Sample records for arctic polar vortex

  1. Polar vortex concentricity as a controlling factor in Arctic denitrification

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Davies, S.; Carslaw, K. S.; Chipperfield, M. P.; Kettleborough, J.

    2002-11-01

    Recent in situ observations in the Arctic stratosphere have detected nitric acid-containing particles with sizes up to 10-?m radius and number concentrations between 10-5 and 10-3 cm-3. Here we quantify the effect of these particles on Arctic denitrification by using a new three-dimensional (3-D) model which can couple particle growth and sedimentation with the full dynamics of the Arctic polar vortex. We show that the very long growth times of large nitric acid trihydrate (NAT) particles lead to a highly nonlinear dependence of Arctic denitrification on the growth and evaporation cycles of individual particles, thus making denitrification dependent on the precise meteorological conditions in a given winter. Using 3-D wind and temperature fields from December 1999, we identify a period that was optimum for denitrification, in which the cold pool and vortex were nearly concentric and in which a large proportion of the particles were able to sediment over about 8 days through the full depth of the cold pool without evaporating. We then show that small departures from concentric conditions can lead to substantial reductions in denitrification. A case is presented in which denitrification was completely shut off even with over half of the cold pool area remaining within the vortex. Under the same conditions, a model in which the particles were assumed to be in continuous equilibrium with the gas phase caused extensive denitrification. Our results show that low Arctic vortex temperatures in themselves are unlikely to be a reliable indicator of potential denitrification if large NAT particles are involved.

  2. Ozone loss in the Arctic polar vortex inferred from high-altitude aircraft measurements

    Microsoft Academic Search

    M. H. Proffitt; J. J. Margitan; K. K. Kelly; M. Loewenstein; J. R. Podolske; K. R. Chan

    1990-01-01

    The Arctic polar vortex in winter is known to be chemically primed for ozone depletion, yet it does not exhibit the large seasonal ozone decrease that characterizes its southern counterpart. This difference may be due in part to a net flux of ozone-rich air through the Arctic vortex, which can mask ozone loss. But by using a chemically con-served tracer

  3. A method for estimating the extent of denitrification of arctic polar vortex air from tracer-tracer scatter plots

    E-print Network

    Esler, Gavin

    the sedimentation of HNO3- bearing polar stratospheric cloud (PSC) particles, and these form at low temperaturesA method for estimating the extent of denitrification of arctic polar vortex air from tracer for estimating the extent of denitrification of Arctic polar vortex air is proposed. Previous estimates

  4. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (0-450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 microns) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of 0 is estimated to have been dehydrated in this event.

  5. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta about 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(sub y)) had also been removed, with layers of enhanced (sub y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (about 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micron) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  6. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  7. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    ... to wind flow. These MISR images were captured on June 6, 2001, during Terra orbit 7808. The entire vortex street can be seen in the ... Other formats available at JPL June 6, 2001 - Marine stratocumulus clouds form vortex streets. ...

  8. Polar processing in a split vortex: early winter Arctic ozone loss in 2012/13

    NASA Astrophysics Data System (ADS)

    Manney, G. L.; Lawrence, Z. D.; Santee, M. L.; Livesey, N. J.; Lambert, A.; Pitts, M. C.

    2015-02-01

    A sudden stratospheric warming (SSW) in early January 2013 caused the polar vortex to split. After the lower stratospheric vortex split on 8 January, the two offspring vortices - one over Canada and the other over Siberia - remained intact, well-confined, and largely at latitudes that received sunlight until they reunited at the end of January. As the SSW began, temperatures abruptly rose above chlorine activation thresholds throughout the lower stratosphere. The vortex was very disturbed prior to the SSW, and was exposed to much more sunlight than usual in December 2012 and January 2013. Aura Microwave Limb Sounder (MLS) nitric acid (HNO3) data and observations from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) indicate extensive polar stratospheric cloud (PSC) activity, with evidence of PSCs containing solid nitric acid trihydrate particles during much of December 2012. Consistent with the sunlight exposure and PSC activity, MLS observations show that chlorine monoxide (ClO) became enhanced early in December. Despite the cessation of PSC activity with the onset of the SSW, enhanced vortex ClO persisted until mid-February, indicating lingering chlorine activation. The smaller Canadian offspring vortex had lower temperatures, lower HNO3, lower hydrogen chloride (HCl), and higher ClO in late January than the Siberian vortex. Chlorine deactivation began later in the Canadian than in the Siberian vortex. HNO3 remained depressed within the vortices after temperatures rose above the PSC existence threshold, and passive transport calculations indicate vortex-averaged denitrification of about 4 ppbv; the resulting low HNO3 values persisted until the vortex dissipated in mid-February. Consistent with the strong chlorine activation and exposure to sunlight, MLS measurements show rapid ozone loss commencing in mid-December and continuing through January. Lagrangian transport estimates suggest ~ 0.7-0.8 ppmv (parts per million by volume) vortex-averaged chemical ozone loss by late January near 500 K (~ 21 km), with substantial loss occurring from ~ 450 to 550 K. The surface area of PSCs in December 2012 was larger than that in any other December observed by CALIPSO. As a result of denitrification, HNO3 abundances in 2012/13 were among the lowest in the MLS record for the Arctic. ClO enhancement was much greater in December 2012 through mid-January 2013 than that at the corresponding time in any other Arctic winter observed by MLS. Furthermore, reformation of HCl appeared to play a greater role in chlorine deactivation than in more typical Arctic winters. Ozone loss in December 2012 and January 2013 was larger than any previously observed in those months. This pattern of exceptional early winter polar processing and ozone loss resulted from the unique combination of dynamical conditions associated with the early January 2013 SSW, namely unusually low temperatures in December 2012 and offspring vortices that remained well-confined and largely in sunlit regions for about a month after the vortex split.

  9. Polar Vortex Conditions During the 1995-96 Arctic Winter: MLS CL0 and HNO(sub 3)

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Manney, G. L.; Read, W. G.; Froidevaux, L.; Waters, J. W.

    1996-01-01

    Microwave Limb Sounder (MLS) measurements of lower stratospheric CLO and HNO(sub 3) during the 1995-96 Arctic winter are presented. The 1995-96 Arctic winter was both colder and more persistently cold than usual, leading to an enhancement in lower stratospheric CLO of greater magnitude, vertical extent, and duration than has been previously observed in the Arctic. Vortex concentrations of HNO(sub 3) in mid-December were large due to diabetic decent. Trajectory calculations indicate that localized severe depletions of gas-phase HNO(sub 3) in mid-February and early March did not arise from intrainment of midlatitude air into the vortex and were therefore probably related to polar stratospheric cloud (PSC) formation.

  10. Polar vortex conditions during the 1995–96 Arctic Winter: MLS CLO and HNO 3

    Microsoft Academic Search

    M. L. Santee; G. L. Manney; W. G. Read; L. Froidevaux; J. W. Waters

    1996-01-01

    Microwave Limb Sounder (MLS) measure- ments of lower stratospheric C10 and HNOa during the 1995-96 Arctic winter are presented. The 1995-96 Arc- tic winter was both colder and more persistently cold than usual, leading to an enhancement in lower strato- spheric C10 of greater magnitude, vertical extent, and duration than previously observed in the Arctic. Vortex concentrations of HNOa in

  11. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition: Observations of particle production in the polar vortex

    SciTech Connect

    Wilson, J.C.; Stolzenburg, M.R. (Univ. of Denver, CO (USA)); Clark, W.E. (California Polytechnic State Univ., San Luis Obispo (USA)); Loewenstein, M.; Ferry, G.V.; Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (USA))

    1990-03-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 {mu}m to approximately 1 {mu}m. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N{sub 2}O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSC's) and the concentration of CN can affect PSC properties.

  12. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  13. Subsidence Mixing and Denitrification of Arctic Polar Vortex Air Measured During POLARIS

    Microsoft Academic Search

    M. Rex; R. J. Salawitch; G. C. Toon; B. Sen; J. J. Margitan; G. B. Osterman; J. f. Blavier; R. S. Gao; S. Donnelly; E. Keim; J. Neuman; D. W. Fahey; W. Irion; A. Y. Chang; C. P. Rinsland; T. P. Bui; M. R. Gunson; F. W. Irion

    1998-01-01

    Abstract. A new technique is presented to determine,the degree of denitrification that occured during the 1996\\/97 Arctic winter, based on balloon and aircraft borne measurements of NO,, N2O and CH4. The NO, \\/ N20 relation can undergo significant change due to isentropic mixing of subsided vortex air masses,with extra-vortex air due to the high non-linearity of the relation. In this

  14. Subsidence, mixing, and denitrification of Arctic polar vortex air measured during POLARIS

    Microsoft Academic Search

    M. Rex; R. J. Salawitch; G. C. Toon; B. Sen; J. J. Margitan; G. B. Osterman; J.-F. Blavier; R. S. Gao; S. Donnelly; E. Keim; J. Neuman; D. W. Fahey; C. R. Webster; D. C. Scott; R. L. Herman; R. D. May; E. J. Moyer; M. R. Gunson; F. W. Irion; A. Y. Chang; C. P. Rinsland; T. P. Bui

    1999-01-01

    We determine the degree of denitrification that occurred during the 1996-1997 Arctic winter using a technique that is based on balloon and aircraft borne measurements of NOy, N2O, and CH4. The NOy\\/N2O relation can undergo significant change due to isentropic mixing of subsided vortex air masses with extravortex air due to the high nonlinearity of the relation. These transport related

  15. Arctic sea ice melt, the Polar vortex, and mid-latitude weather: Are they connected?

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Overland, James; Francis, Jennifer; Hall, Richard; Hanna, Edward; Kim, Seong-Joong

    2015-04-01

    The potential of recent Arctic changes to influence broader hemispheric weather is a difficult and controversial topic with considerable skepticism, as time series of potential linkages are short (<10 years) and the signal-to-noise ratio relative to chaotic weather events is small. A way forward is through further understanding of potential atmospheric dynamic mechanisms. Although not definitive of change in a statistical or in a causality sense, the exceptionally warm Arctic winters since 2007 do contain increased variability according to some climate indices, with six negative (and two positive) Arctic Oscillation atmospheric circulation index events that created meridional flow reaching unusually far north and south. High pressure anomalies developed east of the Ural Mountains in Russia in response to sea-ice loss in the Barents/Kara Seas, which initiated eastward-propagating wave trains of high and low pressure that advected cold air over central and eastern Asia. Increased Greenland blocking and greater geopotential thickness related to low-level temperatures increases led to northerly meridional flow into eastern North America, inducing persistent cold periods. Arctic connections in Europe and western North America are less clear. The quantitative impact of potential Arctic change on mid-latitude weather will not be resolved within the foreseeable future, yet new approaches to high-latitude atmospheric dynamics can contribute to improved extended range forecasts as outlined by the WMO/Polar Prediction Program and other international activities.

  16. 2009/10 Arctic polar vortex observed by ISS/JEM/SMILES

    NASA Astrophysics Data System (ADS)

    Suzuki, Makoto; Imai, Koji; Mitsuda, Chihiro; Sano, Takuki; Manago, Naohiro; Naito, Yoko; Akiyoshi, Hideharu

    2012-07-01

    Superocnducting Submillimeter-Wave Limb-Emission Sounder (SMILES) is a 4K cooled limb sounding instrument in the 625-650 GHz frequency region, onboard International Space Station (ISS). SMILES was jointly developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). SMILES operated from Oct. 12, 2009 to Apr. 23, 2010. SMILES measured O3, H35Cl, H37Cl, ClO, HOCl, HO2, BrO, HNO3, CH3CN and O3 isotopes. Precision (random error) of SMILES ClO product is about 0.01 ppb. SMILES measured latitudinal region 38°S-65°N. On Jan. 23, 2010, HCl is about 1.6 ppbt at outside polar vortex and it is almost entirely converted to the ClO (1.6 to 2.0 ppbt). O3 destruction has occurred as much as 20% (from 4 ppmv to 3.2 ppmv) after 3 weeks of heterogeneous chemical process. We compared temperature, O3, HCl, ClO, of SMILES with those calculated from SD-WACCM (specified dynamics-WACCM, reproduction run using GEOS-5 meteoroogical data, ±15 mintes at the nearest spatial grid). It has been already known that the agreement between SMILES and SD-WACCM are quite excellent at outside polar vortex at all altitude region. We found that agreements inside polar vortex, in genral, are also good.

  17. The Arctic Vortex in March 2011: A Dynamical Perspective

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  18. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

  19. Observation of O3, HCl, ClO, and HOCl by ISS/JEM/SMILES inside and outside Arctic Polar Vortex during 2009-2010 Winter

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Mitsuda, C.; Manago, N.; Imai, K.; Naito, Y.; Hayashi, H.; Takahashi, K.; Shiotani, M.

    2011-12-01

    JEM/SMILES instrument has been in operation from Oct. 12, 2009 to Apr. 21, 2010 on the International Space Station. SMILES observed limb emission in the frequency region 625 and 650 GHz with 0.8 MHz sampling, and it can provide vertical profiles of O3, HCl, ClO, HOCl, HO2, BrO, HNO3, CH3CN and O3 isotopes. SMILES use 4K cooled SIS mixer which has very low noise (Tsys ~ 340 K), and SMILES L2 products should have significantly smaller random error for species such as ClO and HOCl compared to the previous measurements. This paper reports interpretation of chemistry at inside and outside Arctic polar vortex during 2009-2010 winter season based upon O3, HCl, ClO, and HOCl observation by SMILES.

  20. Sub-Monthly Polar Vortex Variability and Stratosphere-Troposphere Coupling

    E-print Network

    Black, Robert X.

    Sub-Monthly Polar Vortex Variability and Stratosphere-Troposphere Coupling in the Arctic Robert X in the boreal stratospheric polar vortex. Compared to previous studies, the current analysis examines daily zonal-mean variability within a limited spatial domain encompassing the stratospheric polar vortex

  1. A test of our understanding of the ozone chemistry in the Arctic polar vortex based on in situ measurements of ClO, BrO, and O3 in the 1994\\/1995 winter

    Microsoft Academic Search

    Thomas Woyke; Rolf Müller; Fred Stroh; Daniel S. McKenna; Andreas Engel; James J. Margitan; Markus Rex; Kenneth S. Carslaw

    1999-01-01

    We present an analysis of in situ measurements of ClO, BrO, O3, and long-lived tracers obtained on a balloon flight in the Arctic polar vortex launched from Kiruna, Sweden, 68°N, on February 3, 1995. Using the method of tracer correlations, we deduce that the air masses sampled at an altitude of 21 km (480 K potential temperature), where a layer

  2. MLS observations of ClO and HNO3 in the 1996–97 Arctic Polar Vortex

    Microsoft Academic Search

    M. L. Santee; G. L. Manney; L. Froidevaux; R. W. Zurek; J. W. Waters

    1997-01-01

    Microwave Limb Sounder (MLS) measurements of lower stratospheric ClO and gas-phase HNO3 are presented for the 1996–97 Arctic winter. The horizontal and vertical extent of enhanced ClO were smaller in 1997 than in 1996, as was the degree of enhancement. This is consistent with differences in the evolution and vertical structure of temperatures in the two years. Gas-phase HNO3 abundances,

  3. MLS observations of ClO and HNO 3 in the 1996–97 Arctic Polar Vortex

    Microsoft Academic Search

    M. L. Santee; G. L. Manney; L. Froidevaux; R. W. Zurek; J. W. Waters

    1997-01-01

    Microwave Limb Sounder (MLS) measurements of lower stratospheric ClO and gas-phase HNO3 are presented for the 1996{97 Arctic winter. The horizontal and vertical extent of enhanced ClO were smaller in 1997 than in 1996, as was the degree of enhancement. This is consistent with dierences in the evolution and vertical structure of temper- atures in the two years. Gas-phase HNO3

  4. Chemical Observations of a Polar Vortex Intrusion

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  5. Quantifying Subsidence in the 1999-2000 Arctic Winter Vortex

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Elkins, James W.; Moore, Fred L.; Ray, Eric A.; Sen, Bhaswar; Margitan, James J.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Quantifying the subsidence of the polar winter stratospheric vortex is essential to the analysis of ozone depletion, as chemical destruction often occurs against a large, altitude-dependent background ozone concentration. Using N2O measurements made during SOLVE on a variety of platforms (ER-2, in-situ balloon and remote balloon), the 1999-2000 Arctic winter subsidence is determined from N2O-potential temperature correlations along several N2O isopleths. The subsidence rates are compared to those determined in other winters, and comparison is also made with results from the SLIMCAT stratospheric chemical transport model.

  6. The Arctic influences sub-polar wind patterns and European climate

    NSDL National Science Digital Library

    Dethloff et al.

    An atmosphere-ocean general circulation model run over 500 years was used to look for the feedback mechanism related to the extent to which sea ice impacts the Earth?s albedo. Detailed analysis of the first nine years of simulations showed that although warming may occur in the mid-latitudes, Arctic cooling will result from a polar vortex churning cold air from the Rockies northward. This indicates that the Arctic exerts a strong influence on the mid- and high-latitude climate, because of its ability to modulate the strength of sub-polar westerlies and storm tracks.

  7. Polar Stratospheric Descent of NO(y) and CO and Arctic Denitrification During Winter 1992-1993

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Salawitch, R. J.; Gunson, M. R.; Solomon, S.; Zander, R.; Mahieu, E.; Goldman, A.; Newchurch, M. J.; Irion, F. W.; Chang, A. Y.

    1999-01-01

    Observations inside the November 1994 Antarctic stratospheric vortex and inside the April 1993 remnant Arctic stratospheric vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer are reported. In both instances, elevated volume mixing ratios (VMRS) of carbon monoxide (CO) were measured. A peak Antarctic CO VMR of 60 ppbv (where 1 ppbv = 10(exp -9) per unit Volume) was measured at a potential temperature of 710 K (about 27 km), about 1 km below the altitude of a pocket of elevated NO(y) (total reactive nitrogen) at a deep minimum in N2O (<5 ppbv). The Arctic observations also show a region of elevated vortex CO with a peak VMR of 90 ppbv it 630-670 K (-25 km) but no corresponding enhancement in NO(sub y) perhaps because of stronger dynamical activity in the northern hemisphere polar winter and/or interannual variability in the production of mesospheric or lower thermospheric NO. By comparing vortex and extravortex observations of NO(y) obtained at the same N2O VMR, Arctic vortex denitrification of 5 +/- 2 ppbv at 470 K (at approximately 18 km) is inferred. We show that our conclusion of substantial Arctic winter 1992-1993 denitrification is robust by comparing our extravortex observations with previous polar measurements obtained over a wide range of winter conditions. Correlations of NO(y) with N2O measured at the same potential temperature by ATMOS in the Arctic vortex and at midlatitudes on board the ER-2 aircraft several weeks later lie along the same mixing line. The result demonstrates the consistency of the two data sets and confirms that the ER-2 sampled fragments of the denitrified Arctic vortex following its breakup. An analysis of the ATMOS Arctic measurements of total hydrogen shows no evidence for significant dehydration inside the vortex.

  8. Intrusions into the lower stratospheric Arctic vortex during the winter of 1991-1992

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.; Waugh, D. W.; Atkinson, R. J.; Newman, P. A.; Lait, L. R.; Schoeberl, M. R.; Browell, E. V.; Simmons, A. J.; Loewenstein, M.

    1994-01-01

    Investigations of the kinematics of the lower stratospheric Arctic vortex during the winter of 1991-1992 using the contour advection with surgery technique reveal three distinct events in which there was substantial intrusion of midlatitude air into the vortex, in apparent contradiction of the view that the polar vortex constitutes an isolated air mass. Two of these events, in late January and mid-February, were well documented. They were predicted in high-resolution forecasts by the European Centre for Medium-Range Weather Forecasts, most clearly in experimental forecasts with reduced diffusion. Direct confirmation of the presence of the intrusions and of their calculated locations was provided by aerosol observations from the airborne differential absorption laser lidar aboard the NASA DC-8, taken as part of the second Airborne Arctic Stratospheric Expedition campaign; aerosol-rich air of midlatitude origin was seen in the expected position of the intrusions. The reality of the February event was also confirmed by in situ measurements from the NASA ER-2. Such events may be significant for the chemical processes taking place within the winter vortex. The intrusions were evidently related to the meteorology of the northern stratosphere during this winter and in particular to persistent tropospheric blocking over the northeastern Atlantic Ocean and western Europe and concomitant ridging into the lower stratospheric vortex in this region. Nevertheless, preliminary investigations have indicated that such events are not uncommon in other northern hemisphere winters, although no such events were found in the southern hemisphere during the Antarctic winter of 1987.

  9. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  10. Evolution of the 1991-1992 Arctic vortex and comparison with the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Rosenfield, J. E.; Loewenstein, M.; Podolske, J. R.; Weaver, A.

    1994-01-01

    Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model's simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude 'surf zone.' Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.

  11. Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring

    NASA Astrophysics Data System (ADS)

    Sun, Lantao; Deser, Clara; Polvani, Lorenzo; Tomas, Robert

    2014-08-01

    The impact of projected Arctic sea ice loss on the stratosphere is investigated using the Whole Atmosphere Community Climate Model (WACCM), a state-of-the-art coupled chemistry climate model. Two 91-year simulations are conducted: one with a repeating seasonal cycle of Arctic sea ice for the late twentieth-century, taken from the fully coupled WACCM historical run; the other with Arctic sea ice for the late twenty-first century, obtained from the fully coupled WACCM RCP8.5 run. In response to Arctic sea ice loss, polar cap stratospheric ozone decreases by 13 DU (34 DU at the North Pole) in spring, confirming the results of Scinocca et al (2009 Geophys. Res. Lett. 36 L24701). The ozone loss is dynamically initiated in March by a suppression of upward-propagating planetary waves, possibly related to the destructive interference between the forced wave number 1 and its climatology. The diminished upward wave propagation, in turn, weakens the Brewer-Dobson circulation at high latitudes, strengthens the polar vortex, and cools the polar stratosphere. The ozone reduction persists until the polar vortex breaks down in late spring.

  12. ATMOS Profile Structure, Filamentation, and Transport Around the 1994 Arctic Proto-Vortex

    NASA Technical Reports Server (NTRS)

    Manney, G.; Michaelsen, H.; Irion, F.; Gunson, M.

    1999-01-01

    Many long-lived trace gas profiles observed by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument around the developing polar vortex (the proto-vortex) during early November 1994 show distinctive minimum/maximum pairs (laminae).

  13. N[sub 2]O as an indicator of Arctic vortex dynamics: Correlations with O[sub 3] over Thule, Greenland in February and March, 1992

    SciTech Connect

    Emmons, L.K.; Reeves, J.M.; Shindell, D.T.; Zafra, R.L. de (State Univ. of New York, Stony Brook, NY (United States))

    1994-06-22

    The authors have recovered vertical profiles of stratospheric N[sub 2]O from spectra observed using a ground-based mm-wave spectrometer during the Arctic spring. The measurements were made from Thule, Greenland (76.3[degrees]N, 68.4[degrees]W) on nine occasions from late February to late March, 1992 as part of the Upper Atmosphere Research Satellite (UARS) Correlative Measurements Program and the European Arctic Stratospheric Ozone Experiment (EASOE). During late February Thule was under the inside edge of the Arctic vortex and mixing ratio profiles measured in that period are substantially reduced from typical high-latitude summer values. By late March the polar vortex had moved well away from Thule and N[sub 2]O mixing ratios were greatly increased, coinciding with a basic change in circulation that brought in air from the Aleutian high. The motion of the vortex is also illustrated in the change in potential vorticity above Thule. A correlation with ozone balloonsonde data from Thule is made and compared to similar analyses of the Airborne Arctic Stratospheric Expedition (AASE) measurements. Within the sensitivity of the authors' analysis, the correlation of N[sub 2]O and O[sub 3] show no evidence of ozone depletion within the vortex during this period; however, there is a distinct difference in the correlation inside and outside the vortex. 13 refs., 5 figs.

  14. Defining the Polar Vortex Edge Using an N2O: Potential Temperature Correlation Versus the Nash Criterion: A Comparison

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.

  15. Nighttime OClO in the Winter Arctic Vortex

    NASA Technical Reports Server (NTRS)

    Canty, T.; Riviere, E. D.; Salawitch, R. J.; Berthet, G.; Renard, J. -B.; Pfeilsticker, K.; Dorf, M.; Butz, A.; Bosch, H.; Stimpfle, R. M.; Wilmouth, D. M.; Richard, E. C.; Fahey, D. W.; Popp, P. J.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.

    2005-01-01

    We show that a nighttime profile of OClO in the Arctic vortex during the winter of 2000 is overestimated, by nearly a factor of 2, using an isentropic trajectory model constrained by observed profiles of ClOx (ClO + 2 X ClOOCl) and BrO. Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOx (BrO + BrCl), details of the air parcel history during the most recent sunrise/sunset transitions, and the BrCl yield from the reaction BrO + ClO. Many uncertainties are considered, and the discrepancy between measured and modeled nighttime OClO appears to be robust. This discrepancy suggests that production of OClO occurs more slowly than implied by standard photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near the upper limit of the uncertainty), good agreement is found between measured and modeled nighttime OClO. This study highlights the importance of accurate knowledge of BrO + ClO reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OClO. These factors have a considerably smaller impact on the interpretation of OClO observations obtained during twilight (90(deg) <=SZA <= 92(deg)), when photolytic processes are still active.

  16. Titan's South Polar Vortex in Motion - Duration: 11 seconds.

    NASA Video Gallery

    This movie captured by NASA'S Cassini spacecraft shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturnâ??s moon Titan. The swirling mass appears to exec...

  17. Dynamical connection between tropospheric blockings and stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Castanheira, J. M.; Barriopedro, D.

    2010-07-01

    The dynamical connection between Northern Hemisphere blocking events and the variability of the stratospheric polar vortex strength is studied. The analysis is based on the composite time evolution of the energy of baroclinic planetary waves during regional blocking occurrence. During Euro-Atlantic blocking events, an in phase forcing of stationary zonal wavenumber 1 occurs. The enhanced wave amplitude is associated with a stratospheric polar vortex deceleration, which may result, at times, in Sudden Stratospheric Warming (SSW) events of displacement type. Pacific blocking composites reveal an in phase forcing of stationary zonal wavenumber 2. In most cases, the amplification of the wavenumber 2 does not reduce the vortex strength, being even accompanied by a mean vortex acceleration. However, if the amplification of wavenumber 2 is preceded by an amplification of wavenumber 1, the initial vortex deceleration forced by wavenumber 1 may be continued by wavenumber 2, and a SSW event of splitting type may occur.

  18. Arctic winter 2005: Implications for stratospheric ozone loss and climate change

    Microsoft Academic Search

    M. Rex; R. J. Salawitch; H. Deckelmann; P. von der Gathen; N. R. P. Harris; M. P. Chipperfield; B. Naujokat; E. Reimer; M. Allaart; S. B. Andersen; R. Bevilacqua; G. O. Braathen; H. Claude; J. Davies; H. De Backer; H. Dier; V. Dorokhov; H. Fast; M. Gerding; S. Godin-Beekmann; K. Hoppel; B. Johnson; E. Kyrö; Z. Litynska; D. Moore; H. Nakane; M. C. Parrondo; A. D. Risley; P. Skrivankova; R. Stübi; P. Viatte; V. Yushkov; C. Zerefos

    2006-01-01

    The Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species. We show that chemical loss of column ozone (DeltaO3) and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds (VPSC) both exceed levels found for any other Arctic

  19. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-03-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of ? = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  20. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    PubMed Central

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6?THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of ? = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36?THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  1. Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex

    NASA Astrophysics Data System (ADS)

    Wetzel, G.; Oelhaf, H.; Friedl-Vallon, F.; Kirner, O.; Kleinert, A.; Maucher, G.; Nordmeyer, H.; Orphal, J.; Ruhnke, R.

    2012-02-01

    The winter 2009/2010 was characterized by a strong Arctic vortex with extremely cold mid-winter temperatures in the lower stratosphere associated with an intense activation of reactive chlorine compounds (ClOx). In order to assess the capacities of state-of-the-art chemistry models to predict polar stratospheric chemistry, stratospheric limb emission spectra were recorded during a flight of the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) from Kiruna (Sweden) on 24 January 2010 inside the Arctic vortex. Several fast limb sequences of spectra (in time steps of about 10 min) were measured from nighttime photochemical equilibrium to local noon allowing the retrieval of chlorine- and nitrogen-containing species which change quickly their concentration around the terminator between night and day. Mixing ratios of species like ClO, NO2, and N2O5 show significant changes around sunrise, which are temporally delayed due to shadowing of the lower stratosphere by upper tropospheric and polar stratospheric clouds. ClO variations were derived for the first time from MIPAS-B spectra. Daytime ClO values of up to 1.6 ppbv are visible in a broad chlorine activated layer below 26 km correlated with low values (close to zero) of its reservoir species ClONO2. Observations are compared and discussed with calculations performed with the 3-dimensional Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry). Mixing ratios of the species ClO, NO2, and N2O5 are fairly well reproduced by the model during photochemical equilibrium. However, since the model assumes cloudless illumination, simulated concentration changes around sunrise start earlier but less quickly compared to the observed variation of the species concentration.

  2. How Would the 2014 Winter with the Anomalous Polar Vortex Look like in 2100?

    NASA Astrophysics Data System (ADS)

    Rasmijn, L.; van der Schrier, G.; Barkmeijer, J.; Sterl, A.; Hazeleger, W.

    2014-12-01

    We study in detail the 2014 winter with floods which devastated parts of Britain and extreme winter conditions at the east coast of North America. The event was associated with an anomalous Arctic polar vortex. Using a novel developed forced sensitivity tool, we reproduce the large-scale atmospheric circulation which led to this extreme climatic event in a fully coupled climate model. The same tool is now used in a future climate to reproduce this event under warmer 2100 conditions. We use initial conditions from an RCP8.5 scenario simulation of EC-Earth and use the forced sensitivity tool, which produces optimal model tendency perturbations, to force the large-scale atmospheric circulation to reproduce the anomalous vortex in the fully coupled model. We find that, with the same large-scale atmospheric circulation as that of the winter of 2014, in the future climate simulations baroclinic activity over the east coast of North America is greatly reduced, despite the flow of Arctic air over the continent during the event. As a result of this, less cyclones are transported to Europe resulting in much smaller precipitation amounts in Western Europe. Also in the future climate simulations no anomalous cold wave is found over the east coast of North America due to a reduced north-south temperature gradient as a result of Arctic amplification. This particular case shows that some climatic extremes will become less severe in the future. The results of this study will be presented to the audience, as well as a brief description of the method applied.

