation are common temporally and regionally and correspond spatially with the geographic distribution of oriented lakes on the Arctic Coastal Plain. Given an increase in the ice-free season for lakes as well as strengthening of the wind regime, the frequency and distribution of lake gyres may increase. This increase has implications for changes in northern high latitude aquatic ecosystems, particularly if wind-generated gyres promote permafrost degradation and thermokarst lake expansion.

  9. Correlates between Feeding Ecology and Mercury Levels in Historical and Modern Arctic Foxes (Vulpes lagopus)

    PubMed Central

    Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D.

    2013-01-01

    Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype (‘coastal’ or ‘inland’) for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet. PMID:23671561

  10. Sedimentary Record of the Last two Interglacials in the Terrestrial Canadian Arctic (Pingualuit Crater Lake, Nunavik)

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Guyard, H.; Pienitz, R.; Hausmann, S.; Francus, P.; Salonen, V.; Luoto, T.; Black, J.; Lamothe, M.; Zolitschka, B.; Larocque, I.

    2009-05-01

    The Pingualuit crater lake (Nunavik, Canada) resulted from a meteoritic impact that occurred ca. 1.4 million years ago. Due to its unique morphometry (depth and shape), the lake bottom may have escaped glacial erosion. Based on a punctual seismic profile acquired using a 12 kHz Knudsen echosounder and using both gravity and piston corers, we recovered the uppermost 8.5 m of sediments. High-resolution physical (CAT- Scan, Multi Sensor Core Logger, diffuse spectral reflectance), geochemical (ITRAX core scanner, carbon and nitrogen contents, δ13C of the organic matter) and magnetic (magnetic susceptibility, natural, anhysteretic, isothermal and saturation isothermal remanent magnetizations) analyses were performed. Two main lithofacies were clearly identified by the different measurements and likely represent successive interglacial/glacial cycles. Most of the sediment consists of light grey silts containing several angular rock fragments, that is characterized by very low organic carbon content, relatively high density and magnetic susceptibility values, suggesting a deposition during glacial conditions. Interbedded between this facies are at least two decimetre-thick, organic-rich and finely laminated intervals likely representing ice free periods. The presence of diatoms, chrysophytes and chironomid head capsules in smear and microscope slides from these two intervals supports this hypothesis. In addition, preliminary Infrared Stimulated Luminescence (IRSL) measurements indicate that the upper organic-rich layer has an age coeval with the last interglacial (Oxygen Isotope Stage 5), while the age of the lower organic-rich layer is consistent with an older interglacial, likely the Oxygen Isotope Stage 7. The sedimentary infill thus constitutes a unique long-term terrestrial record of environmental and climatic conditions in the Canadian Arctic. Furthermore, because these sediments escaped glacial erosion, it suggests the presence of a subglacial lake during the last

  11. Method- and species-specific detection probabilities of fish occupancy in Arctic lakes: Implications for design and management

    USGS Publications Warehouse

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2013-01-01

    Studies examining species occurrence often fail to account for false absences in field sampling. We investigate detection probabilities of five gear types for six fish species in a sample of lakes on the North Slope, Alaska. We used an occupancy modeling approach to provide estimates of detection probabilities for each method. Variation in gear- and species-specific detection probability was considerable. For example, detection probabilities for the fyke net ranged from 0.82 (SE = 0.05) for least cisco (Coregonus sardinella) to 0.04 (SE = 0.01) for slimy sculpin (Cottus cognatus). Detection probabilities were also affected by site-specific variables such as depth of the lake, year, day of sampling, and lake connection to a stream. With the exception of the dip net and shore minnow traps, each gear type provided the highest detection probability of at least one species. Results suggest that a multimethod approach may be most effective when attempting to sample the entire fish community of Arctic lakes. Detection probability estimates will be useful for designing optimal fish sampling and monitoring protocols in Arctic lakes.

  12. Multi-proxy evidence for climate-driven changes in arctic lakes from northern Russia over the Holocene.

    NASA Astrophysics Data System (ADS)

    Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari

    2010-05-01

    Average arctic temperatures have increased at almost twice the rate of the rest of the world over the last 100 years and climate projections suggest this trend is likely to continue resulting in an additional warming of 2 - 3°C in annual mean air temperatures by 2050. Freshwater ecosystems occupy a substantial area of the terrestrial environment in the Arctic and are particularly sensitive to temperature increases which may lead to profound changes in catchment characteristics, permafrost, hydrology and nutrient availability. Therefore it is important to understand how past changes in climate have affected these ecosystems. In this paper we present one of the first quantitative multi-proxy climate records from arctic Siberia. The affect of early - mid Holocene and recent climate change on arctic lakes in northern Russia were investigated in multi-proxy studies. The past climate was reconstructed using chironomid inference models to estimate mean July air temperatures and trends in continentality. Stable isotopes and LOI were analysed to infer past changes in sediment organic matter. Near-infrared spectroscopy (NIRS) and/or diatoms were used to infer changes in lake water total organic carbon and algal pigments and/or diatoms were used to infer changes in productivity and light penetration in the lake. Analyses of a sediment core from a tundra lake (Lake Kharinei) in north-eastern European Russia show significant assemblage changes in diatoms, chironomids and pigments, which coincide with climate-driven vegetation shifts from open birch forest to spruce forest and then to tundra over the Holocene. During the open birch phase of the late Glacial - early Holocene, chironomid-inferred reconstructions suggest that the climate was approximately 1 - 3°C warmer and more continental than present. Isotopic analyses indicate a productive environment receiving a significant input of organic material from terrestrial plants into the lake. Both diatoms and NIRS-TOC also

  13. Examining the Mid- Brunhes Event in the Terrestrial Arctic: an Organic Geochemical Record from Lake El'gygytgyn, Russia

    NASA Astrophysics Data System (ADS)

    Habicht, H.; Castañeda, I. S.; Brigham-Grette, J.

    2015-12-01

    The characteristic glacial and interglacial cycles of the Pleistocene underwent a climatic transition at ~430 ka known as the Mid- Brunhes Event (MBE). Numerous studies have noted that after this transition, the amplitude of the climatic cycles increased. Despite the indication of an MBE signal in many globally distributed paleoclimate records, the geographic extent of the climatic transition remains unknown. While the MBE is expressed in a number of southern hemisphere records its presence in northern hemisphere and terrestrial records is debated. Lake El'gygytgyn is located in the far- east Russian Arctic and provides the longest, most continuous record of Arctic climate (3.6 Ma). This study examines organic biomarkers in the Lake El'gygytgyn sediment core to determine if the MBE is expressed in the terrestrial Arctic. The paleoclimate reconstruction spans the interval of 0- 730 ka at a resolution of ~1.5 ka. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are utilized to reconstruct temperature variability and plant leaf wax n-alkanes are used to examine vegetation changes throughout the study interval. Statistical analysis of this, and other existing proxy data, indicates that a signal of the MBE is preserved in the Lake El'gygytgyn sediment record. BrGDGT temperature reconstructions indicate the terrestrial Arctic experienced both the warmest interglacial periods and coldest glacial periods after the MBE climatic transition. Arid glacial intervals and wetter interglacials are recorded by changes in the average chain length of n- alkanes, with wetter interglacials predominating after the MBE. Possibly, changes in Antarctic bottom water production and associated variability in North Pacific upwelling are responsible for transmitting the MBE signal from the southern hemisphere to Lake El'gygytgyn.

  14. The influence of Holocene climate and catchment ontogeny on organic carbon cycling in low-Arctic lakes of SW Greenland

    NASA Astrophysics Data System (ADS)

    Leng, Melanie; Anderson, N. John

    2014-05-01

    Arctic soils represent a major store of organic carbon which is now under threat from regional warming. While much of the carbon is mineralized and released directly to the atmosphere as CO2, some is moved laterally as dissolved and particulate organic C into streams and lakes where it fuels microbial processes and is degassed, some however is buried in lake sediments, where it is effectively removed from the terrestrial C cycle. It is possible to consider how catchment-lake C interactions have varied under natural climate variability and soil/vegetation development by using lake sediment records. Here we present Holocene organic C concentration and isotope data (TOC, C/N, δ13C) from a series of small lakes along Kangerlussuaq (coast to ice cap margin), southwest Greenland, a transect that covers a natural climate gradient and range of limnological conditions. Most Arctic lakes, including those in coastal west Greenland are considered to be net heterotrophic (ecosystem respiration is greater than primary production), i.e. they are net CO2 sources. However, there is evidence that some of the inland Kangerlussuaq lakes are autotrophic. The coastal lakes formed c. 11 cal. ka BP following initial retreat of the ice sheet margin while the inland lakes formed between 8-7 ka BP after its rapid retreat eastwards. The sediment C isotope data suggest a complex Holocene history of interactions between the lakes and their catchments, reflecting glacial retreat, soil and vegetation development and climate-driven hydrological change that had a strong influence on transfer of terrestrially-derived carbon from land to water. At the coast, after 8.5 cal. ka BP, soil development and associated vegetation processes began to exert a strong control on terrestrial-aquatic C-cycling. This is not seen in the inland lakes until ca. 5 ka BP with the maximum extent of dwarf shrub tundra. Some of the lakes respond to Neoglacial cooling from around 5-4 cal. ka BP, when there was a change in

  15. Microsatellite and mtDNA analysis of lake trout, Salvelinus namaycush, from Great Bear Lake, Northwest Territories: impacts of historical and contemporary evolutionary forces on Arctic ecosystems

    PubMed Central

    Harris, Les N; Howland, Kimberly L; Kowalchuk, Matthew W; Bajno, Robert; Lindsay, Melissa M; Taylor, Eric B

    2013-01-01

    Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post-glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d-loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present-day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post-glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long-lived salmonids in pristine, interconnected habitats. PMID:23404390

  16. Spatial and Temporal Patterns in Black Carbon Deposition to Dated Fennoscandian Arctic Lake Sediments from 1830 to 2010.

    PubMed

    Ruppel, Meri M; Gustafsson, Örjan; Rose, Neil L; Pesonen, Antto; Yang, Handong; Weckström, Jan; Palonen, Vesa; Oinonen, Markku J; Korhola, Atte

    2015-12-15

    Black carbon (BC) is fine particulate matter produced by the incomplete combustion of biomass and fossil fuels. It has a strong climate warming effect that is amplified in the Arctic. Long-term trends of BC play an important role in assessing the climatic effects of BC and in model validation. However, few historical BC records exist from high latitudes. We present five lake-sediment soot-BC (SBC) records from the Fennoscandian Arctic and compare them with records of spheroidal carbonaceous fly-ash particles (SCPs), another BC component, for ca. the last 120 years. The records show spatial and temporal variation in SBC fluxes. Two northernmost lakes indicate declining values from 1960 to the present, which is consistent with modeled BC deposition and atmospheric measurements in the area. However, two lakes located closer to the Kola Peninsula (Russia) have recorded increasing SBC fluxes from 1970 to the present, which is likely caused by regional industrial emissions. The increasing trend is in agreement with a Svalbard ice-core-BC record. The results suggest that BC deposition in parts of the European Arctic may have increased over the last few decades, and further studies are needed to clarify the spatial extent of the increasing BC values and to ascertain the climatic implications. PMID:26575216

  17. Pliocene and Quaternary climate evolution of the Beringian Arctic reconstructed from new geochemical and biological data of Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Wennrich, V.; Melles, M.; Andreev, A.; Tarasov, P. E.; Nowaczyk, N.; Minyuk, P.; Brigham-Grette, J.; El'gygytgyn Scientific Party

    2011-12-01

    High Arctic Lake El'gygytgyn (67°30' N, 172°05' E) is a 3.6 Ma old meteorite crater lake located in Central Chukotka/ NE Russia, a region that had escaped the continental-scale Cenozoic glaciations. With its continuous and undisturbed sequence since the mid-Pliocene, the lake comprises the most long-lasting climate archive of the terrestrial Arctic. In spring 2009, the ICDP El'gygytgyn Drilling Project recovered the 317-m long lacustrine sediment record of Lake El'gygytgyn. Its unique archive enables for the first time to investigate the climate evolution of the Arctic border-lands from the warmth of the mid-Pliocene, over the onset of the Northern Hemisphere Glaciation (NHG) into the 41 ka and 100 ka Quaternary glacial/interglacial cycles. Thus, it closes existing knowledge gaps of the Arctic response to global Pliocene and Pleistocene climate changes. In a region influenced by both Siberian and North Pacific air- and water-masses, results from Lake El'gygytgyn compared to those of long East Asian continental, but also marine records from the North Pacific and the Arctic Ocean will gain new insights into Northern Hemisphere atmospheric and oceanic tele-connections, their leads and lags, and thus, the driving factors and feedback mechanisms. Pollen and geochemical data from the Pliocene section of Lake El'gygytgyn suggest much warmer conditions in the Arctic with boreal forests around the lake and an enhanced lake productivity, only interrupted by a major deterioration at ca. 3.3-3.2 Ma. During the late Pliocene, a change in the vegetation pattern around the lake to more tundra-dominated habitats indicates the onset of the NHG. But the pollen and geochemical data imply a rather gradual than abrupt change to cooler conditions in Central Chukotka until the early Pleistocene, interrupted by various distinct climatic deteriorations. After relatively stable hydrological conditions in the latest Pliocene, a gradual shift to less oxygenated lake-bottom conditions until

  18. Variation in scale shape among alternative sympatric phenotypes of Arctic charr Salvelinus alpinus from two lakes in Scotland.

    PubMed

    Garduño-Paz, M V; Demetriou, M; Adams, C E

    2010-04-01

    Landmark-based geometric morphometric analysis was used to detect differences in scale shape between ecologically distinct phenotypes of Arctic charr Salvelinus alpinus coexisting in the same lake. Relative warp analysis and standard multivariate analyses of the partial warps, obtained after a Procrustes superimposition, showed that scale landmarks were efficient in discriminating among two closely related alternative phenotypes within each of the two lakes. In Loch Tay, S. alpinus exhibited a bimodal body size-frequency distribution among sexually mature fish, whereas in Loch Awe, S. alpinus are unimodal in body size but segregated into two distinct spawning phenotypes. In both lakes, alternative phenotypes showed significant differences in foraging ecology, habitat use and life history. It is probable that differences in scale shape reflect differences in ecology of these forms. PMID:20537027

  19. The natural history of Echinorhynchus bothniensis Zdzitowiecki and Valtonen, 1987 (Acanthocephala) in a high Arctic lake.

    PubMed

    Aura, Raija-Liisa; Benesh, Daniel P; Palomaki, Risto; Tellervo Valtonen, E

    2015-01-01

    The acanthocephalan Echinorhynchus bothniensis Zdzitowiecki and Valtonen, 1987 differs from most other species in the genus Echinorhynchus Zoega in Müller, 1776 by infecting mysids (order Mysida) instead of amphipods (order Amphipoda) as intermediate hosts. Here we report on the occurrence of E. bothniensis in mysids (Mysis segerstralei Audzijonytė et Väinölä) and in its fish definitive hosts in a high Arctic lake. Out of 15 907 sampled mysids, 4.8% were infected with a mean intensity of 1.05 worms (range 1-5), although there was notable variation between samples taken in different years and sites. Larger mysids appear more likely to be infected. Of five fish species sampled, charr,Salvelinus alpinus (Linnaeus), and a benthic-feeding whitefish morph, Coregonus lavaretus (Linnaeus), were the most heavily infected (mean abundances of 80 and 15, respectively). The adult parasite population in fish exhibited a female-biased sex ratio (1.78 : 1). Although E. bothniensis is rather unique in infecting mysids, many aspects of its natural history mirror that of other acanthocephalan species. PMID:26373432

  20. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    PubMed Central

    Kao-Kniffin, J.; Woodcroft, B.J.; Carver, S.M.; Bockheim, J.G.; Handelsman, J.; Tyson, G.W.; Hinkel, K.M.; Mueller, C.W.

    2015-01-01

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures. PMID:26681584

  1. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    SciTech Connect

    Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; Bockheim, J. G.; Handelsman, J.; Tyson, G. W.; Hinkel, K. M.; Mueller, C. W.

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.

  2. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    DOE PAGESBeta

    Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; Bockheim, J. G.; Handelsman, J.; Tyson, G. W.; Hinkel, K. M.; Mueller, C. W.

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less

  3. Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska.

    PubMed

    Kao-Kniffin, J; Woodcroft, B J; Carver, S M; Bockheim, J G; Handelsman, J; Tyson, G W; Hinkel, K M; Mueller, C W

    2015-01-01

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus 'Methanoflorens stordalenmirensis' were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus 'M. stordalenmirensis' across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures. PMID:26681584

  4. A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2015-07-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate-vegetation-land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.

  5. Abundance and patterns of transparent exopolymer particles (TEP) in Arctic floodplain lakes of the Mackenzie River Delta

    NASA Astrophysics Data System (ADS)

    Chateauvert, C. Adam; Lesack, Lance F. W.; Bothwell, Max L.

    2012-12-01

    The Mackenzie River Delta is a lake-rich arctic floodplain that receives high inputs of dissolved organic matter (DOM) and suspended particulates from allochthonous and autochthonous sources, and may transfer carbon from dissolved to particulate phase via in situ formation of transparent exopolymer particles (TEP). TEP provides food for grazers, surfaces for bacteria, and increased potential for aggregation and sedimentation of organic matter. During open water 2006, we tracked TEP abundances in three Delta lakes representing gradients that include declining river-to-lake connection times, increasing levels of dissolved organic carbon (DOC), and declining chromophoric-DOM (CDOM). Unexpectedly, TEP abundances were highest immediately after the flood, when autochthonous autotrophic production was at a seasonal low and CDOM a seasonal high. Moreover, the lake with the strongest riverine influence and lowest levels of autochthonous autotrophic production had the highest mean TEP-carbon (TEP-C) concentrations among the lakes. The mean proportion of particulate organic carbon (POC) represented by TEP-C increased with increasing river connection time, and appears to represent a substantial proportion of POC in Mackenzie Delta Lakes. Unexpectedly, the TEP gradient was most strongly related to CDOM (river water source) rather than overall DOC. Variations in CDOM accounted for 53% of TEP-C variation among the lakes, indicating allochthonous matter was the most important source of TEP. DOC release from in situ macrophytes during periods of high photosynthesis may contribute to TEP formation in the lake with lowest riverine influence, but pH levels >9.5 driven by the high photosynthetic rates complicate the interpretation of results from this lake.

  6. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Engram, M.; Anthony, K. W.; Meyer, F. J.; Grosse, G.

    2013-11-01

    Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns from floating and grounded lake ice in two regions of Alaska: the northern Seward Peninsula (NSP) where methane ebullition is common in lakes and the Arctic Coastal Plain (ACP) where ebullition is relatively rare. We found average backscatter intensities of -13 dB and -16 dB for late winter floating ice on the NSP and ACP, respectively, and -19 dB for grounded ice in both regions. Polarimetric analysis revealed that the mechanism of L-band SAR backscatter from floating ice is primarily roughness at the ice-water interface. L-band SAR showed less contrast between floating and grounded lake ice than C-band; however, since L-band is sensitive to ebullition bubbles trapped by lake ice (bubbles increase backscatter), this study helps elucidate potential confounding factors of grounded ice in methane studies using SAR.