  3. Polar Oceanography, Arctic Sea Ice and Climate

    NASA Astrophysics Data System (ADS)

    Timmermans, Mary-Louise

    2015-03-01

    Intensive sampling from oceanographic moorings, shipboard measurements, and drifting autonomous buoy systems has brought new understanding to Arctic freshwater dynamics, ocean heat and mixing processes, circulation and eddies, and atmosphere-ice-ocean interactions. Observations indicate apparently rapid changes in the basin-scale freshwater distribution that have marked effects on Arctic stratification. Recent measurements support the idea that a strengthened stratification limits the vertical flux of deep-ocean heat. All ocean layers exhibit a rich mesoscale eddy field; eddies, with scales comparable to the Rossby Deformation Radius [O(10km)], transport water and heat over long distances and enhance ocean mixing. Measurements further reveal an active submesoscale flow field in the ocean surface layer. These upper-ocean features, having length scales of a few kilometers or less, are dynamically important in that they can impede surface-layer deepening and modify heat, salt, and momentum fluxes between the surface ocean and adjacent sea-ice cover. This talk will review highlights of recent Arctic Ocean observational studies across a range of temporal and spatial scales, and outline advances in our understanding of ocean drivers of sea ice and climate change.

  4. Pipeline under the arctic ice: the Polar Gas Project

    SciTech Connect

    Kaustinen, O.M.

    1982-06-01

    The Polar Gas Project was established in 1972 to determine the best means of moving frontier natural gas from Canada's high arctic to southern markets. Pipeline was found to be most feasible. Several pipeline routings from two major supply areas--the MacKenzie Delta/Beaufort Sea region, and the Sverdrup Basin of the Arctic Islands--have been considered. Field programs to determine the type and ice content of soils along the route have been undertaken. The most challenging engineering aspect will be two marine crossings in arctic waters at either end of Victoria Island, at Dolphin and Union Strait, and at McClure's strait. The ''Ice Hole Bottom Pull'' technique has been recommended, and is illustrated in detail. The planned pipeline demonstration would significantly enhance the current state-of-the-art for deepwater pipelining worldwide.

  5. Titan's winter polar vortex structure revealed by chemical tracers

    Microsoft Academic Search

    N. A. Teanby; R. de Kok; P. G. J. Irwin; S. Osprey; S. Vinatier; P. J. Gierasch; P. L. Read; F. M. Flasar; B. J. Conrath; R. K. Achterberg; B. Bézard; C. A. Nixon; S. B. Calcutt

    2008-01-01

    The winter polar vortex on Saturn's largest moon Titan has profound effects on atmospheric circulation and chemistry and for the current northern midwinter season is the major dynamical feature of Titan's stratosphere and mesosphere. We use 2 years of observations from Cassini's composite infrared spectrometer to determine cross sections of five independent chemical tracers (HCN, HC3N, C2H2, C3H4, and C4H2),

  6. Measuring ozone inside the polar vortex

    NSDL National Science Digital Library

    Ivanka Stajner

    Ozone profiles with and without the Polar Ozone and Aerosol Measurement (POAM) III satellite data were compared to measurements taken from ground and air stations in the South Pole and surrounding Antarctic. Results indicate that the satellite information helps produce a much more accurate estimate of the region's ozone distribution.

  7. Arctic stratospheric winter warming forced by observed SSTs Yongyun Hu1

    E-print Network

    Hu, Yongyun

    Arctic stratospheric winter warming forced by observed SSTs Yongyun Hu1 and Lingfen Pan1 Received] Observations showed warming trends in the Arctic stratosphere in early winter months in the past few decades warming trends in the Arctic lower stratosphere. It also shows a weakened Arctic polar vortex

  8. Bioluminescence in the high Arctic during the polar night.

    PubMed

    Berge, J; Båtnes, A S; Johnsen, G; Blackwell, S M; Moline, M A

    2012-01-01

    This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To further understand community dynamics and composition, plankton nets were used to collect organisms passing through the bathyphotometer along with traditional vertical net tows. Additionally, using a moored bathyphotometer closed to the sampling site, the bioluminescence potential itself was shown not to have a diurnal or circadian rhythm. Rather, our results provide evidence for a diel vertical migration of bioluminescent zooplankton that does not correspond to any externally detectable changes in illumination. PMID:24489409

  9. Study of the winter 2005 Antarctica polar vortex

    E-print Network

    Lascaux, F; Hagelin, S; Stoesz, J; 10.1051/eas/1040013

    2010-01-01

    During winter and springtime, the flow above Antarctica at high altitude (upper troposphere and stratosphere) is dominated by the presence of a vortex centered above the continent. It lasts typically from August to November. This vortex is characterized by a strong cyclonic jet centered above the polar high. In a recent study of our group (Hagelin et al., 2008) of four different sites in the Antarctic internal plateau (South Pole, Dome C, Dome A and Dome F), it was made the hypothesis that the wind speed strength in the upper atmosphere should be related to the distance of the site to the center of the Antarctic polar vortex. This high altitude wind is very important from an astronomical point of view since it might trigger the onset of the optical turbulence and strongly affect other optical turbulence parameters. What we are interested in here is to localize the position of the minimum value of the wind speed at high altitude in order to confirm the hypothesis of Hagelin et al. (2008).

  10. Vortex-wide chlorine activation by a localized PSC event in the Arctic winter of 2009/10

    NASA Astrophysics Data System (ADS)

    Wegner, Tobias; Poole, Lamont; Tritscher, Ines; Grooss, Jens-Uwe; Nakajima, Hideaki; Pitts, Michael

    2015-04-01

    During the polar night chlorine reservoir species react heterogeneously to photo-labile chlorine compounds which drive ozone-loss cycles, eventually leading to the ozone-hole. We investigate this process for the Arctic winter 2009/10 using satellite data and model simulations. CALIPSO observations indicate localized Ppolar Stratospheric Cloud (PSC) occurrences east of Greenland beginning of January 2010 with MLS observations indicating a decrease in HCl mixing ratios co-located and downstream of these PSCs. This localized PSC event has a bigger extent than mountain-wave PSCs but still only covers a fraction of the entire vortex. Trajectory calculations confirm that low HCl mixing ratios correspond to air that has passed through PSCs. Following trajectories started in PCSs show that chlorine is activated in these cluods nad subsequently this air with low HCl mixing ratios is adveted throughout the vortex. Regions with high HCl mixing ratios correspond to air masses which haven't been exposed to PSC. After five days all vortex air has passed through the PSC which shows that such localized PSCs can activate the entire vortex within a week. Chlorine activation does not occur homogeneously throughout the vortex but rather in a localized area with air constantly flowing through. This area corresponds to the area where CALIPSO observed PSCs. Comparing the area where activation occurs with indicators of chlorine activation such as TNAT and TACl we find that these indicators overestimate the area where chlorine activation is expected to occur. In addition, heterogeneous chemistry is modeled along the trajectories passing through PSCs. Trajectory calculations are initialized upstream of PSCs with observations from MLS, tracer-tracer correlations and non-observed species from a CLaMS simulation. The CALIPSO backscatter product is used to estimate surface area density. Our calculations of HCl agree well with MLS observations downstream of PSCs. They also indicate that ClONO2 is the limiting factor in chlorine activation. Overall, we find that heterogeneous chemistry can explain observations of HCl by MLS and that chlorine activation is limited to the area where PSCs are present.

  11. Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation

    NASA Astrophysics Data System (ADS)

    Veretenenko, S.; Ogurtsov, M.

    2014-12-01

    Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ?60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex.

  12. The dynamical influence of the stratospheric polar vortex on the atmospheric global circulation

    Microsoft Academic Search

    Jose Tizon Villarin

    1997-01-01

    The stratospheric vortex is far more than an ordinary circumpolar current that reacts passively to forcing from the troposphere. It is a vigorously active circulation whose dynamics dominates the winter stratosphere and extends all the way down to the troposphere. Transient distortions and off-polar displacements of this vortex structure lead to planetary scale potential vorticity (PV) anomalies in the polar

  13. Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex

    NASA Astrophysics Data System (ADS)

    Wetzel, G.; Oelhaf, H.; Kirner, O.; Friedl-Vallon, F.; Ruhnke, R.; Ebersoldt, A.; Kleinert, A.; Maucher, G.; Nordmeyer, H.; Orphal, J.

    2012-07-01

    The winter 2009/2010 was characterized by a strong Arctic vortex with extremely cold mid-winter temperatures in the lower stratosphere associated with an intense activation of reactive chlorine compounds (ClOx) from reservoir species. Stratospheric limb emission spectra were recorded during a flight of the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) from Kiruna (Sweden) on 24 January 2010 inside the Arctic vortex. Several fast limb sequences of spectra (in time steps of about 10 min) were measured from nighttime photochemical equilibrium to local noon allowing the retrieval of chlorine- and nitrogen-containing species which change rapidly their concentration around the terminator between night and day. Mixing ratios of species like ClO, NO2, and N2O5 show significant changes around sunrise, which are temporally delayed due to polar stratospheric clouds reducing the direct radiative flux from the sun. ClO variations were derived for the first time from MIPAS-B spectra. Daytime ClO values of up to 1.6 ppbv are visible in a broad chlorine activated layer below 26 km correlated with low values (below 0.1 ppbv) of the chlorine reservoir species ClONO2. Observations are compared and discussed with calculations performed with the 3-dimensional Chemistry Climate Model EMAC (ECHAM5/MESSy Atmospheric Chemistry). Mixing ratios of the species ClO, NO2, and N2O5 are well reproduced by the model during night and noon. However, the onset of ClO production and NO2 loss around the terminator in the model is not consistent with the measurements. The MIPAS-B observations along with Tropospheric Ultraviolet-Visible (TUV) radiation model calculations suggest that polar stratospheric clouds lead to a delayed start followed by a faster increase of the photodissoziation of ClOOCl and NO2 near the morning terminator since stratospheric clouds alter the direct and the diffuse flux of solar radiation. These effects are not considered in the EMAC model simulations which assume a cloudless atmosphere.

  14. Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis

    Microsoft Academic Search

    Aaron B. Wilson; David H. Bromwich; Keith M. Hines

    2011-01-01

    Benchmark for development of Polar WRF as ASR's primary modelPolar WRF compares well with near-surface and tropospheric observationsExtension of the seasonal progression of sea ice albedo to the Arctic Ocean

  15. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  16. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  17. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  18. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  19. Frequency generation by a magnetic vortex-antivortex dipole in spin-polarized current

    E-print Network

    Stavros Komineas

    2012-03-05

    A vortex-antivortex (VA) dipole may be generated due to a spin-polarized current flowing through a nano-aperture in a magnetic element. We study the vortex dipole dynamics using the Landau-Lifshitz equation in the presence of an in-plane applied magnetic field and a Slonczewski spin-torque term with in-plane polarization. We establish that the vortex dipole is set in steady state rotational motion. The frequency of rotation is due to two independent forces: the interaction between the two vortices and the external magnetic field. The nonzero skyrmion number of the dipole is responsible for both forces giving rise to rotational dynamics. The spin-torque acts to stabilize the vortex dipole motion at a definite vortex-antivortex separation distance. We give analytical and numerical results for the angular frequency of rotation and VA dipole features as functions of the parameters.

  20. Arctic Climatology and Meteorology Primer for Newcomers to the North

    NSDL National Science Digital Library

    This primer introduces basic concepts about the arctic, including weather and climate, synoptic meteorology, and optical and acoustic phenomena. Sections on factors affecting arctic weather and climate include: latitude, land/sea distribution, solar radiation, air temperature and pressure, winds, humidity, clouds, precipitation, and arctic energy budget. Sections on factors affecting weather patterns cover: cyclones, anticyclones, the polar vortex, semipermanent highs and lows, polar lows, the arctic as a heat sink, arctic oscillation, feedback loops, and climate change. There is also a photo gallery based on life on a Russian North Pole drifting station.

  1. Spin-polarized current driven vortex-pair Switching in a magnetic ellipse.

    PubMed

    Zhang, Hong; Liu, Yaowen

    2012-02-01

    Micromagnetic simulations are performed to study the mechanism of vortex core reversal in a Permalloy elliptical element that contains two vortices with opposite polarities. A short current pulse is applied in the film plane along the short axis of the ellipse. The trajectories of the two vortex cores move either clockwise or anticlockwise, depending on the core polarization. Their reversal mechanisms of the two cores are the same through a creation-annihilation process of vortex-antivortex pair. By analyzing the partial energies of the sample we find that the core reversal occurs once the maximum local energy density reaches the threshold value (e.g., approximately 3.0 x 10(6) J/m3 for Permalloy). Interestingly, this energy threshold is a universal constant, irrespective of the applied current strength, vortex polarity and the sample size. PMID:22629896

  2. Nonorographic generation of Arctic polar stratospheric clouds during December 1999

    NASA Astrophysics Data System (ADS)

    Hitchman, Matthew H.; Buker, Marcus L.; Tripoli, Gregory J.; Browell, Edward V.; Grant, William B.; McGee, Thomas J.; Burris, John F.

    2003-03-01

    During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of ˜300 and ˜10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period ˜9 hours, vertical wavelength ˜12 km, and horizontal wavelength ˜1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at ˜1 km/hour and horizontally at ˜100 km/hour, with characteristic trace speed ˜30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly horizontal filamentary structures in the PSC, which are indicative of flow streamlines. It is suggested that vertical displacement is a crucial factor in determining whether a PSC will form and that most PSCs are relatable to specific synoptic and mesoscale motions.

  3. Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering

    E-print Network

    Roshchin, Igor V.

    OFFPRINT Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering neutron scattering Igor V. Roshchin1,2 , Chang-Peng Li2(a) , Harry Suhl2 , Xavier Batlle3 , S. Roy2(b diffraction and scattering Abstract ­ We use polarized neutron scattering to obtain quantitative information

  4. Excitation of Transient Rossby Waves on the Stratospheric Polar Vortex and the Barotropic Sudden Warming

    E-print Network

    Esler, Gavin

    Excitation of Transient Rossby Waves on the Stratospheric Polar Vortex and the Barotropic Sudden, in final form 9 March 2005) ABSTRACT The excitation of Rossby waves on the edge of the stratospheric polar to understanding the response in cases when strongly nonlinear Rossby wave breaking ensues. It is shown

  5. Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics

    NASA Astrophysics Data System (ADS)

    Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor

    2015-04-01

    Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine weather study using satellite passive microwave sensing. Geophysical Research Letters, 40(13), 3347-3350. doi:10.1002/grl.50664 3. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko "Lomonosov": Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale (Chapman & Hall/CRC Computational Science), pp.283-307, Boca Raton, USA, CRC Press, 2013. 4. B. J. Hoskins, M.E. McIntyre, A.W. Robertson, On the use and significance of isentropic potential vorticity maps, Quarterly journal of the Royal Meteorological Society, OCTOBER 1985, ? 470, vol. 111(6).

  6. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  7. The Nature and Significance of Polar Bear Conservation Hunting in the Canadian Arctic

    Microsoft Academic Search

    M. M. R. FREEMAN; G. W. WENZEL

    2006-01-01

    The history and current status of polar bear (Ursus maritimus) conservation hunting in the Canadian Arctic, where trophy hunts by non-local hunters have steadily increased in number over the past three decades, have been influenced by local and international factors. Although polar bear hides taken in the subsistence hunt have commercial value, revenues from non- resident trophy hunting provide a

  8. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation

    PubMed Central

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  9. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  10. An International Polar Year Adventure in the Arctic

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2008-12-01

    RAHI, the Rural Alaska Honors Institute at the University of Alaska Fairbanks began in 1983 after a series of meetings between the Alaska Federation of Natives and the University of Alaska, to discuss the retention rates of Alaska Native and rural students. RAHI is a six-week college-preparatory summer bridge program on the University of Alaska Fairbanks campus for Alaska Native and rural high school juniors and seniors. The program's student body is approximately 94 percent Alaska Native. RAHI students take classes that earn them seven to ten college credits, thus giving them a head start on college. Courses include: writing, study skills, desk top publishing, Alaska Native dance or swimming, and a choice of biochemistry, math, business, or engineering. A program of rigorous academic activity combines with social, cultural, and recreational activities to make up the RAHI program of early preparation for college. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. They are treated as honors students and are expected to meet all rigorous academic and social standards set by the program. All of this effort and activity support the principal goal of RAHI: promoting academic success for rural students in college. Over 26 years, 1,200 students have attended the program. Sixty percent of RAHI's alumni have entered four-year academic programs. Over 245 have earned a bachelor's degree, thirty-one have earned master's degrees, and seven have graduated with professional degrees (J.D., Pharm., or M.D.), along with 156 associate degrees and certificates. In looking at the RAHI cohort, removing those students who have not been in college long enough to obtain a degree, 27.3 percent of RAHI alums have received a bachelor's degree. An April 2006 report by the American Institutes for Research through the National Science Foundation found that: Rural Native students in the UA system who participated in RAHI are nearly twice as likely to earn a bachelor's degree, than those who did not attend RAHI. The past two summers, in celebration of the International Polar Year, in collaboration with Ilisagvik College, at the completion of the traditional RAHI program, ten RAHI students flew to Barrow for an additional two weeks of study. Five students participated in an archaeological dig and five students performed research with the Barrow Arctic Science Consortium scientists studying climate change. And another student was the Alaskan delegate to the Students on Ice, a 2-week ship-based adventure in northern Canada. In addition, ten students from Greenland visited the program, with plans to more fully participate next summer. This added dimension to the program has proved successful, allowing the students to compare and contrast between their own countries and indigenous perspectives. Global warming was an issue that was hotly debated, as its effects are so evident in the Polar Regions. In the Arctic, one's life is directly tied to the ice and snow. As the ice disappears and/or changes, the Indigenous people have to adapt. RAHI would like to share with you some of the results of this past summer's IPY activities.

  11. Stratospheric ClONO2 and HNO3 profiles inside the Arctic vortex from MIPAS-B limb emission spectra obtained during EASOE

    Microsoft Academic Search

    H. Oelhaf; T. v. Clarmann; H. Fischer; F. Friedl-Vallon; Ch. Fritzsche; A. Linden; Ch. Piesch; M. Seefeldner; W. Völker

    1994-01-01

    Vertical profiles of ClONO2 and HNO3 inside the Arctic vortex have been retrieved from infrared limb emission spectra recorded during balloon flights on January 13 and in the night of March 14\\/15, 1992 from Esrange, Sweden (68°N) as part of the European Arctic Stratospheric Ozone Experiment (EASOE). The instrumentation used was the cryogenic Michelson Interferometer for Passive Atmospheric Sounding, Balloon-borne

  12. Effect of recent sea surface temperature trends on the Arctic stratospheric vortex

    NASA Astrophysics Data System (ADS)

    Garfinkel, C. I.; Hurwitz, M. M.; Oman, L. D.

    2015-06-01

    Comprehensive chemistry-climate model experiments and observational data are used to show that up to half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically and radiatively active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs and cooling of the tropical Pacific have strongly contributed to recent polar stratospheric cooling in late winter and early spring. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone loss is larger in the presence of changing concentrations of ozone-depleting substances and greenhouse gases. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  13. Observational Evidence Against Mountain Wave Generation of Ice Clouds Leading to the Formation of NAT Clouds in Early December 1999 Within the Arctic Vortex

    NASA Astrophysics Data System (ADS)

    Pagan, K. L.; Tabazadeh, A.; Drdla, K.; Hervig, M. E.; Eckermann, S. D.; Browell, E. V.; Legg, M. J.; Foschi, P. G.

    2003-12-01

    A number of recently published papers suggest that mountain wave (or lee wave) activity in the stratosphere, producing temperatures below the ice frost point, may be the primary source of large NAT particles. We use thermal infrared radiance measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by mountain wave cloud activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid polar stratospheric cloud (PSC) Type Ia particles. By using back trajectories and superimposing the position maps on the AVHRR cloud imagery, we show that the observed solid Type Ia PSC particles could not have originated at locations of high mountain wave cloud activity. We also show that Mountain Wave Forecast Model 2.0 (MWFM-2) gridbox-averaged hemispheric hindcasts from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain wave clouds cannot explain how at least three large-scale solid HNO3 PSC structures were formed in the stratosphere in early December 1999.

  14. Generation of hollow beam with radially polarized vortex beam and complex amplitude filter.

    PubMed

    Lin, Jie; Chen, Ran; Yu, Haichao; Jin, Peng; Ma, Yuan; Cada, Michael

    2014-07-01

    The generation of hollow beams with a long focal depth from a radially polarized Bessel-Gaussian beam with a second-order vortex phase and an amplitude filter is theoretically investigated by Richards-Wolf's integral. The null intensity on the optical axis is achieved by introducing the second-order vortex. The long focal depth is a result of the amplitude filtering based on the cosine function and Euler transformation. Numerical results indicate that the focal depth of a hollow beam is improved from 0.96? to 2.28? with a slight increase of the transverse size for the simplest amplitude filter design. The intensity distribution twist phenomenon of the x- and y-polarized components around the optical axis due to the introducing of the vortex phase is also discussed. It is believed that the proposed scheme can be used to achieve particle acceleration and optical trapping. PMID:25121424

  15. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses

    NASA Astrophysics Data System (ADS)

    Allegre, O. J.; Perrie, W.; Edwardson, S. P.; Dearden, G.; Watkins, K. G.

    2012-08-01

    The use of a liquid-crystal spatial light modulator (SLM) device to convert a linearly polarized femtosecond laser beam into a radially or azimuthally polarized vortex beam is demonstrated. In order to verify the state of polarization at the focal plane, laser induced periodic surface structures (LIPSS) are produced on stainless steel, imprinting the complex vectorial polarization structures and confirming the efficacy of the SLM in producing the desired polarization modes. Stainless steel plates of various thicknesses are micromachined with the radially and azimuthally polarized vortex beams and the resulting cut-outs are analysed. The process efficiency and quality of each mode are compared with those of circular polarization. Radial polarization is confirmed to be the most efficient mode for machining high-aspect-ratio (depth/width > 3) channels thanks to its relatively higher absorptivity. Following our microprocessing tests, liquid-crystal SLMs emerged as a flexible off-the-shelf tool for producing radially and azimuthally polarized beams in existing ultrashort-pulse laser microprocessing systems.

  16. Instantaneous three-dimensional thermal structure of the South Polar Vortex of Venus

    NASA Astrophysics Data System (ADS)

    Garate-Lopez, I.; García Muñoz, A.; Hueso, R.; Sánchez-Lavega, A.

    2015-01-01

    The Venus thermal radiation spectrum exhibits the signature of CO2 absorption bands. By means of inversion techniques, those bands enable the retrieval of atmospheric temperature profiles. We have analyzed VIRTIS-M-IR night-side data obtaining high-resolution thermal maps of the Venus south polar region between 55 and 85 km altitudes. This analysis is specific to three Venus Express orbits where the vortex presents different dynamical configurations. The cold collar is clearly distinguishable centered at ?62 km (?100 mbar) altitude level. On average, the cold collar is more than 15 K colder than the pole, but its specific temperature varies with time. In the three orbits under investigation the South Polar Vortex appears as a vertically extended hot region close to the pole and squeezed by the cold collar between altitudes 55 and 67 km but spreading equatorwards at about 74 km. Both the instantaneous temperature maps and their zonal averages show that the top altitude limit of the thermal signature from the vortex is at ?80 km altitude, at least on the night-side of the planet. The upper part of the atmosphere (67-85 km) is more homogeneous and has long-scale horizontal temperature differences of about 25 K over horizontal distances of ?2000 km. The lower part (55-67 km) shows more fine-scale structure, creating the vortex morphology, with thermal differences of up to about 50 K over the same altitude range and ?500 km horizontal distances. This lower part of the atmosphere is highly affected by the upper cloud deck, leading to stronger local temperature variations and larger uncertainties in the retrieval. From the temperature maps, we also study the vertical stability of different atmospheric layers for the three vortex configurations. The static stability is always positive (ST > 0) in the considered altitude range (55-85 km) and in the whole polar vortex. The cold collar is the most vertically stable structure at polar latitudes, while the vortex and sub-polar latitudes show lower stability values. Furthermore, the hot filaments present within the vortex exhibit lower stability values than their surroundings. The layer between 62 and 67 km resulted to be the most stable. These results are in good agreement with conclusions from previous radio occultation analyses.

  17. Enhancing NASA's Contribution to Arctic Terrestrial Hydrology and the Study of Polar Change

    NASA Astrophysics Data System (ADS)

    Walsh, J. E.; Elfring, C.; Vorosmarty, C. J.; McGuire, A. D.

    2001-12-01

    In a recent report by the National Academies, an interdisciplinary committee assessed NASA's polar geophysical datasets in the context of the science questions driving the Earth Science Enterprise (ESE) and other avenues of polar research. The report examines data sets in terms of the major ESE themes: ongoing changes in polar climate and the biosphere, forcings of the polar climate system, responses and feedbacks to the forcing, consequences of change in the polar regions, and prediction of such changes. It includes a matrix of science needs and available data sets and, from that, identifies high-priority measurement needs, many of which are directly relevant to Arctic hydrology. The greatest needs are improved measurements of polar precipitation, surface albedo, freshwater discharge from terrestrial regions, surface temperatures and turbulent fluxes, permafrost extent and dynamics, ocean salinity, ice sheet mass flux, land surface (especially vegetative) characteristics, and sea ice thickness. For Arctic hydrological studies, key needs include surface radiation parameters (albedo, roughness), especially with regard to the timing of ice-out in rivers and lakes, the associated pulse of freshwater discharge, biogeochemical fluxes, and aquatic biology. There is a particular need for pan-Arctic datasets of vegetative characteristics such as leaf area index, structural composition, canopy density, albedo, disturbance characteristics, wetland extent, and nitrogen deposition. Pan-Arctic information of this type will require novel efforts in the synthesis of different products, often from different sensors. Such information, as well as high-resolution surface elevation and topography, is needed for Arctic land system models that include hydrology and ecosystem dynamics. Key changes to be anticipated or predicted by these models include changes in water supplies from snow and snow-fed rivers, effects of physical environmental change on terrestrial productivity and vegetative distribution, and effects of changes in growing season and primary production on agriculture, forestry and disturbance regimes (e.g., fire, insects).

  18. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  19. Arctic Research and Writing: A Lasting Legacy of the International Polar Year

    ERIC Educational Resources Information Center

    Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt

    2009-01-01

    Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic

  20. Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989

    Microsoft Academic Search

    Owen B. Toon; Azadeh Tabazadeh; Edward V. Browell; Joseph Jordan

    2000-01-01

    We present analyses of lidar backscatter and depolarization ratios for polar stratospheric clouds (PSCs) observed during the 1989 Airborne Arctic Stratospheric Experiment. The backscatter and depolarization ratios are available at one visible and one infrared wavelength. Water ice PSCs were identified at low ambient temperatures based upon their relatively large backscattering and depolarization ratios. The remaining clouds fall into four

  1. The dynamical influence of the stratospheric polar vortex on the atmospheric global circulation

    NASA Astrophysics Data System (ADS)

    Villarin, Jose Tizon

    The stratospheric vortex is far more than an ordinary circumpolar current that reacts passively to forcing from the troposphere. It is a vigorously active circulation whose dynamics dominates the winter stratosphere and extends all the way down to the troposphere. Transient distortions and off-polar displacements of this vortex structure lead to planetary scale potential vorticity (PV) anomalies in the polar stratosphere. These PV perturbations in turn generate globally extensive circulation anomalies whose scale and magnitude can be determined by the method of PV inversion. Results of PV inversion show that the anomalous circulations induced by these stratospheric PV anomalies are vertically and laterally extensive enough to influence the tropopause and the subtropical stratosphere. The vertical impact is of a planetary scale and is strongest directly below the vortex edge at high latitudes, extending substantially down into the midlatitude tropopause. Contour advection (CA) calculations also indicate a significant stratospheric influence on the horizontal transport of middle and high latitude tropopause air. Only those vortex PV anomalies from the lower to middle stratosphere are found to be important for tropopause dynamics. The lateral impact of these vortex perturbations is likewise extensive, tunneling through the midlatitude surf zone into the subtropical stratosphere. Combined PV inversion and CA calculations demonstrate the sheer dominance of the vortex in bringing about the poleward entrainment of subtropical tongues of air during wave events in the polar stratosphere. This vortex influence is clearly non- local, so that even wave distortion events that leave the vortex well confined within the middle latitudes are observed to excite subtropical waves. The poleward migration of these planetary scale tongues of subtropical air also generates anomalous circulations that influence their own movement. This extensive dynamical impact of the stratospheric vortex has important implications for our current understanding of the atmospheric global circulation. Aside from affecting a central climate regulation mechanism such as the meridional mixing of radiatively important tracers, this stratospheric influence may also be crucial to the dynamics of planetary waves and how these waves modulate the large scale circulation of our atmosphere.

  2. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  3. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise.

    PubMed

    Lindberg, Steve E; Brooks, Steve; Lin, C J; Scott, Karen J; Landis, Matthew S; Stevens, Robert K; Goodsite, Mike; Richter, Andreas

    2002-03-15

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions. PMID:11944676

  4. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Fan, Hong; Xu, Hua-Feng; Qu, Jun; Huang, Wei

    2015-06-01

    The three-dimensional (3D) focus shaping technique using the combination of partially coherent circularly polarized vortex beams with a binary diffractive optical element (DOE) is reported. It is found that the intensity distribution near the focus can be tailored in three dimensions by appropriately adjusting the parameters of the incident beams, numerical aperture of the objective lens, and the design of the DOE. Numerical results show that partially coherent circularly polarized vortex beams can be used to generate several special beam patterns, such as optical chain, optical needle, optical dark channel, flat-topped field, and 3D optical cage. Furthermore, compared with the ordinary 3D optical cage, this kind of 3D optical cage generated by our method has a controllable switch; that is, it can be easy to ‘open’ and ‘close’ by controlling the coherence length of the incident beams. Our work may find valuable applications in optical tweezers, microscopes, laser processing, and so on.

  5. Spatial variation of ozone depletion rates in the springtime Antarctic polar vortex

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Allen, Mark; Crisp, David; Zurek, Richard W.; Sander, Stanley P.

    1990-01-01

    An area-mapping technique, designed to filter out synoptic perturbations of the Antarctic polar vortex such as distortion or displacement away from the pole, was applied to the Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) data. This procedure reveals the detailed morphology of the temporal evolution of column O3. The results for the austral spring of 1987 suggest the existence of a relatively stable collar region enclosing an interior that is undergoing large variations. A simplified photochemical model of O3 loss and the temporal evolution of the area-mapped polar O3 are used to constrain the chlorine monoxide (ClO) concentrations in the springtime Antarctic vortex. The O3 loss rates could be larger than deduced here because of underestimates of total O3 by TOMS near the terminator.

  6. Projected Polar Bear Sea Ice Habitat in the Canadian Arctic Archipelago

    PubMed Central

    Hamilton, Stephen G.; Castro de la Guardia, Laura; Derocher, Andrew E.; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Background Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 – 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Principal Findings Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2–5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Conclusions/Significance Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100. PMID:25426720

  7. Highly-coherent magnetic vortex oscillations driven by a dc spin-polarized current

    Microsoft Academic Search

    V. S. Pribiag; G. D. Fuchs; P. M. Braganca; O. Ozatay; J. C. Sankey; D. C. Ralph; R. A. Buhrman; I. N. Krivorotov

    2007-01-01

    While it has been demonstrated that dc spin-polarized currents can drive microwave spin-wave oscillations in magnetic multilayers via the spin-transfer torque (STT) effect [1], little is known about persistent STT-driven oscillations in strongly non-uniform systems. We report the use of STT to excite steady-state gigahertz-frequency oscillations of a magnetic vortex. We use an elliptical Py-Cu-Py nanopillar spin-valve structure in which

  8. Antarctic ozone variability inside the polar vortex estimated from balloon measurements

    NASA Astrophysics Data System (ADS)

    Parrondo, M. C.; Gil, M.; Yela, M.; Johnson, B. J.; Ochoa, H. A.

    2014-01-01

    Thirteen years of ozone soundings at the Antarctic Belgrano II station (78° S, 34.6° W) have been analysed to establish a climatology of stratospheric ozone and temperature over the area. The station is inside the polar vortex during the period of development of chemical ozone depletion. Weekly periodic profiles provide a suitable database for seasonal characterization of the evolution of stratospheric ozone, especially valuable during wintertime, when satellites and ground-based instruments based on solar radiation are not available. The work is focused on ozone loss rate variability (August-October) and its recovery (November-December) at different layers identified according to the severity of ozone loss. The time window selected for the calculations covers the phase of a quasi-linear ozone reduction, around day 220 (mid-August) to day 273 (end of September). Decrease of the total ozone column over Belgrano during spring is highly dependent on the meteorological conditions. Largest depletions (up to 59%) are reached in coldest years, while warm winters exhibit significantly lower ozone loss (20%). It has been found that about 11% of the total O3 loss, in the layer where maximum depletion occurs, takes place before sunlight has arrived, as a result of transport to Belgrano of air from a somewhat lower latitude, near the edge of the polar vortex, providing evidence of mixing inside the vortex. Spatial homogeneity of the vortex has been examined by comparing Belgrano results with those previously obtained for South Pole station (SPS) for the same altitude range and for 9 yr of overlapping data. Results show more than 25% higher ozone loss rate at SPS than at Belgrano. The behaviour can be explained taking into account (i) the transport to both stations of air from a somewhat lower latitude, near the edge of the polar vortex, where sunlight reappears sooner, resulting in earlier depletion of ozone, and (ii) the accumulated hours of sunlight, which become much greater at the South Pole after the spring equinox. According to the variability of the ozone hole recovery, a clear connection between the timing of the breakup of the vortex and the monthly ozone content was found. Minimum ozone concentration of 57 DU in the 12-24 km layer remained in November, when the vortex is more persistent, while in years when the final stratospheric warming took place "very early", mean integrated ozone rose by up to 160-180 DU.

  9. Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005

    NASA Astrophysics Data System (ADS)

    Feng, W.; Chipperfield, M. P.; Davies, S.; Mann, G. W.; Carslaw, K. S.; Dhomse, S.; Harvey, L.; Randall, C.; Santee, M. L.

    2011-07-01

    A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter 2004/2005. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the ozone loss for Arctic winter 2004/2005 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a coupled detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. Overall, denitrification is responsible for a ~30 % enhancement in O3 depletion compared with simulations without denitrification for Arctic winter 2004/2005, which is slightly larger than the inferred impact of denitrification on Arctic ozone loss for previous winters from different CTMs simulations. The overestimated denitrification from standard SLIMCAT simulation causes ~5-10 % more ozone loss at ~17 km compared with the simulation using the DLAPSE PSC scheme for Arctic winter 2004/2005. The calculated partial column ozone loss from SLIMCAT using the DLAPSE scheme is about 130 DU by mid-March 2005, which compares well with the inferred column ozone loss from ozonesondes and satellite data (127±21 DU).

  10. Circularly polarized beams and vortex generation in uniaxial media

    Microsoft Academic Search

    Alessandro Ciattoni; Gabriella Cincotti; Claudio Palma

    2003-01-01

    We deduce the expressions for the two circularly polarized components of a paraxial beam propagating along the optical axis of a uniaxial crystal. We find that each of them is the sum of two contributions, the first being a free field and the second describing the interaction with the opposite component. Moreover, we expand both components as a superposition of

  11. The evolution of ozone observed by UARS MLS in the 1992 late winter southern polar vortex

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Elson, L. S.; Fishbein, E. F.; Zurek, R. W.; Harwood, R. S.; Lahoz, W. A.

    1993-01-01

    The evolution of ozone (O3) observed by the Microwave Limb Sounder on board the Upper Atmosphere Research Satellite is described for 14 Aug through 20 Sep 1992, in relation to the polar vortex. The development of an ozone hole is observed in column O3, and a corresponding decrease is seen in O3 mixing ratio in the polar lower stratosphere, consistent with chemical destruction. The observations also suggest that poleward transport associated with episodes of strong planetary wave activity is important in increasing O3 in the mid-stratosphere.

  12. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    E-print Network

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  13. Anthropogenic Impacts on Polar Bear Biology and the Arctic Ecosystem. 

    E-print Network

    Jordan, John E.

    2013-12-16

    to plasma cortisol concentrations in polar bears from Svalbard??..24 14. General threshold levels of biological effects for mammals??????????????????????.?39 15. Mean mercury concentrations in polar bears from various locations??????????????????40 16... contaminants, are rather thorough. However, data are lacking for many of the newer contaminants such as certain BFRs, as well as for other POPs such as polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), tris (p...

  14. PROBLEMS WITH CONSERVATION AND SUSTAINABLE USE OF POLAR BEARS IN THE RUSSIAN ARCTIC

    Microsoft Academic Search

    STANISLAV E. BELIKOV; ANDREI N. BOLTUNOV

    Three polar bear populations (Ursus maritimus) occur in the Russian Arctic: Spitsbergen-Novozemelskaya, Laptevskaya, and Chukchi- Alaska. The status and local condition of each population differs and requires different conservation and management approaches. The Spitsbergen- Novozemelskaya population in the early 1980s had approximately 3,000-6,700 animals. About 1,700-2,000 bears of this population inhabit the Svalbard, Norway, region and are considered by Norwegian

  15. Organochlorine contaminants in arctic marine food chains: identification, geographical distribution, and temporal trends in polar bears

    Microsoft Academic Search

    Ross J. Norstrom; Mary Simon; Derek C. G. Muir; Ray E. Schweinsburg

    1988-01-01

    Contamination of Canadian arctic and subarctic marine ecosystems by organochlorine (OC) compounds was measured by analysis of polar bear (Ursus maritimus) tissues collected from 12 zones between 1982 and 1984. PCB congeners (S-PCB), chlordanes, DDT and metabolites, chlorobenzenes (S-CBz), hexachlorocyclohexane isomers (S-HC-H), and dieldrin were identified by high-resolution gas chromatography-mass spectrometry. Nonachlor-III, a nonachlor isomer in technical chlordane, was positively

  16. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

  17. Vortex

    NSDL National Science Digital Library

    The Exploratorium

    2012-06-26

    In this activity, learners create a tornado in a bottle to observe a spiraling, funnel-shaped vortex. A simple connector device allows water to drain from a 2-liter bottle into a second bottle. Learners can observe the whirling water and then repeat the process by inverting the bottle. Use this activity to talk about surface tension, pressure, gravity, friction, angular momentum, and centripetal force.

  18. Quantifying the effect of denitrification on Arctic ozone loss

    NASA Astrophysics Data System (ADS)

    Davies, S.; Mann, G. W.; Carslaw, K. S.; Chipperfield, M. P.

    2003-04-01

    Extensive denitrification of the Arctic lower stratosphere accompanied by significant ozone loss has been observed in recent years. We have used the SLIMCAT 3-D CTM including a NAT-based microphysical Lagrangian denitrification model to examine the effect of dynamics on denitrification and ozone loss in the Arctic lower stratosphere. Denitrification is favoured by a concentric orientation of the polar vortex and cold pool, which promotes long NAT-particle growth times and large particle radii. This orientation of the vortex and cold pool generally occurs when the vortex is centered close to the pole - an orientation which may be less conducive to halogen-catalysed ozone loss. Our model results indicate that very low HNO_3 mixing ratios (HNO_3 < Cly) are required to accelerate halogen-catalysed ozone loss in the springtime Arctic vortex. The long NAT growth times required to efficiently denitrify the vortex mean that it is difficult to strongly denitrify the edge of the polar vortex. Strong denitrification of the core of the vortex in mid-winter may lead to extremely low HNO_3. In our model, the low HNO_3 mixing ratios in the core of the vortex are eroded by subsequent mixing from the non-denitrified edge region in springtime. This suggests that ongoing denitrification may be required to suppress HNO_3 sufficiently to significantly enhance ozone loss in the Arctic Spring. By using simple vortex-wide temperature offsets to represent a future colder Arctic stratosphere, we also show that approximately 2/3 of the increased ozone loss is caused by increased denitrification and only 1/3 due to increased chlorine activation on PSCs.

  19. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007–2009

    PubMed Central

    Parkinson, Alan J.

    2013-01-01

    Background The International Polar Year (IPY) 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. Design The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and promoting synergy and strategic direction of Arctic human health research and health promotion. Results As of 31 March, 2009, the official end of the IPY, AHHI represented a total of 38 proposals, including 21 individual Expressions of Intent (EoI), and 9 full proposals (FP), submitted to the IPY Joint Committee for review and approval from lead investigators from the US, Canada, Greenland, Norway, Finland, Sweden and the Russian Federation. In addition, there were 10 National Initiatives (NI-projects undertaken during IPY beyond the IPY Joint Committee review process). Individual project details can be viewed at www.arctichealth.org. The AHHI currently monitors the progress of 28 individual active human health projects in the following thematic areas: health network expansion (5 projects), infectious disease research (7 projects), environmental health research (7 projects), behavioral and mental health research (4 projects), and outreach education and communication (5 projects). Conclusions While some projects have been completed, others will continue well beyond the IPY. The IPY 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. PMID:23971017

  20. Detrital zircons of deep-sea sediments of the Arctic ocean - key to the understanding of High Polar Arctic tectonics

    NASA Astrophysics Data System (ADS)

    Shokalsky, S.; Morozov, A.; Petrov, O.; Belyatsky, B.; Rekant, P.; Shevchenko, S.; Sergeev, S.

    2012-04-01

    Zircons from sedimentary rocks bear the information on composition of vast territories often inaccessible for geologic investigation but which are the source of material. The studies of modern beaches and fluvial deposits demonstrate the efficiency of reconstruction of composition and distribution of rock types based on clastic zircon characteristics (Zircon, 2003). We have studied nine 0,5 kg specimens (every meter) from gravity-corer sample of deep sea-bottom sedimentary cover within the Geophysicists Spur region (Lomonosov Ridge) which represent first 9 meters of the section formed during 70 000 years. Heavy fraction is composed by garnet, tourmaline, titanite, rutile and by 200-300 grains of zircon per sample. Zircons in all samples are different in morphology and inner structure: from faceted needle-like to perfectly rounded, from colorless to brown opaque, with thin growth zones and inherited cores, as well as homogeneous. U-Pb SIMS SHRIMP isotope dating (50 grain analyses for each sample) was applied to two key specimens from the depth of 12-14 and 505-507 cm. The age probability distribution diagrams show that the main age peaks are of 138-147, 200-300, 400-800 and 1845-2000 Ma; few grains of 2700 Ma and one grain is 3000 Ma old. Our previous data for the zircon age distribution for box-corer sample of hemipelagic sediment from the North Pole (Grikurov et al., 2011) revealed peaks of 160, 200-450 (max 260-300 Ma), 800, 1855, 2000 and 2600 Ma. Zircons from three samples above show common features: 1) presence of Archean grains (>2400 Ma), 2) defined age peak of 1800-2000 Ma (ca 30% of grains), 3) lack of Grenvillian age zircons, 4) youngest ages of 40-160 Ma. Thus, all three studied samples have very similar provenance source, the deposition time of sandstones, from which had mainly formed the modern (<30 000 years) sediments, is Jurassic (?140-160 Ma). About 50% of analyzed zircons falls to the age interval 200-500 Ma. However, grains distribution is appreciably different for Polar sample (200-450 Ma) and Geophysicists Spur (200, 300, 400-600 Ma). It is known, that formation of modern deep-sea sediments takes place mainly due to fluvial discharge (ca 90%), erosion of oceanic bedrocks and coastal beaches. Wind-borne component and extraterraneous dust are not significant (<1%). Transportation of continental material by icebergs (ice-rafted debris) is added to these sources in polar areas. Well-known Permian-Triassic sandstones of Arctic coast (including polar islands) are defined by the presence of Grenvillian age zircons - Canadian Arctic, Alaska, Greenland (Miller et al., 2006), while Jurassic-Cretaceous sandstones of the South Anjui Zone, Chukotka and New Siberian Islands of Russian Arctic (Miller et al., 2008) have clastic zircon with ages very similar to the obtained by us for deep-sea sediments. We suppose that modern deep-sea sediments were formed either due to ablation of these sandstones with distal transportation of detritus (highly unlikely), or due to weathering of similar rock of oceanic highs of Lomonosov Ridge. The last is more realistic because the similarity of the Lomonosov Ridge and north-east continental Arctic is proved by geophysical data (Jokat et al., 1992).

  1. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and antarctic seasonal cycles.

    PubMed

    Shadwick, E H; Trull, T W; Thomas, H; Gibson, J A E

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 ?mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation. PMID:23903871

  2. Ozone profile measurements within, at the edge of, and outside the Antarctic polar vortex in the spring of 1988

    SciTech Connect

    Deshler, T.; Hofmann, D.J.; Hereford, J.V. (Univ. of Wyoming, Laramie (USA))

    1990-06-20

    Ozone and temperature were measured during 38 balloon soundings at McMurdo Station, Antarctica (78{degree}S), in the spring of 1988. Because of the motion of the Antarctic polar vortex, measurements were obtained within, at the edge of, and outside the vortex. Although the polar vortex did not remain over McMurdo as it did in 1986 and 1987, it was overhead long enough to establish that ozone depletion was less extensive and ended earlier than in either 1986 or 1987. In the vortex the ozone mixing ratio at 18 km decayed with an exponential half-life of 29 days compared to 25 and 12 days in 1986 and 1987. While ozone partial pressure in the 16-18 km layer decayed to values as low as 10 nbar in 1986 and 3 nbar in 1987, ozone partial pressure dropped to only 60-70 nbar in 1988 in the depleted region, a reduction of 30 to 50%. Even with these differences in degree of ozone depletion there were similarities to previous measurements. Ozone depletion was caused by a sink between 12 and 20 km, and primary depletion was episodic, occurring in periods of <10 days. Measurements at the edge of the vortex displayed the ozone layering observed in 1986 and 1987 and suggest the exchange of ozone rich and poor air across the vortex wall in the 12-20 km layer. Outside the vortex, vertical profiles displayed a region of high ozone and constant temperature above 20 km.

  3. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with unattended buoy measurements, and satellite retrievals). We will also show how these data may be used to improve our record of temperature over polar environments.

  4. Dynamics of Venus' southern polar vortex from over two years of VIRTIS/Venus Express observations

    NASA Astrophysics Data System (ADS)

    Luz, D.; Berry, D. L.; Peralta, J.; Piccioni, G.

    2011-10-01

    polar region of Venus, using measurements from the VIRTIS instrument from the Venus Express Mission, revealed it to be in constant dynamic change, with the southern polar vortex displaced from the rotational geometry of the planet [1]. Here, we place these results in the context of measurements taken over a two year period. We examine the dynamics of the southern polar region based on measurements of winds at the 45 and 65 km levels, detected from cloud motion monitoring by the VIRTIS instrument. The wind velocity components were determined by an automatic cloud-tracking technique based on evaluating the similarity between pairs of images of cloud structures at a specific atmospheric altitude, separated by a short time interval. The images were obtained at infrared wavelengths of 1.74 and 2.3 ?m, for the night side, and 3.9 and 5.0 ?m, for both the day and night sides. These wavelengths are sensitive to radiation originating from levels close to the base and to the top of the cloud deck, respectively. The technique assumes that the clouds are passive tracers of the atmospheric mass flow, and that the cloud structure does not change substantially between the two images. Our objectives have been 1) to provide horizontal maps of direct wind measurements at cloud tops and in the lower cloud level with a high spatial resolution; 2) to characterize the southern polar vortex as to its motion, rotation rate and dynamical stability; 3) to constrain the contribution of the circumpolar circulation to the angular momentum budget; and 4) to provide valuable information for Venus climate modelling, for the planning of future probe or balloon missions, and to examine the Venus polar vortex in the context of other planetary vortices. The circulation in the southern polar region is dominated by the zonal flow, which is much stronger than the meridional circulation. The latitudinal profiles show a relatively smooth variation and the vertical shear between the 45-km and 65-km levels is on the order of 5-10 ms-1. The horizontal structure of the zonal and meridional wind components indicate that wavenumber-2 thermal tides are likely to be present.

  5. The Vector Vortex Coronagraph: Sensitivity to Low-Order Aberrations, Central Obscuration, Chromaticism, and Polarization

    NASA Technical Reports Server (NTRS)

    Mawet, Dimitri; Pueyo, Laurent; Moody, Dwight; Krist, John; Serabyn, Eugene

    2010-01-01

    The Vector Vortex Coronagraph is a phase-based coronagraph, one of the most efficient in terms of inner working angle, throughput, discovery space, contrast, and simplicity. Using liquid-crystal polymer technology, this new coronagraph has recently been the subject of lab demonstrations in the near-infrared, visible and was also used on sky at the Palomar observatory in the H and K bands (1.65 and 2.2 micrometers, respectively) to image the brown dwarf companion to HR 7672, and the three extasolar planets around HR 8799. However, despite these recent successes, the Vector Vortex Coronagraph is, as are most coronagraphs, sensitive to the central obscuration and secondary support structures, low-order aberrations (tip-tilt, focus, etc), bandwidth (chromaticism), and polarization when image-plane wavefront sensing is performed. Here, we consider in detail these sensitivities as a function of the topological charge of the vortex and design properties inherent to the manufacturing technology, and show that in practice all of them can be mitigated to meet specific needs.

  6. Highly-coherent magnetic vortex oscillations driven by a dc spin-polarized current

    NASA Astrophysics Data System (ADS)

    Pribiag, V. S.; Fuchs, G. D.; Braganca, P. M.; Ozatay, O.; Sankey, J. C.; Ralph, D. C.; Buhrman, R. A.; Krivorotov, I. N.

    2007-03-01

    While it has been demonstrated that dc spin-polarized currents can drive microwave spin-wave oscillations in magnetic multilayers via the spin-transfer torque (STT) effect [1], little is known about persistent STT-driven oscillations in strongly non-uniform systems. We report the use of STT to excite steady-state gigahertz-frequency oscillations of a magnetic vortex. We use an elliptical Py-Cu-Py nanopillar spin-valve structure in which one of the Py layers is sufficiently thick that its magnetization assumes a vortex configuration. The oscillations, which can be obtained in essentially zero applied field, are highly coherent, with full-widths at half maximum of less than 300 kHz at room temperature being obtained under certain bias conditions. We will discuss the observed sensitivity of the oscillation line-width to magnetic defects. We will also present measurements of the temperature-dependence of the oscillations, which we are pursuing to obtain a more complete understanding of how magnetic imperfections and thermal fluctuations determine the performance of this new type of nanomagnetic STT oscillator. We will also discuss the use of STT-driven ferromagnetic resonance to examine the various magnetic modes that can be present in these nanoscale vortex structures. [1] S. I. Kiselev et al., Nature (London) 425, 380 (2003).

  7. Characterizing the polarization and cross-polarization of electromagnetic vortex pulses in the space-time and space-frequency domain.

    PubMed

    Luo, Meilan; Zhao, Daomu

    2015-02-23

    The dynamics of the degree of polarization and the degree of cross-polarization for electromagnetic pulsed vortex beams in dispersive media are explored both in the space-time and space-frequency domains. It is shown that the impacts, arising from the second-order dispersion coefficient and the temporal coherence length, on the variations of the temporal degree of polarization are distinctly different from those on the spectral degree of polarization. Besides, we also suggest a method to access the measurement of the orbital angular momentum of pulsed vortex beams through the mapping relationship between the distribution of the temporal degree of cross-polarization and the number of topological charge. PMID:25836453

  8. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated with the Variability of the Stratospheric Polar Vortex. J. Atmos. Sci., 64, 2683-2694. DOI: 10.1175/JAS3978.1

  9. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.

    PubMed

    Yang, Yuanmu; Wang, Wenyi; Moitra, Parikshit; Kravchenko, Ivan I; Briggs, Dayrl P; Valentine, Jason

    2014-03-12

    Plasmonic metasurfaces have recently attracted much attention due to their ability to abruptly change the phase of light, allowing subwavelength optical elements for polarization and wavefront control. However, most previously demonstrated metasurface designs suffer from low coupling efficiency and are based on metallic resonators, leading to ohmic loss. Here, we present an alternative approach to plasmonic metasurfaces by replacing the metallic resonators with high-refractive-index silicon cut-wires in combination with a silver ground plane. We experimentally demonstrate that this meta-reflectarray can be used to realize linear polarization conversion with more than 98% conversion efficiency over a 200 nm bandwidth in the short-wavelength infrared band. We also demonstrate optical vortex beam generation using a meta-reflectarray with an azimuthally varied phase profile. The vortex beam generation is shown to have high efficiency over a wavelength range from 1500 to 1600 nm. The use of dielectric resonators in place of their plasmonic counterparts could pave the way for ultraefficient metasurface-based devices at high frequencies. PMID:24547692

  10. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 ?mol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  11. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 ?mol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night. PMID:26039111

  12. Polar vortex formation in giant-planet atmospheres due to moist convection

    NASA Astrophysics Data System (ADS)

    O’Neill, Morgan E.; Emanuel, Kerry A.; Flierl, Glenn R.

    2015-07-01

    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.

  13. Vertical profiles of N2O5, HO2NO2, and NO2 inside the Arctic vortex, retrieved from nocturnal MIPAS-B2 infrared limb emission measurements in February 1995

    Microsoft Academic Search

    G. Wetzel; H. Oelhaf; T. von Clarmann; H. Fischer; F. Friedl-Vallon; G. Maucher; M. Seefeldner; O. Trieschmann; F. Lefèvre

    1997-01-01

    Vertical profiles of N2O5, HO2NO2, and NO2 inside the arctic vortex were retrieved from nighttime infrared limb emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding, Balloon-borne version 2 (MIPAS-B2) instrument from Kiruna (Sweden, 68°N) on February 11, 1995, as part of the Second European Stratospheric Arctic and Midlatitude Experiment (SESAME). Spectra were analyzed by a multiparameter nonlinear

  14. Polar vision or tunnel vision the making of Canadian Arctic waters policy : The making of Canadian Arctic waters policy

    Microsoft Academic Search

    Rob Huebert

    1995-01-01

    This article examined the manner by which Canadian maritime Arctic policy is formulated. It suggests that this policy is largely the result of an ad hoc and reactive process. In general, the policy tends to be the product of a specific event initiated by a non-Canadian actor in the Canadian Arctic. In the early 1970s, this event was the voyages

  15. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  16. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  17. Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization

    NASA Astrophysics Data System (ADS)

    Chen, Rui-Pin; Zhong, Li-Xin; Chew, Khian-Hooi; Zhao, Ting-Yu; Zhang, Xiaobo

    2015-07-01

    Based on a pair of coupled 2D nonlinear Schrödinger equations, the collapse dynamics of a vector field with hybrid states of polarization (SoP) in a Kerr medium is demonstrated. The critical power for an optical field to collapse is present, and the full vectorial numerical simulations provide detailed information about the evolution and partial collapse of the vector field in a Kerr medium. Our results reveal that the optical field prefers to collapse in linearly-polarization, as a result of the self-focusing effect difference in linearly, elliptically and circularly polarized components. The SoP in the field cross-section changes and propagates with a spiral trajectory when the vector beams are imposed with a vortex. The vectorial effect on the collapse of a vector optical field can prevail over the noise even though it reaches 10% amplitude of the optical field. The unique feature of these structured collapses of a vector optical field may lead to new phenomena in the interaction of light with matter.

  18. Impact of radiosonde observations on forecasting summertime Arctic cyclone formation

    NASA Astrophysics Data System (ADS)

    Yamazaki, Akira; Inoue, Jun; Dethloff, Klaus; Maturilli, Marion; König-Langlo, Gert

    2015-04-01

    The impact of Arctic radiosonde observations on the forecasting of the 2012 early August Arctic cyclone AC12—the "strongest" since records began—has been investigated using an observing system experiment (OSE). An atmospheric ensemble reanalysis (ALERA2) was used as the control experiment (CTL) to reproduce the development of the Arctic cyclone and surrounding large-scale atmospheric fields. The OSE applies the same reanalysis as the CTL except for the exclusion of radiosonde observations from the German icebreaker Polarstern, which cruised near Svalbard during mid-July to early August 2012. Comparison of the two reanalyses revealed a difference in the upper tropospheric circulation over northern mid-Eurasia, just before the Arctic cyclone developed, in the form of a stronger tropopause polar vortex in the CTL. This indicated that the upper tropospheric field in the CTL had greater potential for baroclinic instability over mid-Eurasia. Ensemble predictions were then conducted using the two reanalyses as initial values at which the tropopause polar vortex approached northern mid-Eurasia. The CTL prediction reproduced the formation of the Arctic cyclone, but the OSE shows a significantly weaker one. These results indicate that the improved reproduction of upper tropospheric circulation in the Arctic region due to additional radiosonde observations from a mobile platform was indispensable for the prediction of AC12. In particular, observations being acquired far from the Arctic cyclone affect the prediction of the cyclone via the upper tropospheric circulation in the atmospheric west wind drift.

  19. A Proposed Arctic Ocean Field Program During the International Polar Year 2007-2008

    Microsoft Academic Search

    O. P. Persson

    2004-01-01

    The Arctic Ocean represents a glaring void of measurements appropriate for monitoring and understanding the climate changes currently occurring in the Arctic region. We propose a field program in the central Arctic Ocean to develop and improve methods for the long-term monitoring of the Arctic atmosphere, ice, and ocean and the interactions among them, and to study physical processes crucial

  20. Effect of polar day on plasma profiles of melatonin, testosterone, and estradiol in high-Arctic Lapland Longspurs.

    PubMed

    Hau, Michaela; Romero, L Michael; Brawn, Jeff D; Van't Hof, Thomas J

    2002-03-01

    In polar habitats, continuous daylight (polar day) can prevail for many weeks or months around the summer solstice. In the laboratory, continuous light conditions impair or disrupt circadian rhythms in many animals. To determine whether circadian rhythms are disrupted under natural polar day conditions in a species that is only a summer resident in polar regions we analyzed diel rhythms in plasma concentrations of melatonin, testosterone (T), and 17-beta estradiol (E(2)) during the summer solstice in Arctic-breeding Lapland Longspurs (Calcarius lapponicus). We compared these profiles to those of conspecifics housed in outdoor aviaries at a mid-latitude site in Seattle, Washington, during spring, summer, fall, and winter. Under polar day conditions plasma melatonin concentrations of Lapland Longspurs were strongly suppressed, but still showed a significant diel rhythm. Likewise, plasma T in males, and E(2) in females, showed significant diel changes in Arctic birds. Lapland Longspurs housed at mid-latitude in Seattle showed high-amplitude melatonin cycles at all times of the year, and the duration of the nightly melatonin secretion was positively correlated with the duration of the dark phase. We found no diel changes in plasma T in Seattle males in May, but Seattle females showed significant day/night differences in plasma E(2) in May. The data suggest that even under polar day conditions diel rhythms can persist. The maintenance of hormone rhythms could provide a physiological basis to reports of rhythmic behavior in many birds during the Arctic summer. PMID:11944971

  1. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  2. Interhemispheric comparison of the development of the stratospheric polar vortex during fall - A 3-dimensional perspective for 1991-1992

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Zurek, Richard W.

    1993-01-01

    The development of the stratospheric polar vortex during fall and early winter in the Northern Hemisphere (NH) during 1991-1992, and the Southern Hemisphere (SH) during 1992 is examined using National Meteorological Center data. Compared to the NH, the polar vortex in the SH developed with less variability on short time scales, deepened more rapidly and continued to expand well into winter. Daily minimum temperatures in the lower stratosphere were lowest at equivalent seasonal dates in both hemispheres, but values below the condensation temperatures of polar stratospheric clouds occurred earlier, persisted much longer, and occupied a larger volume of air in the SH. These interhemispheric meteorological differences can account for some of the key features of the chlorine monoxide distributions observed by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite.