  7. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    SciTech Connect

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-08-16

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  8. Diet of yellow-billed loons (Gavia adamsii) in Arctic lakes during the nesting season inferred from fatty acid analysis

    USGS Publications Warehouse

    Haynes, T B; Schmutz, Joel A.; Bromaghin, Jeffrey; Iverson, S J; Padula, V M; Rosenberger, A E

    2015-01-01

    Understanding the dietary habits of yellow-billed loons (Gavia adamsii) can give important insights into their ecology, however, studying the diet of loons is difficult when direct observation or specimen collection is impractical. We investigate the diet of yellow-billed loons nesting on the Arctic Coastal Plain of Alaska using quantitative fatty acid signature analysis. Tissue analysis from 26 yellow-billed loons and eleven prey groups (nine fish species and two invertebrate groups) from Arctic lakes suggests that yellow-billed loons are eating high proportions of Alaska blackfish (Dallia pectoralis), broad whitefish (Coregonus nasus) and three-spined stickleback (Gasterosteus aculeatus) during late spring and early summer. The prominence of blackfish in diets highlights the widespread availability of blackfish during the early stages of loon nesting, soon after spring thaw. The high proportions of broad whitefish and three-spined stickleback may reflect a residual signal from the coastal staging period prior to establishing nesting territories on lakes, when loons are more likely to encounter these species. Our analyses were sensitive to the choice of calibration coefficient based on data from three different species, indicating the need for development of loon-specific coefficients for future study and confirmation of our results. Regardless, fish that are coastally distributed and that successfully overwinter in lakes are likely key food items for yellow-billed loons early in the nesting season.

  9. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut)

    NASA Astrophysics Data System (ADS)

    Bouchard, F.; Laurion, I.; Prėskienis, V.; Fortier, D.; Xu, X.; Whiticar, M. J.

    2015-12-01

    Ponds and lakes are widespread across the rapidly changing permafrost environments. Aquatic systems play an important role in global biogeochemical cycles, especially in greenhouse gas (GHG) exchanges between terrestrial systems and the atmosphere. The source, speciation and emission rate of carbon released from permafrost landscapes are strongly influenced by local conditions, hindering pan-Arctic generalizations. This study reports on GHG ages and emission rates from aquatic systems located on Bylot Island, in the continuous permafrost zone of the Eastern Canadian Arctic. Dissolved and ebullition gas samples were collected during the summer season from different types of water bodies located in a highly dynamic periglacial valley: polygonal ponds, collapsed ice-wedge trough ponds, and larger lakes. The results showed strikingly different ages and fluxes depending on aquatic system types. Polygonal ponds were net sinks of dissolved CO2, but variable sources of dissolved CH4. They presented the highest ebullition fluxes, 1 or 2 orders of magnitude higher than from other ponds and lakes. Trough ponds appeared as substantial GHG sources, especially when their edges were actively eroding. Both types of ponds produced modern to hundreds of years old (< 550 yr BP) GHG, even if trough ponds could contain much older carbon (> 2000 yr BP) derived from freshly eroded peat. Lakes had small dissolved and ebullition fluxes, however they released much older GHG, including millennium-old CH4 (up to 3500 yr BP) from lake central areas. Acetoclastic methanogenesis dominated at all study sites and there was minimal, if any, methane oxidation in gas emitted through ebullition. These findings provide new insights on GHG emissions by permafrost aquatic systems and their potential positive feedback effect on climate.

  10. Long-Term Hydrological Changes of Coastal Arctic Tundra Ponds in Drained Thaw Lake Basins

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lougheed, V.

    2013-12-01

    Given the dominance of these ponds in the tundra landscape, documenting long-term changes in these aquatic systems is essential to understand carbon and energy balance, trophic energy flow, and biodiversity for the Arctic. The combination of remote sensing using historical imagery, as well as rare historical data from the International Biological Program, provides a unique opportunity for understanding long-term changes in hydrology, chemistry and biology of these significant freshwater environments. To assess the changes in pond area and abundance in 22 drained thaw-lake basins (DTLB) across the Barrow Peninsula over the past 60 years, we utilized historic aerial imagery from USGS archives (1948) and modern high-resolution Quickbird (2002, 2008, 2010). Age classification of DTLB was based on Hinkel et al 2003. We compared water temperature, active layer thickness, and aboveground biomass of these systems to historical datasets compiled in the Limnology of Tundra Ponds' by Hobbie et al 1975. We observed an overall decrease of 28% in pond area and 19% decrease in pond number, where smaller ponds (<100m2) had the highest change. These losses were coincident with significantly higher air and water temperature and reduced annual rainfall, which has decreased by 2.5 cm over the past 62 years (-0.4mm/yr). Active layer in ponds increased on average by 15cm. Aquatic grasses increased in density and cover in ponds over the past 40 years. Area and number of ponds loss was independent of DTLB age; however, medium-age DTLBs had significantly higher number of new ponds over old and ancient-age basins. While we observe new ponds due to thaw lake processes, climate seems to be having a stronger effect on these systems by reducing the overall inundated area and pond number in these basins. Increased evaporation due to warmer and longer summers, permafrost degradation, transpiration from encroaching aquatic grasses and changes in precipitation patterns are likely the current major

  11. Pleistocene sediments of Lake Baikal: Lithology and stratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Akulov, N. I.; Mashchuk, I. M.; Akulova, V. V.

    2015-01-01

    The Cenozoic sediments of Lake Baikal penetrated by boreholes and investigated by the manned submersible Pisces, as well as coeval deposits cropping out in beach scarps, recovered by mine workings, and drilled in the coastal zone were the object of this investigation. The main attention was paid to Pleistocene bottom sediments penetrated by Borehole BDP-99-2. The investigations included the detailed analysis of the lithology (grain-size composition, immersion mineralogy of light and heavy fractions, X-ray structural analysis of clayey fraction) and palynological assemblages to specify facies features of Cenozoic sediments, correlate all their known stratigraphic units constituting the sedimentary section of the lake with their analogs in the onshore part of the Baikal rift zone, and compile the composite Cenozoic section. The following features of these sediments are noted: (1) as a whole, Pleistocene sediments are characterized by the hydromica-smectite composition of their clayey fraction with an insignificant share of kaoline; (2) the heavy fraction is dominated by the terrigenous epidote-amphibole association poorly resistant to weathering; (3) Pleistocene sediments of the lake contain siderite, vivianite, pyrite, and goethite concretions and micrometeorites, in addition to well-known ferromanganese nodules; (4) the presence of relict palynomorphs in Pleistocene sediments of Baikal is determined by their erosion from Miocene and Pliocene cavernous clays cropping out on underwater slopes of the Posol'skaya Bank and subsequent reburial along with Pleistocene palynological assemblages.

  12. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  13. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-01

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004-June 2005 ranged from 496.4 to 511.5 Tg yr-1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr-1. The Arctic methane emissions during July 2004-June 2005 were in the range of 14.6-30.4 Tg yr-1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr-1 and from 5.4 to 7.9 Tg yr-1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.

  14. A multi-proxy reconstruction of environmental change spanning the last 37,000 years from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Finkenbinder, M. S.; Abbott, M. B.; Finney, B. P.; Stoner, J. S.; Dorfman, J. M.

    2015-10-01

    Sediment cores from Burial Lake located in the western Brooks Range in Arctic Alaska record paleoenvironmental changes that span the last 37,000 calendar years before present (cal yr BP). We identified four distinct lithologic subunits based on physical properties (dry bulk density, magnetic susceptibility), sediment composition, and geochemical proxies (organic matter, biogenic silica, C/N, organic matter δ13C and δ15N, and elemental data from scanning X-ray fluorescence). The multi-proxy approach and relatively high temporal resolution (at multi-decadal to centennial time scales) of our proxy analysis, compared with previous studies of intermediate water depth cores from Burial Lake, provide new insights into the paleoenvironmental history of the region spanning the period prior to the Last Glacial Maximum. Relatively high lake-levels and gradually decreasing in-lake and terrestrial productivity occur during the mid-Wisconsin interstadial from 37,200 to 29,600 cal yr BP. The subsequent period is defined by falling and lower lake-levels with decreasing effective-moisture, windier conditions, and sustained low aquatic productivity throughout the LGM between 29,600 and 19,600 cal yr BP. The last deglaciation that commenced by 19,600 cal yr BP is characterized by gradual changes in several sediment physical and geochemical proxies, including increasing C/N ratios and terrestrial productivity, decreasing magnetic susceptibility and clastic sediment flux, along with rising and relatively higher lake-levels. A decrease in aeolian activity after 16,500 cal yr BP is inferred from the appearance of fine (very fine sandy silt) sediment, compared to coarse sediments through the LGM and last deglaciation. The highest levels of terrestrial inputs along with increasing and variable aquatic productivity occur during the Lateglacial to early Holocene interval between 16,500 and 8800 cal yr BP. The absence of multi-proxy evidence for a strong climatic reversal during the Younger

  15. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  16. Swimming endurance of bull trout, lake trout, arctic char, and rainbow trout following challenge with Renibacterium salmoninarum

    USGS Publications Warehouse

    Jones, D.T.; Moffitt, C.M.

    2004-01-01

    We tested the swimming endurance of juvenile bull trout Salvelinus confluentus, lake trout S. namaycush, Arctic char S. alpinus, and rainbow trout Oncorhynchus mykiss at 9??C and 15??C to determine whether sublethal infection from a moderate challenge of Renibacterium salmoninarum administered months before testing affected the length of time fish could maintain a swimming speed of 5-6 body lengths per second in an experimental flume. Rainbow trout and Arctic char swam longer in trials than did bull trout or lake trout, regardless of challenge treatment. When we tested fish 14-23 weeks postchallenge, we found no measurable effect of R. salmoninarum on the swimming endurance of the study species except for bull trout, which showed a mixed response. We conducted additional trials with bull trout 5-8 weeks postchallenge to determine whether increasing the challenge dose would affect swimming endurance and hematocrit. In those tests, bull trout with clinical signs of disease and those exposed to the highest challenge doses had significantly reduced swimming endurance compared with unchallenged control fish. Fish hematocrit levels measured at the end of all swimming endurance tests varied among species and between test temperatures, and patterns were not always consistent between challenged and control fish.

  17. 2.8 Million Years of Arctic Climate Change from Deep Drilling at Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Melles, M.; Brigham-Grette, J.; Minyuk, P.; Wennrich, V.; Nowaczyk, N.; DeConto, R.; Anderson, P.; Andreev, A.; Haltia-Hovi, E.; Kukkonen, M.; Lozhkin, A.; Rosén, P.; Tarasov, P.

    2012-12-01

    Scientific deep drilling at Lake El'gygtygyn in Chukotka, northeastern Russia (67.5 °N, 172 °E) revealed the first high-resolution record of environmental history in the Arctic that spans the past 2.8 Ma continuously (Melles et al. 2012). In this presentation we focus on the end-member glacial and interglacial climatic conditions during this period as clearly reflected in the pelagic lake sediments recovered. Peak glacial conditions, when mean annual air temperatures at least 4 (± 0.5) °C lower than today led to perennial lake ice (Nolan 2012), first appeared at Lake El'gygytgyn 2.602 - 2.598 Ma ago, during marine isotope stage (MIS) 104. These pervasive glacial episodes gradually increase in frequency from ~2.3 to ~1.8 Ma, eventually concurring with all glacials and several stadials reflected globally in stacked marine isotope records. Particularly warm interglacials, in contrast, experienced a long ice-free season and enhanced nutrient supply from the catchment, which allowed for significantly higher primary production than today. These settings were most pronounced for MIS 11c, 31, 49, 55, 77, 87, 91, and 93. Their exceptional character becomes evident based upon pollen-based climate reconstructions in selected interglacials, showing that the mean temperature of the warmest month and the annual precipitation during the thermal maxima of MIS 11c and 31 ("super" interglacials) were 4-5 °C and ~300 mm higher than those of MIS 1 and 5e ("normal" interglacials), respectively. According to climate simulations, the exceptional warm and moist climates at least during MIS 11c cannot be explained by the natural variability in Earth's orbital parameters and greenhouse gas concentrations alone. A remarkable coincidence of the super interglacials at Lake El'gygytgyn with diatomite layers in the Antarctic ANDRILL 1B, which reflect periods of a diminished West Antarctic Ice Sheet (WAIS) (Naish et al. 2009, Pollard and DeConto 2009), suggests intra-hemispheric climate

  18. Use of Paleomagnetic Secular Variation, Excursion, and Reversal Records to Correlate African Lake Climate Records

    NASA Astrophysics Data System (ADS)

    King, J.; Heil, C.; Peck, J.; Scholz, C.; Shanahan, T.; Overpeck, J.

    2005-12-01

    Geomagnetic secular variation, excursions, and reversal records can provide an excellent means for high resolution correlation of sedimentary climate records. Recent drilling projects on Lake Bosumtwi, Ghana, and Lake Malawi, Malawi, have provided the opportunity to study long African climate records (<1 Ma). Magnetic studies of these sedimentary archives indicate that high quality SV records are preserved through most of the sequence despite the fact that anoxia is the usual condition of bottom waters in both lakes. We compare the magnetic records of Lake Bosumtwi and Lake Malawi to test our ability to correlate between West African and East African lakes. In addition, we compare the magnetic record of Lake Malawi to records from Lake Tanganyika in East Africa and the Indian Ocean region, and the record of Lake Bosumtwi to that of Lake Barombi Mbo in West Africa. Correlations within regions are straightforward and highly useful for intrasite correlation. Correlation between East and West Africa is also possible, although the resolution of the correlation is more limited.

  19. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  20. Statistical topography as a mechanistic model for the geometry & size distribution of tidal mud puddles, Arctic melt ponds, & terrestrial lakes

    NASA Astrophysics Data System (ADS)

    Barry, Brendan

    2015-11-01

    Studies over the last decade have reported power law distributions for the sizes of terrestrial lakes & Arctic melt ponds, as well as relationships between their area & the fractal dimension of their contours. These systems are important for the climate system, in terms of carbon cycling & ice-albedo feedback, respectively; these distributions offer promise for improved quantification & description of their influence. However, a mechanistic explanation of their distribution is lacking, & both systems remain difficult to observe logistically. Here we report 1) a simple mechanistic model for the distribution of lakes & melt ponds, based on statistical topography, which neatly predicts their distribution & the relationship between area & fractal dimension, as well as 2) the existence of a similar phenomena in tidal mud flats. Data was collected at low tide in a tidal bed near Damariscotta, Maine, which reveals a power law size distribution over a large dynamic range & a well-defined compatible fractal dimension. This data set significantly extends the observed spatiotemporal range of such phenomena, & suggests this easily observable system may be an ideal model for lakes & melt ponds. MIT-WHOI Jiont Program, Physical Oceanography.

  1. Deep lakes in the Polar Urals - unique archives for reconstructing the Quaternary climate and glacial history in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Svendsen, J.; Gyllencreutz, R.; Henriksen, M.; Lohne, O. S.; Mangerud, J.; Nazarov, D.

    2009-12-01

    A lake coring campaign in the Polar Urals is carried out within the framework of the Norwegian-Russian IPY-project “The Ice Age Development and Human Settlement in Northern Eurasia” (ICEHUS). The overall aim of the project is to improve the description and understanding of the Late Quaternary environmental and climate changes in the Russian Arctic and how these changes may have affected the early human occupation. In order to obtain a continuous record of climate variability back in time seismic records and sediment cores have been collected from selected mountain lakes. The summer of 2009 we cored two lakes situated near the water shed in the interior northernmost Urals. Seismic profiles show that both these glacially eroded basins contain thick sequences of Quaternary sediments. The thickest strata were found in Bolshoye Shuchye, the largest and deepest lake in the Ural Mountains. This lake is 13 km long and 140 m deep and contains more than 130 m of acoustically laminated sediments. These strata probably accumulated over a rather long time span, possibly covering several interglacial-glacial cycles. Up to 24 m long cores were obtained from the lake floors. We anticipate that they will provide unique high resolution records of the climate and glacial history during the last Ice Age. The seismic records and the sediment cores will form a well-founded basis for assessing the potential and possibilities to core also the deeper strata that could not be reached with the applied coring equipment. In view of the obtained results from the investigated basins, as well as other geological and geochronological data from the surrounding areas, we find it highly unlikely that any glaciers extended into these lakes during the Last Glacial Maximum (LGM), supporting our current hypothesis that the local glaciers in the Polar Urals remained small during the LGM. Our observations indicate that the mountain valleys have been essentially ice free since Marine Isotope Stage 4, at

  2. Correlation and Trend Studies of the Sea Ice Cover and Surface Temperatures in the Arctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Co-registered and continuous satellite data of sea ice concentrations and surface ice temperatures from 1981 to 1999 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 18-year period, the actual Arctic ice area is shown to be declining at a rate of 3.1 +/- 0.4 % /decade while the surface ice temperature has been increasing at 0.4 +/- 0.2 K /decade. Yearly anomaly maps also show that the ice concentration anomalies are predominantly positive in the 1980s and negative in the 1990s while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice concentration and surface temperature anomalies are shown to be highly correlated indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature data are also especially useful in providing the real spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea ice cover. Studies of the temporal variability of the summer ice minimum also reveal that the perennial ice cover has been declining at the rate of 6.6% /decade while the summer surface ice temperature has been increasing at the rate of 1.3 K /decade. Moreover, high year-to-year fluctuations in the minimum ice cover in the 1990s may have caused reductions in average thickness of the Arctic sea ice cover.

  3. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    PubMed

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. PMID:19101761

  4. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p < 0.05). Using this relation, the modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  5. Life Under the Ice: Spatial and Temporal Patterns in Rates of Water Column and Sediment Respiration in 5 Alaskan Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; MacIntyre, S.

    2014-12-01

    Alaskan arctic lakes lay covered by up to three meters of ice and snow for approximately two-thirds of the year, yet comparatively little is known about their ecosystem metabolism during this period. We combined the use of free-water measurements of dissolved oxygen (DO) and the laboratory incubation of sediment cores to characterize spatial and temporal patterns in the ecosystem respiration (ER) of five arctic lakes spanning a gradient in size from 1 to 150 ha. Seasonal rates of ER throughout the water column ranged from < 0.001 to 0.034 mg L-1 h-1; sediment ER ranged from mg 6.1 m-2 h-1 to 50.7 mg m-2 h-1. Although there were significant differences in sediment ER among lakes, average water column ER did not differ significantly. Seasonal patterns of DO draw down were most often linear. However, within the water column above the deepest basin of each lake, rates were higher during autumn - winter than winter - spring, with the lowest rates typically found in the upper 70% of the water column and the highest rates near the bottom. ER measured near the bottom along the slope of lake basins was lower than that at the center of lake basins and closer in magnitude to water column ER. Spatial patters in free-water rates were reflected by sediment ER, which was 21 - 66 % higher in cores collected from the deepest point of lake basins than in sediments collected at shallower locations found at the margin of basins. These observations suggest that two mechanisms operating in tandem account for the higher apparent rates of DO drawdown found within lake basins during the winter. Higher local rates of sediment ER and, similar to observations in other lakes, the transport of DO depleted waters from lake margins to deep basins. Together they contribute to the formation of hypoxia in the deeper basins of lakes and the concentration of other respiratory products, with important implications for energy flow within lakes and carbon budgets across the arctic.