  3. Past and recent tritium levels in Arctic and Antarctic polar caps

    NASA Astrophysics Data System (ADS)

    Fourré, Elise; Jean-Baptiste, Philippe; Dapoigny, Arnaud; Baumier, Dominique; Petit, Jean-Robert; Jouzel, Jean

    2006-05-01

    Tritium concentration was measured in snow deposited at the GRIP site (central Greenland) and at the Vostok station (east Antarctica) from snow pits covering the period 1980-1990. The objective of the study was to investigate tritium concentrations in polar regions several decades after the bomb peak of the sixties and to put them in the context of available data for environmental tritium in the Arctic and the Antarctic over the last five decades. The tritium content of the samples was measured by mass spectrometry using the helium-3 regrowth method. In Antarctica, the tritium concentrations are in the range 70-110 TU. The comparison of the bomb tritium history at different locations show that tritium levels increase moving inland, where vapour pressure becomes extremely low and therefore more sensitive to the intrusion of stratospheric air masses highly enriched in tritium. Although most tritium fallout occurred in the Northern hemisphere, the tritium levels in central Greenland in the 80's, in the range 10-40 TU, are significantly lower than at Vostok. Unlike Antarctica, no such continental effect is observed in Greenland, due to the higher water vapour content of the air masses, as evidenced by the much higher snow accumulation rate. Whereas tritium fallout in Antarctica appears to occur as a result of direct injections of stratospheric tritium during winter, Arctic fallout are the result of the dominant spring injection of stratospheric air at mid-latitude, in line with the deposition of other stratospheric tracers.

  4. Autocatalytic release of bromine from Arctic snow pack during polar sunrise

    SciTech Connect

    Tang, T. [Dept. of Phys. & Astron., York Univ., Ont. (Canada)] [Dept. of Phys. & Astron., York Univ., Ont. (Canada); McConnell, J.C. [Dept. of Earth & Atmos. Sci., York Univ., Ont. (Canada)] [Dept. of Earth & Atmos. Sci., York Univ., Ont. (Canada)

    1996-09-01

    Measurements and modeling studies strongly suggest that spring time depletion of ozone in the Arctic planetary boundary layer (PBL) is due to catalytic destruction by bromine atoms. However, the source of the bromine is uncertain. In this note, we propose that the source of the bromine at polar sunrise is the snow pack on the ice covering Arctic ocean and that it is released auto-catalytically, stimulated by a bromine seed from one of the brominated organic compounds, such as CHBr{sub 3}, by photolysis. In this manner {approximately}100 pptv of bromine can be transferred to the atmosphere where it can reside in the gas phase or, by scavenging, be partitioned in the aerosol or ice crystal phase. Moreover, it appears that heterogeneous recycling of bromine may be a process that self-terminates as ozone depletes to low levels. We also have included chlorine chemistry in the model in order to simulate inferred levels of chlorine atoms. This is important as it results in the production of HCHO which acts to convert post ozone depletion active bromine into HBr which is then returned to the snow pack or scavenged by aerosols or ice crystals. {copyright} American Geophysical Union 1996

  5. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment.

    PubMed

    Jamieson, Kathleen Hall; Hardy, Bruce W

    2014-09-16

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience's biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science's way of knowing and respectful of the audience's intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging-involving-visualizing-analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source. PMID:25225380

  6. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  7. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  8. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  9. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    NASA Technical Reports Server (NTRS)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other models, the newly available ECMWF 50 levels version assimilating the high vertical resolution radiances of the space borne Advanced Microwave Sounding Unit, performs significantly better (0.03 plus or minus 1.12 K on average between 10 and 140 hPa in 1999) than other models.

  10. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-06-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high latitude effects result from robust enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. While there is significant ensemble variability in the high latitude response to each aerosol forcing set, the mean response is sensitive to the forcing set used. Significant differences, for example, are found in the NH polar stratosphere temperature and zonal wind response to two different forcing data sets constructed from different versions of SAGE II aerosol observations. Significant strengthening of the polar vortex, in rough agreement with the expected response, is achieved only using aerosol forcing extracted from prior coupled aerosol-climate model simulations. Differences in the dynamical response to the different forcing sets used imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  11. Nitric oxide measurements in the Arctic winter stratosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Chan, K. R.

    1990-01-01

    Measurements of NO from five flights of the NASA ER-2 aircraft during the Airborne Arctic Stratospheric Expedition are presented. The NO values and vertical gradient near 60 deg N latitude are similar to previous measurements near 50 deg N in winter (Ridley et al., 1984, 1987). The NO latitudinal gradient is distinctly negative outside of the polar vortex, approaching zero at the boundary of the vortex, and remaining below the 20 pptv detection limit inside the vortex. Steady state NO2 and NO(x) (NO + NO2) are calculated from measured NO, O3, and ClO, and modeled photodissociation rates. NO(x) outside the vortex shows a negative dependence on latitude and solar zenith angle. Low NO(x) and NO(x)/NO(y), inside and near the vortex boundary may be indications of heterogeneous removal of ClONO2 and N2O5.

  12. Post-Equinox Evolution of Titan’s Detached Haze and South Polar Vortex Cloud

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Ovanessian, A.; Del Genio, A.; Turtle, E. P.; Perry, J.; NcEwen, A.; Ray, T.; Roy, M.

    2013-10-01

    Instruments on the Cassini spacecraft discovered new phenomena related to the (presumably) seasonal behavior of photochemical haze and formation of the winter polar vortex. West et al. 2011 (Geophys. Res. Lett. , 380 , L06204. doi: 10.1029/2011GL046843) described a ‘detached’ haze layer that dropped in altitude from about 500 km in 2005 to about 360 km by late 2010. New images from the Cassini ISS camera show that the appearance of a detached layer is produced by a gap in the haze vertical profile and it is the gap rather than a haze layer that drops in altitude. Intensity profiles from different epochs form an envelope when plotted on top of each other, and the downward movement of the gap can be most easily seen when plotted that way. The movement of a gap rather than movement of a layer of enhanced haze density was suspected in the earlier publication but now it is more apparent. In recent months the gap became very shallow and the limb intensity profiles at a pixel scale ~10 km/pixel evolved from one local maximum/minimum into two local minima/maxima of smaller amplitude and appear to be trending toward the disappearance of relative maxima and minima, leaving a smooth envelope. These observations will require new developments in coupled dynamical and haze microphysical models as none of the current models account for this behavior. Titan’s south polar vortex cloud was detected concurrently by the ISS, VIMS, and CIRS instruments on Cassini in May of 2012. It has an unusual color (more yellow than Titan’s main haze in ISS images), morphology and texture (suggestive of a condensate cloud experiencing open cell convection) and displays a spectral feature at 220 cm-1 (Jennings et al., 2012, Astrophys. J. Lett. 761, L15 DOI: 10.1088/2041-8205/761/1/L15). These attributes point to a condensate of unknown composition. The haze patch is seen in images up to the present (July, 2013), but the latest images suggest a ‘softening’ or more diffuse edge than the earlier images. The feature is being engulfed by shadow as the season progresses, eventually preventing future observations in reflected sunlight. Acknowledgement: Part of this work was performed by the Jet Propulsion Lab, Calif. Inst. Of Technology.

  13. Reconstruction of the constituent distribution and trends in the Antarctic polar vortex from ER-2 flight observations

    SciTech Connect

    Schoeberl, M.R.; Lait, L.R. (NASA Goddard Space Flight Center, Greenbelt, MD (United States)); Newman, P.A.; Martin, R.L. (Applied Research Corp., Landover, MD (United States)); Proffitt, M.H. (NOAA, Boulder, CO (United States)); Hartmann, D.L. (Univ. of Washington, Seattle (United States)); Loewenstein, M.; Podolske, J.; Strahan, S.E.; Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (United States)); Anderson, J. (Harvard Univ., Cambridge, MA (United States)); Gary, B. (Jet Propulsion Lab., Pasadena, CA (United States))

    1989-11-30

    Ozone, chlorine monoxide, and nitrous oxide concentrations have been measured in the south polar region. These measurements have been analyzed using conservative coordinate transformations to potential temperature-N{sub 2}O and potential temperature-potential vorticity space. The latter transformation is equivalent to interpreting trace species observations within the modified Lagrangian mean (MLM) coordinate system. The analysis shows that the MLM transformed ozone concentration decreases at about 0.06 ppmv (parts per million by volume) per day between 20 and 16 km altitude inside the polar vortex during the mid-August to mid-September period. These ozone changes must be chemical in origin; they are also collocated with the region of high CIO. Outside the CPR (chemically perturbed region) at the highest aircraft altitudes, ozone systematically increases, suggesting a diabatic cooling of the order of 0.3-0.6 K/d. Within the CPR the cooling rate appears to be less than 0.2 K/d. The MLM analysis technique creates a picture of the general chemical structure of the Austral polar vortex which shows that air deep within the chemically perturbed region has subsided substantially in relation to the air outside. However, there is also a tongue of high ozone air which extends from mid-latitudes downward along the stratospheric jet at 65{degree}W and 60{degree}S. An examination of the last three flight days, September 20-22, 1987, shows that during this period the polar vortex shifts systematically equatorward along the Antarctic Peninsula. Apparent changes in the constituents measured over this period result from sampling air progressively further into the vortex.

  14. Intralobular Distribution of Vitamin A-Storing Lipid Droplets in Hepatic Stellate Cells with Special Reference to Polar Bear and Arctic Fox.

    PubMed

    Higashi, Nobuyo; Imai, Katsuyuki; Sato, Mitsuru; Sato, Takeya; Kojima, Naosuke; Miura, Mitsutaka; Wold, Heidi L; Moskaug J, Jan ØIvind; Berg, Trond; Norum, Kaare R; Roos, Norbert; Wake, Kenjiro; Blomhoff, Rune; Senoo, Haruki

    2004-01-14

    We examined the liver of adult polar bears, arctic foxes, and rats by gold chloride staining, fluorescence microscopy for the detection of autofluorescence of vitamin A, hematoxylin-eosin staining, staining with Masson's trichrome, Ishii and Ishii's silver impregnation, and transmission electron microscopical morphometry. The liver lobules of the arctic animals showed a zonal gradient in the storage of vitamin A. The density (i.e., cell number per area) of hepatic stellate cells was essentially the same among the zones. These results indicate that the hepatic stellate cells of the polar bears and arctic foxes possess heterogeneity of vitamin A-storing capacity in their liver lobules. PMID:14960168

  15. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    NASA Astrophysics Data System (ADS)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured using quadrat sampling for species richness and abundance. Soil measures consisted of temperature at depth, moisture content, and bioavailable nutrients, all augmented with hourly microclimate data. NMDS ordination was performed as an exploratory analysis of clustering between disturbed/undisturbed microsite differences. Further statistical analysis showed that disturbed polygon tops have an active layer 30% deeper than other microsites (p < .001) despite having no greater vegetation cover than undisturbed polygon tops. Conversely, disturbed troughs show no difference in active layer, but their soils have double the water content of other microsites (p < .001), likely accounting for a significantly greater, but less-diverse, biomass that may be buffering the active layer from further development. Our results suggest that a disturbance to the thermal regime of high Arctic ice-wedge polygon systems results in long-lasting and significant effects on the polar desert landscape. Understanding how the polar desert responds to disturbance after 60 years of ';recovery' will provide useful information for applying conceptual thermal models of landscape disturbance in the high Arctic, as well as information to governments and industries hoping to plan and minimize their impacts.

  16. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    NASA Astrophysics Data System (ADS)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar Crust Project and present the results of the vegetation study to date. This should provide a general overview of what we hope to be a very interesting and important project in the further understanding of Polar BSC and how they stand to cope and/or change in the face of global warming.

  17. What Controls the Arctic Lower Stratosphere Temperature?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  18. Simultaneous measurements of HDO, H2O, and CH4 with MIPAS-B: Hydrogen budget and indication of dehydration inside the polar vortex

    Microsoft Academic Search

    M. Stowasser; H. Oelhaf; G. Wetzel; F. Friedl-Vallon; G. Maucher; M. Seefeldner; O. Trieschmann; T. v. Clarmann; H. Fischer

    1999-01-01

    For the first time, vertical profiles of HDO inside the Arctic vortex along with CH4 and H2O were retrieved from nighttime infrared limb emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding, Balloonborne instrument (MIPAS-B) from Kiruna (Sweden, 68°N) on February 11, 1995 and March 24, 1997. The deuterium to hydrogen ratio (D\\/H) of water vapor shows a

  19. Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic.

    PubMed

    Tojo, Motoaki; van West, Pieter; Hoshino, Tamotsu; Kida, Kenichi; Fujii, Hirokazu; Hakoda, Akiho; Kawaguchi, Yuki; Mühlhauser, Hermann A; Van Den Berg, Albert H; Küpper, Frithjof C; Herrero, María L; Klemsdal, Sonja S; Tronsmo, Anne Marte; Kanda, Hiroshi

    2012-07-01

    Pythium polare sp. nov. is a new heterothallic oomycete species isolated from fresh water and moss from various locations in both the Arctic and Antarctic. This water mould is able to infect stems and leaves of Sanionia moss (Sanionia uncinata). Pythium polare causes brown discolouration in in vitro inoculation tests at 5 °C after 5 weeks of inoculation. It is characterized by globose sporangia with various lengths of discharge tubes releasing zoospores and aplerotic oospores with usually one to five antheridia. The sexual structures are only produced in a dual culture of antheridial and oogonial isolates. Phylogenetic analysis, based on ITS sequencing, places all isolated strains of P. polare in a unique new clade, hence it is considered a novel species. Pythium canariense and Pythium violae are the most closely related species of P. polare based both on morphology and the phylogenetic analysis. PMID:22749162

  20. The Temperature of the Arctic and Antarctic Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  1. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment

    PubMed Central

    Hall Jamieson, Kathleen; Hardy, Bruce W.

    2014-01-01

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience’s biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science’s way of knowing and respectful of the audience’s intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging–involving–visualizing–analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source. PMID:25225380

  2. Analysis of the physical state of one Arctic polar stratospheric cloud based on observations

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z.; Dye, J. E.; Twohy, C.; Baumgardner, D.

    1994-01-01

    During the Arctic Airborne Stratospheric Expedition (AASE) simultaneous measurements of aerosol size distribution and NO(y)(HN03 + NO + NO2 + 2(N205)) were made along ER-2 flight paths. The flow characteristics of the NO(y) instrument allow us to derive the condensed NO(y) amount (assumed to be HN03) present during polar stratospheric cloud (PSC) events. Analysis of the January 24th flight indicates that this condensed HN03 amount does not agree well with the aerosol volume if the observed PSCs are composed of solid nitric acid trihydrate (NAT), as is generally assumed. However, the composition agrees well with that predicted for liquid H2S04/HN03/H20 solution droplets using a new Aerosol Physical Chemistry Model (APCM). The agreement corresponds in detail to variations in temperature and humidity. The weight percentages of H2SO4, HN03, and H2O derived from the measurements all correspond to those predicted for ternary, liquid solutions.

  3. Wavelet Analysis of the Polar Vortex and Linkages to Climate Change

    NASA Astrophysics Data System (ADS)

    Glovin, G.; Lynch, A. H.; Arbetter, T. E.

    2014-12-01

    Extreme weather events have been linked to unusually amplified atmospheric waves (Screen and Simmons, Nature Clim. Change, 2014). Changes in Rossby wave properties may be linked to changes in climate; hence, an increase in the frequency of extreme weather events may be an indication of a large-scale change in wave properties and thereby large scale climatic changes. Arctic amplification and the related ice-albedo feedback mechanism make this issue more pressing in the polar north, where the rate and magnitude of climate change has been most pronounced (Serreze et al, The Cryosphere, 2009). While there is debate over whether a tipping point will be reached (Tietsche et al, GRL, 2011), dramatic change would be difficult to slow or stop should that occur. In this study, wavelet analysis is applied to time series of zonal phase speeds of Rossby waves at high latitudes. A strong annual signal is found; this signal has tended to increase in power since approximately 1940. It is demonstrated that signals at larger time scales at these latitudes are more isolated, although there may be a westerly propagation pattern. Significant correlations between wavelet power and albedo, snow cover, atmospheric ozone levels, and surface temperature are found at shorter scales. At longer scales there is more ambiguity, but significant correlations with those factors and carbon dioxide levels seem likely. The analysis suggests that patterns of Rossby wave speeds have undergone considerable intensification since 1940. This intensification may have a link to the ice-albedo feedback mechanism, potentially hastening a tipping point in the retreat of the cryosphere.

  4. Assessment and Consequences of the Delayed Breakup of the Antarctic Polar Vortex in Two Versions of the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M.M.; Newman, P.A.; Li, F.

    2008-01-01

    In mid-winter, winds circle the globe at speeds greater than 200 km/hr (approximately 130mph) in the middle atmosphere. This strong jet bounds the region known as the polar vortex. The presence of the Antarctic polar vortex is a key ingredient in the formation of the 'ozone hole', because the air inside the vortex is cold and isolated from lower latitudes, creating ideal conditions for large-scale chemical ozone depletion. Many atmospheric models are not able to reproduce observed winds in the middle atmosphere. Specifically, the polar vortices tend to break down too late and peak wind speeds are higher than observed. Hurwitz et al. find that the delayed break-up of the Antarctic polar vortex is due to weaker-than-observed wave driving from the lower atmosphere during the October-November period. The delayed break-up of the Antarctic polar vortex changes the temperature structure of the middle atmosphere, which biases the amount of chemical ozone depletion that can occur in late winter and spring. Also, the extended lifetime of the polar vortex strengthens the 'overturning' circulation cell in the middle atmosphere, changing the amount of ozone, methane and other chemical species that is transported from low to high latitudes. As greenhouse gas concentrations continue to rise, the atmospheric temperature structure and resulting wind structure are expected to change. Clearly, if models cannot duplicate the observed late 20th century high-latitude winds, their ability to simulate the polar vortices in future must be poor. Understanding model weaknesses and improving the modeled polar vortices will be necessary for accurate predictions of ozone recovery in the coming century.

  5. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery of NH O3.

  6. Polar vision or tunnel vision the making of Canadian Arctic waters policy

    Microsoft Academic Search

    Rob Huebert

    1995-01-01

    This article examined the manner by which Canadian maritime Arctic policy is formulated. It suggests that this policy is largely the result of an ad hoc and reactive process. In general, the policy tends to be the product of a specific event initiated by a non-Canadian actor in the Canadian Arctic. In the early 1970s, this event was the voyages

  7. Closing the loop - Approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007-2008

    NASA Astrophysics Data System (ADS)

    Mauritzen, C.; Hansen, E.; Andersson, M.; Berx, B.; Beszczynska-Möller, A.; Burud, I.; Christensen, K. H.; Debernard, J.; de Steur, L.; Dodd, P.; Gerland, S.; Godøy, Ø.; Hansen, B.; Hudson, S.; Høydalsvik, F.; Ingvaldsen, R.; Isachsen, P. E.; Kasajima, Y.; Koszalka, I.; Kovacs, K. M.; Køltzow, M.; LaCasce, J.; Lee, C. M.; Lavergne, T.; Lydersen, C.; Nicolaus, M.; Nilsen, F.; Nøst, O. A.; Orvik, K. A.; Reigstad, M.; Schyberg, H.; Seuthe, L.; Skagseth, Ø.; Skarðhamar, J.; Skogseth, R.; Sperrevik, A.; Svensen, C.; Søiland, H.; Teigen, S. H.; Tverberg, V.; Wexels Riser, C.

    2011-07-01

    During the 4th International Polar Year 2007-2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“ the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as characterization of eddy dispersion based on drifter data; transport monitoring of Atlantic Water using gliders; a view of the water mass exchanges in the Norwegian Atlantic Current from both Eulerian and Lagrangian data; an integrated physical-biological view of the ice-influenced ecosystem in the East Greenland Current, showing for instance nutrient-limited primary production as a consequence of decreasing ice cover for larger regions of the Arctic Ocean. Our sea ice studies show that the albedo of snow on ice is lower when snow cover is thinner and suggest that reductions in sea ice thickness, without changes in sea ice extent, will have a significant impact on the arctic atmosphere. We present up-to-date freshwater transport numbers for the East Greenland Current in the Fram Strait, as well as the first map of the annual cycle of freshwater layer thickness in the East Greenland Current along the east coast of Greenland, from data obtained by CTDs mounted on seals that traveled back and forth across the Nordic Seas. We have taken advantage of the real-time transmission of some of these platforms and demonstrate the use of ice-tethered profilers in validating satellite products of sea ice motion, as well as the use of Seagliders in validating ocean forecasts, and we present a sea ice drift product - significantly improved both in space and time - for use in operational ice-forecasting applications. We consider real-time acquisition of data from the ocean interior to be a vital component of a sustained Arctic Ocean Observing System, and we conclude by presenting an outline for an observing system for the European sector of the Arctic Ocean.

  8. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  9. ArtArctic Science: a polarTREC effort to educate about Antarctica through art

    NASA Astrophysics Data System (ADS)

    Botella, J.; Racette, B.

    2013-12-01

    Formal scientific education is as important as ever for raising awarness about Antarctic issues, but some people resistance to learning about scienctific issues demands novel approaches for reaching people who are not in the classroom. ArtArctic Science is an interactive exhibit of photography and paintings presented at the Overture Center for the Arts, in Madison, WI by Monona Grove High School students and a science teacher that attempts to educate the general audience about Antarctic science. The exhibit explores art as a form of perceiving and understanding the world around us, and as a way of igniting the spark of curiosity that can lead to scientific inquiries. Antarctica has inspired explorers and scientists for over 100 years, and we add our work to efforts that share scientific results with common people. Antarctica offers stunning views of amazing geometric ice structures complemented and contrasted by the organisms that inhabit it that fascinate most everyone. We probe these scenes through photography and paintings knowing that there is more in each image than what the eye can 'see'. We invite the viewer to discover these secrets by engaging the observer in a mimicking of the scientific method (observation, questioning, finding an explanation, revising the explanation). Each art piece has a question and a scientific explanation hidden under a wooden lid. The observer is invited to explore the scene, involve itself with the scientific query, come up with an answer, and compare his or her idea with the hidden explanation. The exhibit is inspired by an Antarctic PolarTREC expedition in which our science teacher participated as a member of a scientific research team. In this presentation we share the knowledge acquired through this experience in hopes that it will help others attempting a similar Project.

  10. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference proceedings are accessible at http://polargateways2008.org/.

  11. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in the Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kauristie, Kirsti; Weatherwax, Allan T.; Sheehan, Glenn W.; Smith, Roger W.; Sandahl, Ingrid; Ostgaard, Nikolai; Chernouss, Sergey; Thompson, Barbara J.; Peticolas, Laura; Moore, Marla H.; Senske, David A.; Tamppari, Leslie K.; Lewis, Elaine M.

    2008-01-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2808 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun- Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedidpodcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference proceedings are accessible at http://polargateways2008.org/.

  12. Long term changes in the polar vortices

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2015-04-01

    As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented.

  13. USCGC Polar Star Arctic West Summer 2002 Cruise Summary: Shelf-Basin Interactions

    E-print Network

    Pickart, Robert S.

    masses and mechanisms by which shelf waters ventilate the western Arctic halocline. The major goals, and a ßuorometer (attached after the second CTD section). These additional sensors provided invaluable information

  14. Composition of chlorinated hydrocarbon contaminants among major adipose tissue depots of polar bears (Ursus maritimus) from the Canadian high Arctic.

    PubMed

    Verreault, Jonathan; Norstrom, Ross J; Ramsay, Malcolm A; Mulvihill, Michael; Letcher, Robert J

    2006-11-01

    Monitoring of environmental contaminants in Canadian Arctic polar bears (Ursus maritimus) typically has used superficial adipose tissue samples collected as part of controlled native subsistence hunts. However, little attention has been paid to the compositional difference in contaminants that may exist among the major adipose depots that are routinely collected. To address this knowledge gap, we investigated the profiles and concentrations of chlorinated hydrocarbon contaminants (CHCs), including major polychlorinated biphenyl (PCB) congeners and organochlorine (OC) pesticides and metabolites, in six major adipose depots (i.e. superficial, inter-muscular and intra-abdominal regions) obtained from adult male polar bears in the vicinity of Resolute Bay, Canadian high Arctic. Concentrations and congener patterns of PCBs (20 congeners) and OCs (14 compounds; chlordanes and dichlorodiphenyltrichloroethanes and metabolites, chlorinated benzenes, hexachlorocyclohexane isomers, octachlorostyrene and dieldrin) were found to be relatively uniform throughout the adipose tissue of male polar bears. The only exception was the inter-muscular adipose depot from the cervical region, which was characterized, compared to other major depots routinely sampled, by lower proportions of higher-chlorinated and recalcitrant congeners such as CB170/190, 180, 194 and 206, and higher contribution of the lower-chlorinated PCBs, CB47, 74 and 99. No difference in the OC makeup and concentrations was found among the adipose depots investigated. In view of this, we conclude that the determination of CHCs in adipose tissue of polar bears from any major depots, with the potential exception of the fat under the neck muscles, would give a representative picture of the overall CHC composition and concentrations in polar bear fat for purpose of trend monitoring. PMID:16978684

  15. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    NASA Astrophysics Data System (ADS)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  16. Persistence of the Lower Stratospheric Polar Vortices

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Randel, William J.; Pawson, Steven; Newman, Paul A.; Nash, Eric R.

    1999-01-01

    The persistence of the Arctic and Antarctic lower stratospheric vortices is examined over the period 1958 to 1998. Three different vortex-following diagnostics (two using potential vorticity and one based solely on the zonal winds) are compared, and shown to give very similar results for the break up date. The variability in the timing of the breakup of each vortex is qualitatively the same: there are large interannual variations together with smaller decadal-scale variations and there is a significant increase in the persistence since the mid-1980s (all variations are larger for the Arctic vortex). Also, in both hemispheres there is a high correlation between the persistence and the strength and coldness of the spring vortex, with all quantities having the same interannual and decadal variability. However, there is no such correlation between the persistence and the characteristics of the mid-winter vortex. In the northern hemisphere there is also a high correlation between the vortex persistence and the upper tropospheric/lower stratospheric eddy heat flux averaged over the two months prior to the breakup. This indicates that the variability in the wave activity entering the stratosphere over late-winter to early-spring plays a key role in the variability of the vortex persistence (and spring polar temperatures) on both interannual and decadal time scales. However, the decadal variation in the Arctic vortex coldness and persistence for the 1990's falls outside the range of natural variability, while this is not the case for the eddy heat flux. This suggests that the recent increase in vortex persistence is not due solely to changes in the wave activity entering the stratosphere.

  17. The Effect of Polar Vortex Disturbances on Mesopause Gravity Wave Drag in Relation to Mesopause Pole-to-Pole Coupling

    NASA Astrophysics Data System (ADS)

    de Wit, R.; Hibbins, R. E.; Espy, P. J.

    2014-12-01

    Gravity waves (GWs) play an important role in the dynamics of the mesosphere/lower thermosphere (MLT) region, linking the lower to the upper atmosphere. GW filtering by the background zonal wind is furthermore believed to be the fundamental mechanism coupling the winter stratosphere to the summer polar mesopause, in which increased planetary wave (PW) activity in the former is related to enhanced temperatures in the latter through a chain of global MLT temperature anomalies. During major Sudden Stratospheric Warmings (SSWs) the interaction between PWs and the background flow leads to increased polar stratospheric temperatures and a reversal of the climatological winds from eastward to westward. As a result, large changes in GW filtering conditions occur, making SSWs an excellent tool to empirically test the inter-hemispheric coupling mechanism. In this study, mesopause GW forcing derived from meteor radar observations over Trondheim, Norway (63°N, 10°E) during the January 2013 major SSW is discussed in light of the polar vortex strength and selective filtering conditions over the same location to show the coupling between the polar winter stratosphere and MLT. Global temperature observations obtained with the Aura Microwave Limb Sounder (MLS) are subsequently used to study the temperature signature of the SSW in the MLT region over the winter pole in relation to the observed GW forcing. Furthermore, the temperature effect of the SSW throughout the middle atmosphere is tracked, away from the winter pole toward the summer pole, and compared to the temperature structure expected from the inter-hemispheric coupling mechanism.

  18. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  19. Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears.