  6. New permafrost is forming around shrinking Arctic lakes, but will it last?

    USGS Publications Warehouse

    Briggs, Martin A.; Walvoord, Michelle A.; McKenzie, Jeffrey M.; Voss, Clifford I.; Day-Lewis, Frederick D.; Lane, Jr., John W.

    2014-01-01

    Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.

  7. MERCURY IN VEGETATION AND LAKE SEDIMENTS FROM THE U.S. ARCTIC

    EPA Science Inventory

    Global atmospheric concentrations of mercury (Hg) appear to be increasing and with it the potential for ecosystem exposure and ecological effects. rom 1990 to 1993 the authors examined U.S. arctic ecosystems over a broad spatial scale to develop baseline information on current co...

  8. Isotopic and Geochemical signatures of different aged drained thaw lake basins (DTLBs) and drainage channels in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Perkins, G.; Rearick, M.; Altmann, G. L.; Cohen, L. R.; Hudak, M.; Gard, M.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.

    2013-12-01

    The Arctic tundra contains a vast amount of C stored in permafrost soils, which are highly susceptible to thawing with climate change. Permafrost degradation has implications for land-atmosphere feedbacks through the release of stored C as greenhouse gases (CO2, methane), and runoff of dissolved C. Coastal Arctic topography and geomorphology in particular is highly complex, consisting of irregular polygonal ground features, drainage channel networks, and different aged drained thaw lake basins (DTLBs). Such substantial spatial variability complicates predictions of permafrost degradation with regard to land-atmosphere feedbacks affecting climate and regional ecosystem responses. The DOE Office of Science Biological and Environmental Research Program has funded the Next Generation Ecosystem Experiment (NGEE) Arctic project to assess the release of greenhouse gases from melting Arctic permafrost, with emphasis on regional geomorphology; and to establish a coordinated effort among several research institutions to link field observations with process-based Land models. Results will focus on geochemical and isotopic signatures of waters collected at different depths (surface; from the shallow organic layer; and from the deeper frost table) in Barrow, Alaska in July and September of 2013. Sampling sites were stationed across distinct microtopographic features, including polygonal terrain, different aged DTLBs, and larger drainage channels. The aims of these field campaigns were to assess geochemical and biogeochemical trends and isotopic variability in waters across unique micro-topographic features and with depth, and infer vertical and lateral flows of water and C by collecting field data to validate large-scale regional models. Preliminary results showed some differences with depth and across unique micro-topographic features. Redox indicators (Fe2+ and dissolved oxygen) showed greater reducing conditions with depth, as was expected. In particular, subsurface waters

  9. Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation

    NASA Astrophysics Data System (ADS)

    Meinhardt, A.-K.; März, C.; Schuth, S.; Lettmann, K. A.; Schnetger, B.; Wolff, J.-O.; Brumsack, H.-J.

    2016-09-01

    Dark brown sediment layers are a potential stratigraphic tool in Quaternary Arctic Ocean sediments. They are rich in Mn, Fe, and trace metals scavenged from the water column and were most likely deposited during interglacial intervals. In this study, we combine sediment and pore water data from sediment cores taken in different parts of the Arctic Ocean to investigate the influence of early diagenetic processes on sediment geochemistry. In most studied cores, Mn, Co, and Mo are released into the pore waters from Mn oxide dissolution in deeper (>1.5 m) sediment layers. The relationship between sedimentary Mn, Co, and Mo contents in excess of the lithogenic background (elementxs) shows that Coxs/Moxs values are a diagnostic tool to distinguish between layers with diagenetic metal addition from the pore waters (Coxs/Moxs < 1), layers affected by Mn oxide dissolution and metal release (Coxs/Moxs > 10), and unaffected layers (Coxs/Moxs from 1 to 10). Steady-state calculations based on current pore water profiles reveal that in the studied cores, the diagenetic addition of these metals from the pore water pool alone is not sufficient to produce the sedimentary metal enrichments. However, it seems evident that dissolution of Mn oxides in the Mn reduction zone can permanently alter the primary geochemical signature of the dark brown layers. Therefore, pore water data and Coxs/Moxs values should be considered before core correlation when this correlation is solely based on Mn contents and dark sediment color. In contrast to the mostly non-lithogenic origin of Mn in the dark brown layers, sedimentary Fe consists of a large lithogenic (80%) and a small non-lithogenic fraction (20%). Our pore water data show that diagenetic Fe remobilization is not currently occurring in the sediment. The dominant Fe sources are coastal erosion and river input. Budget calculations show that Fe seems to be trapped in the modern Arctic Ocean and accumulates in shelf and basin sediments. The Fe

  10. Isotope Hydrology of Arctic Tundra Lakes in a Region Impacted by Permafrost Disturbance

    NASA Astrophysics Data System (ADS)

    Peters, D. L.

    2009-05-01

    A projected "hot spot" of climate warming and development is the Mackenzie River Delta region, Northwest Territories, Canada. The upland tundra areas within the Mackenzie Gas Project development area north of Inuvik contain thousands of small lakes and ponds with poorly defined ephemeral drainage that are underlain by thick permafrost and ice-rich sediments for which the basic water balance controls are not fully understood. Natural retrogressive thaw slumps are common along lakeshores and the rapid drainage of ice-rich permafrost-dammed lakes has been occurring. Ongoing oil/gas exploration activities and infrastructure construction may result in terrain disturbance and localized degradation of permafrost, while climate change may increase the magnitude and frequency of thermokarst processes. These disturbed lakes are believed to act as historical analogues for the future effects of climate change on the hydrology, geochemistry, and aquatic ecology of small tundra lake catchments in the continuous permafrost zone of northwestern Canada. Environment Canada initiated an integrated research program in 2005 with the overall goal of improving our understanding of hydro-ecological processes in freshwater aquatic ecosystems affected by shoreline slumping vs. pristine lakes. Limited catchment studies have examined water-balance parameters (e.g., precipitation, evaporation, and surface flows) for tundra lakes in the development area. Enrichment of oxygen-18 (18O) and deuterium (2H) stable isotopes in surface waters have been shown to be useful indicators of water balance variations in remote permafrost regions of Canada where hydroclimatic information is very limited. In particular, information on evaporation: inflow (E/I) ratios and residence times would provide useful information for estimating appropriate water withdrawals from lakes within the proposed development area. A key question is "does permafrost slumping impact the hydrology of tundra lakes via catchment area

  11. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ˜37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  12. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus) and Coexisting Fishes in a High-Elevation Lake System

    PubMed Central

    Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.

    2016-01-01

    Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901

  13. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus) and Coexisting Fishes in a High-Elevation Lake System.

    PubMed

    Cutting, Kyle A; Cross, Wyatt F; Anderson, Michelle L; Reese, Elizabeth G

    2016-01-01

    Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901

  14. Correlations between Inter-Annual Variations in Arctic Sea Ice Extent, Greenland Surface Melt, and Boreal Snow Cover

    NASA Technical Reports Server (NTRS)

    Markus, Thorstena; Stroeve, Julienne C.; Armstrong, Richard L.

    2004-01-01

    Intensification of global warming in recent decades has caused a rise of interest in year-to-year and decadal-scale climate variability in the Arctic. This is because the Arctic is believed to be one of the most sensitive and vulnerable regions to climatic changes. For over two decades satellite passive microwave observations have been utilized to continuously monitor the Arctic environment. Derived parameters include sea ice cover, snow cover and snow water equivalent over land, and Greenland melt extent and length of melt season. Most studies have primarily concentrated on trends and variations of individual variables. In this study we investigated how variations in sea ice cover, Greenland surface melt, and boreal snow cover are correlated. This was done on hemispheric as well as on regional scales. Latest results will be presented including data from the summer of 2004.

  15. Pliocene and Quaternary climate evolution of the high Western Arctic derived from initial geochemistry and FTIRS data of the Lake El`gygytgyn sediments, NE Siberia

    NASA Astrophysics Data System (ADS)

    Wennrich, V.; Kukkonen, M.; Meyer-Jacob, C.; Minyuk, P.; Rosen, P.; Brigham-Grette, J.; Melles, M.; El'Gygytgyn Scientific Party

    2010-12-01

    High arctic Lake El‘gygytgyn (67°30’ N, 172°05’ E) is a 3.6 Ma old meteorite crater lake located in Chukotka/NE Siberia, 100 km to the north of the Arctic Circle. With its continuous and undisturbed sequence since the Pliocene, the lake comprises the most long-lasting climate archive of the terrestrial Arctic. In spring 2009, the ICDP El‘gygytgyn Drilling Project recovered the 317-m long lacustrine sediment record from 170 m water depth at site D1 in the central lake part. Here we present initial results of elemental analyses as well as infrared spectroscopy of this record. The elemental composition of the lake sediment was investigated by a combination of high-resolution element analyses using an ITRAX X-ray Fluorescence (XRF) core scanner (Cox Analytics), and conventional XRF spectrometry. The results well reflect variations in sedimentation, weathering, lake hydrology and productivity mostly triggered by glacial-interglacial cycles. Furthermore, due to the high spatial resolution of the ITRAX even short-term fluctuations of those proxies could be detected, displaying the sensitivity of the Lake El‘gygytgyn sediments to regional and global climate changes on a decadal to centennial scale. Measurements of Fourier Transform Infrared Spectroscopy (FTIRS) in the mid-infrared (MIR) region were conducted to quantitatively estimate contents of biogenic silica (BSi), total nitrogen (TN), total organic carbon (TOC), and total inorganic carbon (TIC) in Lake El‘gygytgyn sediments. Simultaneous inference of these components is possible because IR-spectra in the MIR-region contain a wide variety of information on minerogenic and organic substances. The technique requires only small amounts (0.01g dry weight) of sample material and negligible sample pre-treatments. FTIRS calibrations for BSi, TN, TOC, and TIC based on core catcher samples of the sediment sequence yielded good statistical performances and emphasize the potential of the technique for high

  16. Radiocarbon Age Offsets in Arctic Lake Sediments Describe the Vulnerability of Permafrost Carbon to Past Climate Warming

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Pohlman, J.; Kunz, M. L.; Jones, B. M.; Jones, M.; Wooller, M. J.

    2012-12-01

    A warming climate in the future could release permafrost carbon (C) as carbon dioxide and methane to the atmosphere, causing a positive feedback to climate warming. An effective approach to better understanding this problem is to observe how permafrost C dynamics responded to past warming events. Here we use the sediment record of a lake basin in northern Alaska as a long-term archive for past permafrost C release from the surrounding watershed. The age of deposition and burial for an arctic lake sediment horizon is often younger than the 14C age because of old, 14C-depleted C eroded or leached from peat, soil, and thawing permafrost in the watershed. Changes in the magnitude between the age of deposition ("true age") and the radiocarbon age of the bulk sediment from the same layer is the radiocarbon age-offset, which serves as a gauge for the relative amount of permafrost C released from the watershed. We analyzed the sediments of Lake of the Pleistocene (LOP), a partially-drained lake basin located in the northern flank of the Brooks Range that contains continuously deposited sediments spanning the last 14,500 calendar years. The LOP watershed is underlain by continuous permafrost and contains extensive, frozen peatlands. We were able to excavate a wide swath of the former lakebed and collect hundreds of willow twigs and sediment samples to construct a high-resolution age-offset chronology. We dated well-preserved willow twigs that are directly blown into the lake to obtain a "true" 14C age and the age of bulk lake-sediment organic matter from the same layer that records the age of both primary productivity from within the lake and of the old dissolved and particulate organic carbon reworked from the watershed. Today, the radiocarbon age of the surface sediments of LOP is 2,000 calendar years old, which is roughly the same as the age offset during the Younger Dryas cold interval. During the warmer than present Holocene Thermal Maximum (HTM; ~11,700-9,000 calendar

  17. Arctic Temperature and Moisture Variability Associated with the Pliocene M2 Glacial Event from Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Salacup, J. M.; Castañeda, I. S.; Brigham-Grette, J.

    2014-12-01

    The early Late Pliocene (3.6-3.0 Ma) is the last time atmospheric CO2 concentrations equaled today's values (~400 ppm). Despite this, and the warmer than modern climate it fostered, this period experienced an intense global glaciation during marine isotope stage (MIS) M2 (~3.3 Ma). Constraints imposed by the estimated sea level drop associated with this event suggest ice growth was not isolated to Antarctica, as had previously been the case, but that ice grew in high northern latitudes as well. M2 is unique during the Pliocene and is likely the first attempt of Northern Hemisphere ice sheets to grow into those experienced during Pleistocene ice ages. However, the effects of MIS M2, and any attendant Northern Hemisphere ice sheets, on Arctic terrestrial temperature and hydrology are not well understood. Here we present and compare results from the biomarker-based MBT/CBT paleotemperature proxy with δDleaf wax results, sensitive to both temperature hydrology, from Lake El'gygytgyn (NE Russia) in an attempt to isolate and characterize variability in both air temperature and moisture source/availability. We compare our results with more coarsely resolved preexisting pollen-based temperature and moisture reconstructions. Our temperature reconstruction is, as far as we know, the highest resolution terrestrial record of this dramatic global cooling event. It implies a ~6°C cooling circa 3.29 Ma was accomplished in two steps before a rebound of ~7°C into the start of the mid-Pliocene Warm Period. Removal of the temperature effect from M2 δDleaf wax profiles using our MBT/CBT results provide insight into changes in local hydrology during this event that are compared with pollen-based estimates of minimum, maximum, and mean annual precipitation in order to discuss changes in amount and seasonality of moisture delivery to Lake El'gygytgyn (NE Russia) during the expansion of Northern Hemisphere ice sheets.

  18. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.

    PubMed

    Sturtevant, Cove S; Oechel, Walter C

    2013-09-01

    Regional quantification of arctic CO2 and CH4 fluxes remains difficult due to high landscape heterogeneity coupled with a sparse measurement network. Most of the arctic coastal tundra near Barrow, Alaska is part of the thaw lake cycle, which includes current thaw lakes and a 5500-year chronosequence of vegetated thaw lake basins. However, spatial variability in carbon fluxes from these features remains grossly understudied. Here, we present an analysis of whole-ecosystem CO2 and CH4 fluxes from 20 thaw lake cycle features during the 2011 growing season. We found that the thaw lake cycle was largely responsible for spatial variation in CO2 flux, mostly due to its control on gross primary productivity (GPP). Current lakes were significant CO2 sources that varied little. Vegetated basins showed declining GPP and CO2 sink with age (R(2) = 67% and 57%, respectively). CH4 fluxes measured from a subset of 12 vegetated basins showed no relationship with age or CO2 flux components. Instead, higher CH4 fluxes were related to greater landscape wetness (R(2) = 57%) and thaw depth (additional R(2) = 28%). Spatial variation in CO2 and CH4 fluxes had good satellite remote sensing indicators, and we estimated the region to be a small CO2 sink of -4.9 ± 2.4 (SE) g C m(-2) between 11 June and 25 August, which was countered by a CH4 source of 2.1 ± 0.2 (SE) g C m(-2) . Results from our scaling exercise showed that developing or validating regional estimates based on single tower sites can result in significant bias, on average by a factor 4 for CO2 flux and 30% for CH4 flux. Although our results are specific to the Arctic Coastal Plain of Alaska, the degree of landscape-scale variability, large-scale controls on carbon exchange, and implications for regional estimation seen here likely have wide relevance to other arctic landscapes. PMID:23649775

  19. A radiocarbon-based inventory of methane and inorganic carbon dissolved in surface lake waters in arctic Alaska, USA

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia; Clayton, Elder; Xu, Xiaomei; Lehman, Jennifer; Townsend-Small, Amy

    2014-05-01

    Major uncertainties in land-atmosphere carbon (C) exchange in the rapidly warming and wetting Arctic are 1) the magnitude and timing of net losses of ancient permafrost C to the atmosphere and 2) the relative changes of C exchange as carbon dioxide (CO2) or the more powerful greenhouse gas methane (CH4). For CH4, the role of diffusive fluxes versus plant-mediated and ebullition fluxes is poorly constrained. Radiocarbon (14C) is a unique tracer for distinguishing ancient permafrost C from C rapidly cycling between the land and atmosphere. In addition, stable isotope ratios (13C/12C and D/H) provide insight to trace gas production and consumption pathways. Previous measurements, however, have focused on CH4 from ebullition fluxes due to technical and logistical challenges in 14C-CH4 analysis. We quantified the 14C content and δ13C signatures of dissolved CH4 and DIC in lake surface waters along a north-south transect on the North Slope of Alaska, USA (69.9°N to 71.28°N, -156.12°W to -156.32°W). Samples were collected at the end of winter before ice break-up (April 2013) and during summer (August 2012 & 2013) in 1 L bottles. A subset of samples was also analyzed for CH4 and CO2 concentrations and stable isotope ratios by the Circumarctic Lakes Observation Network (CALON). In addition, in August 2013, we measured the 14C content and δ13C ratios of lake-atmosphere CH4 and CO2 exchange near Barrow, AK, USA (71°N, -156°W). We obtained dissolved CH4 and CO2 sufficient for 14C analysis from lakes with concentrations as low as 0.01 mg C /L) using a novel, in situ preconcentration method (liqui-cel, Membrana). And, we measured and collected isoflux samples of simulated, near-shore ebulltion-derived CH4 and CO2 using floating headspace chambers. Isotope samples were processed using a novel, flow-through vacuum line and analyzed at the KCCAMS facility at the University of California, Irvine, USA with accelerator (0.5MV 1.5SDH-2, National Electrostatics Corporation) and

  20. ERS-1 SAR backscatter changes associated with ice growing on shallow lakes in Arctic Alaska

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.

    1993-01-01

    Spatial and temporal backscatter intensity (sigma(sup o)) variations from ice growing on shallow lakes during winter 1991-92 near Barrow, NW Alaska, have been quantified for the first time using ERS-I C-band SAR data acquired at the Alaska SAR Facility. A field and laboratory validation program, including measurements of the thickness and structure-stratigraphy of the ice, indicates that sigma(sup o) values are strongly dependent on whether the ice freezes to the lake bottom, or remains afloat. Backscatter intensity decreases significantly when the ice grounds on the bottom. Strong backscatter from floating ice is attributed to a specular ice-water interface and vertically oriented tubular bubbles. During the spring thaw, backscatter undergoes a reversal; sigma(sup o) values from ice that was grounded increase, while sigma(sup o) values from ice that was afloat decrease. This phenomenon has not previously been reported.

  1. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record

    NASA Astrophysics Data System (ADS)

    Andreev, A. A.; Tarasov, P. E.; Wennrich, V.; Raschke, E.; Herzschuh, U.; Nowaczyk, N. R.; Brigham-Grette, J.; Melles, M.

    2014-05-01

    The 318 m thick lacustrine sediment record from Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities for the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments demonstrate their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.5-3.35 Myr BP, the vegetation at Lake El'gygytgyn, now an area of tundra was dominated by spruce-larch-fir-hemlock forests. After ca. 3.35 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental change took place ca. 3.31-3.28 Myr BP, corresponding to the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.043-3.025, 2.935-2.912, and 2.719-2.698 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Peaks in observed green algae colonies (Botryococcus) around 2.53, 2.45, 2.32-2.305, 2.20 and 2.16-2.15 Myr BP suggest a spread of shallow water environments. A few intervals (i.e., 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations during Early Pleistocene glacial periods.

  2. Shrinking Arctic Lakes are Forming New Local Permafrost, but for How Long?

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Walvoord, M. A.; McKenzie, J. M.; Voss, C. I.; Day-Lewis, F. D.; Lane, J. W.

    2013-12-01

    Using multiple physical, thermal, and geophysical methods over two summer seasons we have observed patchy permafrost aggradation within the recently receded margin of Twelvemile Lake, in the Yukon Flats of interior Alaska. However, recent rapid recession of Twelvemile Lake over tens of years is presumed to be linked to climate warming. The counterintuitive process of newly forming permafrost in a warming climate may be a result of ecological succession: discrete bands of brushy vegetation develop on the dried lakebed, reducing local summer soil temperatures and infiltration, and favoring the persistence of ground ice through multiple annual cycles. Using a modified version of the USGS code SUTRA to account for variably saturated flow and freeze/thaw dynamics, a suite of 1-D simulations were constructed to assess the relation of permafrost aggradation at Twelvemile Lake to ecosystem-driven effects. The changes simulated included reductions in recharge during the summer (plant transpiration/interception) and peak surface soil temperatures (albedo/shading). Simulations indicate that the system is strongly responsive to reductions in peak surface soil temperature. Permafrost aggradation began after 2 years with only a 1° C reduction; after 75 years saturated and unsaturated frozen materials on the order of 7 m thick were simulated when soil peak temperatures were reduced by 2° C. The absence of summer recharge alone did not support permafrost aggradation in the simulations, but did reduce time to permafrost equilibrium for the moderate 1° C reduction in peak temperatures while having less of an effect for the 2° C reduction model. Finally, when a predicted climate warming trend of 3° C/100 yr is imposed on the simulation of strongest cooling and infiltration reduction, the aggraded permafrost thaws completely after approximately 70 yr, and the seasonal freeze/thaw layer shallows thereafter. Therefore, local permafrost aggradation in response to lake recession

  3. Correlates of Zooplankton Beta Diversity in Tropical Lake Systems

    PubMed Central

    Lopes, Paloma M.; Bini, Luis M.; Declerck, Steven A. J.; Farjalla, Vinicius F.; Vieira, Ludgero C. G.; Bonecker, Claudia C.; Lansac-Toha, Fabio A.; Esteves, Francisco A.; Bozelli, Reinaldo L.

    2014-01-01

    The changes in species composition between habitat patches (beta diversity) are likely related to a number of factors, including environmental heterogeneity, connectivity, disturbance and productivity. Here, we used data from aquatic environments in five Brazilian regions over two years and two seasons (rainy and dry seasons or high and low water level periods in floodplain lakes) in each year to test hypotheses underlying zooplankton beta diversity variation. The regions present different levels of hydrological connectivity, where three regions present lakes that are permanent and connected with the main river, while the water bodies of the other two regions consist of permanent lakes and temporary ponds, with no hydrological connections between them. We tested for relationships between zooplankton beta diversity and environmental heterogeneity, spatial extent, hydrological connectivity, seasonality, disturbance and productivity. Negative relationships were detected between zooplankton beta diversity and both hydrological connectivity and disturbance (periodic dry-outs). Hydrological connectivity is likely to affect beta diversity by facilitating dispersal between habitats. In addition, the harsh environmental filter imposed by disturbance selected for only a small portion of the species from the regional pool that were able to cope with periodic dry-outs (e.g., those with a high production of resting eggs). In summary, this study suggests that faunal exchange and disturbance play important roles in structuring local zooplankton communities. PMID:25330034

  4. Lignocellulose Mineralization by Arctic Lake Sediments in Response to Nutrient Manipulation

    PubMed Central

    Federle, Thomas W.; Vestal, J. Robie

    1980-01-01

    Mineralization of specifically labeled 14C-cellulose- and 14C-lignin-labeled lignocelluloses by Toolik Lake, Alaska, sediments was examined in response to manipulation of various environmental factors. Mineralization was measured by quantifying the amount of labeled CO2 released from the specifically labeled substrates. Nitrogen (NH4NO3) and, to a greater degree, phosphorus (PO4−3) additions enhanced the mineralization of white pine (Pinus strobus) cellulose during the summer of 1978. Nitrogen and phosphorus together had no cumulative effect. During the summer of 1979, nitrogen or phosphorus alone had only a slight stimulatory effect on the mineralization of a sedge (Carex aquatilis) cellulose; however, together, they had a dramatic effect. This variable response of mineralization to nutrient addition between 1978 and 1979 was probably attributable to year-to-year variation in nutrient availability within the lake. Cellobiose addition and oxygen depletion inhibited the amount of pine cellulose mineralized. Whereas addition of nitrogen to oxygen-depleted treatments had limited effect, addition of phosphorus resulted in mineralizations equal to or greater than that of the controls. Nitrogen had no effect on mineralization of pine or Carex lignins. Phosphorus, however, inhibited mineralization of both lignins. With Carex lignin, the phosphorus inhibition occurred at a concentration as low as 0.1 μM. The antagonistic role of phosphorus in cellulose and lignin mineralizations may be of significance in understanding the increased proportion of lignin relative to cellulose in decomposing litter. PMID:16345594

  5. The magnetic susceptibility measurements of turbidity current sediments from Fuxian Lake of Yunnan Province and their correlations with earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Jie-Sen; Song, Xue-Liang; Sun, Ying-Lun; Zhang, Zi-Xiong; Song, Yi-De; Liu, Gang

    1999-01-01

    This paper has advanced a new method for determining historical earthquakes. Its object of study is lake sediments. The research method is environmental magnetism represented by susceptibility. The purpose is extracting historical earthquake informations from lake sediments to explore the correlation between the turbidity current sediments initiated by the earthquakes and historical earthquakes round Fuxian Lake.

  6. Effects of Petroleum Hydrocarbons on Plant Litter Microbiota in an Arctic Lake

    PubMed Central

    McKinley, Vicky L.; Federle, Thomas W.; Vestal, J. Robie

    1982-01-01

    The effects of petroleum hydrocarbons on the microbial community associated with decomposing Carex leaf litter colonized in Toolik Lake, Alaska, were examined. Microbial metabolic activity, measured as the rate of acetate incorporation into lipid, did not vary significantly from controls over a 12-h period after exposure of colonized Carex litter to 3.0 ml of Prudhoe Bay crude oil, diesel fuel, or toluene per liter. ATP levels of the microbiota became elevated within 2 h after the exposure of the litter to diesel fuel or toluene, but returned to control levels within 4 to 8 h. ATP levels of samples exposed to Prudhoe Bay crude oil did not vary from control levels. Mineralization of specifically labeled 14C-[lignin]-lignocellulose and 14C-[cellulose]-lignocellulose by Toolik Lake sediments, after the addition of 2% (vol/vol) Prudhoe Bay crude oil, motor oil, diesel fuel, gasoline, n-hexane, or toluene, was examined after 21 days of incubation at 10°C. Diesel fuel, motor oil, gasoline, and toluene inhibited 14C-[lignin]-lignocellulose mineralization by 58, 67, 67, and 86%, respectively. Hexane-treated samples displayed an increase in the rate of 14C-[lignin]-lignocellulose mineralization of 33%. 14C-[cellulose]-lignocellulose mineralization was inhibited by the addition of motor oil or toluene by 27 and 64%, respectively, whereas diesel fuel-treated samples showed a 17% increase in mineralization rate. Mineralization of the labeled lignin component of lignocellulose appeared to be more sensitive to hydrocarbon perturbations than was the labeled cellulose component. PMID:16345915

  7. Temporal correlation of U. S. Great Basin lake sediments below the Mono Lake Excursion using paleomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.; Coe, R. S.; Negrini, R. M.; Knott, J. R.; Lund, S.; Benson, L. V.

    2015-12-01

    Beginning nearly 50 years ago with a paleomagnetic study of exposed lacustrine sediments in the Mono Basin, CA (Denham and Cox, 1971), there have been subsequent studies to document paleomagnetic secular variation (PSV) in the basin and to establish a chronology for that record (Vazquez and Lidzbarski, 2012). We report a paleomagnetic secular variation (PSV) investigation of lacustrine sediments in the Mono Basin, CA, that extends the base of the PSV record of Lund et al. (1988) by about 20 percent. We did our investigation at two localities separated by about 4 km on the southeastern and eastern sides of Mono Lake: South Shore Cliffs (SSC) and Warm Springs (WS). The sampled interval at SSC is from 0.1 m above to 2.2 m below Wilson Creek Ash 19 in the tephrostratigraphy of Lajoie (1968), ending in loose sand. At WS, we sampled from Ash 17 to 1.0 m below Ash 19, a total of 2 m. At SSC using back-to-back horizons 2-cm thick containing one to three samples each that were a.f. or thermally demagnetized, we found rapidly fluctuating PSV in the interval from ~ 0.3 to 1.0 m below Ash 19. The fluctuating PSV contains a change in declination of ~ 80˚ from 308˚ (n = 3, α-95: 6.1˚) to 29˚ (n = 3, α-95: 11.5˚) within a single hand sample that spans 14 cm. Inclination during that change in declination gradually rose from 56˚ to 63˚ and increased to 70˚ before reducing to a minimum of 29.9˚. The path of the Virtual Geomagnetic Poles when the declination is most westerly forms a narrow loop that reaches 49.7˚ N latitude near 170˚ E longitude. At WS the westerly swing in declination is absent, but the easterly declination and relatively steep inclination described above are recorded. A study of the relative paleomagnetic intensity (RPI) shows that the maximum RPI is ~1.5 m below Ash 19 and decreases to a minimum ~6 cm above the ash. Distinct PSV and RPI features below the Mono Lake excursion correlate well between records from the periphery of Mono Lake and those from

  8. Quaternary Arctic Climate Change of the past 2.8 Ma as reconstructed from sediments of Lake El'gygytgyn, NE Russia (Invited)

    NASA Astrophysics Data System (ADS)

    Wennrich, V.; Melles, M.; Brigham-Grette, J.; Minyuk, P.; Nowaczyk, N. R.; Deconto, R. M.; Anderson, P. A.; Andreev, A. A.; Haltia, E.; Kukkonen, M.; Lozhkin, A. V.; Rosen, P.; Tarasov, P. E.

    2013-12-01

    Scientific deep drilling at Lake El'gygtygyn in Chukotka, northeastern Russia (67.5° N, 172° E) revealed the first high-resolution record of environmental history in the Arctic that spans the past 3.6 Ma continuously (Melles et al. 2012, Brigham-Grette et al. 2013). In this presentation we focus on the end-member glacial and interglacial climatic conditions of the past 2.8 Ma as clearly reflected in the pelagic lake sediments recovered. Peak glacial conditions, when mean annual air temperatures at least 3.3 (×0.9) °C lower than today led to perennial lake ice (Nolan 2013), first appeared at Lake El'gygytgyn 2.602 - 2.598 Ma ago, during marine isotope stage (MIS) 104. These pervasive glacial episodes gradually increase in frequency from ~2.3 to ~1.8 Ma, eventually concurring with all glacials and several stadials reflected globally in stacked marine isotope records. Particularly warm interglacials, in contrast, experienced a long ice-free season and enhanced nutrient supply from the catchment, which allowed for significantly higher primary production than today. These settings were most pronounced for MIS 11c, 31, 49, 55, 77, 87, 91, and 93. Their exceptional character becomes evident based upon pollen-based climate reconstructions in selected interglacials, showing that the mean temperature of the warmest month and the annual precipitation during the thermal maxima of MIS 11c and 31 ('super' interglacials) were 4-5 °C and ~300 mm higher than those of MIS 1 and 5e ('normal' interglacials), respectively. According to climate simulations, the exceptional warm and moist climates at least during MIS 11c cannot be explained by the natural variability in Earth's orbital parameters and greenhouse gas concentrations alone. A remarkable coincidence of the super interglacials at Lake El'gygytgyn with diatomite layers in the Antarctic ANDRILL 1B, which reflect periods of a diminished West Antarctic Ice Sheet (WAIS) (Naish et al. 2009, Pollard and DeConto 2009), suggests

  9. Mid-Pliocene to Early Quaternary Evolution of the Beringian Arctic from Deep Drilling at Lake El'gygytgyn, Chukotka: initial results (Invited)

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Melles, M.; Minyuk, P.; Andreev, A.; Snyder, J.; Wennrich, V.; Lake El'Gygytgyn Scientific Party

    2010-12-01

    One of the primary objectives for deep drilling at Lake El’gygytgyn (67°30' N, 172°05' E), formed 3.6 Ma ago by a meteorite impact event, was to recover lacustrine sediments that would provide the first high resolution Pliocene-Pleistocene paleoclimate record from the terrestrial Arctic. While discontinuous, spatially diverse Pliocene marine records are known from the arctic borderlands at the outcrop scale, the Lake El’gygytgyn record is critically important for balancing the inherent marine bias we currently have in understanding the climate variability of a world warmer than today. Moreover, this continuous land record contributes to our knowledge of the terminal Pliocene transition, be it steps, jolts or plunges, into the early Quaternary. The Pliocene portion of the lake record recovered extends from 130 m to 315 m depth below lake floor with nearly twice the sedimentation rate of Quaternary interval, presumably due to enhanced hydrologic systematics. The lower most, initial 15 m of the lake sequence directly after the meteorite impact appear to be sterile perhaps due to the intense heat generated by the impact that would have taken thousands of years to dissipate. The remaining portion of the Pliocene sequence is characterized by sequences of lacustrine mud overlain by coarser facies. Palynologically studied portions of the core are mostly dominated by tree pollen, providing us with a compositional idea of changes in Pliocene El’gygtgyn forests of pine (Pinus), larch (Larix) spruce (Picea), fir (Abies), alder (Alnus), and, hemlock (Tsuga), not just scrubs. However, sediments paleomagnetically dated between 3.11 and 3.04 Ma ago show dramatic decrease in tree pollen contents, while pollen of Artemisia and spores of Selaginella rupestris and coprophiluous fungi became common elements in the record. Such changes point to treeless environments that can be described as early tundra-steppe. We present here a very preliminary compilation of the collective

  10. Correlation between the surface temperature and thickness of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Frazier, A. H.; Vaccaro, A.; Phillips, S.; Blake, D.; Herman, R. B.

    2012-12-01

    A study was conducted to investigate a possible correlation between the surface temperature and thickness of Arctic sea ice. Surface temperatures were measured with an infrared (IR) sensor while the ice thickness was determined using a capacitively coupled resistivity array. It was postulated that there would be an inverse correlation between the thickness and surface temperature of the sea ice. Thicker sea ice should better insulate the surface from the warmer seawater underneath, causing the surface temperature to vary inversely with sea ice thickness. This study was performed on the Chukchi Sea ice just offshore from Barrow, Alaska. Data was collected along two survey lines, each over 200m long, one parallel and one perpendicular to the shoreline. An IR sensor measured ice surface temperature, and this data was compared to both ground penetrating radar (250MHz and 500MHz) and capacitively coupled resistivity data. Ground penetrating radar was unable to yield a determination of the thickness of the ice. This was not surprising given the ice-to-water transition that starts with solid ice, proceeds through an intervening region of cracked ice and slush, and finally ends with seawater. [1] Resistivity data was collected at approximately 3 points per horizontal meter. With multiple receivers and passes along the survey lines, data was obtained at more than 8 vertical depths in the ice that was approximately 3 meters thick. The resistivity array yielded images indicating the thickness of the sea ice and the location and shape of the ice/water boundary. While the model-dependent nature of resistivity data processing is acknowledged, we have reasonable confidence in the results for the relative thickness of the ice. The temperature of the ice surface was determined via a calibrated (±0.1°C) IR sensor controlled with a data logger. Temperature measurements were collected at approximately 50 points per linear meter. The comparison of the temperature and resistivity data

  11. A Possible Correlation between the Surface Temperature and Thickness of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Roadcap, C.; Herman, R. B.; Eagle, J. L.; Montgomery, S. B.; Baumgardner, C.; Brett, M. C.; Blake, D.

    2014-12-01

    A geophysical survey of the Chukchi Sea ice was conducted just offshore from the Naval Arctic Research Laboratory in Barrow, Alaska. Multiple surveys were conducted along 200-meter lines using a capacitively coupled resistivity array, a thermal sensor array, and an ice drill. A custom thermal sensor array based on the Arduino platform was constructed for this work. This array included an infrared sensor with a 35° field of view. This gave an average surface temperature reading over a spot of ≈25cm diameter with an accuracy of ±0.1°C . An ambient temperature sensor with an accuracy of ±1°C was positioned 25cm above the ice. Both of these were mounted on a repurposed GPR cart with a custom-built odometer wheel. Sets of 30 data points were collected every 17cm along the survey lines. Most data were collected during daylight hours. Some thermal data were collected in the morning twilight to study the effects of shadows cast by snow mounds. Resistivity data were obtained at 8 to 10 vertical depths as determined by the length of the array using 2.5m dipoles. This depended on the ice thickness along a survey line as well as the equipment's susceptibility to ambient temperature variations. The data points were obtained approximately 35cm apart horizontally. The resistivity data were inverted using software with a number of parameters to be set by the user. Adjusting these parameters caused the modeled depth to the ice/water boundary to vary significantly. The parameters have been refined through ice drill data obtained at 10-meter intervals. The ice drill was deployed only after resistivity and thermal data were obtained for each survey line. The resistivity and ice drill data showed an average ice depth of 1.2-1.7 meters, significantly thinner than in previous years' surveys. The modeled locations of the ice/water boundaries from the resistivity and ice drill data were compared to the surface temperatures along the survey lines. An analysis of the correlation of

  12. Deployment of Indicator of Reduction in Soils (IRIS) Probes in Arctic Drained Thaw Lake Basins and Drainages: Time Integrated Signals of Soil Saturation and Redox

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Newman, B. D.; Hudak, M.; Gard, M.; Altmann, G.; Throckmorton, H.; Wilson, C. J.