    PubMed

    Verreault, Jonathan; Gabrielsen, Geir W; Chu, Shaogang; Muir, Derek C G; Andersen, Magnus; Hamaed, Ahmad; Letcher, Robert J

    2005-08-15

    The brominated flame retardants have been subject of a particular environmental focus in the Arctic. The present study investigated the congener patterns and levels of total hexabromocyclododecane (HBCD), polybrominated biphenyls, polybrominated diphenyl ethers (PBDEs), as well as methoxylated (MeO) and hydroxylated (OH) PBDEs in plasma samples of glaucous gulls (Larus hyperboreus) and polar bears (Ursus maritimus) from the Norwegian Arctic. The analyses revealed the presence of total HBCD (0.07-1.24 ng/g wet wt) and brominated biphenyl 101 (< 0.13-0.72 ng/g wet wt) in glaucous gull samples whereas these compounds were generally found at nondetectable or transient concentrations in polar bears. Sum (sigma) concentrations of the 12 PBDEs monitored in glaucous gulls (range: 8.23-67.5 ng/g wet wt) surpassed largely those of polar bears (range: 2.65-9.72 ng/g wet wt). Two higher brominated PBDEs, BDE183 and BDE209, were detected, and thus bioaccumulated to a limited degree, in glaucous gulls with concentrations ranging from < 0.03 to 0.43 ng/g wet wt and from < 0.05 to 0.33 ng/g wet wt, respectively. In polar bear plasma, BDE183 was < 0.04 ng/g wet wt for all animals, and BDE209 was only detected in 7% of the samples at concentrations up to 0.10 ng/g wet wt. Of the 15 MeO-PBDEs analyzed in plasma samples, 3-MeO-BDE47 was consistently dominant in glaucous gulls (sigmaMeO-PBDE: 0.30-4.30 ng/g wet wt) and polar bears (sigmaMeO-PBDE up to 0.17 ng/g wet wt), followed by 4'-MeO-BDE49 and 6-MeO-BDE47. The 3-OH-BDE47, 4'-OH-BDE49, and 6-OH-BDE47 congeners were also detected in glaucous gulls (sigmaOH-PBDE up to 1.05 ng/g wet wt), although in polar bears 4'-OH-BDE49 was the only congener quantifiable in 13% of the samples. The presence of MeO- and OH-PBDEs in plasma of both species suggests possible dietary uptake from naturally occurring sources (e.g., marine sponges and green algae), but also metabolically derived biotransformation of PBDEs such as BDE47 could be a contributing factor. Our findings suggest that there are dissimilar biochemical mechanisms involved in PCB and PBDE metabolism and accumulation/elimination and/or OH-PBDE accumulation and retention in glaucous gulls and polar bears. PMID:16173559

  20. The International Polar Year, 2007-2008, an opportunity to focus on infectious diseases in Arctic regions.

    PubMed

    Parkinson, Alan J

    2008-01-01

    On 3 occasions over the past 125 years, scientists from around the world have worked together to organize scientific and exploration activities in polar regions (www.ipy.org). The first International Polar Year (IPY) in 1881-1884 marked the first major coordinated international scientific initiative to collect standardized meteorological and geophysical data in polar regions. Fifteen expeditions led by 12 nations amassed a large amount of data, but the scientific value was diminished by disjointed publication efforts and lack of long-term institutional commitment; lessons were learned and corrected in subsequent polar years. The second IPY began in 1932. Forty-four nations led expeditions in the Arctic and Antarctic, resulting in greater understanding of the aurora, magnetism, and meteorology. Air and marine navigation, radio operations, and weather forecasting were greatly improved as a result. The third IPY, in 1957-58, was renamed the International Geophysical Year and capitalized on technologic advances developed during World War II. Technologic and scientific momentum was redirected toward research, particularly to studies of the upper atmosphere, a legacy that continues to the present day. Notable achievements included launching the first satellite, measurement of atmospheric greenhouse gases, delineating the system of mid-ocean ridges, and confirming the theory of plate tectonics. PMID:18258069

  1. Climate Change and Arctic Ecosystems

    NSDL National Science Digital Library

    Project Activities for Conceptualizing Climate and Climate Change

    In this activity, students learn about how climate change is affecting the Arctic ecosystem and then investigate how this change is impacting polar bear populations. Students analyze maps of Arctic sea ice, temperature graphs, and polar bear population data to answer questions about the impact of climate change on the Arctic ecosystem.

  2. Observational evidence against mountain-wave generation of ice nuclei as a prerequisite for the formation of three solid nitric acid polar stratospheric clouds observed in the Arctic in early December 1999

    NASA Astrophysics Data System (ADS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-02-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large-scale NAT clouds were formed in the stratosphere in early December 1999.

  3. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    PubMed Central

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  4. Polar Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation and the Madden Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim; silverman, vered; harnik, nili; erlich, caryn; riz, yaniv

    2015-04-01

    This talk will focus on the potential for intraseasonal prediction of the polar vortex from intraseasonal solar variability and from the Madden-Julian Oscillation. Phase 7 of the Madden-Julian Oscillation leads to enhanced tropospheric wavenumber 1 wave driving of the vortex and subsequently to a weakened vortex in both reanalysis data and a comprehensive atmospheric general circulation model. The anomalies propagate down to the surface, such that the surface Arctic Oscillation is significantly modified 50 days after certain MJO phases. Intraseasonal solar variability related to the 27 day solar cycle affects not only the deep tropics, but also the polar stratosphere. The effects on the 27 day timescale are consistent with the effects associated with the 11-year solar cycle. During EQBO, declining solar flux leads to a weaker vortex, while during WQBO, declining solar flux leads to a stronger vortex.

  5. Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992

    SciTech Connect

    Hausmann, M.; Platt, U. [Universitaet Heidelberg (Germany)] [Universitaet Heidelberg (Germany)

    1994-12-20

    The authors report the measurement of BrO radical densities and ozone in the Arctic troposphere by means of differential optical absorption using very long paths. They observed levels of BrO which varied from below the detection limit to 17 ppt. Such concentrations alone cannot account for the catalytic destruction of ozone observed during periods of episodic ozone variation. The authors offer a model which involves BrO catalyzed reactions, advection, and atmospheric mixing which they argue could account for the observed ozone depletions.

  6. Ice navigation studies in the Alaskan Arctic using POLAR Class icebreakers

    Microsoft Academic Search

    L. Brigham; R. Voelker

    1985-01-01

    The operational capability of the U.S. Coast Guard's POLAR Class icebreakers is reviewed for Alaskan ice covered waters. Operational capability is defined in terms of three distinct geographic areas: the Bering, Chukchi, and Beaufort Seas. POLAR Class icebreakers have successfully operated in each of these areas since 1979. As a result of the deployments, it is possible to draw conclusions

  7. Aboveground activity rhythm in Arctic black-capped marmot ( Marmota camtschatica bungei Katschenko 1901) under polar day conditions

    NASA Astrophysics Data System (ADS)

    Semenov, Youri; Ramousse, Raymond; Le Berre, Michel; Vassiliev, Vladimir; Solomonov, Nikita

    2001-04-01

    Daily aboveground activity of wild black-capped marmots of Yakutia ( Marmota camtschatica bungei) was recorded under 'polar day' conditions at 71°56' N and 127°19' E (north of the Polar Circle). From the beginning of May until the end of August, the sun was permanently above or close to the horizon. However under this condition of continuous lighting, the aboveground activity of these arctic hibernating mammals was periodic. Onset and end of activity showed marked changes throughout the seasons. Activity time increased strongly from hibernation emergence until the end of July and then decreased slowly until onset of hibernation. Below daily mean temperatures of 5 °C, activity started when the sun was 35° above the horizon, and ended when it dropped below 28°. When daily mean temperatures were above 5 °C, activity onset was synchronised with a solar altitude around 17-18° and activity ended at 10°. Activity onset was more precise relative to the solar altitude than the end of activity. This may be explained by late feeding bouts, following a midday thermal stress. In absence of rapid natural light-dark (LD) transitions that occur at civil twilight, our results suggest that the activity pattern of black-capped marmots may be synchronised by the light cycle through the solar altitude and ambient temperature.

  8. The polar bear in the room: diseases of poverty in the Arctic

    PubMed Central

    Nelson, Chris

    2013-01-01

    In the face of global warming, budgetary austerity and impoverished Arctic residents, the nations of the circumpolar region are presented with a number of difficult choices regarding the provision of health care to the far-flung and isolated regions of their northernmost provinces. Complicating that picture is the reality of neglected tropical diseases in areas far from their perceived normal equatorial range as well as endemic food-borne diseases, including protozoan and helminth parasites, respiratory and gastrointestinal diseases and vaccine-preventable illnesses. This paper discusses the problems of caring for the health and well-being of indigenous populations suffering from extreme poverty, isolation and discrimination in the circumpolar region. After presenting difficulties as supported by the extant literature, the paper continues by suggesting solutions that include novel telenursing applications, targeted distance-educational programs and local community-based health care assistant (HCA) vocational training. These programs will provide cost-effective care that increases life-spans, improves quality of life and provides opportunities to distressed populations in isolated rural communities of the Far North. The toolkit presented in the paper is intended to spur discussion on community health programs that could be adopted to provide proper and humane care for marginalized Arctic populations in an extreme and rapidly changing environment. PMID:23984296

  9. Investigation of polar mesocyclones in Arctic Ocean using COSMO-CLM and WRF numerical models and remote sensing data

    NASA Astrophysics Data System (ADS)

    Varentsov, Mikhail; Verezemskaya, Polina; Baranyuk, Anastasia; Zabolotskikh, Elizaveta; Repina, Irina

    2015-04-01

    Polar lows (PL), high latitude marine mesoscale cyclones, are an enigmatic atmospheric phenomenon, which could result in windstorm damage of shipping and infrastructure in high latitudes. Because of their small spatial scales, short life times and their tendency to develop in remote data sparse regions (Zahn, Strorch, 2008), our knowledge of their behavior and climatology lags behind that of synoptic-scale cyclones. In case of continuing global warming (IPCC, 2013) and prospects of the intensification of economic activity and marine traffic in Arctic region, the problem of relevant simulation of this phenomenon by numerical models of the atmosphere, which could be used for weather and climate prediction, is especially important. The focus of this paper is researching the ability to simulate polar lows by two modern nonhydrostatic mesoscale numerical models, driven by realistic lateral boundary conditions from ERA-Interim reanalysis: regional climate model COSMO-CLM (Böhm et. al., 2009) and weather prediction and research model (WRF). Fields of wind, pressure and cloudiness, simulated by models, were compared with remote sensing data and ground meteorological observations for several cases, when polar lows were observed, in Norwegian, Kara and Laptev seas. Several types of satellite data were used: atmospheric water vapor, cloud liquid water content and surface wind fields were resampled by examining AMSR-E and AMSR-2 microwave radiometer data (MODIS Aqua, GCOM-W1), and wind fields were additionally extracted from QuickSCAT scatterometer. Infrared and visible pictures of cloud cover were obtained from MODIS (Aqua). Completed comparison shown that COSMO-CLM and WRF models could successfully reproduce evolution of polar lows and their most important characteristics such as size and wind speed in short experiments with WRF model and longer (up to half-year) experiments with COSMO-CLM model. Improvement of the quality of polar lows reproduction by these models in relation to source reanalysis fields were investigated. References: 1. Böhm U. et al. CLM - the climate version of LM: Brief description and long-term applications [Journal] // COSMO Newsletter. - 2006. - Vol. 6. 2. IPCC Fifth Assessment Report: Climate Change 2013 (AR5) Rep.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 3. Zahn, M., and H. von Storch (2008), A long-term climatology of North Atlantic polar lows, Geophys. Res. Lett., 35, L22702

  10. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the Arctic environment

    USGS Publications Warehouse

    Welch, Andreanna J.; Bedoya-Reina, Oscar C.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte

    2014-01-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate if polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex, and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide, which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of nitric oxide as an adaptive response to control trade-offs between energy production in the form of ATP versus generation of heat (thermogenesis).

  11. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment.

    PubMed

    Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte

    2014-02-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087

  12. Thickness and surface-properties of different sea-ice regimes within the Arctic Trans Polar Drift: Data from summers 2001, 2004 and 2007

    Microsoft Academic Search

    L. Rabenstein; S. Hendricks; T. Martin; A. Pfaffhuber; C. Haas

    2010-01-01

    Large-scale sea-ice thickness and surface property data were obtained in three summers and in three different sea-ice regimes in the Arctic Trans-Polar Drift (TPD) by means of helicopter electromagnetic sounding. Distribution functions P of sea-ice thickness and of the height, spacing, and density of sails were analyzed to characterize ice regimes of different ages and deformations. Results suggest that modal

  13. Will future Arctic ozone be affected by climate change?

    NASA Astrophysics Data System (ADS)

    Langematz, U.; Grunow, K.; Ayarzagüena, B.; Kubin, A.; Romanowsky, E.

    2011-12-01

    The northern hemisphere spring 2011 was characterized by a well developed stratospheric polar vortex with unusually low temperatures and severe ozone depletion in the Arctic lower stratosphere. This unexpected development has stimulated the discussion on the effect of climate change on stratospheric ozone depletion. Simulations with global climate and chemistry-climate models (CCMs) tend to suggest an enhanced dynamical forcing of the polar winter stratosphere in a future climate with increased greenhouse gas (GHG) concentrations, leading to more stratospheric sudden warmings and counteracting the global, GHG induced radiative cooling of the stratosphere. On the other hand, observational studies derived a stronger polar stratospheric cooling in those winters of the past decades that were not dynamically disturbed. If this cooling were due to climate change, more northern winters with extremely low polar stratospheric temperatures and associated severe Arctic ozone depletion should be expected in the future. In our study we will investigate the effect of increasing GHG concentrations on the future evolution of the northern polar stratosphere in winter. We will analyze results from a transient simulation of the ECHAM/MESSy Atmospheric Chemistry (EMAC) CCM of the period 1960-2100 including future changes in GHG concentrations and ozone depleting substances according to the CCMVal SCN-B2d scenario. We will look for future changes in stratospheric dynamical variability, such as the occurrence of stratospheric warmings, as well as changes in the occurrence of strong vortex events with extremely low temperatures. By comparing with a related simulation with fixed 1960s GHG concentrations (CCMVal SCN-B2c scenario) as well as supporting time-slice simulations we will be able to isolate the effect of GHG increases on the future polar meteorology and the conditions for Arctic ozone depletion.

  14. Balloon borne observations of PSCs, Frost Point, ozone and nitric acid in the north polar vortex

    Microsoft Academic Search

    James M. Rosen; S. J. Oltmans; W. F. Evans

    1989-01-01

    A new balloon borne instrument called a backscattersonde has been used to study Polar Stratospheric Clouds (PSCs) at Alert, NWT (82°N, 61.5°W) during January and February of 1989. These measurements were supplemented with frost point, ozone and nitric acid vapor soundings. Type I PSCs were observed at temperatures and pressures generally consistent with present vapor pressure models of HNOâ\\/HâO condensate,

  15. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program. The resulting HD footage will be cataloged, archived and made available as public domain material, accessible to government research agencies for media releases, to the researchers and their home universities, and to science centers and museums. (3) POLAR- PALOOZA will edit short video and audio podcasts from this archive, and distribute them non-exclusively through an open network of websites, including iTunes, YouTube, Google, Yahoo, and the official IPY, US-IPY, NSF and NASA websites. Project design targets underserved groups and regions, and has developed a detailed strategy by which to reach out to under-served minorities and mid-sized and smaller communities over the entire two years of IPY. A balanced cadre of researchers, both male and female, young and old, ethnically-diverse and representing the many disciplines engaged in polar research, has already been identified, and over twenty five scientists, engineers, artists and journalists have committed to participating. The project's Advisors include members of the National Academy's Polar Research Board, and the two U.S. representatives to the international IPY Education and Outreach Committee.

  16. Measurement of birefringent media parameters in optical vortex interferometer with polarizing elements

    NASA Astrophysics Data System (ADS)

    Banach, Marcelina; Wo?niak, W?adys?aw A.; Kurzynowski, Piotr; Popio?ek-Masajada, Agnieszka; Borwi?ska, Monika

    2008-12-01

    We present the results of birefringent media properties measurement using two different interferometers with polarizing elements. These setups allow to generate regular and stable lattice of optical vortices (OVs) and to record the lattice deformations caused by introduced birefringent plate. The first setup is a polariscope arrangement with two Wollaston compensators placed between crossed polarizers. The shape of lattice basic cell is determined by the Wollaston's shearing angle and examined birefringent medium causes only the shift of the whole OVs lattice. The calculated displacement vector allows determining at least two parameters of measured medium simultaneously. This setup was used also to measure the absolute value of the phase shift introduced by examined birefringent sample by using two light sources with slightly different wavelength. We manage to determine the phase retardance order by tracking the center of two interferograms made with and without sample. The second setup is based on modified Mach-Zehnder interferometer in which the Wollaston compensator is inserted into the one of interferometer's arm. The measured birefringent medium placed in another interferometer's arm causes the mutual displacement of two OVs sublattices with different topological signs. Calculated displacements vectors between those two sublattices allows to determine birefringent sample parameters.

  17. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  18. In-Situ Measurements of BrO in the early 2011/2012 Arctic Polar Vortex

    NASA Astrophysics Data System (ADS)

    Heinecke, F.; Afchine, A.; von Hobe, M.; Richter, A.; Schönfeld, A.; Steinert, C.; Suminska, O.; Tan, V.; Stroh, F.

    2012-04-01

    The Bromine Monoxide radical was measured along with Chlorine Monoxide with the HALOX instrument during two flights of the M55-Geophysica high-altitude research aircraft from Kiruna (Sweden) employing the Chemical Conversion Resonance Fluorescence (CCRF) Technique, first demonstrated on aircraft by Brune et al., 1989. In the effort to narrow down the remaining uncertainties for the inorganic Bromine loading (Bry) of the stratosphere, In-Situ BrO data provide valuable information, as BrO is the most abundant inorganic Bromine species in sunlit stratospheric air. The BrO detection limit was lowered by recent modifications of the optical setup in the HALOX instrument aiming at the reduction of stray light. However a closer look at the stray light problem also revealed the need for an improved instrument calibration. A concept for a reliable calibration was developed. The new method will be applied to the new dataset and compared to the former calibration. The results from the acquired BrO data along the flight track will be discussed and compared to earlier measurements. Based on the demonstrated field performance the potential of the CCRF technique to quantify the extremely low BrO concentrations in the UTLS and TTL regions in future tropical field measurements will be evaluated. Brune, W. H., J. G. Anderson, and K. R. Chan (1989), In Situ Observations of BrO Over Antarctica: ER-2 Aircraft Results From 54°S to 72°S Latitude, J. Geophys. Res., 94(D14), 16,639-16,647, doi:10.1029/JD094iD14p16639.

  19. New space technology advances knowledge of the remote polar regions. [Arctic and Antarctic regions

    NASA Technical Reports Server (NTRS)

    Macdonald, W. R.

    1974-01-01

    The application of ERTS-1 imagery is rapidly increasing man's knowledge of polar regions. Products compiled from this imagery at scales of 1:250,000, 1:500,000 and 1:1,000,000 are already providing valuable information to earth scientists working in Antarctica. Significant finds detected by these bench mark products were glaciological changes, advancement in ice fronts, discovery of new geographic features, and the repositioning of nunataks, islands, and ice tongues. Tests conducted in Antarctica have proven the feasibility of tracking Navy navigation satellites to establish ground control for positioning ERTS-1 imagery in remote areas. ERTS imagery coupled with satellite geodesy shows great promise and may prove to be the most practical and cost effective way to meet the small-scale cartographic requirements of the polar science community.

  20. Hollow vortex beams.

    PubMed

    Sato, Shunichi; Kozawa, Yuichi

    2009-01-01

    Hollow beam formation of radially and azimuthally polarized vortex beams, which has arbitrary topological charge, is analytically discussed under the strong focusing condition. The expressions for the electric fields of the focused vector-vortex beams are obtained based on a vector diffraction theory. The order of the Bessel function of the first kind appearing in the expressions indicates the ability to form hollow beams. Similar discussion is applied for different vortex beams, which are expressed by linear combination of radially and azimuthally polarized beams. Calculations of intensity profiles across the focus are also presented. PMID:19109610

  1. Implications of Large Nat Particles For Arctic Denitrification In A 3d Model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Davies, S.; Carslaw, K. S.; Chipperfield, M. P.; Kettleborough, J.

    Recent in situ observations in the Arctic stratosphere have detected nitric acid- containing particles with sizes up to 20 µm diameter and number concentrations be- tween 10-3 and 10-5 cm-3. Here, we quantify the effect of these particles on Arctic denitrification using a new 3-D model that couples particle growth and sedimenta- tion with the full dynamics of the Arctic polar vortex. We show that the very long growth times of large NAT particles leads to a highly non-linear dependence of Arc- tic denitrification on the growth and evaporation cycles of individual particles, thus making denitrification dependent on the precise meteorological conditions in a given winter. Using 3-D wind and temperature fields from December 1999, we identify a period that was optimum for denitrification, in which the cold pool and vortex were concentric (barotropic), and in which a large proportion of the particles were able to sediment over about 8 days through the full depth of the cold pool without evaporat- ing. Denitrification amounted to 2 ppb over a period of 10 days, assuming particle number concentrations typical of those observed in the 1999/2000 winter. We then show that small departures from barotropic conditions can lead to substantial reduc- tions in denitrification, assuming an identical temperature field. A case is presented in which denitrification was completely shut off even with over half of the cold pool area remaining within the vortex, which is a fairly frequent climatological state of the Arctic stratosphere. The drastically reduced denitrification was caused by the short- ened period of particle growth and the non-linear effect of this on particle mass and sedimentation speed. Under the same conditions, a model in which the particles were assumed to be in continuous equilibrium with the gas phase caused extensive den- itrification. Our results show that low Arctic vortex temperatures in themselves are unlikely to be a reliable indicator of potential denitrification if large NAT particles are involved.

  2. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  3. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    Microsoft Academic Search

    C. L. Garrett

    2006-01-01

    Each day, people in the communities of the Arctic face challenges to their health and well-being from changing climatic and environmental conditions and increasing levels of pollution to emerging infectious diseases. For this reason, it is critical that Arctic researchers and residents have access to timely, accurate, and relevant information addressing their unique concerns. To meet this need, the National

  4. Extreme ozone depletion in the 2010-2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Castelli, E.; Papandrea, E.; Carlotti, M.; Dinelli, B. M.

    2012-10-01

    We present observations of the 2010-2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs). We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003-2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS) or STS mixed with nitric acid trihydrate (NAT), 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day-1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003-2010 Arctic average values, the 2010-2011 vortex in late winter had 15 K lower temperatures, 40% lower HNO3 and 50% lower ozone, reaching the largest ozone depletion ever observed in the Arctic. The overall picture of this Arctic winter was remarkably closer to conditions typically found in the Antarctic vortex than ever observed before.

  5. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic

    PubMed Central

    Iverson, Samuel A.; Gilchrist, H. Grant; Smith, Paul A.; Gaston, Anthony J.; Forbes, Mark R.

    2014-01-01

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears’ ability to meet their energetic demands. In this study, we examined polar bears’ use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010–2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator–prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems. PMID:24500172

  6. Early Triassic magnetic polarity time scale—integration of magnetostratigraphy, ammonite zonation and sequence stratigraphy from stratotype sections (Canadian Arctic Archipelago)

    NASA Astrophysics Data System (ADS)

    Ogg, James G.; Steiner, Maureen B.

    1991-10-01

    Stratotypes defining the stages of the Early Triassic (Griesbachian, Dienerian, Smithian and Spathian) are located on Ellesmere and Axel Heiberg islands in the northern Canadian Arctic. Ammonite-rich horizons are within a clastic outer shelf-to-slope facies of thick progradational wedges of mudstones and siltstones. Three sections were sampled for magnetostratigraphy and interpreted for transgressive and regressive pulses of sedimentation. Using the ammonite zonation as a guide, the transgressive-regressive cycles and magnetostratigraphies have been correlated among the sections and to the published Triassic sequence stratigraphy time scale, thus enabling definition of the magnetic polarity pattern for the upper Griesbachian to Smithian stages in multiple sections. The magnetic polarity and associated sequence stratigraphy pattern for the lower Griesbachian and for the Spathian were derived from single sections. The Griesbachian and Dienerian stages each have two pairs of normal- and reversed-polarity chrons; the Smithian is predominantly of normal polarity, and the Spathian is predominantly of reversed polarity. This magnetic polarity time scale may help to resolve age correlations of North American redbed facies and to define the Permian-Triassic boundary. After correction for variable structural orientations, the mean directions of magnetization from the three sites converge at 296° declination, 57° inclination ( k = 60, ? 95 = 16.5° ; equivalent pole = 41°N, 161°E; paleolatitude = 38°N), which is consistent with the pole derived from nearby Early Permian volcanics and supports a postulated post-Early Triassic, pre-Tertiary counterclockwise rotation of this region with respect to cratonic North America.

  7. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam.

    PubMed

    Li, Xiangping; Venugopalan, Priyamvada; Ren, Haoran; Hong, Minghui; Gu, Min

    2014-10-15

    We report on the experimental demonstration of super-resolved pure-transverse focal fields through focusing an azimuthally polarized first-order vortex (FOV) beam. The optimized confinement of focal fields by creating constructive interference through the superposition of the FOV on an azimuthally polarized beam is observed by both a scanning near-field microscope and a two-photon fluorescence microscope. An enhanced peak intensity of the focal spot by a factor of 1.8 has been observed compared with that of the unmodulated azimuthally polarized beam. The super-resolved and pure-transverse focal fields with a 31% reduced focal area determined by the full-width at half-maximum compared to that of tightly focused circular polarization is experimentally corroborated. This superiority over the circular polarization stands for any numerical aperture greater than 0.4. This technique holds the potential for applications requiring subwavelength resolution and pure-transverse fields such as high-density optical data storage and high-resolution microscopy. PMID:25361130

  8. Polar Bears

    NSDL National Science Digital Library

    Mr. Thomas

    2010-09-27

    Use the following websites to answer questions about the rapid disappearance of polar bears in the Arctic region. Polar Bear picture Polar Bear Tracker 1: What region in the world has the fewest polar bears? 2: Using the internet as a resource, provide some reasons as to why this region is suffering from the most polar bear differences? Polar Bears Change Diet 1: Why are polar bears having to change their diets? 2: List some other factors (besides diet) in the ...

  9. Photochemical ozone loss in the Arctic as determined by MSX\\/UVISI stellar occultation observations during the 1999\\/2000 winter

    Microsoft Academic Search

    William H. Swartz; Jeng-Hwa Yee; Ronald J. Vervack Jr; Steven A. Lloyd; Paul A. Newman

    2002-01-01

    The combined SAGE III Ozone Loss and Validation Experiment and Third European Stratospheric Experiment on Ozone 2000 (SOLVE\\/THESEO 2000) campaign during winter 1999\\/2000 sought, in part, to quantify ozone loss within the Arctic polar vortex using a variety of aircraft-, balloon-, ground-, and space-based instrument platforms. The Midcourse Space Experiment\\/Ultraviolet and Visible Imagers and Spectrographic Imagers (MSX\\/UVISI) suite of instruments

  10. Total depletion of ozone reached in the 2010-2011 Arctic winter as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Castelli, E.; Papandrea, E.; Carlotti, M.; Dinelli, B. M.

    2011-12-01

    We present observations of the 2010-2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs). We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003-2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. Through inspection of MIPAS spectra, 84% of PSCs were identified as supercooled ternary solution (STS) or STS mixed with nitric acid trihydrate (NAT), 16% formed mostly by NAT particles, and only a few by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day-1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Sporadic increases of NO2 associated with evaporation of sedimenting PSCs were also observed. Once the PSC season halted, ClO was reconverted into ClONO2. Compared to MIPAS observed 2003-2010 Arctic average values, the 2010-2011 vortex in late winter had 15 K lower temperatures, 40% lower HNO3 and 50% lower ozone, reaching the largest ozone depletion ever observed in the Arctic. The overall picture of this Arctic winter was remarkably closer to conditions typically found in the Antarctic vortex than ever observed before.

  11. Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/3

    NASA Astrophysics Data System (ADS)

    Davies, S.; Mann, G. W.; Carslaw, K. S.; Chipperfield, M. P.; Remedios, J. J.; Allen, G.; Waterfall, A. M.; Spang, R.; Toon, G. C.

    2005-11-01

    Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite (MIPAS-E) were made during the cold Arctic winter of 2002/3. Vortex temperatures were unusually low in early winter and remained favourable for polar stratospheric cloud formation and denitrification until mid-January. MIPAS-E observations provide the first dataset with sufficient coverage of the polar vortex in mid-winter which enables a reasonable estimate of the timing of onset and spatial distribution of denitrification of the Arctic lower stratosphere to be performed. We use the observations from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by Lagrangian Particle Sedimentation) microphysical denitrification model coupled to the SLIMCAT chemical transport model. In addition, the predicted denitrification from a simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E. Modelled denitrification is compared with in-vortex NOy and N2O observations from the balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly observed by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex by early January 2003. The DLAPSE model is broadly able to capture both the timing of onset and the spatial distribution of the observed denitrification. A simple thermodynamic equilibrium scheme is able to reproduce the observed denitrification in the core of the vortex but overestimates denitrification closer to the vortex edge. This study also suggests that the onset of denitrification in simple thermodynamic schemes may be earlier than in the MIPAS-E observations.

  12. Fine-scale distribution of soil organic carbon associated with diapirs in the frost boils of a High Arctic polar desert.

    NASA Astrophysics Data System (ADS)

    Guy, Amanda; Lamb, Eric; Siciliano, Steven

    2014-05-01

    Polar deserts make up approximately a quarter of the ice-free Arctic region in Canada. Previous work on polar deserts suggests that carbon redistributed to depth via cryoturbation, leaching and root inputs may enrich subsurface soils with soil organic carbon (SOC). Given, arctic soils are sensitive to climate warming and contain nearly fifty percent of global terrestrial carbon stocks, understanding the SOC distribution in these landscapes is important. Diapirs are areas of uplifted parent material above the permafrost table that are associated with patterned ground such as frost boils. These diapirs might be an important feature in polar deserts as they are overlain with a Bhy soil horizon enriched in soil organic carbon (SOC) that may provide important resources for plants growing on the surface. We used a field-portable visible and near-infrared (vis-NIR) range spectrometer to detect SOC, indicative of the diapir Bhy horizon, in the subsurface soil profile of frost boils (n= 559). To better understand the fine-scale variability of SOC distribution, we collected spectra of the soil profile using a fine scale 3 x 3 sample grid on a subset of frost boils with (n= 12) and without (n= 12) diapirs detected. Profile spectra were analyzed for SOC using a calibration model developed in Unscrambler® X v.10.2 that was based on partial least squares regression and a calibration dataset for polar deserts. We found that SOC varied with depth between frost boils and enhanced SOC at depth indicative of diapirs occurred on approximately 17% of frost boils. The distribution of SOC within the fine scale grids was extremely variable and also differed between frost boils. These results provide a promising sign that better prediction of carbon distribution in frost boils can made using vis-NIR spectroscopy.

  13. Sustaining Arctic Observing Networks: An International Initiative to Develop a Legacy to the International Polar Year (IPY)

    NASA Astrophysics Data System (ADS)

    Calder, J.; Hik, D.; Reiersen, L.; Rogne, O.