    2013-12-01

    Climate driven warming and degradation of permafrost may lead to changes in the hydrology of low gradient regions like the North Slope of Alaska. Hydrologic changes will affect the saturation and redox state of soils in drained thaw lake basins (DTLBs), interlake areas, and associated drainages. These changes are being investigated at the Barrow Environmental Observatory (BEO) and surroundings as part of the Next Generation Ecosystem Experiment - Arctic project. As a complement to traditional redox and aqueous chemistry measurements, the use of indicator of reduction in soils (IRIS) probes is being assessed as a simple and cost-effective way to monitor redox changes. The probes consist of PVC sheets coated with a ferrihydrite paint. Under reducing conditions iron on these probes will partially dissolve. The amount of dissolution can be quantified by image analysis and related in a semi-quantitative fashion to redox conditions in the soils. IRIS probes have been successfully utilized in numerous temperate settings to demonstrate, for example, the presence of reducing soils for wetlands delineation. Test probes were installed in saturated soils for 48 hours in July, 2013. After 48 hours, minor reductive dissolution of ferrihydrite was observed. No sulfide precipitation was noted. As such, probes were installed in quadruplicate at 14 locations representing primarily outlet drainages from different-aged DTLBs and interlake areas. In each case, the probes were installed to refusal at the frost table within the active layer overlying the permafrost. IRIS probes were deployed adjacent to arrays of rhizon samplers used for soil pore water sampling so that time-integrated IRIS probe results can be compared to chemical results (a snapshot in time) obtained at the beginning and end of the monitoring period (probes will be extracted in September). Image analysis will employ LANL's GENIE technology. Field measurements of ferrous iron in water samples showed significant redox

  13. A GCM comparison of Plio-Pleistocene interglacial-glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2014-08-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and

  14. Paleoenvironmental Interpretation of Events Leading to Declines in Planktonic Diatoms in the Late Pliocene and Pleistocene Record from Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Snyder, J. A.; Cherepanova, M. V.; Wakefield, A. E.

    2014-12-01

    The Lake El'gygytgyn sediment core (ICDP 5011-1) contains a near-continuous record of diatoms extending to approximately 3.46 Ma, providing a means to evaluate past climate-related lake system changes in this unique terrestrial Arctic paleoclimate archive. Systematic down-core diatom counts at an average 4-kyr resolution and SEM observations of dominant planktonic taxa from selected intervals are presented here for the first time. During the Pleistocene, the record is characterized by repeated declines in plankton abundance coinciding with a shift in dominant planktonic genus or species. These events correspond to cold intervals inferred from other proxies, implying a mechanism such as severe ice and snow conditions on the lake leading to an extended decline in the plankton. In contrast, during the Pliocene portion of the record, although similar or longer declines in the plankton abundance occur, the plankton has a more stable character, dominated by previously undescribed species of the genus Pliocaenicus. The most significant change occurs after a plankton decline with sustained periphytic diatoms from approximately 2.93-2.80 Ma, when a species with a rimoportula and distinct alveolae is replaced by a species with relatively flat valves with such structures absent or too insignificant to observe in SEM. This zone does not correspond to a particular cold event, as identified by other proxy records, but corresponds to a consistent warm interval with low insolation variability. Thus, diatoms and diatom-related proxies may be recording different lake-system responses to climate during different portions of the lake's history. Higher resolution analyses of these events will help to characterize the lake system changes occurring during climate events unfavorable for planktonic diatoms.

  15. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  16. Leucocyte profiles of Arctic marine birds: correlates of migration and breeding phenology

    PubMed Central

    Mallory, Mark L.; Little, Catherine M.; Boyd, Ellen S.; Ballard, Jennifer; Elliott, Kyle H.; Gilchrist, H. Grant; Hipfner, J. Mark; Petersen, Aevar; Shutler, Dave

    2015-01-01

    Most Arctic marine birds are migratory, wintering south of the limit of annual pack ice and returning north each year for the physiologically stressful breeding season. The Arctic environment is changing rapidly due to global warming and anthropogenic activities, which may influence the timing of breeding in relation to arrival times following migration, as well as providing additional stressors (e.g. disturbance from ships) to which birds may respond. During stressful parts of their annual cycle, such as breeding, birds may reallocate resources so that they have increased heterophil-to-lymphocyte ratios in their white blood cell (leucocyte) profiles. We analysed leucocyte profiles of nine species of marine birds to establish reference ranges for these species in advance of future Arctic change. Leucocyte profiles tended to cluster among taxonomic groups across studies, suggesting that reference values for a particular group can be established, and within species there was evidence that birds from colonies that had to migrate farther had higher heterophil-to-lymphocyte ratios during incubation than those that did not have to travel as far, particularly for species with high wing loading. PMID:27293713

  17. Correlation of lacustrine paleoclimate records from Mono Lake with the North Atlantic using paleomagnetic intensity

    NASA Astrophysics Data System (ADS)

    Zimmerman, S. R. H.; Hemming, S. R.; Kent, D. V.

    2003-04-01

    The Wilson Creek Formation of Mono Lake, CA is a Late Pleistocene lacustrine sequence that records major shifts in the paleoenvironment of the lake. It has also been shown to be an excellent recorder of the past variations of the Earth’s magnetic field, and is important as the type section of the Mono Lake Excursion (MLE). As with many terrestrial records, however, it has proven to be very challenging to date the Wilson Creek Fm. at high resolution. Radiocarbon dating has been shown to be vulnerable to contamination with modern carbon, while 40Ar/39Ar dating of the rhyolitic ashes is complicated by inclusion of older xenocrysts. Benson et al. (1998; QR, v. 49, 1-10 ) suggested a correlation to North Atlantic records using paleomagnetic inclination and intensity combined with radiocarbon ages. They argued that δ18O of the Wilson Creek sediments represents variations in lake level, with prominent dry periods (high δ18O) correlating to the North Atlantic Heinrich events. We generated a relative paleointensity record for the Wilson Creek section and propose an alternative correlation to the North Atlantic Paleomagnetic Intensity Stack (NAPIS-75; Laj et al. 2000, Phil. Trans. R. Soc., v. 358, 1009-1025) and the GISP2 age model. It was recently demonstrated by Stoner et al. (2002, QSR v. 21, 1141-1151) that variations in the Earth’s paleomagnetic field intensity are correlative both at high-resolution (10^3 yr) and over long distances (10^4 km). Assuming that the MLE is equivalent to the Laschamp Excursion and that the lake expanded early in Marine Isotope Stage 4, a simple correlation of the major features of the NAPIS-75 and Mono records places the Wilson Creek Fm. on the GISP2 age model, and allows correlation of that paleoclimate record to other records also on that time scale. We also interpret the major δ18O excursions as Heinrich correlatives; however, our correlation equates the three older excursions to H4, H5, and H6 (rather than H3, no correl., and H4

  18. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments

    NASA Astrophysics Data System (ADS)

    Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias

    2015-04-01

    Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature

  19. [Microbial biomass and its correlations with carbon, nitrogen, and phosphorus in the sediments of Taihu Lake].

    PubMed

    Wang, Na; Xu, De-Lin; Guo, Xuan; Wu, Xiao-Qing; An, Shu-Qing

    2012-07-01

    To explore the responses and feedbacks of the microbes in the sediments of Taihu Lake to the sediment nutrients, an investigation was made on the microbial biomass carbon (MB(C)), microbial biomass nitrogen (MB(N)), microbial biomass phosphorus (MB(P)), and their correlations with the total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in the sediments. The microbial biomass in the sediments was 184.66 mg x kg(-1), being higher at the lakeside than in the mid-lake region. The MB(C) was higher in the western coastal region, Zhushan Bay, and Meiliang Bay, with an average of 127.57 mg x kg(-1), MB(N) was higher in Meiliang Bay, Gonghu Bay, mid-lake region close to Meiliang Bay and Gonghu Bay, and eastern costal region, with an average of 19.25 mg x kg(-1), and MB(P) was higher in the eastern region and parts of the mid-lake region, with an average was 19.09 mg x kg(-1). The TOC high value zone (> or = 2.30 g x kg(-1)) was mainly in Zhushan Bay, western coastal region, Meiliang Bay, and Gonghu Bay, with an average of 1.59 g x kg(-1), TN high value zone (> or = 0.30 g x kg(-1)) was mainly in the Gonghu Bay, Meiliang Bay, Zhushan Bay, and western costal region, with an average of 0.21 g x kg(-1), and TP high value zone (> or = 1.20 g x kg(-1)) was mainly in the eastern coastal region and parts of the mid-lake region, with an average of 0.55 g x kg(-1). The TOC/TN ratio in the sediments was 7-19, with an average of 8.97, which showed that the organic substances in the sediments had obvious dual sources, among which, terrestrial organisms were mainly in the west side of the lake. The microbial biomass in the sediments was significantly positively correlated with sediment TOC and TN but had less correlation with sediment TP, and the MB(C)/MB(N) was significantly correlated with sediment TOC/TN, suggesting that the microbes in the sediments of Taihu Lake were mainly affected by the sediment TOC and TN, and the changes of the TOC/TN had significant

  20. A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie

    2016-02-01

    Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called "super interglacial" intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold "glacial" conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.

  1. Satellite Observed Variability in Antarctic and Arctic Surface Temperatures and Their Correlation to Open Water Areas

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recent studies using meterological station data have indicated that global surface air temperature has been increasing at a rate of 0.05 K/decade. Using the same set of data but for stations in the Antarctic and Arctic regions (>50 N) only, the increases in temperature were 0.08, and 0.22 K/decade, when record lengths of 100 and 50 years, respectively, were used. To gain insights into the increasing rate of warming, satellite infrared and passive microwave observations over the Arctic region during the last 20 years were processed and analyzed. The results show that during this period, the ice extent in the Antarctic has been increasing at the rate of 1.2% per decade while the surface temperature has been decreasing at about 0.08 K per decade. Conversely, in the Northern Hemisphere, the ice extent has been decreasing at a rate of 2.8% per decade, while the surface temperatures have been increasing at the rate of 0.38 K per decade. In the Antarctic, it is surprising that there is a short term trend of cooling during a global period of warming. Very large anomalies in open water areas in the Arctic were observed especially in the western region, that includes the Beaufort Sea, where the observed open water area was about 1x10(exp 6) sq km, about twice the average for the region, during the summer of 1998. In the eastern region, that includes the Laptev Sea, the area of open water was also abnormally large in the summer of 1995. Note that globally, the warmest and second warmest years in this century, were 1998 and 1995, respectively. The data, however, show large spatial variability with the open water area distribution showing a cyclic periodicity of about ten years, which is akin to the North Atlantic and Arctic Oscillations. This was observed in both western and eastern regions but with the phase of one lagging the other by about two years. This makes it difficult to interpret what the trends really mean. But although the record length of satellite data is still

  2. A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods

    USGS Publications Warehouse

    Stannard, D.I.; Rosenberry, D.O.

    1991-01-01

    Concurrent short-term measurements of evaporation from a shallow lake, using eddy correlation and energy budget methods, indicate that sensible and latent heat flux between lake and atmosphere, and energy storage in the lake, may vary considerably across the lake. Measuring net radiation with a net radiometer on the lake appeared to be more accurate than measuring incoming radiation nearby and modeling outgoing radiation. Short-term agreement between the two evaporation measurements was obtained by using an energy storage term that was weighted to account for the area-of-influence of the eddy correlation sensors. Relatively short bursts of evaporation were indicated by the eddy correlation sensors shortly after midnight on two of three occasions. ?? 1991.

  3. Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores.

    PubMed

    Stern, G A; Braekevelt, E; Helm, P A; Bidleman, T F; Outridge, P M; Lockhart, W L; McNeeley, R; Rosenberg, B; Ikonomou, M G; Hamilton, P; Tomy, G T; Wilkinson, P

    2005-04-15

    Two annually laminated cores collected from Lake DV09 on Devon Island in May 1999 were dated using 210Pb and 137Cs, and analyzed for a variety of halogenated organic contaminants (HOCs), including polychlorinated biphenyls (PCBs), organochlorine pesticides, short-chain polychlorinated n-alkanes (sPCAs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). Dry weight HOC concentrations in Lake DV09 sediments were generally similar to other remote Arctic lakes. Maximum HOC fluxes often agreed well with production maxima, although many compound groups exhibited maxima at or near the sediment surface, much later than peak production. The lower than expected HOC concentrations in older sediment slices may be due to anaerobic degradation and possibly to dilution resulting from a temporary increase in sedimentation rate observed between the mid-1960s and 1970s. Indeed, temporal trends were more readily apparent for those compound classes when anaerobic metabolites were also analyzed, such as for DDT and toxaphene. However, it is postulated here for the first time that the maximum or increasing HOC surface fluxes observed for many of the major compound classes in DV09 sediments may be influenced by climate variation and the resulting increase in algal primary productivity which could drive an increasing rate of HOC scavenging from the water column. Both the fraction (F(TC)) and enantiomer fraction (EF) of trans-chlordane (TC) decreased significantly between 1957 and 1997, suggesting that recent inputs to the lake are from weathered chlordane sources. PCDD/Fs showed a change in sources from pentachlorophenol (PeCP) in the 1950s and 1960s to combustion sources into the 1990s. Improvements in combustion technology may be responsible for the reducing the proportion of TCDF relative to OCDD in the most recent slice. PMID:15866277

  4. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  5. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    NASA Astrophysics Data System (ADS)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  6. Paleomagnetic secular variation as an intra-basinal and extra-basinal correlation tool for Pleistocene lake sediments

    SciTech Connect

    Negrini, R.M.; Erbes, D.B. . Dept. of Physics and Geology); Roberts, A.P.; Verosub, K.L.

    1993-04-01

    High-resolution age control is a serious problem encountered by those studying middle to late Pleistocene lake sediments, especially saline lake deposits which commonly are low in organic content obviating the use of bulk sediment radiocarbon dating. Paleomagnetic secular variation, the low amplitude variation in the direction and intensity of the Earth's magnetic field, can be recorded accurately in lake sediments. In this case if offers a high-resolution correlation tool which can be used for intra- and extra-basinal correlations. In principal, this could extend geographically as far away as marine environments enabling on to tie non-marine stratigraphy into the well-dated chronology common to marine sediment records. Examples are given of correlations based on this technique. The examples, in turn, are based on ongoing paleomagnetic and lithostratigraphic studies in the sediments of Pleistocene Lakes Chewaucan, Lahontan and previously-published paleomagnetic records from Pleistocene Lake Russell and from two un-named Pleistocene lakes. Intrabasinal correlations in Lake Chewaucan support the contention that secular variation can be used to correlate outcrop exposures (three samples per horizon) on a depth scale of several centimeters which probably corresponds to a temporal resolution of a few hundred years or less.

  7. Sediment-water gas exchange in two Swedish lakes measured by Eddy Correlation

    NASA Astrophysics Data System (ADS)

    Kokic, J.; Sahlee, E.; Brand, A.; Sobek, S.

    2014-12-01

    Lake sediments are hotspots for carbon (C) cycling, acting both as sinks and sources through C burial and production of carbon dioxide (CO2) and methane. The fate of this CO2 in the water column is controlled by bottom water turbulence, a factor not accounted for in current estimates of sediment CO2 fluxes. This study is aimed to quantify the turbulent CO2 flux across the sediment-water interface (SWI) by measuring the oxygen (O2) flux with the non-invasive Eddy Correlation (EC) method that combines measurements of 3D velocity (ADV) and O2 fluctuations with a microsensor. Using the metabolic relation (respiratory quotient, RQ) of O2 and CO2 derived from a sediment incubation experiment we present the first estimates of turbulent lake sediment CO2 flux from two boreal lakes in Sweden (Erssjön and Erken, 0.07 km2 and 23.7 km2 respectively). Only ~10 % of the total dataset was extracted for flux calculations due to poor signal-to-noise ratio in the velocity and O2 signals. The sediment in Lake Erssjön was both consuming and producing O2, related to bacterial respiration and photosynthesis. Mean O2 flux was -0.19 and 0.17 μmol O2 m-2 sec-1, comparing to 0.04 μmol O2 m-2 sec-1 derived from the sediment incubation experiment. Fluxes for Lake Erken are still to be determined. Experimentally derived RQ of the both lake sediments were close to unity implying that in-situ CO2 fluxes are of similar magnitude as O2 fluxes, varying between -0.15 and 0.18 μmol C m-2 sec-1. The first measurement of turbulent sediment O2 flux and estimate of turbulent CO2 flux from a small boreal lake show higher and more variable fluxes than previously found in experimental studies. The low amount of data extracted for flux calculations (~10%) point towards the difficulties in EC measurement in low-turbulence environments. On-going work focuses on the turbulence structure in lakes and its influence on the gas fluxes at the SWI.

  8. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  9. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent

    NASA Astrophysics Data System (ADS)

    Zhao, Meng; Ramage, Joan; Semmens, Kathryn; Obleitner, Friedrich

    2014-04-01

    Glacier surface melt dynamics throughout Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) serve as a good indicator of ice mass ablation and regional climate change in the Russian High Arctic. Here we report trends of surface melt onset date (MOD) and total melt days (TMD) by combining multiple resolution-enhanced active and passive microwave satellite datasets and analyze the TMD correlations with local temperature and regional sea ice extent. The glacier surface snowpack on SevZ melted significantly earlier (-7.3 days/decade) from 1992 to 2012 and significantly longer (7.7 days/decade) from 1995 to 2011. NovZ experienced large interannual variability in MOD, but its annual mean TMD increased. The snowpack melt on NovZ is more sensitive to temperature fluctuations than SevZ in recent decades. After ruling out the regional temperature influence using partial correlation analysis, the TMD on both archipelagoes is statistically anti-correlated with regional late summer sea ice extent, linking land ice snowmelt dynamics to regional sea ice extent variations.

  10. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  11. The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Lipson, David A.; Raab, Theodore K.; Goria, Dominic; Zlamal, Jaime

    2013-04-01

    research showed that anaerobic respiration using iron (Fe) oxides as terminal electron acceptor contributed substantially to ecosystem respiration (ER) in a drained thaw lake basin (DTLB) on the Arctic coastal plain. As DTLBs age, the surface organic layer thickens, progressively burying the Fe-rich mineral layers. We therefore hypothesized that Fe(III) availability and Fe reduction would decline with basin age. We studied four DTLBs across an age gradient, comparing seasonal changes in the oxidation state of dissolved and extractable Fe pools and the estimated contribution of Fe reduction to ER. The organic layer thickness did not strictly increase with age for these four sites, though soil Fe levels decreased with increasing organic layer thickness. However, there were surprisingly high levels of Fe minerals in organic layers, especially in the ancient basin where cryoturbation may have transported Fe upward through the profile. Net reduction of Fe oxides occurred in the latter half of the summer and contributed an estimated 40-45% to ecosystem respiration in the sites with the thickest organic layers and 61-63% in the sites with the thinnest organic layers. All sites had high concentrations of soluble Fe(II) and Fe(III), explained by the presence of siderophores, and this pool became progressively more reduced during the first half of the summer. Redox titrations with humic acid (HA) extracts and chelated Fe support our view that this pattern indicates the reduction of HA during this interval. We conclude that Fe(III) and HA reductions contribute broadly to ER in the Arctic coastal plain.