    2008-12-01

    The need for well-coordinated and sustained Arctic Observing Networks that meet scientific and societal needs has been identified in various national and international reports. Both the Arctic Council (AC) and the World Meteorological Organization (WMO) have called for creation of a coordinated set of Arctic Observing Networks that meet identified societal needs. In January 2007, the Sustaining Arctic Observing Networks Initiating Group (SAON IG), composed of representatives of international organizations, agencies, and northern residents involved in research and operational and local observing, was formed to undertake a process to respond to the AC and WMO directives. With endorsement by the IPY International Program Office, the Swedish and Canadian IPY Committees agreed to run a succession of workshops together with the SAON IG. Results from the workshops are available at www.arcticobserving.org. The communities represented in the workshops agreed with the SAON vision that users should have access to free, open and high quality data that will realize pan-Arctic and global value-added services and provide societal benefits. The objective of the SAON process is to provide a set of recommendations to achieve the ultimate goal: to enhance Arctic-wide observing activities through coordination and integration and to promote sharing and synthesis of data and information. Implicit in this goal is recognition that most observing activities are now organized and implemented by national or supra-national processes and that these processes are expected to continue for the foreseeable future. Therefore the SAON goal focuses not on implementing observing activities, but on increasing their value. Workshop discussions noted that the IPY catalyzed formation of several internationally coordinated observing networks, generally through 'bottom-up' processes. The more successful of these can serve as 'building blocks' for a sustained set of Arctic Observing Networks. Likewise it was recognized that the Arctic components of networks established in a more 'top-down' way under the auspices of organizations such as the WMO comprise an additional number of internationally coordinated building blocks. Workshop participants called for some type of international structure to tie together both the observing activities and the decision-making processes regarding priority and funding. Yet there was a strong view against establishment of new organizations and resource-requiring bureaucracies. The recommendations in the final SAON report are being drafted at the time of preparation of this abstract. It seems certain however those recommendations will include consideration of: the concept of 'building blocks' and how to build on them; coordination of the various funding agencies and decision processes; use of web-based technologies for data and information sharing; and a successor to the SAON-IG.

  14. Effect of Polar Day on Plasma Profiles of Melatonin, Testosterone, and Estradiol in High-Arctic Lapland Longspurs

    Microsoft Academic Search

    Michaela Hau; L. Michael Romero; Jeff D. Brawn; Thomas J. Van't Hof

    2002-01-01

    In polar habitats, continuous daylight (polar day) can prevail for many weeks or months around the summer solstice. In the laboratory, continuous light conditions impair or disrupt circadian rhythms in many animals. To determine whether circadian rhythms are disrupted under natural polar day conditions in a species that is only a summer resident in polar regions we analyzed diel rhythms

  15. Rising UV-B radiation in Antarctica and the potential for future ozone depletion over the Arctic have underscored the need for improved, predictive models of biological UV exposure in the polar marine

    E-print Network

    Vincent, Warwick F.

    ABSTRACT Rising UV-B radiation in Antarctica and the potential for future ozone depletion over ecosystems. UV radiation (UVR) causes a broad range of photobiological (Vincent & Neale 2000, Vincent the Arctic have underscored the need for improved, predictive models of biological UV exposure in the polar

  16. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales

    PubMed Central

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-01-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (FST = 0.01) and mitochondrial (?ST = 0.47; FST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species’ range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history. PMID:24102001

  17. Correlation of N2O and ozone in the Southern Polar vortex during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Loewenstein, M.; Podolske, J. R.; Starr, Walter L.; Proffitt, M. H.; Kelly, K. K.; Chan, K. Roland

    1988-01-01

    In situ N20 mixing ratios, measured by an airborne laser spectrometer (ATLAS), have been used along with in situ ozone measurements to determine the correlation of N2O and ozone in the Antarctic stratosphere during the late austral winter. During the 1987 Airborne Antarctic Ozone Experiment (AAOE), N2O data were collected by a laser absorption spectrometer on board the ER-2 on five ferry flights between Ames Research Center (37 deg N) and Punta Arenas, Chile (53 deg S), and on twelve flights over Antarctica (53 S to 72 S). Of all the trace gas species measured by instruments on board the ER-2, only one showed a relationship to the N2O/O3 correlations in the vortex. With few exceptions, positive N20/O3 correlations coincided with total water mixing ratios of greater than 2.9 ppmv, and total water mixing ratios of less than 2.9 ppmv corresponded to negative correlations. The lower water mixing ratios, or dehydrated regions, are colocated with the negative correlations within the vortex, while the wetter regions always occur near the vortex edge.

  18. Detrital zircons (U-Pb and Lu-Hf) and host hemipelagic sediments (Pb-Sr-Nd-Os) from the Polar Arctic

    NASA Astrophysics Data System (ADS)

    Kapitonov, Igor; Belyatsky, Boris; Petrov, Eugeny; Sergeev, Sergey

    2015-04-01

    We studied deep-sea sediments from 6 sampling sites on the steep slopes of seamounts that accumulate during the last one million years. The goal of the study - to characterize the bedrock, which are coming to the surface from the overlying deposits for most of these steep slopes and weathering give talus deposits accumulating at the foot of the slopes.. The result proved to be similar enough for heavy fraction of all sediment columns spaced along the Alpha-Mendeleev Ridge on a 450 km. This suggest provenance similarity, which can be achieved either by erosion of the same rocks composing this ridge or by continental origin of material. We conducted control sampling of deep-water pelagic sediments in several remote places and held various positions with respect to the morphological ocean structure: on the flatten top surface of the deep-water ridge, on the bottom surface of the Amundsen Basin, 100 km to the west of the Lomonosov Ridge, at the Geophysicists Spur from the eastern side of the Lomonosov Ridge, and from the Laptev Sea. There are five control samples, which showed some local differences in the composition and distribution of zircon ages, with a total general similarity of these distributions. This fact indicates move the character of precipitation, as on the surface elevations and depressions in the sediment at the expense of local erosion of bedrock can not be formed. One of the sources of the Arctic Ocean sediments are traditionally considered «dirty» sea ice carrying material from the Canadian Archipelago, which are moved into the central part of the ocean due to Bofourt Gear flow. However, the distribution of zircon ages, revealed in the sediments, differs significantly from similar distributions for detrital zircon of Arctic coast of Alaska, the Canadian Archipelago, Greenland, Europe (Baltic Shield) and North America. But there are a lot more similarities with the zircon ages distributions typical for Asian continent, excluding China and India. However, a direct resemblance to the Permo-Triassic and Jurassic sandstones of coastal areas of the Arctic, we also do not see. Another factor in the formation of deep marine sediments is fluvial transference. The total input of the Arctic rivers reaches about 1x106 tonnes per year. When comparing the characteristics of detrital zircons of different river systems, we see that the similar is the distribution of zircon ages from the deposits of the Lena, Yenisei and Yana-Indigirka. Given that the Laptev Sea is the main source of «dirty» sea ice, carried by Transpolar Drift in the central part of the Arctic Ocean, detrital zircons from sediments of Lena river, which is characterized by the highest among Arctic rivers discharge, apparently, ensure the formation of the heavy fraction of hemipelagic mud in a large deep-water area of the Arctic Ocean, including the polar region. The observed variations in local distribution of zircon ages in the studied sampling points do not exclude the presence of local material, but to determine its share and establish with certainty the composition further research is required.

  19. Airborne Arctic Stratospheric Expedition 2: Air Parcel Trajectories

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An overview of Airborne Arctic Stratospheric Expedition 2 is given. Effects of Pinatubo aerosol on stratospheric ozone at mid-latitudes, in situ measurements of ClO and ClO/HCl ratio, balloon-borne measurements of ClO, NO, and O3 in a volcanic cloud, and new observations of the NO(y)/N2O correlation in the lower stratosphere are discussed. Among other topics addressed are the following: in situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8, in situ measurements of changes in stratospheric aerosol and the N2O-aerosol relationship inside and outside of the polar vortex, measurements of halogenated organic compounds near the tropical tropopause, and airborne brightness measurements of the polar winter troposphere.

  20. Contamination of food by crude oil affects food selection and growth performance, but not appetite, in an Arctic fish the polar cod (Boreogadus saida)

    SciTech Connect

    Christiansen, J.S. [Norwegian Institute of Fisheries and Aquaculture, Troms (Norway); George, S.G. [Univ. of Stirling, Scotland (United Kingdom)

    1995-04-01

    The polar cod (Boreogadus saida) is recognized as a key species in Arctic marine food webs and it may, therefore, be important for the transfer of xenobiotics from lower trophic levels to its main predators, birds and sea mammals. The present work examines the effects of foods contaminated with 200 or 400 ppm crude oil on food selection patterns and appetite-growth relationship in polar cod using X-radiography. It is shown that sexually mature polar cod consumed mixtures of uncontaminated and oil-contaminated foods, and did not show a reduced overall appetite as compared with fish provided with uncontaminated food only. Food selection was, however, influenced by both sex and individual appetite. Male fish selected uncontaminated food when appetite was low, whereas females ingested contaminated and uncontaminated foods equally, irrespective of appetite level. The ingestion of oil-contaminated food led to a significant depression in growth performance in both male and female fish. Food contaminated with oil at a concentration of 500 ppm was completely rejected by both sexes. 6 refs., 4 figs., 2 tabs.

  1. Super Cold Arctic Mesopause Project (CAMP): A research project to investigate the polar middle atmosphere in summer with rocket launches from 65 deg-80 deg N

    NASA Astrophysics Data System (ADS)

    Kopp, E.; Philbrick, C. R.; Thomas, G. E.; Witt, G.

    A Cold Arctic Mesopause Project for summer to study the structure and dynamics of the middle atmosphere (50 to 150 km) above the north polar region is proposed. It should concentrate on measurements of water vapor, ozone and temperature and their variability as a function of time, and geomagnetic and meteor shower activity; formation, particle size and density, transport and life time of noctilucent cloud (NLC) particles; dynamics and temperature and their effects on ice particle growths and the distribution of minor constituents including the ionospheric plasma; and electric fields, charged aerosols, and massive positive and negative ions in the vicinity of NLC. In situ measurements from rockets, grouped in two to three salvos should be supported by ground, airborne and satellite remote sensing experiments.

  2. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate. PMID:24891392

  3. Teachers, Researchers, and Students Collaborating in Arctic Climate Change Research: The Partnership Between the Svalbard REU and ARCUS PolarTREC programs

    NASA Astrophysics Data System (ADS)

    Roof, S.; Warburton, J.; Oddo, B.; Kane, M.

    2007-12-01

    Since 2004, the Arctic Research Consortium of the U.S. (ARCUS) "TREC" program (Teachers and Researchers Exploring and Collaborating, now "PolarTREC") has sent four K-12 teachers to Svalbard, Norway to work alongside researchers and undergraduate students conducting climate change research as part of the Svalbard Research Experiences for Undergraduates (REU) Program. The benefits of this scientist/educator/student partnership are many. Researchers benefit from teacher participation as it increases their understanding of student learning and the roles and responsibilities of K-12 teachers. The TREC teacher contributes to the research by making observations, analyzing data, and carrying heavy loads of equipment. In collaborating with K- 12 teachers, undergraduate student participants discover the importance of teamwork in science and the need for effective communication of scientific results to a broad audience. The questions that K-12 teachers ask require the scientists and students in our program to explain their work in terms that non-specialists can understand and appreciate. The K-12 teacher provides a positive career role model and several Svalbard REU undergraduate students have pursued K-12 teaching careers after graduating. TREC teachers benefit from working alongside the researchers and by experiencing the adventures of real scientific research in a remote arctic environment. They return to their schools with a heightened status that allows them to share the excitement and importance of scientific research with their students. Together, all parties contribute to greatly enhance public outreach. With ARCUS logistical support, TREC teachers and researchers do live web conferences from the field, reaching hundreds of students and dozens of school administrators and even local politicians. Teachers maintain web journals, describing the daily activities and progress of the researcher team. Online readers from around the world write in to ask questions, which the TREC teacher answers after consulting the research team. TREC teachers have developed and distributed teaching modules using real questions and data from the research program. Our collaboration is successful in part because the teachers are well prepared by ARCUS in advance of the field experience and the Svalbard REU leaders treat the TREC teacher as a senior member of the research team. Reliable telephone and internet communication from the field site is also important because it greatly facilitates the daily outreach. Our success is measured by the hundreds of K-12 students exposed to arctic climate change research (some of which are now going to college to pursue geoscience studies!) and the mutual desire for continued collaboration between the Svalbard REU Program and the ARCUS PolarTREC Program.

  4. From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod ( Boreogadus saida ) under landfast ice in the Arctic Ocean

    Microsoft Academic Search

    Delphine Benoit; Yvan Simard; Jacques Gagné; Maxime Geoffroy; Louis Fortier

    2010-01-01

    The winter\\/spring vertical distributions of polar cod, copepods, and ringed seal were monitored at a 230-m station in ice-covered\\u000a Franklin Bay. In daytime, polar cod of all sizes (7–95 g) formed a dense aggregation in the deep inverse thermocline (160–230 m,\\u000a ?1.0 to 0°C). From December (polar night) to April (18-h daylight), small polar cod <25 g migrated into the isothermal cold\\u000a intermediate

  5. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    PubMed

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ?PCBs (1797-10,537ng/g lw), sum methylsulphone-PCB ?MeSO2-PCBs (110-672ng/g lw), sum chlordanes ?CHLs (765-3477ng/g lw), ?-hexachlorocyclohexane ?-HCH (8.5-91.3ng/g lw), ?-hexachlorocyclohexane ?-HCH (65.5-542ng/g lw), sum chlorbenzenes ?ClBzs (145-304ng/g lw), dichlorodiphenyltrichloroethane ?DDTs (31.5-206ng/g lw), dieldrin (69-249ng/g lw), polybrominated diphenyl ethers ?PBDEs (4.6-78.4ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ?MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17polar bears. We therefore suggest that Critical Daily Doses (CDD) should be investigated in "ex vivo" dose-response studies on polar bears to replace laboratory studies on rats (Rattus rattus) to reveal whether high RQs are maintained. PMID:25825130

  6. Early Paleogene Arctic terrestrial ecosystems affected by the change of polar hydrology under global warming: Implications for modern climate change at high latitudes

    Microsoft Academic Search

    Qin Leng; Gaytha A. Langlois; Hong Yang

    2010-01-01

    Our understanding of both the role and impact of Arctic environmental changes under the current global warming climate is\\u000a rather limited despite efforts of improved monitoring and wider assessment through remote sensing technology. Changes of Arctic\\u000a ecosystems under early Paleogene warming climate provide an analogue to evaluate long-term responses of Arctic environmental\\u000a alteration to global warming. This study reviews Arctic

  7. Simultaneous Bro and Oclo Profile Measurements In The Arctic Vortex; Implications For The Clo and Bro Chemistry and Inferred Ozone Loss From The Clo/bro Ozone Loss Cycle

    NASA Astrophysics Data System (ADS)

    Dorf, M.; Bösch, H.; Chipperfield, M.; Camy-Peyret, C.; Fitzenberger, R.; Payan, S.; Sinnhuber, B.; Weidner, F.; Pfeilsticker, K.

    During the EuroSolve campaign in winter 1999/2000, the LPMA/DOAS (Labora- toire de Physique Moleculaire et Applications/Differential Optical Absorption Spec- troscopy) balloon was lauched from Kiruna into the highly activated arctic vortex on Feb. 18, 2000. The azimuth-controlled balloon gondola carried three spectrometer, which performed solar occultation measurements in virtually at whole all wavelength from 320 nm into the mid-infrared. Line of sight absorption and profile of a suite of atmospheric gases (O3, NO2, BrO, OClO, IO, OIO, CH4, H2O, HCl, ClONO2, N2O,.....) were measured and compared with 3-D CTM and 1D trajectory models. The present paper reports on the simultaneous BrO, and OClO measurements. BrO concentrations of up 16.6+/-2 ppt - implying a total Bry of 23+/-2.5 ppt - , and OClO of up to 12+/-2 ppt (at 90 SZA) - implying ClOx = 1.8+/-0.2ppb - at 19 km were measured. These values are apparently compatible with the modeled and measured bromine and chlorine chemistry and budget. The BrO and OClO measurements allow us to infer ozone loss rates due to the ClO dimer cycle and the coupled BrO/ClO cy- cle, which are compared with inferred O3 loss rates. The OClO measured above 25 km (8+/- 2ppt), where NOx is found to be large (> 500 ppt), however, is much larger than what can be easily explained by present photochemistry. This finding points to a deficit in our understanding of the NOx/ClOx/BrOx coupling, a finding also reported previously from from SAOZ/LPMA and AMON. Various possibilites to solve that discrepancy and their potential for ozone chemistry will be discussed.

  8. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic

    USGS Publications Warehouse

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.

  9. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    PubMed

    Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat. PMID:25562525

  10. Implications of the Circumpolar Genetic Structure of Polar Bears for Their Conservation in a Rapidly Warming Arctic

    PubMed Central

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat. PMID:25562525

  11. Arctic Intersection

    USGS Multimedia Gallery

    The Canadian Coast Guard Ship Louis S. St-Laurent ties up to the Coast Guard Cutter Healy in the Arctic Ocean Sept. 5, 2009. The two ships are taking part in a multi-year, multi-agency Arctic survey that will help define the Arctic continental shelf....

  12. Tracking Polar Bears

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2008-01-17

    In this interactive activity adapted from the USGS Alaska Science Center, track the movements of a polar bear as it migrates across the changing Arctic sea ice and compare the paths of four different polar bears.

  13. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  14. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; DeMaster

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  15. Generation of cylindrical vector vortex beams by two cascaded metasurfaces

    E-print Network

    Yi, Xunong; Zhang, Zhiyou; Li, Ying; Zhou, Xinxing; Liu, Yachao; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    We present a simple and efficient method to generate any cylindrical vector vortex (CVV) beams based on two cascaded metasurfaces. The metasurface works as a space-variant Panchratnam-Berry phase element and can produce any desirable vortex phase and vector polarization. The first metasurface is used to switch the sign of topological charges associated with vortex, and the second metasurface is applied to manipulate the local polarization. This method allows us to simultaneously manipulate polarization and phase of the CVV beams.

  16. Evidence for subsidence in the 1989 Arctic winter stratosphere from airborne infrared composition measurements

    NASA Technical Reports Server (NTRS)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.

    1992-01-01

    Simultaneous measurements of the stratospheric burdens of CO2, HCN, N2O, CH4, OCS, CF2Cl2, CFCl3, CHF2Cl and HF were made by the Jet propulsion Laboratory MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were acquired on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland and Greenland. The results obtained show large variations in the burdens of these tracers due to the effects of transport. The tropospheric source gas burdens were reduced inside the polar vortex, suggesting that the air had subsided with respect to the surrounding midlatitude air. Increased HF burdens inside the vortex support this interpretation. The results obtained from the different tracers are highly consistent with each other and indicate that in the 15- to 20-km altitude range inside the vortex, surfaces of constant volume mixing ratio were located some 5-6 km lower in absolute altitude than outside the vortex. The results also indicate that the magnitude of this subsidence increases with altitude. These conclusions are consistent with other measurements.

  17. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  18. Arctic deployment of USCGC Polar Sea - winter 1983. Volume 3. Trafficability tests. Final report, December 1982November 1983

    Microsoft Academic Search

    R. P. Voelker; F. A. Geisel; K. E. Dane

    1983-01-01

    Environmental and ship-performance data were collected aboard the USCGC POLAR SEA during the period March-May 1983 as part of a multi-year program to make an operational assessment on the feasibility of a year-round marine transportation system (including offshore structures) serving Alaska. This is the third volume of a four-volume set and focuses on the performance of the icebreaker from the

  19. Using 10Be dating to pace Laurentide Ice Sheet retreat in polar landscapes: Rapid fiord deglaciation on Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Briner, J. P.; Bini, A. C.; Anderson, R. S.; Davis, P. T.; Miller, G. H.

    2008-12-01

    The retreat of the last great ice sheets during latest Pleistocene/Holocene warming serves as an analog for contemporary ice sheet response to climate change. Although cosmogenic exposure dating has recently led to improvements in ice sheet retreat chronologies, isotope inheritance has complicated its use in polar landscapes. The application of cosmogenic isotopes to the history and behavior of the northeastern Laurentide Ice Sheet on Baffin Island, Arctic Canada, over the last decade has led to four key insights. First, differential erosion by polythermal ice sheet conditions has led to a complicated pattern of cosmogenic isotope concentration in eastern Baffin Island landscapes. Second, cosmogenic isotopes inherited in locations not significantly eroded provide more information about ice sheet erosion (and burial) than chronology. Third, bedrock suitable for exposure dating commonly only occurs in valley bottoms that experienced significant erosion. Four, erratics in landscapes of insignificant erosion can sometimes be suitable samples for exposure dating. Building on these lessons, we highlight recent efforts to constrain retreat chronology in fiords of eastern Baffin Island. 10Be dating of glacially-polished low-elevation bedrock spanning 120 km of Sam Ford Fiord reveals 80 km of retreat in <1000 years at ~9.5 ka. Deglaciation began prior to 15 ka from a glacial maximum margin on the continental shelf, and the modern Barnes Ice Cap margin, 30 km inland from the head of Sam Ford Fiord, was attained in the late Holocene. Thus, over half of overall ice margin retreat since the last glacial maximum occurred in less than 10% of the deglacial interval. This rapid deglaciation was likely caused by a combination of climate-forced retreat and increased calving rates in up to 900-m-deep water. Although adjacent fiord mouths deglaciated earlier than at Sam Ford Fiord, the middle reaches of all fiords that we have studied along northeastern Baffin Island experienced rapid deglaciation between 10 and 9 ka. Constraining more precise rates of such rapid deglaciation is difficult with 10Be dating, but a similar magnitude of retreat of present ice streams like Greenland's Jakobshavn Isbrae, which occupies a long and deep fiord similar in geometry to those on Baffin Island, is likely if the Arctic continues to warm.

  20. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  1. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  2. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications

    E-print Network

    Lindsay, Ron

    175 Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications Geophysical Is the Trajectory of Arctic Sea Ice? Harry L. Stern and Ronald W. Lindsay Polar Science Center, Applied Physics space of the Arctic sea ice thickness distribution, in which each dimension or component is the time

  3. Arctic Research of the United States, Fall 1991, volume 4

    Microsoft Academic Search

    Jerry Brown; Stephen Bowen

    1990-01-01

    This is a journal for national and international audiences of government officials, scientists, engineers, educators, Arctic residents, and other people interested in Arctic-related topics. Reports cover a broad spectrum of life in the Arctic including such topics as fish, game, health, social services, science, engineering, environment, oceanography, international activities, international cooperation, global change, conferences, polar libraries, data, policies, research, and

  4. Arctic Research of the United States, Spring 1990, volume 4

    Microsoft Academic Search

    Jerry Brown; Stephen Bowen

    1990-01-01

    This is a journal for national and international audiences of government officials, scientists, engineers, educators, Arctic residents, and other people interested in Arctic-related topics. Reports cover a broad spectrum of life in the Arctic including such topics as fish, game, health, social services, science, engineering, environment, oceanography, international activities, international cooperation, global change, conferences, polar libraries, data, policies, research, and

  5. A New Ground-Based Carbon Monoxide Radiometer for Observing the Dynamics of the Arctic Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall; Palm, Mathias; Notholt, Justus

    2015-04-01

    The dynamical properties of the middle atmosphere must largely be derived from interpretation of observed chemical tracer data, predominantly from measurements by ground-based or satellite-borne instruments. Carbon monoxide (CO) is a well-suited tracer for polar middle atmosphere dynamics: during polar winter, the chemical reactions involving the gas are negligible due to lack of sunlight and the gas exhibits strong vertical and horizontal gradients. Ground-based measurements of the atmosphere are increasingly important for making long-term records of atmospheric composition and, because of the likely upcoming gap in satellite measurements, are needed to intercompare past and future satellite instruments. This contribution presents a new ground-based millimeter wave radiometer, CORAM, that is designed to measure radiation, at ~230 GHz, emitted during rotational transitions of CO. CORAM will be housed at the APIWEV station in Ny Alesund, Spitsbergen (79° N), an ideal location for observing middle atmosphere dynamics from inside and outside the polar vortex, and make continuous CO observations in the High-Arctic. The observations from CORAM will be used for validation of the polar dynamics in atmospheric models, and to investigate the short-term variability of polar middle atmosphere dynamics. Used in combination with measurements in Kiruna, Sweden (68° N), information about the CO gradient across the polar vortex edge can also be recovered. I will describe the new instrument and inversion technique, and present the ability of the observation system operating in a High-Arctic location. I will show the sensitivity of the system to CO concentrations in the altitude range of approximately 40-80 km with a preliminary error analysis using optimal estimation, and the effect of inversion nonlinearities on CO trend analysis.

  6. ATMOS Measurements of H2O + 2CH4 and Total Reactive Nitrogen in the November 1994 Antarctic Stratosphere: Dehydration and Denitrification in the Vortex

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Newchurch, M. J.; Zander, R.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Michelsen, H. A.; Chang, A. Y.; Goldman, A.

    1996-01-01

    Simultaneous stratospheric volume mixing ratios (VMR's) measured inside and outside the Antarctic vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in November 1994 reveal previously unobserved features in the distributions of total reactive nitrogen (NO(y)) and total hydrogen (H2O + 2CH4). Maximum removal of NO(y) due to sedimentation of polar stratospheric clouds (PSC's) inside the vortex occurred at a potential temperature (Theta) of 500-525 K (approximately 20 km), where values were 5 times smaller than measurements outside. Maximum loss of H2O + 2CH4 due to PSC's occurred in the vortex at 425-450 K, approximately 3 km lower than the peak NO(y) loss. At that level, H2O + 2CH4 VMR's inside the vortex were approximately 70% of corresponding values outside. The Antarctic and April 1993 Arctic measurements by ATMOS show no significant differences in H2O + 2CH4 VMR's outside the vortices in the two hemispheres. Elevated NO(y) VMRs were measured inside the vortex near 700 K. Recent model calculations indicate that this feature results from downward transport of elevated NO(y) produced in the thermosphere and mesosphere.

  7. The Thinning of the Arctic Ice Cover

    NSDL National Science Digital Library

    The paper, "The Thinning of the Arctic Ice Cover," by Drew Rothrock, Yanling Yu, and Gary Maykut, posted on the University of Washington's Polar Science Center Webpage, expands on evidence that the Arctic climate is warming by using "submarine data to examine whether sea-ice thickness, or actually draft, in the Arctic Ocean is also changing." The paper appeared in the Dec. 1, 1999 issue of Geophysical Research Letters, and the full-text and the figures may be downloaded here (.pdf). The page also offers some accounts of thinning of Arctic ice in the popular press.

  8. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  9. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  10. First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex

    Microsoft Academic Search

    R. M. Stimpfle; D. M. Wilmouth; R. J. Salawitch; J. G. Anderson

    2004-01-01

    The first measurements of ClOOCl in the stratosphere have been acquired from a NASA ER-2 aircraft, deployed from Kiruna, Sweden (68°N, 21°E), during the joint SOLVE\\/THESEO-2000 mission of the winter of 1999\\/2000. ClOOCl is detected by thermal dissociation into two ClO fragments that are measured by the well-known technique of chemical conversion, vacuum ultraviolet resonance fluorescence. Ambient ClO is detected

  11. First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex

    Microsoft Academic Search

    R. M. Stimpfle; D. M. Wilmouth; R. J. Salawitch; J. G. Anderson

    2004-01-01

    simultaneously. Observations of the ratio (ClOOCl)\\/(ClO)2 (estimated uncertainty of ±25%, 1 s) are used with a time-dependent photochemical model, to test the model representationoftheratiosofkineticparametersJ\\/kProdandkLoss\\/kProdfordayandnighttime observations, respectively. Here, kProd and kLoss are the rate constants for ClOOCl

  12. Public Perceptions of Arctic Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on these surveys highlights both the need and the challenge of communicating polar science.

  13. Arctic Watch

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  14. Airborne Arctic Stratospheric Expedition 2: An Overview

    NASA Technical Reports Server (NTRS)

    Anderson, James G.; Toon, Owen B.

    1993-01-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O. In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NO(x) and to some degree NO(y) were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, Cl0 was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of Cl0 and its dimer ClOOCl. This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? and (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30 deg N in the winter/spring northern hemisphere reported in satellite observations?

  15. Airborne Arctic Stratospheric Expedition 2: An overview

    NASA Technical Reports Server (NTRS)

    Anderson, James G.; Toon, Owen B.

    1993-01-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), stages from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromide radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O. In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-1), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NO(x) and to some degree NO(y) were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl. This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-2): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30 deg N in the winter/spring northern hemisphere reported in satellite observations?

  16. Inferring Denitrification From Twenty Years of Solar Occultation Measurements of Arctic PSCs

    NASA Astrophysics Data System (ADS)

    Alfred, J.; Bevilacqua, R.; Fromm, M.

    2003-12-01

    Recently, Fromm et al. [J. Geophys. Res., 108(D12), 4366, doi:10.1029/2002JD002772, 2003] have reanalyzed the Polar Ozone and Aerosol Measurement (POAM II and POAM III) and the NASA Stratospheric Aerosol Measurement (SAM II) satellite PSC databases using a unified detection algorithm and methodology. This has yielded an internally consistent, nearly unbroken PSC climatology extending from 1979 to the present. A technique has been developed by Bevilacqua et al. [J. Geophys. Res., 107(D20), 8281, doi:10.1029/2001JD000477, 2002] to infer irreversible denitrification. This technique stems from the assumption that irreversible denitrification lowers the NAT saturation temperature which in turn lowers the temperature for PSC formation. This results in a decreased PSC frequency at a given temperature as the Arctic vortex season progresses. In this paper we apply this technique to the long-term Arctic PSC database provided by Fromm et al. to yield a proxy climatology of denitrification which extends back for more than 20 years. Results suggest that denitrification is a relatively common occurrence in cold Arctic winters.

  17. Arctic winter 2010/2011 at the brink of an ozone hole

    NASA Astrophysics Data System (ADS)

    Sinnhuber, B.-M.; Stiller, G.; Ruhnke, R.; von Clarmann, T.; Kellmann, S.; Aschmann, J.

    2011-12-01

    The Arctic stratospheric winter of 2010/2011 was one of the coldest on record with a large loss of stratospheric ozone. Observations of temperature, ozone, nitric acid, water vapor, nitrous oxide, chlorine nitrate and chlorine monoxide from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT are compared to calculations with a chemical transport model (CTM). There is overall excellent agreement between the model calculations and MIPAS observations, indicating that the processes of denitrification, chlorine activation and catalytic ozone depletion are sufficiently well represented. Polar vortex integrated ozone loss reaches 120 Dobson Units (DU) by early April 2011. Sensitivity calculations with the CTM give an additional ozone loss of about 25 DU at the end of the winter for a further cooling of the stratosphere by 1 K, showing locally near-complete ozone depletion (remaining ozone <200 ppbv) over a large vertical extent from 16 to 19 km altitude. In the CTM a 1 K cooling approximately counteracts a 10% reduction in stratospheric halogen loading, a halogen reduction that is expected to occur in about 13 years from now. These results indicate that severe ozone depletion like in 2010/2011 or even worse could appear for cold Arctic winters over the next decades if the observed tendency for cold Arctic winters to become colder continues into the future.

  18. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with historical records. BC was highest near the North Pole, suggesting there had been an accumulation of soot within the Arctic vortex. Few, optically thick elevated aerosol layers were observed along the flight track, although independent lidar observations reveal evidence of the passage of volcanic plumes, which may have contributed to abnormally high values of AOD above 4 km. Enhanced opacity at higher altitudes during the campaign is attributed to an accumulation of industrial pollutants in the upper troposphere in combination with volcanic aerosol resulting from the March-April 2009 eruptions of Mount Redoubt in Alaska. The presence of Arctic haze during April 2009 is estimated to have reduced the net shortwave irradiance by ˜2-5 W m-2, resulting in a slight cooling of the surface.

  19. Ozone loss and chlorine activation in the Arctic winters 1991 2003 derived with the TRAC method

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Müller, R.; Grooß, J.-U.; Russell, J. M., III

    2004-05-01

    In this paper chemical ozone loss in the Arctic stratosphere was investigated for twelve years between 1991 and 2003. The accumulated local ozone loss and the column ozone loss were consistently derived mainly on the basis of HALOE observations. The ozone-tracer correlation (TRAC) method is used, where the relation between ozone and a long-lived tracer is considered over the lifetime of the polar vortex. A detailed quantification of uncertainties was performed. This study demonstrates the interaction between meteorology and ozone loss. The correlation between temperature conditions and chlorine activation becomes obvious in the HALOE HCl measurements, as well as the dependence between chlorine activation and ozone loss. Additionally, the degree of homogeneity of ozone loss is shown to depend on the meteorological conditions, as there is a possible influence of horizontal mixing of the air inside a weak polar vortex edge. Results estimated here are in agreement with the results obtained from other methods. However, there is no sign of very strong ozone losses as deduced from SAOZ for January considering HALOE measurements. In general, strong accumulated ozone loss is found to occur in conjunction with a strong cold vortex containing a large potential area of PSCs, whereas moderate ozone loss is found if the vortex is less strong and moderately warm. Hardly any ozone loss was calculated for very warm winters with small amounts of the area of possible PSC existence (APSC) during the entire winter. Nevertheless, the analysis of the relationship between APSC (derived using the PSC threshold temperature) and the accumulated ozone loss indicates that this relationship is not a strictly linear relation. An influence of other factors could be identified. A significant increase of ozone loss (of ?40 DU) was found due to the different duration of illumination of the polar vortex in different years. Further, the increased burden of aerosols in the atmosphere after the Pinatubo volcanic eruption in 1991 and the location of the cold parts of the vortex in different years may impact the extent of chemical ozone loss.

  20. Ecotoxicological risk assessment of environmental pollutants in the Arctic.

    PubMed

    Brunström, B; Halldin, K

    2000-03-15

    Concentrations of such persistent organic pollutants (POPs) as polychlorinated biphenyls (PCBs) are high in certain Arctic animal species. The polar bear, Arctic fox, and glaucous gull may be exposed to PCB levels above lowest-observed-adverse-effect-level (LOAEL) values for adverse effects on reproduction in mammals and birds. However, the dioxin-like congeners seem to be major contributors to the reproductive effects of PCBs and the relative concentrations of these congeners are low in polar bears. Temporal trends for POPs in Arctic wildlife and the sensitivities of Arctic species to these compounds determine the risk for future adverse health effects. PMID:10720719

  1. Band structure engineering of two-dimensional magnonic vortex crystals

    NASA Astrophysics Data System (ADS)

    Behncke, Carolin; Hänze, Max; Adolff, Christian F.; Weigand, Markus; Meier, Guido

    2015-06-01

    Magnonic vortex crystals are studied via scanning transmission x-ray microscopy and ferromagnetic-resonance spectroscopy. We investigate a two-dimensional vortex crystal by imprinting waves with tunable wave vectors. The dispersion relation ? (k ) is determined via ferromagnetic-resonance spectroscopy with a tunable frequency and wave vector for two vortex core polarization patterns that are adjusted by self-organized state formation prior to the measurement. We demonstrate that the band structure of the crystal is reprogrammed by tuning the vortex polarizations.

  2. Summer at-sea distribution of seabirds and marine mammals in polar ecosystems: a comparison between the European Arctic seas and the Weddell Sea, Antarctica

    Microsoft Academic Search

    Claude R Joiris

    2000-01-01

    The summer at-sea distribution of seabirds and marine mammals was quantitatively established both in Antarctica (Weddell Sea) and in the European Arctic: Greenland, Norwegian and Barents seas. Data can directly be compared, since the same transect counts were applied by the same team from the same icebreaking ship in both regions. The main conclusion is that densities of seabirds and

  3. Report of the Arctic and Antarctic

    E-print Network

    Europa. Exploration and study of other planetary bodies in conjunction with the Earths polar oceans can: Improved Capabilities for Exploring Earth and Space West Coast & Polar Regions Undersea Research Center;3 SCIENCE AT THE EXTREMES: IMPROVED CAPABILITIES FOR EXPLORING EARTH AND SPACE REPORT OF THE ARCTIC

  4. Arctic Meltdown

    NSDL National Science Digital Library

    In 1996, US entrepreneur and explorer Gary Comer took his small boat through the Northwest Passage in 19 days, a route that had once been ice, but was now easily navigated open water. This radio broadcast weighs up the extent and implications of the imminent Arctic ice breakup. The broadcast discusses the Historical Limit line in Greenland, which denotes glacier recession; Inuit observations of climate changes that are challenging their culture; the acceleration of global warming on Arctic sea ice; the problems increased Arctic shipping and melting permafrost are creating for infrastructure; the long-term outlook for global sea levels; and the possibility for the complete melting of Greenland. The broadcast is 28 minutes and 11 seconds in length and is available in real audio format.

  5. Large nitric acid trihydrate particles and denitrification caused by mountain waves in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Chipperfield, M. P.; Davies, S.; Eckermann, S. D.

    2005-04-01

    The contribution of stratospheric mountain waves to the formation of large nitric acid trihydrate (NAT) particles and subsequent denitrification of the Arctic polar vortex is calculated for the 1999/2000 winter using a three-dimensional (3-D) model. The model production mechanism involves the formation of NAT clouds with high particle number concentrations downwind of mountain wave ice clouds, as has been previously observed. These wave-induced NAT clouds then serve as "mother clouds" for the release of low concentrations of sedimenting NAT particles, following the mechanism of Fueglistaler et al. (2002a). Our calculations show that wave-induced NAT mother clouds can occupy up to 5-10% of the volume of air below the NAT temperature. NAT particles that have sedimented from the mother cloud bases can occupy in excess of 60% of the NAT supersaturated region. Integrated over the entire vortex at the end of the 1999/2000 simulation, it is estimated that denitrification due to this mechanism could potentially be responsible for as much as 80% of that observed. These results show that mountain waves may contribute to the occurrence of solid polar stratospheric clouds more than was previously thought and that they may play a significant role in denitrification.

  6. Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  7. Unprecedented Arctic ozone loss in 2011.

    PubMed

    Manney, Gloria L; Santee, Michelle L; Rex, Markus; Livesey, Nathaniel J; Pitts, Michael C; Veefkind, Pepijn; Nash, Eric R; Wohltmann, Ingo; Lehmann, Ralph; Froidevaux, Lucien; Poole, Lamont R; Schoeberl, Mark R; Haffner, David P; Davies, Jonathan; Dorokhov, Valery; Gernandt, Hartwig; Johnson, Bryan; Kivi, Rigel; Kyrö, Esko; Larsen, Niels; Levelt, Pieternel F; Makshtas, Alexander; McElroy, C Thomas; Nakajima, Hideaki; Parrondo, Maria Concepción; Tarasick, David W; von der Gathen, Peter; Walker, Kaley A; Zinoviev, Nikita S

    2011-10-27

    Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded. PMID:21964337

  8. Arctic UTLS composition measured by the MARSCHALS instrument during the PREMIEREX and ESSENCE campaigns

    NASA Astrophysics Data System (ADS)

    Cortesi, Ugo; Castelli, Elisa; Del Bianco, Samuele; Dinelli, Bianca Maria; Gerber, Daniel; Kerridge, Brian; Oelhaf, Hermann; Woiwode, Wolfgang; Vogel, Baerbel; Sinnhuber, Bjoern-Martin; Ruhnke, Roland

    2013-04-01

    An overview of the results obtained by the MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instrument during Premier-Ex (March 2010, Kiruna, Sweden) and ESSenCe 2011 (December 2011, Kiruna, Sweden) aircraft Arctic campaigns is presented. The two campaigns were part of the activities conducted as preparatory studies for PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation), one of the three candidate core missions of ESA Earth Explorer 7. The primary objective of PREMIER is to gain a better understanding of the processes that are linking atmospheric chemistry and dynamics with climate. PREMIER will achieve this by observing the Upper Troposphere / Lower Stratosphere (UTLS) - a region of particular importance in the study of climate change - with unprecedented spatial and temporal resolution. PREMIER combines the complementary capabilities of two limb-sounders in the infrared and millimeter-wave spectral regions and MARSCHALS was developed as an airborne demonstrator of the PREMIER millimeter-wave spectrometer. In the frame of the two Arctic campaigns, MARSCHALS sampled the Arctic UTLS retrieving vertical profiles of its main atmospheric targets (T, H2O, O3, HNO3, N2O, CO). The obtained vertical profiles have been used to investigate chemical and dynamical processes taking place in the Arctic atmosphere. In particular, we found the presence of filaments of vortex air during the Premier-Ex campaign and of re-nitrification or HNO3 redistribution due to sedimentation followed by evaporation of Polar Stratospheric Cloud (PSC) particles during the ESSenCe campaign. Furthermore, the results of the comparisonbetween MARSCHALS and MIPAS-STR products as well as the state of the atmosphere during the ESSenCe campaign simulated by theCLaMS (Chemical Lagrangian Model of the Stratosphere) and EMAC (ECHAM/MESSy Atmospheric Chemistry) models will be presented.

  9. Arctic hydroclimatology

    NASA Astrophysics Data System (ADS)

    Cherry, Jessica Ellen

    Arctic air temperature, precipitation, ground temperature, river runoff, clouds, and radiation are all changing quickly in a warming climate. Interactions and feedbacks between these features are not well understood. In particular, the relative role of local climate processes and large-scale ocean-atmosphere dynamics in driving observed Arctic changes is difficult to ascertain because of the sparsity of observations, inaccuracy of those that do exist, biases in global circulation models and analyses, and fundamental physics of the Arctic region. Four studies of Arctic hydroclimatology herein attempt to overcome these challenges. The first study, analysis of the Lena river basin hydroclimatology, shows canonical acceleration of the hydrologic cycle and amplification of global warming. Winter and spring are warming and increased frozen precipitation is contributing to permafrost melting by increasing soil insulation. Increasing runoff and soil moisture is leading to increasing evapotranspiration and changes in clouds. Changes in clouds are cooling summer days but warming summer nights, melting additional permafrost. Model simulations suggests that a deepening active layer will lead to an increasingly wet Arctic. The second two studies describe the development of the Pan-Arctic Snowfall Reconstruction (PASR). This product addresses the problem of cold season precipitation gauge biases for 1940-1999. The NASA Interannual-to-Seasonal Prediction Project Catchment-based Land Surface Model is used to reconstruct solid precipitation from observed snow depth and surface air temperatures. Error estimation is done via controlled simulations at Reynolds Creek Experimental Watershed, in Idaho. The method is then applied to stations in the pan-Arctic hydrological catchment. Comparison with existing products suggests that the PASR is a better estimate of actual snowfall for hydroclimatological studies. The final chapter is a case study on hydroclimatological variability driven by a large-scale mode of climate, the North Atlantic Oscillation (NAO). Variation in the NAO index explains 55% of the variance of streamflow in Norway and up to 30% of the variance in Norway's hydropower output. It is also possible to identify the influence of NAO anomalies on electricity consumption and prices. The model offers a possible tool for predicting the effects of future NAO variability on hydropower production and energy prices in Scandinavia.

  10. Generation of cylindrical vector vortex beams by two cascaded metasurfaces.

    PubMed

    Yi, Xunong; Ling, Xiaohui; Zhang, Zhiyou; Li, Ying; Zhou, Xinxing; Liu, Yachao; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

    2014-07-14

    We present a simple and efficient method to generate any cylindrical vector vortex (CVV) beams based on two cascaded metasurfaces. The metasurface works as a space-variant Panchratnam-Berry phase element and can produce any desirable vortex phase and vector polarization. The first metasurface is used to switch the sign of topological charges associated with vortex, and the second metasurface is applied to manipulate the local polarization. This method allows us to simultaneously manipulate polarization and phase of the CVV beams. PMID:25090534

  11. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance

    Microsoft Academic Search

    Ramón Hegedüs; Susanne Åkesson; Gábor Horváth

    2007-01-01

    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also

  12. ORIGINAL PAPER Chrysophytes and other protists in High Arctic lakes: molecular

    E-print Network

    Vincent, Warwick F.

    ORIGINAL PAPER Chrysophytes and other protists in High Arctic lakes: molecular gene surveys in High Arctic lakes has shown that they often contain taxa in the Chrysophyceae. Such studies have been investigated the late summer protist community struc- ture of three contrasting lakes in High Arctic polar

  13. Lesson Summary Students will learn about the Arctic Beaufort Sea

    E-print Network

    Mojzsis, Stephen J.

    Lesson Summary Students will learn about the Arctic Beaufort Sea and research the adaptations://www.nationalgeographic.com/xpeditions/ #12;Lesson Plans - Polar Regions: Arctic Adaptations and Global Impacts Check out: X1: Globe Projector. This lesson explores these principles through the From Sea to Shining Sea map (PDF, Adobe Reader required

  14. Focusing of linearly-, and circularly polarized Gaussian background vortex beams by a high numerical aperture system afflicted with third-order astigmatism

    Microsoft Academic Search

    Rakesh Kumar Singh; P. Senthilkumaran; Kehar Singh

    2008-01-01

    Effects of third-order astigmatism on the focused structure of linearly and circularly polarized Laguerre–Gaussian beams have been investigated by using vectorial Debye–Wolf integral. The results have been presented for total intensity distribution and squares of the polarization components at the focal plane of a high numerical aperture system, for two values of the topological charge. Astigmatism results in the stretching

  15. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.-M.; Kristjánsson, J. E.; Stohl, A.

    2011-04-01

    During the POLARCAT summer campaign in 2008, two episodes (2-5 July and 7-10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the difficulty to identify a data set that most realistically represents the actual pollution state of the Arctic atmosphere.

  16. Ozone loss and chlorine activation in the Arctic winters 1991-2003 derived with the tracer-tracer correlations

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Müller, R.; Grooß, J.-U.; Russell, J. M., III

    2004-11-01

    Chemical ozone loss in the Arctic stratosphere was investigated for the twelve years between 1991 and 2003 employing the ozone-tracer correlation method. For this method, the change in the relation between ozone and a long-lived tracer is considered for all twelve years over the lifetime of the polar vortex to calculate chemical ozone loss. Both the accumulated local ozone loss in the lower stratosphere and the column ozone loss were derived consistently, mainly on the basis of HALOE satellite observations. HALOE measurements do not cover the polar region homogeneously over the course of the winter. Thus, to derive an early winter reference function for each of the twelve years, all available measurements were additionally used; for two winters climatological considerations were necessary. Moreover, a detailed quantification of uncertainties was performed. This study further demonstrates the interaction between meteorology and ozone loss. The connection between temperature conditions and chlorine activation, and in turn, the connection between chlorine activation and ozone loss, becomes obvious in the HALOE HCl measurements. Additionally, the degree of homogeneity of ozone loss within the vortex was shown to depend on the meteorological conditions.

    Results derived here are in general agreement with the results obtained by other methods for deducing polar ozone loss. Differences occur mainly owing to different time periods considered in deriving accumulated ozone loss. However, very strong ozone losses as deduced from SAOZ for January in winters 1993-1994 and 1995-1996 cannot be identified using available HALOE observations in the early winter. In general, strong accumulated ozone loss was found to occur in conjunction with a strong cold vortex containing a large volume of possible PSC existence (VPSC), whereas moderate ozone loss was found if the vortex was less strong and moderately warm. Hardly any ozone loss was calculated for very warm winters with small amounts of VPSC during the entire winter. This study supports the linear relationship between VPSC and the accumulated ozone loss reported by Rex et al. (2004) if VPSC was averaged over the entire winter period. Here, further meteorological factors controlling ozone loss were additionally identified if VPSC was averaged over the same time interval as that for which the accumulated ozone loss was deduced. A significant difference in ozone loss (of ?36DU) was found due to the different duration of solar illumination of the polar vortex of at maximum 4 hours per day in the observed years. Further, the increased burden of aerosols in the atmosphere after the Pinatubo volcanic eruption in 1991 significantly increased the extent of chemical ozone loss.

  17. Method of stabilizing flueric vortex valves and vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Erwin, L. R.; Mc Fall, R. H.

    1970-01-01

    Inducing losses in the vortex chamber of vortex valves and vortex amplifiers resolves the problem of unstable operation caused by a sufficiently large positive feedback. Induced losses also reduce pressure gain and throttling range of vortex pressure amplifier.

  18. Explore Arctic Health

    PubMed Central

    Lebow, Mahria

    2014-01-01

    The Arctic Health web site is a portal to Arctic-specific, health related content. The site provides expertly organized and annotated resources pertinent to northern peoples and places, including health information, research publications and environmental information. This site also features the Arctic Health Publications Database, which indexes an array of Arctic-related resources PMID:25071422

  19. Arctic Languages: An Awakening.

    ERIC Educational Resources Information Center

    Collis, Dermid R. F., Ed.

    This work is a study of Arctic languages written in an interdisciplinary manner. Part of the Unesco Arctic project aimed at safeguarding the linguistic heritage of Arctic peoples, the book is the outcome of three Unesco meetings at which conceptual approaches to and practical plans for the study of Arctic cultures and languages were worked out.…

  20. NOAA Arctic Theme Page

    NSDL National Science Digital Library

    NOAA's Arctic Theme Page is a rich and comprehensive resource linking to widely distributed data and information, from research institutions throughout the world, focused on the Arctic. Available information includes relevant data, graphics, and forecasts, including historical perspectives and in-depth analyses. Also included are a selection of Essays by Arctic experts on key issues in the Arctic.

  1. Arctic Research of the United States, Spring 1990, volume 4

    NASA Astrophysics Data System (ADS)

    Brown, Jerry; Bowen, Stephen

    This is a journal for national and international audiences of government officials, scientists, engineers, educators, Arctic residents, and other people interested in Arctic-related topics. Reports cover a broad spectrum of life in the Arctic including such topics as fish, game, health, social services, science, engineering, environment, oceanography, international activities, international cooperation, global change, conferences, polar libraries, data, policies, research, and history. The emphasis in this issue is on the importance of the Arctic Ocean and its marginal seas to U.S. national interests, including fisheries, the oil and gas industries, and global climate change processes.

  2. Polar Bear

    NSDL National Science Digital Library

    2009-01-01

    In this episode of the Podcast of Life, host Ari Daniel Shapiro relates two close calls with polar bears. Listen as Heather Cray recalls how, dumped by a storm on a small Arctic island without a shotgun, she got an unexpected wake-up call. And when researcher Steve Amstrup accidentally crashed through the roof of a polar bear’s den, no one could predict what happened next. Also included is a Learn More section that provides background information on the scientists recorded in the podcast, lessons, images, and cool facts.

  3. On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, P. A.; Garfinkel, C. I.

    2012-01-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High Low differences are consistent with a weakened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes.

  4. Propagation of a vortex Airy beam in chiral medium

    NASA Astrophysics Data System (ADS)

    Liu, Xiayin; Zhao, Daomu

    2014-06-01

    The analytical expression for the propagation of a vortex Airy beam through ABCD optical systems is derived. As an example, the propagation of the beam in chiral medium is discussed. It is shown that the vortex will destroy the center lobe of the Airy beam at a critical position which is different for the left circularly polarized (LCP) and the right circularly polarized (RCP) vortex Airy beam. The intensity distribution exhibits novel features due to the existence of the vortex. In addition, the intensity distributions of the LCP beam and the RCP beam are more sensitive to the chirality parameter in far-zone than that in near-zone. The transverse shift of the center lobe of a vortex Airy beam during propagation is affected by the chiral parameter.

  5. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2015-04-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 to 2013 in both hemispheres and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher-quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis data sets. We still, however, see fairly large differences in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.

  6. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2014-12-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 through 2013 in both hemispheres, and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis datasets. We still, however, see fairly large relative biases in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.

  7. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  8. Sea ice occurrence predicts genetic isolation in the Arctic fox.

    PubMed

    Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K

    2007-10-01

    Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The pack ice connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea ice, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea ice is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective. PMID:17868292

  9. Arctic chlorine activation and ozone depletion: Comparison of chemistry transport models with satellite observations.

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Wegner, T.; Müller, R.; Chipperfield, M. P.; Feng, W.; Santee, M. L.

    2009-04-01

    The accurate simulation of Arctic stratospheric ozone depletion has been an issue for two decades. However, there are still notable quantitative discrepancies between the models and observations. We show results from the SLIMCAT and CLaMS 3D chemistry-transport models that differ in some aspects of simulated chlorine activation and descent in the polar vortex. Consequently, the estimates of accumulated ozone depletion in the polar vortex for these two models in cold Arctic winters still largely disagree. As shown recently by Santee et al. (JGR, 2008) using MLS and ACE data, the extent of chlorine activation for the cold Arctic winter of 2004/2005 within the basic SLIMCAT model is overestimated with the likely consequence of too much simulated ozone depletion. In contrast, the CLaMS simulation for the same winter shows too little chlorine activation compared to observations, and therefore likely too little loss. For SLIMCAT the version used by Santee et al. has been updated to replace the equilibrium treatment of NAT PSCs with a Lagrangian microphysical scheme. This leads to smaller regions of NAT particles and less denitrification, in better agreement with observations. The impact of this on the modeled extent of chlorine activation will be discussed. For CLaMS we have changed the parameterization of heterogeneous reactions on liquid aerosols from Carslaw et al. to that of Shi et al. (2001), with which chlorine activation on liquid aerosol becomes more efficient. In turn, the simulated chlorine activation agrees better with the observations. The impact of these model changes on chlorine activation and ozone loss will be assessed and remaining model-observation discrepancies will be discussed in terms of different model formulations. We will also show the impact of recent lab measurements of Cl2O2 absorption cross sections by von Hobe et al. (2009) on the simulated ozone depletion. References: von Hobe, M., F. Stroh, H. Beckers, T. Benter, and H. Willner, The UV/Vis absorption spectrum of matrix isolated dichlorine peroxide, ClOOCl, Phys. Chem. Chem. Phys. , doi:10.1039/B814373K, 2009. Santee M. L., I. A. MacKenzie, G. L. Manney, M. P. Chipperfield, P. F. Bernath, K. A. Walker, C. D. Boone, L. Froidevaux, N. J. Livesey, J. W. Waters, A study of stratospheric chlorine partitioning based on new satellite measurements and modeling, J. Geophys. Res., 113, D12307, doi:10.1029/2007JD009057, 2008. Shi, Q., J. Jayne, C. Kolb, D. Worsnop, and P. Davidovits, Kinetic model for reaction of ClONO2 with H2O and HCl and HOCl with HCl in sulfuric acid solutions, J. Geophys. Res., 106, 24259-24274, 2001.

  10. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.; Kristjansson, J. E.

    2010-12-01

    During the POLARCAT summer campaign in 2008, two episodes (2-5 July and 7-10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART, the Eulerian chemical transport model TOMCAT, and the limited-area chemical transport model WRF-Chem. Retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite are used as a total column CO reference for the two simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the two model simulations. Thereby, finer-scale structures are too quickly diffused in the Eulerian model. In absolute numbers the total CO fields is highest in the satellite observations, followed by the FLEXPART and the TOMCAT model. Aircraft data suggest that the satellite data are biased high. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. Results indicate very good agreement between simulated and observed total column CO fields, but also highlight the difficulty to identify a data set that most realistically represents the actual state of the atmosphere.

  11. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.-M.; Kristjánsson, J. E.; Stohl, A.

    2010-11-01

    During the POLARCAT summer campaign in 2008, two episodes (2-5 July and 7-10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART, the Eulerian chemical transport model TOMCAT, and for numerical aspects the limited-area chemical transport model WRF-Chem. Retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite are used as a total column CO reference for the two simulations. Main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian models. Aircraft data suggest that the satellite data are biased high, while TOMCAT and WRF-Chem are biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the difficulty to identify a data set that most realistically represents the actual state of the atmosphere.

  12. In situ measurements of water vapor in the Arctic winter lower stratosphere

    NASA Astrophysics Data System (ADS)

    Spackman, James Ryan

    The Harvard Lyman-alpha photofragment fluorescence hygrometer measured water vapor aboard the NASA ER-2 aircraft during the SAGE III Ozone Loss and Validation Experiment (SOLVE), based from Kiruna, Sweden (68°N, 20°E), during January--March 2000. In situ measurements of water vapor, CH4, and N2O, acquired during SOLVE, are used to examine (1) dehydration in the Arctic vortex and (2) transport into the lowermost stratosphere in the context of middle- and high-latitude ozone declines. Knowledge of the total hydrogen budget of the Arctic winter stratosphere is pertinent to understanding the processes of formation of polar stratospheric clouds (PSCs) and quantifying the reactive uptake coefficients of the relevant cold aerosols, factors determining how fast reservoir halogen species (i.e., ClONO2, HCl) are converted to active forms (i.e., ClO, ClOOCl). Although the data indicate only isolated dehydration and rehydration episodes along ER-2 flight tracks (i.e., between 400 and 470 K) in the vortex, the relationship between H2O and CH4 for all flights during SOLVE suggests that subtle, widespread dehydration occurred above the ER-2 flight tracks, consistent with meteorological reanalysis data. Isentropic transport from the tropics plays a major role in redistributing ozone and water vapor at middle and high latitudes. Analysis of tracer-tracer correlations of the observed quantities H2O + 2*CH 4 and N2O indicates that rapid, poleward isentropic transport from the lower tropical stratosphere coupled with diabatic descent between the subtropical jet and polar jet delivers very young air to the high-latitude lowermost stratosphere during winter, while descent from the vortex and subsequent transport to lower latitudes is very limited. No evidence of isentropic mixing from the upper tropical troposphere survives in the high-latitude lowermost stratosphere except below 350 K, where markedly higher water vapor mixing ratios indicate mixing from the extratropical troposphere. The balance of all of these transport processes poses dynamical and chemical consequences for ozone. Transport from the lower tropical stratosphere (1) exports ozone-poor air to midlatitudes and the subvortex region and (2) distributes seasonally variable water vapor to the middle- and high-latitude lower stratosphere, potentially enhancing halogen-catalyzed ozone destruction through heterogeneous processing.

  13. The Polar Stratosphere in a Changing Climate (POLSTRACC)

    NASA Astrophysics Data System (ADS)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Boenisch, Harald

    2015-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere (LMS) and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC is the only HALO (High Altitude and LOng Range Research Aircraft, German Research Community) mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC will be broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE will offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Max Planck Institute for Chemistry, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal) and international partners (e.g. NASA). The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The field campaign will be divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide-scale vicinity in March 2016 (from Kiruna and Oberpfaffenhofen). The activities from Kiruna will be split into two intensive phases, with a focus on gravity wave observations in January 2016. Actual mission planning will be supported by flight planning and model tools and will be tested already in the preceding winter in a dry-run activity. The airborne field observations will be complemented by ground-based activities (e.g. lidars, radars and radio soundings) and satellite observations (e.g. CALIPSO, MLS and ACE-FTS). The Poster is intended to present an overview of the scientific objectives, the payload, and the mission rationale, and to attract international scientific groups to join the POLSTRACC framework and extend its scientific scope.

  14. Satellite-derived attributes of cloud vortex systems and their application to climate studies

    NASA Technical Reports Server (NTRS)

    Carleton, Andrew M.

    1987-01-01

    Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).

  15. The Remarkable 2003--2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Kruger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2005-01-01

    The 2003-2004 Arctic winter was remarkable in the approximately 50-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly 2 months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with 2 previous years, 1984-1985 and 1986-1987, with prolonged midwinter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over 2 standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (7 in the past 6 years) is unprecedented. Lower stratospheric temperatures were unusually high during 6 of the past 7 years, with 5 having much lower than usual potential for polar stratospheric cloud (PSC) formation and ozone loss (nearly none in 1998-1999, 2001-2002, and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of 5 of the last 7 years with very low PSC potential would be expected to occur randomly once every 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  16. Analysis of vortex levitation

    Microsoft Academic Search

    Xin Li; Kenji Kawashima; Toshiharu Kagawa

    2008-01-01

    In this paper, a new pneumatic levitation method, called vortex levitation, is introduced. Vortex levitation can achieve non-contact handling by blowing air into a vortex cup through a tangential nozzle to generate a swirling air flow. Experiments and analysis on its basic characteristics were conducted. It was confirmed that negative pressure is caused by the centrifugal force of the swirling

  17. Arctic Asteroid!

    NSDL National Science Digital Library

    The National Aeronautics and Space Administration's (NASA) news service provides this report on the composition of the meteor that put on a brilliant sky show before landing in Western Canada this January. The fragments of the meteorite fell into a frozen lake, so they were not recovered for study until the lake began to thaw this April. Analyses of the pieces that were recovered suggest that the fallen object had a relatively rare composition and was "...about seven meters across and 200 to 250 metric tons. This wasn't your average meteoroid -- it was basically a C-class asteroid detonating in the atmosphere over the Arctic!" says Dr. Peter Brown of the University of Western Ontario. Visit the site for the full report.