  12. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  13. A comparison of organochlorine and heavy metal contamination and effects in freshwater fish from the U.S. and Russian Arctic

    SciTech Connect

    Allen-Gil, S.M.; Landers, D.H.; Gubala, C.P.; Curtis, L.R.

    1995-12-31

    Liver and muscle from grayling (Thymallus arcticus) and lake trout (Salvelinus namaycush) from four US Arctic lakes, and Arctic charr (Salvelinus alpinus), whitefish (Coregonus sp.) and burbot (Lola lota) from five lakes in the Taimyr Peninsula of the Russian Arctic were analyzed for heavy metal (As, Cu, Cd, Hg, Ni, Pb and Zn) and organochlorine content (DDTs, PCBs, HCHs, chlordanes). Although the Russian Arctic is home to two of the largest metal smelters in the world (Nickel and Norilsk), and is often considered a source for atmospheric pollutants to the North American Arctic, heavy metal burdens in fish collected along a transact northeast of the Norilsk smelter in Russia were not elevated relative to US Arctic fish. Sediment records from these lakes indicate that metal flux to the lakes has not increased in the post industrial era. Thus, metal concentrations in fish likely represent natural background concentrations for these areas. Likewise, levels of PCBs and DDTs were similar in US and Russian fish. Burbot collected south of the Norilsk smelter showed elevated levels of Hg, p,p{prime}-DDE, and PCBs 138 and 153 relative to other species collected in Russia and the US. The authors believe this is attributable to species differences in trophic positioning, rather than differences in total contaminant flux. There were no indications of reproductive impairment, as indicated by circulating sex steroid levels, in Russian fish. By contrast, a negative correlation was observed between both 17{beta}-estradiol and testosterone and liver Pb concentrations (R{sup 2} = 0.51--0.82) in Arctic graving from the US Arctic. These data suggest that long range atmospheric transport and deposition of anthropogenically-derived contaminants are probably not a significant stressor affecting aquatic food webs in these two Arctic regions.

  14. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  15. A structural fabric defined by topographic lineaments: Correlation with Tertiary deformation of Ellesmere and Axel Heiberg Islands, Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Oakey, Gordon

    1994-01-01

    Digital topographic contours from four 1:250000 scale maps have been gridded to produce a digital elevation model for part of Ellesmere and Axel Heiberg islands in the Canadian Arctic Islands. Gradient calculations were used to define both east and west dipping slopes defining a pattern of lineaments that have been compared with mapped geological structures. In ice-covered areas, where geological mapping was not possible, well-defined topographic lineaments have been identified and are correlated to extensions of major structural features. The northeast-southwest patterns of both topographic lineaments and mapped structures are strongly unimodal and support a single compressive event oriented at 67 deg west of north. This orientation is coincidental with the convergence direction calculated from the kinematic poles of rotation for Greenland relative to North America between 56 and 35 Ma. A minor secondary peak at 70 east of north is observed for thrust and normal fault solutions and is not directly related to the predicted convergence direction. Whether this represents a unique phase of deformation or is a subcomponent of a single event is not known. The agreement of structural components, lineament orientations, and convergence direction suggests an overwhelming over print of Eurekan deformation on any preexisting structural fabric. This study confirms, for the first time, an excellent compatibility between geological and geophysical constraints for the timing and geometry of the Eurekan orogeny.

  16. Revised chronology for late Pleistocene Mono Lake sediments based on paleointensity correlation to the global reference curve

    NASA Astrophysics Data System (ADS)

    Zimmerman, Susan H.; Hemming, Sidney R.; Kent, Dennis V.; Searle, Stephanie Y.

    2006-11-01

    Lakes are highly sensitive recorders of climate processes, but are extremely difficult to correlate precisely to ice-core and marine records, especially in the absence of reliable radiocarbon dates. Relative paleointensity (RPI) of Earth's magnetic field is an independent method of correlating high-resolution climate records, and can be applied to both marine and terrestrial sediments, as well as (inversely) correlated to the cosmogenic nuclide records preserved in ice cores. Here we present the correlation of an RPI record from Mono Lake, California to GLOPIS, the Global PaleoIntensity Stack, which increases the age estimation of the basal Mono Lake sediments by > 20 000 yr (20 kyr), from ˜40 ka (kyr before present) to 67 ka. The Mono Lake sediments thus preserve paleoclimatic records of most of the last glacial period, from 67 to 14 ka. In addition, the paleointensity-based age of 40 ka for the geomagnetic excursion preserved at Mono Lake indicates that this is a record of the global Laschamp excursion.

  17. Halogenated organic contaminants and their correlations with circulating thyroid hormones in developing Arctic seabirds.

    PubMed

    Nøst, Therese Haugdahl; Helgason, Lisa Bjørnsdatter; Harju, Mikael; Heimstad, Eldbjørg S; Gabrielsen, Geir Wing; Jenssen, Bjørn Munro

    2012-01-01

    Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds. PMID:22154184

  18. Biotic and abiotic correlates with black bullhead population characteristics in Nebraska sandhill lakes

    USGS Publications Warehouse

    Phelps, Q.E.; Ward, M.J.; Paukert, C.P.; Chipps, S.R.; Willis, D.W.

    2005-01-01

    We explored relationships among black bullhead (Ameiurus melas) population characteristics and physicochemical attributes in shallow lakes and quantified relationships between population characteristics of black bullhead and sport fishes. Lake characteristics and fisheries survey data were collected from the Sandhills region of northcentral Nebraska from May through June, 1998 and 1999. Relative abundance of black bullheads was inversely related to proportional stock density (r=-0.672, df=15, P=0.004); however, neither relative weight nor growth was significantly (P ??? 0.20) related to black bullhead relative abundance. Population characteristics of common panfish species such as bluegill (Lepomis macrochirus), green sunfish (L. cyanellus), pumpkinseed (L. gibbosus), and yellow perch (Perca flavescens) were not correlated with black bullhead relative abundance or size structure. Rather, proportional stock density (r=0.655, df=10, P=0.029) and growth (r=0.59, df=11, P=0.04) of black bullhead were positively related to relative abundance of largemouth bass (Micropterus salmoides). Similarly, black bullhead relative abundance was inversely related to largemouth bass size structure (r=-0.51, df=14, P= 0.05). Black bullhead mean length at age 3 was positively related to total phosphorous concentration (r=0.65, df=16, P=0.004), and bullhead relative abundance was positively related to shoreline development index (r=0.46, df=22, P=0.03). Population characteristics of black bullhead appeared to have little influence on panfish communities. Rather, black bullhead abundance, predator density, and lake productivity exhibited stronger relationships with black bullhead population characteristics.

  19. Late Pliocene and early Pleistocene environments of the north-eastern Russian Arctic inferred from the Lake El'gygytgyn pollen record

    NASA Astrophysics Data System (ADS)

    Andreev, A. A.; Tarasov, P. E.; Wennrich, V.; Raschke, E.; Herzschuh, U.; Nowaczyk, N. R.; Brigham-Grette, J.; Melles, M.

    2013-08-01

    The 318 m thick lacustrine sediment record in Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities allowing the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments show their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.50-3.35 Myr BP the vegetation at Lake El'gygytgyn, in nowadays tundra area, was dominated by spruce-larch-fir-hemlock forests. After ca. 3.4 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental changes took place at ca. 3.305-3.275 Myr BP, corresponding with the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated in the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.04-3.02, 2.93-2.91, and 2.725-2.695 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Revealed peaks in green algae colonies (Botryococcus) around 2.53, 2.45, 2.320-2.305 and 2.175-2.150 Myr BP suggest a spread of shallow water environments. Few intervals (i.e. 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations.

  20. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods.

    PubMed

    Søndergaard, Jens; Tamstorf, Mikkel; Elberling, Bo; Larsen, Martin M; Mylius, Maria Rask; Lund, Magnus; Abermann, Jakob; Rigét, Frank

    2015-05-01

    Riverine mercury (Hg) export dynamics from the Zackenberg River Basin (ZRB) in Northeast Greenland were studied for the period 2009-2013. Dissolved and sediment-bound Hg was measured regularly in the Zackenberg River throughout the periods with running water (June-October) and coupled to water discharge measurements. Also, a few samples of snow, soil, and permafrost were analysed for Hg. Mean concentrations of dissolved and sediment-bound Hg in the river water (±SD) were 0.39 ± 0.13 and 5.5 ± 1.4 ngL(-1), respectively, and mean concentrations of Hg in the river sediment were 0.033 ± 0.025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96%) was associated with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 gH gk m(-2)yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial lake outburst floods in the ZRB in late summer at the time of maximum soil thaw depth, the location of the glacier in the upper ZRB, and increased thawing of the permafrost in Zackenberg in recent years leading to destabilisation of river banks are considered central factors explaining the high fraction of flood-controlled Hg export in this area. PMID:25666278

  1. Under-ice noise generated from diamond exploration in a Canadian sub-arctic lake and potential impacts on fishes.

    PubMed

    Mann, D; Cott, P; Horne, B

    2009-11-01

    Mineral exploration is increasing in Canada, particularly in the north where extensive diamond mining and exploration are occurring. This study measured the under-ice noise produced by a variety of anthropogenic sources (drilling rigs, helicopters, aircraft landing and takeoff, ice-road traffic, augers, snowmobiles, and chisels) at a winter-based diamond exploration project on Kennady Lake in the Northwest Territories, Canada to infer the potential impact of noise on fishes in the lake. The root-mean-square noise level measured 5 m from a small diameter drill was approximately 46 dB greater (22 kHz bandwidth) than ambient noise, while the acoustic particle velocity was approximately 40 dB higher than ambient levels. The loudest sounds at the exploration site were produced by ice cracking, both natural and during landing and takeoff of a C130 Hercules aircraft. However, even walking on the snow above the ice raised ambient sound levels by approximately 30 dB. Most of the anthropogenic sounds are likely detectable by fishes with hearing specializations, such as chubs and suckers. Other species without specialized hearing adaptations will detect these sounds only close to the source. The greatest potential impact of noise from diamond exploration is likely to be the masking of sounds for fishes with sensitive hearing. PMID:19894802

  2. Geostatistical study of spatial correlations of lead and zinc concentration in urban reservoir. Study case Czerniakowskie Lake, Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław; Wojtkowska, Małgorzata

    2016-07-01

    The article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values. Clear cross-correlations of Pb and Zn concentrations in water, suspension and bottom sediments suggest that both Pb and Zn came to Czerniakowskie Lake from the same source.

  3. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, Michaele; Rose, T.P.; Smoot, J.P.; Schwartz, M.

    1998-01-01

    Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest low-stand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ???18,000 and ???13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. ?? 1998 University of Washington.

  4. Ferry Lake, Rodessa, and Punta Gorda Anhydrite bed correlation, lower cretaceous, offshore eastern Gulf of Mexico

    SciTech Connect

    Petty, A.J.

    1995-10-01

    The Lower Cretaceous Ferry Lake and Punta Gorda Anhydrite have been used as marker beds throughout Gulf of Mexico, and divided into nine individual anhydrite beds traceable from southern Mississippi to southern Florida. The underlying Rodessa Formation has an equally well-developed anhydrite section in the offshore Eastern Gulf of Mexico and is divided into twelve basinwide anhydrite bed groupings. The anhydrites of Ferry Lake and Rodessa Formation are traceable to the anhydrites of the Punta Gorda and Lehigh Acres Formations of South Florida. Anhydrite beds appear to thicken in the central part of the trend interfingering with carbonates of the Lower Cretaceous shelf edge reef. Paleontologic data indicate that depositional water depths of the interbedded carbonates range from sea level to 100 meters. Carbonates and anhydrites may be deposited simultaneously with carbonate patchreefs developing on crests of paleo anhydrites may be deposited simultaneously with carbonate patchreefs developing on crests of paleo highs with evaporites precipitating out of a hyper-saline solution on the flanks. Areas where poor anhydrite bed development occurs may indicate areas of patch reefs and, therefore, the best potential for hydrocarbon reservoirs. Individual anhydrite beds have been correlated and color-coded on photocopies of compensated neutron density logs to determine their geographic distribution. Prepared cross sections show some beds to be areawide while others are more restricted. Isopach maps show the configuration of the basin in which these beds were deposited with the basin`s long isopach axis parallel to the reef trend. Anhydrite deposition occurred with evaporation of restricted highstand waters behind reefs that rimmed the shelf edge.

  5. Correlations between vegetation and island geomorphology in the Wax Lake Delta, Louisiana

    NASA Astrophysics Data System (ADS)

    Smith, B. C.; Moffett, K. B.; Mohrig, D. C.

    2013-12-01

    Understanding how deltas build and maintain themselves is critical to predicting how they will respond to perturbations such as sea level rise. This is especially an issue of interest in coastal Louisiana, where land loss is prevalent due to subsidence and decreased sediment supply. Feedbacks between ecology and geomorphology have been well documented in many different environments, but the role of vegetation in delta morphodynamics is not well understood. This study investigates spatial and temporal correlations between vegetation succession and sediment accumulation at the Wax Lake Delta in Louisiana. This low gradient, rapidly prograding, tidally influenced delta has been forming since 1973 at the mouth of the man-made Wax Lake Outlet discharging into Atchafalaya Bay. We established a 2500 m long transect along the western levee of Pintail Island, capturing the full range of island elevations and the transition from bare sediment to herbaceous plants and trees. Shallow (50-150 cm deep) sediment cores from this transect were analyzed for particle size, organic matter content, and bulk density, and dated using Pb-210. The resulting sedimentation rates and composition trends over time were compared to remote sensing-based analyses of temporal changes in vegetation extent, island shape, and flooding frequency derived from historical aerial photos and Landsat images. We find that significantly more silty and organic sediments overly fine sandy deposits, with a greater depth to sand at higher elevations. Although the depth of the textural transition might logically be related to the local mean water level along the island elevation transect, trends in flooding frequency extracted from the historical series of Landsat images show that island elevations relative to mean water level have changed over time. These results provide an empirical foundation for future mechanistic models linking mineral sedimentation, organic sedimentation, vegetation succession, elevation

  6. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  7. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image Stratus clouds are common in the Arctic during the summer months, and are ... formats available at JPL August 23, 2000 - Stratus clouds help modulate the arctic climate. project:  ...

  8. Annual arctic wolf pack size related to arctic hare numbers

    USGS Publications Warehouse

    Mech, L.D.

    2007-01-01

    During the summers of 2000 through 2006, I counted arctic wolf (Canis lupus arctos) pups and adults in a pack, arctic hares (Lepus arcticus) along a 9 km index route in the area, and muskoxen (Ovibos moschatus) in a 250 km2 part of the area near Eureka (80?? N, 86?? W), Ellesmere Island, Nunavut, Canada. Adult wolf numbers did not correlate with muskox numbers, but they were positively related (r2 = 0.89; p < 0.01) to an arctic hare index. This is the first report relating wolf numbers to non-ungulate prey. ?? The Arctic Institute of North America.

  9. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Xuan; Zhao, Ying; Yang, Zhifeng

    2014-09-01

    In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann-Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year ( p < 0.01), whereas inter-annual NDVI trends were negligible; (2) the abrupt change detection showed that a major hydro-climatological change occurred in 2004, when abrupt changes occurred in lake volume, water level, and sunlight duration; and (3) the RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.

  10. Temporal development of the correlation between ozone and potential vorticity in the Arctic in the winters of 1988/1989, 1989/1990, and 1990/1991

    NASA Technical Reports Server (NTRS)

    Knudsen, Bjorn; Vondergathen, Peter; Braathen, Geir O.; Fabian, Rolf; Jorgensen, Torben S.; Kyro, Esko; Neuber, Roland; Rummukainen, Markku

    1994-01-01

    Ozone sonde data of the winters 1988/89, 1989/90, and 1990/91 from a group of Arctic stations are used in this study. The ozone mixing ratio on several isentropic surfaces is correlated to the potential vorticity (P). The P is based on the initialized analysis data from the European Center for Medium-Range Weather Forecasts. Similar investigations were made by Lait et al. (Geophys. Res. Lett., 17, 521-524, March Supplement 1990) for the AASE campaign (January and February 1989), showing how the ozone mixing ratio varies with the distance to the edge of the vortex. Their findings are confirmed and extended to the following two winters. Furthermore we have studied the temporal development of the P-ozone correlations during these winters in order to recognize any chemical ozone depletion.

  11. Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake

    SciTech Connect

    Takano, B.

    1987-03-27

    The Yugama crater lake at Kusatsu-Shirane volcano, Japan, contains nearly 2200 tons (2800 parts per million) of polythionate ions (S/sub n/O/sub 6//sup 2 -/, where n = 4 to 9). Analytical data on lake water sampled before and during eruptions in 1982 showed that the concentrations of polythionates decreased and sulfate increased in response to the preeruption activities of the subaqueous fumaroles. These changes were observed 2 months before the first phreatic explosion on 26 October 1982. The monitoring of polythionates and sulfate in crater lake water is a promising means of anticipating potential volcanic eruption hazards.

  12. [Abundance of Toxic and Non-toxic Microcystis sp. in Lake Hongze and Its Correlation with Environmental Factors].

    PubMed

    Li, Da-ming; Zhang, Tong-qing; Tang, Sheng-kai; Duan, Cui-lan; Yang, Jun-hu; Mu, Huan; Liu, Xiao-wei

    2016-02-15

    In the present study, the eutrophic level of 30 water samples collected from Lake hongze in August 2014 were analyzed, and the abundance of toxic and non-toxic Microcystis sp., together with their spatial distribution, was investigated by quantitative real-time PCR techniques. The results showed that the average concentrations of total nitrogen and total phosphorus were 1.63 and 0.11 mg x L(-1), respectively. The trophic state index ( TSI) ranged from 58.1 to 73.6, and the water quality was in the state of eutrophication based on TSI. Toxic Microcystis was widely distributed in Lake Hongze, and its abundance varied sharply, from 1. 13 x 10(4) to 3.51 x 10(6) copies x mL(-1), and the abundance of total Microcystis ranged from 1.06 x 10(5) to 1.10 x 10(7) copies x m(-1), meanwhile, the proportion of toxic Microcystis in the total Microcystis ranged from 8.5% to 38.5%, with the average value of 23.6%. Correlation analysis indicated that there was a significant positive correlation among total Mirocystis, toxic Microcystis and the toxic proportion (P < 0.01). The abundance of total and toxic Microcystis was significantly positively correlated to chlorophyll a ( Chl-a) concentrations and TSI (P < 0.01), but was negatively correlated to transparency (SD) (P < 0.01). The ratio of toxic Microcystis to total Microcystis was significantly positively correlated to Chl-a, TN, TP and TSI (P < 0.01), but significantly negatively correlated to the ratio of TN to TP and SD (P < 0.01). Therefore, reducing total nitrogen and phosphorus concentrations could not only lower the eutrophication level of Lake Hongze, but also inhibit the competition advantage of the toxic Microcystis over non-toxic Microcystis. PMID:27363146

  13. Genotypes of ITS region of rRNA in Microcystis (Cyanobacteria) populations in Erhai Lake (China) and their correlation with eutrophication level.

    PubMed

    Song, Gaofei; Jiang, Yongguang; Yu, Gongliang; Li, Renhui

    2015-10-01

    Previous studies on spatiotemporal changes of Microcystis genotypes have shown that the existence and succession of dominant genotypes always occur in eutrophicated freshwater bodies. However, few studies have focused on the correlation between genotype composition and eutrophication level. In the present study, clone libraries of the internal transcribed spacer (ITS) of rrn operon were sequenced from Microcystis populations in Erhai Lake, a subtropical plateau lake in the preliminary eutrophication stage. The genotype composition of the Microcystis populations was highly variable at spatiotemporal scales, and 473 ITS genotypes were identified from the 800 ITS sequences obtained. However, no significantly dominant ITS genotypes existed in the lake. Comparison of Erhai Lake with four major lakes in China, namely, Taihu, Chaohu, Gucheng, and Shijiu Lakes, showed that the Microcystis ITS genotypes and genetic diversity were negatively correlated with eutrophication level. Extensive comparison of the Microcystis ITS genotypes from waters worldwide revealed that 440 ITS genotypes were unique to Erhai Lake, and no obvious phylogenetic correlations can be detected among the dominant genotypes from different water bodies. The high genetic diversity of the Microcystis populations in Erhai Lake may have resulted from the effect of the early stage of eutrophication. PMID:26098704

  14. The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history

    PubMed Central

    Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas

    2012-01-01

    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28–0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46–1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance

  15. Correlation of Late Pleistocene Terrestrial Climate Variation From Mono Lake, USA, With Global Records Using Relative Paleointensity

    NASA Astrophysics Data System (ADS)

    Zimmerman, S.; Hemming, S.; Kent, D.

    2004-12-01

    In order to assess different models of global climate variation, it is crucial to be able to accurately correlate terrestrial climate records with each other and with marine climate records. This problem is especially challenging in intervals older than 30 kyr, when problems with accuracy and precision of 14C ages become significant. Recently published stacks of global, high-resolution variation in intensity of Earth's past magnetic field (North and South Atlantic PaleoIntensity Stacks, NAPIS and SAPIS) enable correlation of high-quality terrestrial records of paleointensity with the GISP2 timescale. The lacustrine sediments of the Wilson Creek Formation (Mono Basin, CA) are known to be excellent recorders of Pleistocene climate and geomagnetic field variation, and are the type locality for the Mono Lake paleomagnetic excursion (MLE). Here we present rock magnetic analyses showing that the sediments also fit the criteria required for good recorders of paleomagnetic intensity, with a magnetic fraction dominated by fine-grained magnetite with concentration variation <3. Both the type section and South Shore cliffs were sampled continuously at 2 cm resolution, and susceptibility and Natural, Anhysteretic, and Isothermal Remnant Magnetizations (NRM, ARM, and IRM) were measured on all samples. IRM was chosen to normalize the NRM for paleointensity, though NRM/ARM produces a similar curve. The resulting records are similar both to each other and to the NAPIS and SAPIS curves, allowing correlation of the Wilson Creek sediments to the GISP2 timescale. We have used two independent age constraints to frame our correlation to NAPIS and SAPIS; first, carbonate 14C and tephra 40Ar/39Ar ages agree to 32 ka, which is thus used as an upper tie point. Second, the lakes of the Great Basin have been shown to be strongly controlled by the 100 ka cycle, and so we infer lake transgression over the Wilson Creek site at the M.I.S. 5/4 boundary, fixing the maximum age of sediment

  16. Ecomorphological correlates of twenty dominant fish species of Amazonian floodplain lakes.

    PubMed

    Siqueira-Souza, F K; Bayer, C; Caldas, W H; Cardoso, D C; Yamamoto, K C; Freitas, C E C

    2016-07-11

    Fishes inhabiting Amazonian floodplain lakes exhibits a great variety of body shape, which was a key advantage to colonize the several habitats that compose these areas adjacent to the large Amazon rivers. In this paper, we did an ecomorphological analysis of twenty abundant species, sampled in May and August 2011, into two floodplain lakes of the lower stretch of the Solimões River. The analysis detected differences among species, which could be probably associated with swimming ability and habitat use preferences. PMID:27409231

  17. Correlating Permafrost Organic Matter Composition and Characteristics with Methane Production Potentials in a First Generation Thermokarst Lake and Its Underlying Permafrost Near Fairbanks, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K. C.

    2014-12-01

    Thermokarst lakes, formed in permafrost-thaw depressions, are known sources of atmospheric methane (CH4) and carbon dioxide (CO2). The organic carbon (OC) utilized in the production of these greenhouse gases originates from microbial decomposition of aquatic and terrestrial organic matter (OM) sources, including soils of the lakes' watersheds and permafrost thaw beneath the lakes. OM derived from permafrost thaw is particularly important given the thickness of permafrost soils underlying some lakes (typically 10-30 m in yedoma permafrost); however, OM heterogeneity remains a significant uncertainty in estimating how microbial decomposition responds to permafrost thaw. This study correlates OM and water-extractable OC (WEOC) composition with CH4 production potentials determined from anaerobic laboratory incubations. Samples were collected from 21 depths along a 5.9-m deep thermokarst-lake sediment core and 17 depths along an adjacent 40-m deep undisturbed yedoma permafrost profile near Vault Creek, Alaska. The Vault Lake core, collected in the center of a 3230 m2 first generation thermokarst lake, includes surface lake sediments, the talik (thaw bulb), and permafrost actively thawing beneath the lake. Soil OM composition was characterized using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) and the most prevalent compounds were grouped into six indices based on their likely origin. WEOC was characterized using fluorescence spectrometry. Using stepwise multiple linear regression analyses, we found that CH4 production was negatively correlated with WEOC aromaticity (p = 0.018) and fulvic acids (p = 0.027). CH4 production was positively correlated with lipids and carboxylic acids (p < 0.001), polysaccharides (p = 0.036) and the degree of WEOC humification (p = 0.013). Results suggest OM and WEOC composition can be correlated with CH4 production, indicating potential for model building to better predict greenhouse gas release from permafrost thaw.

  18. Occurrence of C[sub 10]-C[sub 13] polychlorinated n-alkanes in Canadian midlatitude and arctic lake sediments

    SciTech Connect

    Tomy, G.T.; Stern, G.A.; Lockhart, W.L. . Dept. of Fisheries and Oceans); Muir, D.C.G. . Environment Canada)

    1999-09-01

    Sediment cores from six lakes in Canada ranging from 49 [degree]N to 81 [degree]N were analyzed for C[sub 10]--C[sub 13] polychlorinated n-alkanes (PCAs) with the intent of (i) examining the depositional trends with increasing latitude, (ii) studying the historical profiles and fluxes of PCAs in dated sediment slices, and (iii) investigating possible in situ degradation. Sediment slices were dated using [sup 210]Pb and [sup 137]Cs, and extracts were analyzed for PCA concentrations by high resolution gas chromatography electron capture negative ion high resolution mass spectrometry (HRGC-ECNI/HRMS) in the selected ion monitoring (SIM) mode. Concentrations of total PCAs in surface sediments declined significantly from 135 ng/g in sediments from the southern basin of Lake Winnipeg to 4.52 ng/g in Hazen Lake; corresponding surficial fluxes were 147 and 0.9 [micro]g/m[sup 2] yr, respectively. The high flux of PCAs to the south Lake Winnipeg basin suggests local contamination. This was confirmed by analyzing water collected from the Red River, a river that discharges into the southern basin of Lake Winnipeg, in which elevated levels of PCAs were detected. The surficial flux of PCAs to Fox Lake, a subarctic lake in the Yukon, was also high, 34 [micro]g/m[sup 2] yr. Much lower fluxes were found in Lake Nipigon, 3 [micro]g/m[sup 2] yr, the northern basin of Lake Winnipeg, 4 [micro]g/m[sup 2] yr, and to Ya Ya Lake 0.45 [micro]g/m[sup 2] yr. The remote locations of Hazen and Ya Ya Lakes and the low levels of PCAs observed in their corresponding sediment slices are consistent with long-range atmospheric transport.

  19. Occurrence of C{sub 10}-C{sub 13} polychlorinated n-alkanes in Canadian midlatitude and arctic lake sediments

    SciTech Connect

    Tomy, G.T.; Stern, G.A.; Lockhart, W.L.; Muir, D.C.G.

    1999-09-01

    Sediment cores from six lakes in Canada ranging from 49 {degree}N to 81 {degree}N were analyzed for C{sub 10}--C{sub 13} polychlorinated n-alkanes (PCAs) with the intent of (i) examining the depositional trends with increasing latitude, (ii) studying the historical profiles and fluxes of PCAs in dated sediment slices, and (iii) investigating possible in situ degradation. Sediment slices were dated using {sup 210}Pb and {sup 137}Cs, and extracts were analyzed for PCA concentrations by high resolution gas chromatography electron capture negative ion high resolution mass spectrometry (HRGC-ECNI/HRMS) in the selected ion monitoring (SIM) mode. Concentrations of total PCAs in surface sediments declined significantly from 135 ng/g in sediments from the southern basin of Lake Winnipeg to 4.52 ng/g in Hazen Lake; corresponding surficial fluxes were 147 and 0.9 {micro}g/m{sup 2} yr, respectively. The high flux of PCAs to the south Lake Winnipeg basin suggests local contamination. This was confirmed by analyzing water collected from the Red River, a river that discharges into the southern basin of Lake Winnipeg, in which elevated levels of PCAs were detected. The surficial flux of PCAs to Fox Lake, a subarctic lake in the Yukon, was also high, 34 {micro}g/m{sup 2} yr. Much lower fluxes were found in Lake Nipigon, 3 {micro}g/m{sup 2} yr, the northern basin of Lake Winnipeg, 4 {micro}g/m{sup 2} yr, and to Ya Ya Lake 0.45 {micro}g/m{sup 2} yr. The remote locations of Hazen and Ya Ya Lakes and the low levels of PCAs observed in their corresponding sediment slices are consistent with long-range atmospheric transport.

  20. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Axford, Yarrow; Briner, Jason P.; Miller, Gifford H.; Francis, Donna R.

    2009-03-01

    A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.

  1. USING LAKE SEDIMENT MERCURY FLUX RATIOS TO EVALUATE THE REGIONAL AND CONTINENTAL DIMENSIONS OF MERCURY DEPOSITION IN ARCTIC AND BOREAL ECOSYSTEMS

    EPA Science Inventory

    Anthropogenically elevated Hg deposition in arctic and subarctic ecosystems is potentially a serious environmental problem, particularly in northern Europe and North America. To determine the magnitude of this concern, it is necessary to make an evaluation over a broad spatial sc...

  2. Distal tephras of the eastern Lake Victoria basin, equatorial East Africa: correlations, chronology and a context for early modern humans

    NASA Astrophysics Data System (ADS)

    Blegen, Nick; Tryon, Christian A.; Faith, J. Tyler; Peppe, Daniel J.; Beverly, Emily J.; Li, Bo; Jacobs, Zenobia

    2015-08-01

    The tephrostratigraphic framework for Pliocene and Early Pleistocene paleoanthropological sites in East Africa has been well established through nearly 50 years of research, but a similarly comprehensive framework is lacking for the Middle and particularly the Late Pleistocene. We provide the first detailed regional record of Late Pleistocene tephra deposits associated with artifacts or fossils from the Lake Victoria basin of western Kenya. Correlations of Late Pleistocene distal tephra deposits from the Wasiriya beds on Rusinga Island, the Waware beds on Mfangano Island and deposits near Karungu, mainland Kenya, are based on field stratigraphy coupled with 916 electron microprobe analyses of eleven major and minor element oxides from 50 samples. At least eight distinct distal tephra deposits are distinguished, four of which are found at multiple localities spanning >60 km over an approximately north to south transect. New optically stimulated luminescence dates help to constrain the Late Pleistocene depositional ages of these deposits. Our correlation and characterization of volcaniclastic deposits expand and refine the current stratigraphy of the eastern Lake Victoria basin. This provides the basis for relating fossil- and artifact-bearing sediments and a framework for ongoing geological, archaeological and paleontological studies of Late Pleistocene East Africa, a crucial time period for human evolution and dispersal within and out of Africa.

  3. Delineation of the North Anatolian Fault Within the Sapanca Lake and Correlation of Seismo-Turbidites With Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Gulen, L.; Demirbağ, E.; Cagatay, M. N.; Yıldırım, E.; Yalamaz, B.

    2015-12-01

    Seismic reflection studies have been carried out in the Sapanca Lake to delineate the geometry of the North Anatolian Fault. A total of 28 N-S and 2 E-W trending seismic profiles were obtained. The interpretation of seismic reflection profiles have revealed that the North Anatolian Fault Zone exhibits a pull-apart fault geometry within the Sapanca Lake and the active fault segments have been mapped. A bathymetry map of the Sapanca Lake is also generated and the maximum depth is determined to be 54 m. A systematic study of the sedimentological, physical and geochemical properties of three up to 75.7 cm long water-sediment interface cores located along depth transects ranging from 43 to 5.1.5 m water depth. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Organic (TOC) and Total Inorganic carbon (TIC) analysis and Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The Sapanca Lake earthquake records are characterized by seismo-turbidites consisting of grey or dark grey coarse to fine sand and silty mud with a sharp basal and transitional upper boundaries. The units commonly show normal size grading with their basal parts showing high density and magnetic susceptibility and enrichment in one or more of elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the seismo-turbidites are correlated with the 1999 İzmit and Düzce (Mw=7.4 and 7.2), 1967 Mudurnu (Mw= 6.8), and 1957 Abant (Mw= 7.1) Earthquakes. Additionally a prominent Cs137 peak was found in the Sapanca Lake sediment cores at a depth of 12 cm. indicating that a radioactive fallout occurred in the region as a result of the 1986 Chernobyl Nuclear Power Plant accident in Ukraine.

  4. Arctic Watch

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  5. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  6. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    NASA Astrophysics Data System (ADS)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  7. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems. PMID:26030209

  8. Future freshwater demands in the Arctic

    NASA Astrophysics Data System (ADS)

    White, D.; Strang, E. T.; Hinzman, L.; Alessa, L.; Kliskey, A.

    2004-12-01

    The overall objective of our research is to understand how humans rely on freshwater at local and regional scales in the Arctic, how these dependencies have changed in the recent past, and how they are likely to change in the future. This study will take place on the Seward Peninsula where climate induced changes in the hydrologic cycle are already being observed. This presentation will describe the human dependencies on freshwater in the Arctic. In particular, we will discuss the effects of inadequate quantity or quality of freshwater on Arctic inhabitants. The freshwater used by humans in the Arctic for drinking, cooking, and washing is derived in many cases from surface water, such as lakes and streams. Since the surface water frozen 6-9 months of the year in the Arctic, communities that rely on rivers and lakes must treat and store large volumes of water for use during winter. The stored water must be heated throughout the winter and distributed on an as-needed basis. Unfortunately, when not enough water can be gathered in the summer or stored in the winter, the entire community may be without freshwater. During these months, water must be collected by individuals from ice, snow, and rain. Collecting water during breakup can be dangerous. River ice is rotten, there is too little snow for snow mobiles, and the tundra is too soft all terrain vehicles. While the state of Alaska and Federal programs are making progress towards developing sustainable water sources for Alaska's Arctic communities, freshwater remains a precious commodity. Communities throughout the Arctic, including Canada and Russia, have similar problems with obtaining and purifying freshwater. As climate induced changes are being observed in the Arctic, the threat to the freshwater resource is now a greater concern than ever. This study is being funded under the NSF Arctic System Science Program, Human Dimensions of the Arctic (OPP-0328686).

  9. A Basin-based Analysis of Global Lake Stress from Scarcity of Sustainable Water Resource

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.

    2010-12-01

    Lakes are a major storage of surface fresh water readily accessible to human. However, lake water resource is unequally distributed on Earth due to variations of lake abundance, human water demand, and availability of sustainable water supply (primarily, river discharge). This study aims at presenting a global view of contemporary lake stress through analyzing water availability and human demand at fine spatial resolutions. Two scientific questions are progressively explored: i) What is the geographic cross-tabulation of lake distribution vs. population and human water demand? and ii) What is the potential stress of lake water from the scarcity of river discharge? We begin with a straightforward analysis of the spatiotemporal pattern between lake and population distributions. Preliminary results indicate that excluding the extreme climatic zones such as the Pan-Arctic and Tibetan Plateau, lake densities exhibits an intrinsically positive correlation with population density and increase rate. Lake stresses on drainage basin levels are further quantified with integration of river discharge, lake volume, and water withdrawal data. Lake water per capita is computed for each basin. An index of lake water stress (LWS) is developed to characterize the pressure of unit lake/reservoir water exerted from the scarcity of river discharge due to water withdrawal. The revealed LWS pattern provides a spatial-explicit guideline with respect to how lake water is presently in stress and thus potentially redistributed under the baseline of sustainable water scarcity. Several major regions with high LWS values are highlighted to further compare the contributions of human demand and natural water availability to the local lake stress.

  10. Bioaccumulation of toxaphene congeners in the lake superior food web

    USGS Publications Warehouse

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or

  11. Magnetic studies of erosion in a Scottish lake catchment. 1. Core chronology and correlation

    SciTech Connect

    Appleby, P.G.; Dearing J.A.; Oldfield, F.

    1985-11-01

    Magnetic susceptibility, /sup 210/Pb, /sup 137/Cs, /sup 14/C, and paleomagnetic secular variation are used to establish the chronology of sedimentation in a set of cores from Loch Frisa in western Scotland. The /sup 14/C dates obtained are not compatible with the chronology derived from all the other techniques and this is ascribed to inwash of old particulate carbon from the watershed. Central cores show little evidence of changes in sedimentation rate over the last 150 years whereas marginal cores contain evidence of major increases arising from ploughing and from drainage associated with catchment afforestation since 1935. The results illustrate the value of a multiple core approach to sedimentation and erosion studies even where complex lake morphometry precludes calculation of sediment budgets.

  12. Paleoenvironmental reconstructions of Nettilling Lake area (Baffin Island, Nunavut): A multi-proxy analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Anne; Pienitz, Reinhard; Francus, Pierre; Zdanowicz, Christian; St-Onge, Guillaume

    2014-05-01

    The paleoclimate and paleolimnological history of several Arctic regions remains poorly known. This is the case for the area around Nettilling Lake (Baffin Island, Nunavut), the largest lake of the Canadian Arctic Archipelago. To reconstruct the past environmental history of this area, a highly innovative multi-proxy approach combining physical, magnetic, chemical and biological properties preserved in lake sediments was used. One particular goal of this study was to investigate the possible coupling between sedimentation processes observed in the lake and melt rates of nearby Penny Ice Cap. A 1-m long sediment core was retrieved from a small bay in the northeastern part of Nettilling Lake during the summer of 2010. This sampling area was chosen based on the hypothesis that incoming glacial meltwaters from Penny Ice Cap would leave a strong climate-modulated signal that would be reflected in the sedimentary sequence. The core was analyzed by both non-destructive (X-radiography (X-ray), microfluorescence-X (µ-XRF), magnetic susceptibility) and destructive (Loss On Ignition, grain size, water content, thin sections, diatoms) techniques. Radiometric AMS 14C and 210Pb/137Cs age determinations, as well as paleomagnetic measurements, were used to develop the core chronology, yielding an estimated bottom age of approximately 1365 AD. The sedimentation rate (0.15 cm.yr-1) in Nettilling Lake was found to be high compared to other Arctic lakes, due to inputs of highly turbid meltwaters from Penny Ice Cap with high suspended sediment loads. Significant correlations were found between geochemical profiles of elements linked to detrital inputs (Si, Ti, K, Ca) and melt rates from Penny Ice Cap since the 19th century. This suggests that variations in detrital elements in Nettilling Lake sediments might be used as an indirect indicator of regional climate fluctuations (e.g., summer temperatures) that determine glacier melt rates.

  13. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    USGS Publications Warehouse

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  14. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  15. Comparison of the timings between abrupt climate changes in Greenland, Antarctica, China and Japan based on robust correlation using Lake Suigetsu as a template.

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-12-01

    High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.

  16. Thermokarst Lake Gyre Flow Speed and Direction Derivation Using Image Matching from Sequential Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhan, S.; Wang, S.; Beck, R. A.; Liu, H.; Hinkel, K. M.

    2014-12-01

    Thermokarst lakes on the Arctic Coastal Plain of northern Alaska are closely coupled with the regional climate through energy, water and carbon budgets. These lakes exhibit striking elongated shapes perpendicular to the prevailing wind direction. This has led to the hypothesis that the expansion of lakes is caused by thermomechanical processes induced by wind-driven water circulation. The predominant bimodal wind regime in the region (easterly and westerly wind) redistributes lake sediment towards the west and east shores to form protective littoral shelves while the north and south shores are preferentially eroded. Previous research on wind-driven circulation in thermokarst lakes was mainly based on in situ studies which can only collect sparse measurements and is time-consuming. Examination of satellite imagery clearly reveals the wide-spread presence of gyres in thermokarst lakes. It allows the study of gyres and other circulation patterns at both lake and regional scales. This study examines the movement (speed, direction) of a 10-km-wide gyre using a Landsat-7 and an ASTER scene taken about 40 minutes apart. These two images are matched using a robust image matching technique based on cross-correlation. Flow speed and direction for the gyre are extracted from the images and are compared with the in situ measurements collected during previous field work. This study provides insight into the evolution of thermokarst lakes and their interaction with the local climate by quantifying gyre circulation rates over entire lakes.

  17. Do peatlands or lakes provide the most comprehensive distal tephra records?

    NASA Astrophysics Data System (ADS)

    Watson, E. J.; Swindles, G. T.; Lawson, I. T.; Savov, I. P.

    2016-05-01

    Despite the widespread application of tephra studies for dating and correlation of stratigraphic sequences ('tephrochronology'), questions remain over the reliability and replicability of tephra records from lake sediments and peats, particularly in sites >1000 km from source volcanoes. To address this, we examine the tephrostratigraphy of four pairs of lake and peatland sites in close proximity to one another (<10 km), and evaluate the extent to which the microscopic (crypto-) tephra records in lakes and peatlands differ. The peatlands typically record more cryptotephra layers than nearby lakes, but cryptotephra records from high-latitude peatlands can be incomplete, possibly due to tephra fallout onto snow and subsequent redistribution across the peatland surface by wind and during snowmelt. We find no evidence for chemical alteration of glass shards in peatland or lake environments over the time scale of this study (mid-to late- Holocene). Instead, the low number of basaltic cryptotephra layers identified in distal peatlands reflects the capture of only primary tephra-fall, whereas lakes concentrate tephra falling across their catchments which subsequently washes into the lake, adding to the primary tephra fallout received in the lake. A combination of records from both lakes and peatlands must be used to establish the most comprehensive and complete regional tephrostratigraphies. We also describe two previously unreported late Holocene cryptotephras and demonstrate, for the first time, that Holocene Icelandic ash clouds frequently reached Arctic Sweden.

  18. Arctic hydroclimatology

    NASA Astrophysics Data System (ADS)

    Cherry, Jessica Ellen

    Arctic air temperature, precipitation, ground temperature, river runoff, clouds, and radiation are all changing quickly in a warming climate. Interactions and feedbacks between these features are not well understood. In particular, the relative role of local climate processes and large-scale ocean-atmosphere dynamics in driving observed Arctic changes is difficult to ascertain because of the sparsity of observations, inaccuracy of those that do exist, biases in global circulation models and analyses, and fundamental physics of the Arctic region. Four studies of Arctic hydroclimatology herein attempt to overcome these challenges. The first study, analysis of the Lena river basin hydroclimatology, shows canonical acceleration of the hydrologic cycle and amplification of global warming. Winter and spring are warming and increased frozen precipitation is contributing to permafrost melting by increasing soil insulation. Increasing runoff and soil moisture is leading to increasing evapotranspiration and changes in clouds. Changes in clouds are cooling summer days but warming summer nights, melting additional permafrost. Model simulations suggests that a deepening active layer will lead to an increasingly wet Arctic. The second two studies describe the development of the Pan-Arctic Snowfall Reconstruction (PASR). This product addresses the problem of cold season precipitation gauge biases for 1940-1999. The NASA Interannual-to-Seasonal Prediction Project Catchment-based Land Surface Model is used to reconstruct solid precipitation from observed snow depth and surface air temperatures. Error estimation is done via controlled simulations at Reynolds Creek Experimental Watershed, in Idaho. The method is then applied to stations in the pan-Arctic hydrological catchment. Comparison with existing products suggests that the PASR is a better estimate of actual snowfall for hydroclimatological studies. The final chapter is a case study on hydroclimatological variability driven by

  19. Arctic contaminants research program: Research plan

    SciTech Connect

    Landers, D.H.; Ford, J.; Allen, S.; Curtis, L.; Omernik, J.M.

    1992-12-01

    The research plan was initially intended to contain the information needed to evaluate the U.S. Environmental Protection Agency (EPA) Arctic Contaminant Research Program (ACRP). The scientific aspects of the proposed research form the main body of the document and focus on objectives of the specific research components, current literature, approach, and rationale. The ACRP has three major components: (1) extensive sampling of lichens, mosses, and soils to provide a spatial understanding of the status and extent of contaminants present in arctic ecosystems, (2) lake sediment research to evaluate the source and history of arctic contaminant inputs, and (3) food web research to evaluate the possible effects of atmospherically transported pollutants on arctic food webs. The research plan will be used to provide a framework for the ACRP, based on the preliminary studies done to date and will be implemented over the next five years. The Program will undergo additional peer reviews at two-year intervals in the future.

  20. Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages

    PubMed Central

    Hobbs, William O.; Telford, Richard J.; Birks, H. John B.; Saros, Jasmine E.; Hazewinkel, Roderick R. O.; Perren, Bianca B.; Saulnier-Talbot, Émilie; Wolfe, Alexander P.

    2010-01-01

    Background Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems. Methodology/Principal Findings We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3−], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends. Conclusions/Significance The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites

  1. Correlation of multi-channel seismic data from the Laptev and East Siberian Seas to onshore geology of the New Siberian Islands, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gaedicke, C.; Franke, D.; Piepjohn, K.; Brandes, C.; Sobolev, N.; Tolmacheva, T.; Mouly, B.

    2012-12-01

    The Laptev and East Siberian Seas cover large areas of the continental margin of North-Eastern Siberia and are separated by the New Siberian Islands. The East Siberian Shelf covering an area of 935.000 km2 is a virtually unexplored area and most geological models for this shelf are extrapolations of the geology of the New Siberian Islands, the Wrangel Island and the northeast Siberia landmass. Apart from few seismic reflection lines airborne magnetic data were the primary means of deciphering the structural pattern of the East Siberian Shelf. The Laptev Shelf covers an area of about 66.000 km2 and occupies a shelf region, where the active mid-oceanic spreading ridge meets the slope of a continental margin. Since no deep wells have been drilled so far on the shelves surrounding the New Siberian Islands, the precise age and nature of seismic horizons remain uncertain. All interpretations base on different evolution scenarios for the shelf areas resulting in a wide variety of interpretations available for the sedimentary cover of the Laptev Shelf where the interpretations range from Proterozoic to Cenozoic. During the joint VSEGEI/BGR field expedition CASE 13 (Circum Arctic Structural Events) in summer 2011 we sampled outcrops from the New Sibirian Archipelago including the DeLong Islands. Main purposes of the field work were: deciphering the structural evolution, paleo-stress analysis, stratigraphy and paleo-environmetal studies, and collection of potential hydrocarbon source rocks and host rocks. Here we present correlations from onshore to offshore based on multichannel reflection seismic data acquired by BGR in the 1990th and the field campaign CASE 13. Key marker horizons in the offshore data will be linked to major hiatuses in the onshore region. Well information is available close by the Lena delta in the form of sketched stratigraphy ranging from Proterozoic to Cretaceous. Both informations can be reconciled on a cross section despite a gap of approximately 25

  2. Thermokarst lake waters across the permafrost zones of western Siberia

    NASA Astrophysics Data System (ADS)

    Manasypov, R. M.; Pokrovsky, O. S.; Kirpotin, S. N.; Shirokova, L. S.

    2014-07-01

    This work describes the hydrochemical composition of thermokarst lake and pond ecosystems, which are observed in various sizes with different degrees of permafrost influence and are located in the northern part of western Siberia within the continuous and discontinuous permafrost zones. We analysed the elemental chemical composition of the lake waters relative to their surface areas (from 10 to 106 m2) and described the elemental composition of the thermokarst water body ecosystems in detail. We revealed significant correlations between the Fe, Al, dissolved organic carbon (DOC) and various chemical elements across a latitude gradient covering approximately 900 km. Several groups of chemical elements that reflect the evolution of the studied water bodies were distinguished. Combining the data for the studied latitude profile with the information available in the current literature demonstrated that the average dissolved elemental concentrations in lakes with different areas depend specifically on the latitudinal position, which is presumably linked to (1) the elements leached from frozen peat, which is the main source of the solutes in thermokarst lakes, (2) marine atmospheric aerosol depositions, particularly near the sea border and (3) short-range industrial pollution by certain metals from the largest Russian Arctic smelter. We discuss the evolution of the chemical compositions observed in thermokarst lakes during their formation and drainage and predict the effect that changing the permafrost regime in western Siberia has on the hydrochemistry of the lakes.

  3. Spatial trends of trace-element contamination in recently deposited lake sediment around the Ni-Cu smelter at Nikel, Kola Peninsula, Russian Arctic.

    PubMed

    Rognerud, Sigurd; Dauvalter, Vladimir A; Fjeld, Eirik; Skjelkvåle, Brit Lisa; Christensen, Guttorm; Kashulin, Nickolay

    2013-10-01

    A large copper-nickel smelter complex is located at the Kole Penninsula, Russia, close to the Norwegian border. Trace-element concentrations in surface sediments (0-0.5 cm) and pre-industrial sediments from 45 lakes in the region were used to uncover spatial deposition patterns and contamination factor of sediments. Elevated concentrations were found, especially for Ni and Cu, but also for Pb, Co, Hg, As, and Cd. Highest concentrations were found up to 20 km from the smelter, but the concentrations decreased exponentially with distance from the smelter. Increasing Ni, Cu, As, and Hg concentrations from sub-surface to surface sediments were found for lakes at intermediate distances (20-60 km). This may reflect recent changes in atmospheric depositions, as shown in nearby Norwegian areas. However, we cannot rule out that this also may have been caused by diagenetic processes, especially for the most redox-sensitive elements such as As. PMID:23420473

  4. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  5. Influences of seasonality, geomorphology, and hydrology on primary production and respiration in Arctic stream ecosystems

    NASA Astrophysics Data System (ADS)

    Herstand, M. R.; Bowden, W. B.; Gooseff, M. N.; Whittinghill, K. A.; Wlostowski, A. N.; Wollheim, W. M.

    2011-12-01

    Stream ecosystem processes in the Arctic are poorly understood in the spring and fall 'shoulder' seasons. We hypothesize that seasonal changes in solar radiation, hydrologic conditions, and landscape inputs are all reflected in the seasonal patterns of Gross Primary Productivity (GPP) and Community Respiration (CR). We continuously monitored the GPP and CR of three streams with different geomorphic characteristics (alluvial lake inlet, alluvial lake outlet, and beaded peat) near Toolik Lake Field Station, Alaska from breakup to freeze-up during 2011. We used open-system whole stream metabolism (WSM) methods, with dissolved oxygen estimates every five minutes. Dissolved and particulate nutrient chemistry, benthic chlorophyll, and nutrient uptake rates from solute injections were also measured across the seasons, and had correlations with GPP and CR. The fall freeze-up season was especially productive, as the well-developed benthic community responded to either lower flows (preventing sloughing) and/or increasing dissolved nutrient loads during landscape plant senescence. Storm events and high flow conditions (observed throughout seasons) decreased the GPP:CR ratio. Average monthly air temperatures have increased on the North Slope, especially during the shoulder seasons, increasing the duration of the ice-free stream season. Increasing the fall shoulder season may increase the annual stream GPP and nutrient uptake, with uncertain impacts on nutrient loading to the Arctic Ocean.

  6. a Coupled GCM Comparison of Marine Isotope Stages 1, 5e, 11c and 31 IN Relation to Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R.; Melles, M.; Brigham-Grette, J.; Minyuk, P.

    2012-12-01

    The lack of scientific data concerning interglacials of the Pleistocene in the Arctic has been a major obstacle within the climate community. Study of the interglacials of Marine Isotope Stage(s) (MIS) 1, 5e, 11c and 31 in high latitudes is important to decoding Arctic sensitivity and providing us with a potential analogue for a future Arctic with climate change. Data from a sediment core recovered from Lake El'Gygytgyn in northeastern (NE) Russia gives a continuous, high-resolution record of the Arctic spanning the past 2.8 million years whilst recording these interglacials. The data was used to correlate simulated interglacial Arctic climate with Arctic climate derived from sediment core proxy studies. Here, we use a Global Circulation Model (GCM) with a coupled atmosphere and land-surface scheme complete with an interactive vegetation component to simulate marine isotope stages 1, 5e, 11c and 31 in the Arctic. GCM simulations of MIS 5e and 31 in the Arctic both show a warmer arctic climate that can be explained by high obliquity, high eccentricity, high CO2 (287 ppmv ,325 ppmv , respectively) and precession that aligns perihelion with boreal summer. Consequently, MIS 5e showed the greatest summer warming compared to the other interglacials and pre-industrial control. However, the distinctly higher values of mean temperature of the warmest month (MTWM) and annual precipitation during stage 11c cannot readily be explained by summer orbital forcings and greenhouse gas (GHG) concentrations. Montane forest is seen migrating northward in stages 1, 5e and 31 as the surface insolation increases and sea ice melts, whereas in 11c, the warmest of the interglacials, evergreen forest takes over and migrates pole ward toward the coast. Feedback from low albedo forest biome was studied and conclusions suggest the increase in temperature due to forest cover is insignificant in creating a significantly warm regional climate. The warming associated with a lack of a Greenland Ice

  7. Arctic Social Sciences: Opportunities in Arctic Research.

    ERIC Educational Resources Information Center

    Arctic Research Consortium of the United States, Fairbanks, AK.

    The U.S. Congress passed the Arctic Research and Policy Act in 1984 and designated the National Science Foundation (NSF) the lead agency in implementing arctic research policy. In 1989, the parameters of arctic social science research were outlined, emphasizing three themes: human-environment interactions, community viability, and rapid social…

  8. Arctic Languages: An Awakening.

    ERIC Educational Resources Information Center

    Collis, Dermid R. F., Ed.

    This work is a study of Arctic languages written in an interdisciplinary manner. Part of the Unesco Arctic project aimed at safeguarding the linguistic heritage of Arctic peoples, the book is the outcome of three Unesco meetings at which conceptual approaches to and practical plans for the study of Arctic cultures and languages were worked out.…

  9. The Interdependence of Lake Ice and Climate in Central North America. [correlation between freeze/than cycles of lakes and regional weather variations

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A comparison of lake freeze transition zone migration with the movement of large pressure centers reveals the following consistencies: (1) polar continental cyclones originate within and/or travel along the trend of the transition zone; (2) polar continental anticyclones fail to cross the transition zone; (3) polar outbreak anticyclones pass through the transition zone, apparently unaffected. In addition, storm centers associated with the transition zone undergo significant intensification manifest by a deepening of the pressure through and increased precipitation outside the zone.

  10. From detachment to transtensional faulting: A model for the Lake Mead extensional domain based on new ages and correlation of subbasins

    NASA Astrophysics Data System (ADS)

    Beard, L.; Umhoefer, P. J.; Martin, K. L.; Blythe, N.

    2007-12-01

    New studies of selected basins in the Miocene extensional belt of the northern Lake Mead domain suggest a new model for the early extensional history of the region (lower Horse Spring Formation and correlative strata). Critical data are from (i) Longwell Ridges area west of Overton Arm and within the Lake Mead fault system, (ii) Salt Spring Wash basin in the hanging wall of the South Virgin-White Hills detachment (SVWHD) fault, and (iii) previously studied subbasins of the south Virgin Mountains in the Gold Butte step-over region. The basins and faulting patterns suggest two stages of basin development related to two distinct faulting episodes, an early period of detachment faulting followed by a switch to faulting mainly along the Lake Mead transtensional fault system while detachment faulting waned. Apatite fission track ages suggest the footwall block of the SVWHD was cooling at 18-17 Ma, but the only evidence for basin deposition at that time is in the Gold Butte step-over where slow rates of sedimentation and facies patterns make faulting on the north side of the Gold Butte block ambiguous. The first basin stage was ca. 16.5 to 15.5 Ma, during which there was slow to moderate faulting and subsidence in a basin along the SVWHD and north of Gold Butte block in the Gold Butte step-over basin; the step- over basin had complex fluvial and lacustrine facies and was synchronous with landslides and debris flows in front of the SVWHD. At ca. 15.5-14.5 Ma, there was a [dramatic] increase in sedimentation rate related to formation of the Gold Butte fault, a change from lacustrine to widespread fluvial, playa, and local landslide facies in the step-over basin, and the peak of exhumation and faulting rates on the SVWHD. The simple step-over basin broke up into numerous subbasins [at[ as initial faults of the Lake Mead fault system formed. From 14.5 to 14.0 Ma, there was completion of a major change from dominantly detachment faulting to dominantly transtensional faulting