  18. Airborne investigation of Arctic tropospheric ozone depletions

    NASA Astrophysics Data System (ADS)

    Staebler, R. M.; Liu, P. S.; Strapp, W.; Whiteway, J. A.; Haas, C.; Herber, A.; Neuber, R.

    2011-12-01

    After polar sunrise, tropospheric ozone experiences episodic depletions for a few months, down to sub-ppb levels, before stabilizing into the summer. These ozone depletion episodes (ODEs), first discovered in the early 1980s, have been studied extensively from observatories on the shores of the Arctic Ocean, and are now understood to be due to bromine chemistry. However, it is still unclear where and how the bromine enters the atmosphere from the oceanic interface. This is due to the fact that the Arctic Ocean remains very difficult and expensive to access for in-situ measurements, and that satellite-based methods cannot resolve the trace gases of interest, on the required time scales, with the exception of bromine oxide. The PAM-ARCMIP ("Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project"), a multi-year program to improve our understanding of physical processes in the inner Arctic, provides an opportunity to investigate the location, spatial extent and vertical characteristics of ozone depletions over the Arctic Ocean. Over 5 weeks in the spring of 2011, 32 research flights were conducted spanning the Arctic from Barrow, Alaska, over the Canadian Archipelago and Greenland to Longyearbyen, Spitsbergen. In-situ ozone measurements in the lower troposphere over the Arctic Ocean, with frequent vertical profiling, were performed with a UV photometric analyzer. The first 8 research flights also had on board a LIDAR for nadir profiles of the ozone concentration. An analysis of ozone in relation to aerosol particles, hydrometeors, boundary layer and ice cover characteristics will be presented.

  19. Changing Arctic Landscape

    NSDL National Science Digital Library

    2008-01-17

    In this video adapted from the Arctic Athabaskan Council, learn how warmer temperatures in the Arctic are transforming the landscape, triggering a host of effects such as permafrost thawing and insect infestations.

  20. New view of Arctic cyclone activity form the Arctic System Reanalysis

    NASA Astrophysics Data System (ADS)

    Tilinina, Natalia; Gulev, Sergey; Bromwich, David

    2014-05-01

    Arctic cyclone activity is of great interest due to its potential association with the large magnitudes of the Arctic warming, and particularly unprecedented Arctic sea ice decline over the last decades. There is an evidence of a direct influence of very intense cyclones on the sea ice cover at synoptic time scales. At the same time, cyclone dynamics reflects atmospheric circulations changes and play an important role in high latitude atmospheric heat and moisture transport. The recently released Arctic System Reanalysis (ASR) - Interim version opens a new avenue in studying atmospheric circulation in the Arctic. ASR performed with the high-resolution version of the non-hydrostatic Polar Weather Research and Forecast model (Polar WRF V3.3.1) using ERA-Interim reanalysis data as lateral boundary conditions. ASR assimilates much more data compared to standard assimilation input, particularly surface weather observations, and more accurate lower boundary condition descriptions over land and ocean that are frequently updated. We present analysis of the Arctic cyclone activity in 11-year (2000-2010), 3-hourly output from the (ASR) - Interim version with 30km spatial resolution, covering Arctic north from 50°N. To track cyclones we use sea level pressure fields and IORAS numerical tracking scheme, that was specially adjusted for limited area tracking. ASR provides a new vision of the cyclone activity in high latitudes, showing that the Arctic is more densely populated with cyclones, especially in summer, than suggested by three the modern era global reanalyses: ERA-Interim, MERRA, NCEP-CFSR. ASR reveals 35% more cyclones mostly due to capturing shallow and moderately deep cyclones over the high latitude continental areas. Over the Arctic Ocean ASR reports slightly higher cyclone counts compared to the global reanalyses with the largest differences being identified in summer. Over the Arctic Ocean during both seasons ASR well captures the cyclone maximum in the Eastern Arctic which has 30% less cyclones in summer and is hardly detectable in ERA-Interim. High resolution of the ASR model coupled with more comprehensive data assimilation allows for more accurate (compared to the global reanalyses) description of the life cycle of the most intense Arctic cyclones, for which ASR shows lower central pressure, faster deepening and stronger winds.

  1. Accuracy and precision in estimation of age of Norwegian Arctic polar bears ( Ursus maritimus ) using dental cementum layers from known-age individuals

    Microsoft Academic Search

    Signe N. Christensen-Dalsgaard; Jon Aars; Magnus Andersen; Christina Lockyer; Nigel G. Yoccoz

    2010-01-01

    Validation of age estimation from tooth cementum growth layers was conducted for 32 polar bears (Ursus maritimus) of known age, by two readers. Both readers correctly estimated age for 24% of the bears, and 50–53% were within the year\\u000a of correct age. The age of young animals (age 1–8) was overestimated, while ages for bears over 8 years were underestimated.\\u000a Comparison

  2. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  3. Curved geometrical confinement effect on vortex-state reversals in magnetic half-spheres

    NASA Astrophysics Data System (ADS)

    Yoo, Myoung-Woo; Kim, Sang-Koog

    2015-06-01

    We applied micromagnetic numerical calculations to a study of vortex-state reversal dynamics in half-spheres. We found an additional, heretofore unknown mechanism of vortex-core reversals that occur via the nucleation of a reversed vortex core at the edge of the half-sphere after expulsion of the original core either with or without the reversal of the original chirality, but without formation of the magnetization dip or Bloch point. The vortex-state reversals are affected by the curved geometrical confinement of the half-spheres. Detailed descriptions of the reversal dynamics offer the fundamentals of both vortex polarization and chirality reversals in curved restricted geometries.

  4. Distribution of Aerosols in the Arctic as Observed by CALIOP

    NASA Astrophysics Data System (ADS)

    Winker, D.; Kittaka, C.

    2007-12-01

    The Arctic climate is now recognized to be uniquely sensitive to atmospheric perturbations. Pollution aerosols and smoke from boreal fires have potentially important impacts on Arctic climate but there are many uncertainties. Aerosol in the Arctic, generally referred to as "Arctic haze", has been studied with great interest for over thirty years. Much has been learned about the composition and sources of the haze yet our knowledge is largely based on long term measurements at a very few widely dispersed sites, augmented by modeling activities and occasional field campaigns. Transport pathways from source regions into the Arctic are not well understood. Emission patterns have changed over the last several decades, but the impact of this on concentrations and distribution of Arctic haze are understood only in the crudest sense. Due to poor lighting conditions, extended periods of darkness, and surfaces covered by snow and ice, satellite sensors have been unable to provide much information on Arctic haze to date. The CALIPSO satellite carries CALIOP, a two-wavelength polarization lidar, optimized for profiling clouds and aerosols. CALIOP has been acquiring global observations since June 2006 and provides our first opportunity to observe the distribution and seasonal variation of aerosol in the Arctic. The Arctic is characterized by the prevalence of optically thin ice clouds and clouds composed of supercooled water, often occurring in the same atmospheric column along with aerosol. CALIOP depolarization signals are used to discriminate Arctic haze from optically thin cirrus and diamond dust. Two-wavelength returns aid in the discrimination of aerosol and optically thin water cloud. Results of initial analyses of CALIOP aerosol observations in the Arctic will be presented. This work is a preliminary analysis in support of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign planned for April 2008.

  5. The content of polychlorinated hydrocarbons in Arctic mammals

    Microsoft Academic Search

    J. Clausen; L. Braestrup; O. Berg

    1974-01-01

    Summary 17 fat tissue samples of four different Arctic seals species shot in Greenland, fat samples of one polar bear, two polar foxes and one sheep from south west Greenland were assayed for polychlorinated hydrocarbons (PCHC), aldrin, heptachlor, heptachlorepoxide, lindane, “raw” DDE and PCB.

  6. Detection of the phase shift from a single Abrikosov vortex.

    PubMed

    Golod, T; Rydh, A; Krasnov, V M

    2010-06-01

    We probe a quantum mechanical phase rotation induced by a single Abrikosov vortex in a superconducting lead, using a Josephson junction, made at the edge of the lead, as a phase-sensitive detector. We observe that the vortex induces a Josephson phase shift equal to the polar angle of the vortex within the junction length. When the vortex is close to the junction it induces a ? step in the Josephson phase difference, leading to a controllable and reversible switching of the junction into the 0-? state. This in turn results in an unusual ?(0)/2 quantization of the flux in the junction. The vortex may hence act as a tunable "phase battery" for quantum electronics. PMID:20867200

  7. Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Fernald, K. M.; Johnson, G. W.; Dover, M.; Garcia-Lavigne, D.; Gaylord, A. G.; Manley, W. F.; Novac, L.; Score, R.; Tweedie, C. E.

    2006-12-01

    The Arctic Research Mapping Application (ARMAP) is a new internet map server displaying information about field-based research projects in the Arctic. The data focus is on US federally funded research with an emphasis on projects sponsored by the National Science Foundation. The primary audience for this project consists of funding managers, other science planners, and logistics providers. A secondary, but important, audience consists of research scientists, educators at many levels, and the general public. Users can navigate through maps to view and analyze a broad range of information related to field-based research projects in the Arctic. They can zoom to areas of interest, and view or manipulate a variety of map layers such as topography, bathymetry, satellite imagery, cities, rivers, and sea ice. They are also able to search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Information about each project is displayed within the internet map server, with links to web pages that provide additional information. Users can then export selected data, print or export maps for presentations or publications, and select from a "map gallery" of predefined images of interest. An online help system is provided to assist users. This internet map server, launched at the Fall 2006 meeting of the American Geophysical Union, goes beyond simple map display to provide analysis, synthesis, and coordination for International Polar Year projects.

  8. PolarTREC-Teachers and Researchers Exploring and Collaborating: Bringing Polar Research to the Classroom

    Microsoft Academic Search

    W. K. Warnick; J. Warburton; K. Breen; H. V. Wiggins; A. Larson; S. Behr

    2006-01-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program that pairs K-12 teachers with researchers to improve science education through authentic polar research experience. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wider

  9. Experiments on vortex stability

    Microsoft Academic Search

    Param Indar Singh; Mahinder S. Uberoi

    1976-01-01

    The tip vortex of a laminar flow wing was studied at a sectional lift-to-drag ratio of 60. The vortex Reynolds number was ?0\\/?=7.8×104, where ?0 is the total circulation and ? is the kinematic viscosity. At and near the wing the vortex core was turbulent with an axial jet. Downstream of the wing the jet rapidly dissipated and a wake

  10. Optical vortex beams: Generation, propagation and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  11. ASR Preliminary Meeting Boulder, Colorado Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

    E-print Network

    Howat, Ian M.

    , The Ohio State University, Columbus, Ohio Very High Resolution Arctic System Reanalysis for 2000-2011 Very, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State Meteorology Group, Byrd Polar Research CenterPolar Meteorology Group, Byrd Polar Research Center The Ohio

  12. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion products as greenhouse gases to their regions of origin. Thus multinational company operations are affected by their own activities. There is a strong, convincing case, that these industrial giants must be involved in Arctic partnerships of the grand challenge. A most instructive, very successful example is the collaboration by the chemical companies after the discovery of the polar ozone holes, followed by the replacement of the culprit chlorofluorocarbon compounds. Public relations and involvement/education: The IPY offers a unique opportunity to showcase and drive home, into homes, the seriousness of the issue, Hollywood/Madison Avenue/ NASA style, nothing else will do. Ultimately we need to be mindful that "civilizations are ephemeral compared to species. -What we need is a primer on science, clearly written and unambiguous in its meaning-a primer for anyone interested in the state of the Earth and how to survive and live well on it." (James Lovelock, Science, 08/05/98). - Let's start in the Arctic-NOW.

  13. Dynamic decay of a single vortex into vortex-antivortex pairs

    SciTech Connect

    Lendínez, Sergi [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Universidad Barcelona, Departamento Fisica Fonamental, E-08028 Barcelona (Spain); Jain, Shikha; Novosad, Valentyn, E-mail: novosad@anl.gov; Fradin, Frank Y.; Pearson, John E. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tejada, Javier [Universidad Barcelona, Departamento Fisica Fonamental, E-08028 Barcelona (Spain); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-05-07

    A variety of metastable states, including vortices, antivortices, and their combinations, is typical for magnetically soft, thin films and patterned structures. The physics of individual spin vortices in patterned structures has been rather extensively explored. In contrast, there are few studies of the vortex–antivortex–vortex (v-av-v) system, in part because the configuration is rather challenging to obtain experimentally. We demonstrate herein how a recently proposed resonant-spin-ordering technique can be used to induce the dynamic decay of a single vortex into v-av states in elongated elements. The approach is based on first driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency, and then subsequently reducing the excitation field back to the linear regime. This procedure stabilizes the system into a v-av-v state that is completely decoupled from the initialization excitation frequency. The newly acquired state is stable in remanence. The dynamic response of this system is expected to demonstrate a number of collective modes, depending on the combination of the vortex core polarities, and/or the excitation field direction, and, hence, is of interest for future studies.

  14. Vortex core reversal due to spin wave interference.

    PubMed

    Bauer, Hans G; Sproll, Markus; Back, Christian H; Woltersdorf, Georg

    2014-02-21

    In this Letter we address spin wave dynamics involved in fast and selective vortex core polarity reversal by rotating magnetic field bursts. In a first example we explain the origin of the delayed switching for excitations with short bursts of only one period duration as an interference effect between spin wave modes. Second, when the vortex core is initially no longer at rest but in gyrotropic motion, the magnetization dynamics become more complicated and the interaction of spin waves with the vortex core leads to a variety of nonlinear effects. Our analysis allows us to explain the experimentally observed switching diagram for simultaneous excitation of spin waves and gyrotropic mode. PMID:24579629

  15. Clustering of vortex matter in superconductor-ferromagnet superlattices

    NASA Astrophysics Data System (ADS)

    Bespalov, A. A.; Mel'nikov, A. S.; Buzdin, A. I.

    2015-05-01

    Metamaterials combining superconducting (S) and ferromagnetic (F) compounds permit to attend new functionalities and reveal unusual counterintuitive effects. Here we show that SF superlattices may display a very special electrodynamics due to the nonlocal polarization of the magnetic subsystem, making the intervortex interaction attractive at some distances. In such superlattices the vortex matter can form an intermediate state with alternating vortex and Meissner phases. Tuning the parameters of the F and S subsystems one can engineer the phase diagram of the vortex matter. We provide concrete recommendations for the proper choice of compounds for these SF hybrid structures.

  16. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOEpatents

    Naumov, Ivan I. (Fayetteville, AR); Bellaiche, Laurent M. (Fayetteville, AR); Prosandeev, Sergey A. (Fayetteville, AR); Ponomareva, Inna V. (Fayetteville, AR); Kornev, Igor A. (Fayetteville, AR)

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  17. Oregon Zoo Polar Bear

    USGS Multimedia Gallery

    Tasul, an Oregon Zoo polar bear, sports a high-tech collar that will help researchers study her endangered wild counterparts in the Arctic. Photo by Michael Durham, courtesy of the Oregon Zoo. Photo by Michael Durham, courtesy of the Oregon Zoo....

  18. PBS Online NewsHour: Polar Discoveries

    NSDL National Science Digital Library

    In-depth coverage of the Arctic and Antarctic research planned for the International Polar Year, together with instructional materials. Includes lesson plan on Arctic warming, profiles of researchers, audio slide show on Antarctic dry-valley organisms, and stories on research projects.

  19. Ecological dynamics across the Arctic associated with recent climate change.

    PubMed

    Post, Eric; Forchhammer, Mads C; Bret-Harte, M Syndonia; Callaghan, Terry V; Christensen, Torben R; Elberling, Bo; Fox, Anthony D; Gilg, Olivier; Hik, David S; Høye, Toke T; Ims, Rolf A; Jeppesen, Erik; Klein, David R; Madsen, Jesper; McGuire, A David; Rysgaard, Søren; Schindler, Daniel E; Stirling, Ian; Tamstorf, Mikkel P; Tyler, Nicholas J C; van der Wal, Rene; Welker, Jeffrey; Wookey, Philip A; Schmidt, Niels Martin; Aastrup, Peter

    2009-09-11

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm. PMID:19745143

  20. Anisotropic and long-range vortex interactions in two-dimensional dipolar Bose gases

    E-print Network

    Mulkerin, B C; O'Dell, D H J; Martin, A M; Parker, N G

    2013-01-01

    We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dipole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/\\rho^2$ and $\\ln(\\rho)/\\rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.

  1. On vortex generating jets

    Microsoft Academic Search

    Zia U. Khan; James P. Johnston

    2000-01-01

    Vortex generating jets (VGJs) are jets that pass through a wall and into a crossflow to create a dominant streamwise vortex that remains embedded in the boundary layer over the wall. The VGJ is characterized by its pitch and skew angles (? and ?) and the velocity ratio (VR) between the jet and the crossflow. For VR=1.0, the VGJ configuration

  2. Vortex diode jet

    DOEpatents

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  3. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  4. Evolution of vortex knots

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.; Samuels, David C.; Barenghi, Carlo F.

    1999-07-01

    For the first time since Lord Kelvin's original conjectures of 1875 we address and study the time evolution of vortex knots in the context of the Euler equations. The vortex knot is given by a thin vortex filament in the shape of a torus knot [script T]p,q (p>1, q>1; p, q co-prime integers). The time evolution is studied numerically by using the Biot Savart (BS) induction law and the localized induction approximation (LIA) equation. Results obtained using the two methods are compared to each other and to the analytic stability analysis of Ricca (1993, 1995). The most interesting finding is that thin vortex knots which are unstable under the LIA have a greatly extended lifetime when the BS law is used. These results provide useful information for modelling complex structures by using elementary vortex knots.

  5. What Controls the Arctic Lower Stratosphere Temperature?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period.

  6. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  7. Arctic Theme Page

    NSDL National Science Digital Library

    This site from the National Oceanic and Atmospheric Administration (NOAA) is designed to provide arctic data and other information to "scientists, students, teachers, academia, managers, decision makers and the general public." Data, maps, a listing of arctic research programs, and climate index information are offered under the Scientific heading. General Interest resources include photos, and links to related sites on arctic education, arctic exploration, the northern lights, animals, ships, the environment, and archaeology and native peoples. Also included is a collection of essays answering selected questions and a FAQ.

  8. Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores

    Microsoft Academic Search

    Michael Y. Roleda; Dieter Hanelt; Christian Wiencke

    2006-01-01

    Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata,

  9. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Microsoft Academic Search

    S. E. Moore

    2010-01-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement

  10. Influence of crude oil on changes of bacterial communities in Arctic sea-ice

    Microsoft Academic Search

    Birte Gerdes; Robin Brinkmeyer; Gerhard Dieckmann; Elisabeth Helmke

    2005-01-01

    The danger of a petroleum hydrocarbon spillage in the polar, ice-covered regions is increasing due to oil exploration in Arctic offshore areas and a growing interest in using the Northern Sea Route (NSR) as an alternative transportation route for Arctic oil and gas. However, little is known about the potential impact of accidental oil spills on this environment. We investigated

  11. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.

  12. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter ?, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  13. Bioactive natural products from the antarctic and arctic organisms.

    PubMed

    Liu, Jing-Tang; Lu, Xiao-Ling; Liu, Xiao-Yu; Gao, Yun; Hu, Bo; Jiao, Bing-Hua; Zheng, Heng

    2013-04-01

    Polar regions are remote and challenging areas on the earth. In view of the unique environment and the severe competition in polar regions, it's considered that the ecological system might be the producer of new compounds with diversity biological activities. This review is an attempt to consolidate the studies about 97 natural products isolated from Antarctic and Arctic organisms including microbes, algae, sponges, bryozoans, and tunicates and so on published in the recent years. The emphasis is mainly about the new compounds, source organisms and biological activities, which signifies the immense competence of Antarctic and Arctic organisms as bioactive natural products producers. PMID:23373650

  14. Vortex atoms and vortons

    NASA Astrophysics Data System (ADS)

    Alkemade, Alfons Johannes Quirinus

    1994-04-01

    The thesis deals with two topics which are related to the concept of vorticity. Therefore, it consists of two parts. The 'vortex-atom-part' shows the development of a theory of matter, introduced by the English scientist Lord Kelvin in 1867, which would attract the attention of several 19th century scientists up to the beginning of our century. Kelvin's 'vortex atom theory' can be put into the context of several developments in 19th century physics, especially those with regard to theories of matter and the still developing theory of rotational flow or vorticity. The second part, the 'vorton-part', is an account of the theoretical foundation and the application to numerical simulations of the vorton method. This is one of the many vortex methods, applied nowadays to the (numerical) study of flow phenomena. Vortex methods are based on the fact that vortices play important roles in fluid flows and can be regarded as important applications of the knowledge on vortex motion which has been gathered in the past centuries and of the surging use of numerical techniques in fluid mechanics. The vorton method will be investigated by means of numerical simulation of several test cases. Most of these were already studied by the scientists who occupied themselves with the elaboration of the vortex atom model or who were just incited to research on vortex motion by this model. However, their investigations were largely hindered by mathematical difficulties. Today, the use of vortex methods as computational tools may provide more insight into the kinematics and dynamics of vortex structures.

  15. Implications of Arctic Sea Ice Reduction on Arctic Tropospheric Chemical Change (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2009-12-01

    We examine the drastic reduction of Arctic sea ice in this decade and discuss the potential implications on bromine, ozone, and mercury change in the Arctic troposphere. We are witnessing extraordinary change in the Arctic sea ice cover. In the context of a half century change, perennial sea ice, the class of thicker and older ice important to the stability of Arctic sea ice, has been declining precipitously in this decade. Perennial ice extent declines at rate of 0.5 million km2 per decade in the 1970s-1990s while there is no discernable trend in the 1950s-1960s. Abruptly, the rate of decrease has tripled to 1.5 million km2 per decade in the 2000s. A record was set in the reduction of Arctic perennial ice extent in winter 2008. By 1 March 2008, perennial ice extent was reduced by one million km2 compared to that at the same time in 2007, which continued the precipitous declining trend observed in this decade. While the record low of total ice extent in summer 2007 is a historical mark of sea ice loss, the distribution and extent of different sea ice classes in spring (March-May) are critical information to understand the implications of sea ice reduction on photochemical processes, such as bromine explosions, ozone depletion episodes (ODEs), gaseous elementary mercury depletion episodes (MDEs), which occur at the time of polar sunrise. In this regard, the drastic reduction of perennial ice means that the Arctic becomes dominated by seasonal ice consisting of thinner ice, more leads, polynyas, frost flowers, and salty snow (due to seawater spray from open water), representing the overall saltier condition of the Arctic sea ice cover conducive to ice-mediated chemical processes leading to Arctic tropospheric ODEs and MDEs. To date (2009), the extent of perennial sea ice remains low and the extent of the thinner and saltier seasonal ice continues to dominate the Arctic sea ice cover. The shift of the state of Arctic sea ice cover to the dominance domain of seasonal ice can impact photochemical processes, leading to potentially significant implications on Arctic chemical change. Such implications, within the context of Arctic climatic change, are to be investigated in order to assess consequential changes in the Arctic habitat that may affect the health of people and wildlife. Regarding Arctic climatic change, seemingly opposing scenarios of Arctic chemical change have been hypothesized. In the first scenario, if sea ice cover continues to reduce in a warming trend in the 21st century, frost flower growth and bromine explosions might be suppressed and thus there would be less ozone and mercury depletion. Alternatively, in a different scenario, if the extent of seasonal ice during spring time in the Arctic continues to expand together with more cold spells due to temperature extremes exacerbated by climatic change, the abundance of seasonal ice, leads, and frost flowers may lead to more prevalent episodic events of bromine explosion and more intensive tropospheric ozone and mercury depletion in cold episodes. However, fundamental science questions remain to be addressed, and we have formed an international science team to plan for a future interdisciplinary research on those issues.

  16. Vortex crystals in fluids

    NASA Astrophysics Data System (ADS)

    Barry, Anna M.

    It is common in geophysical flows to observe localized regions of enhanced vorticity. This observation can be used to derive model equations to describe the motion and interaction of these localized regions, or vortices, and which are simpler than the original PDEs. The best known vortex model is derived from the incompressible Euler equations, and treats vortices as points in the plane. A large part of this dissertation utilizes this particular model, but we also survey other point vortex and weakly viscous models. The main focus of this thesis is an object known as the vortex crystal. These remarkable configurations of vortices maintain their basic shapes for long times, while perhaps rotating or translating rigidly in space. We study existence and stability of families of vortex crystals in the special case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For general N, we find at least three distinct families of critical points, one of which continues to a linearly stable class of vortex crystals. Because the stable family is most likely to be observed in nature, we study it extensively. Continuation methods allow us to follow these critical points to nonzero weak vortex strength and investigate stability and bifurcations. In the large N limit of this family, we prove that there is a unique one parameter family of distributions which minimize a "generalized" potential. Finally, we use point vortex and weakly viscous vortex models to analyze vortex crystal configurations observed in hurricane eyes and related numerical simulations. We find striking numerical and analytical agreement, thus validating the use of simplified vortex models to describe geophysical phenomena.

  17. Nonlinear vortex trail dynamics

    NASA Technical Reports Server (NTRS)

    Lim, Chjan C.; Sirovich, Lawrence

    1988-01-01

    The nonlinear evolution of periodic disturbances on vortex trails is considered. In addition to following small initial perturbations, large amplitude initial disturbances of the vortex trails are also studied. It is shown that the equations support a rich variety of essentially nonlinear solutions including unbounded and quasisteady ones. These solutions are found to correspond to various modes of vortex clustering in the physical plane. At the close of the paper, comparisons of these results with recent numerical and experimental findings on the wakes behind stationary cylinders, and also transversely oscillating bluff objects, are made.

  18. Nonlinear vortex trail dynamics

    NASA Astrophysics Data System (ADS)

    Lim, Chjan C.; Sirovich, Lawrence

    1988-05-01

    The nonlinear evolution of periodic disturbances on vortex trails is considered. In addition to following small initial perturbations, large amplitude initial disturbances of the vortex trails are also studied. It is shown that the equations support a rich variety of essentially nonlinear solutions including unbounded and quasisteady ones. These solutions are found to correspond to various modes of vortex clustering in the physical plane. At the close of the paper, comparisons of these results with recent numerical and experimental findings on the wakes behind stationary cylinders, and also transversely oscillating bluff objects, are made.

  19. Wake Vortex Free Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A 10% scale B-737-100 model was tested in the vicinity of a vortex wake generated by a wing mounted on a support in the forward section of the NASA-Langley 30 x 60 ft. Wind Tunnel. The wing span, angle of attack, and generating wing location were varied to provide vortex strengths consistent with a large variety of combinations of leader-follower aircraft pairs during vortex encounters. The test, conducted as part of the AST Terminal Area Productivity Program, will provide data for validation of aerodynamic models which will be used for developing safe separate standards to apply to aircraft in terminal areas while increasing airport capacity.

  20. Archive: IPY/NSTA Symposium: Arctic and Antarctic Living Systems, Birmingham, AL: December 7, 2007

    NSDL National Science Digital Library

    1900-01-01

    During this half-day symposium, sponsored by NSF, NOAA, and NASA in celebration of the International Polar Year (IPY), scientists and education specialists talked to teachers about the effects of climate change on Arctic and Antarctic living systems. The

  1. Arctic Climate Modeling Program

    NSDL National Science Digital Library

    2008-01-01

    The Arctic Climate Modeling Program (ACMP) is a research-based weather and climate curriculum for K-12 classrooms. ACMP comprises hands-on, inquiry-based classroom lessons, an interactive multimedia DVD, engaging lectures from Geophysical Institute and International Arctic Research Center scientists, and a Student Network for Observing Weather (SNOW), enabling students around the world to study Alaska's weather.

  2. MERRA Arctic Synoptic Variability

    Microsoft Academic Search

    R. I. Cullather; M. G. Bosilovich

    2010-01-01

    Recent declines in the extent of perennial sea ice in the Arctic have been widely documented and related to trends in atmospheric conditions. Anticyclonic circulation anomalies over the central Arctic Ocean in summer have been shown be present in recent years, and are thought to influence the ice pack by means of Ekman drift in marginal seas. These trends suggest

  3. Denitrification in Arctic winter 2009/10: Study on shape and morphology of large dimension HNO3-containing particles

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Grooß, Jens-Uwe; Oelhaf, Hermann; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Molleker, Sergej; Piesch, Christof; Schlager, Hans; Orphal, Johannes

    2013-04-01

    Flights of the high altitude aircraft M55 Geophysica in January 2010 during the RECONCILE campaign (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) allowed probing polar stratospheric clouds inside the Arctic polar vortex with in situ instruments. Measurements by the Forward Scattering Spectrometer Probe model 100 (FSSP-100) frequently indicated large dimension potentially HNO3-containing particles with maximum sizes around 30 ?m in diameter when data processing was carried out assuming spherical particles. Such large particles can hardly be reconciled with current theory of nucleation and growth of HNO3-containing particles capable of denitrification (i.e. Nitric Acid Trihydrate (NAT)) when assuming spherical shape and compact morphology. We try to solve this issue by applying Chemical Transport Modelling with CLaMS (Chemical Lagrangian Model of the Stratosphere) and infrared remote sensing measurements from MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding-STRatospheric aircraft) aboard the Geophysica aircraft to test the impact of alternative particle morphology and shape on HNO3 redistribution. Alternative particle morphologies and shapes result in reduced particle sedimentation speeds compared to mass equivalent spherical particles and therefore in modified vertical redistribution patterns of HNO3. Assuming denitrification by particles composed of NAT, our study indicates that spherical "flake-like" particles with low mass density are unlikely to cause the observed denitrification. The assumption of aspheric particles (i.e. platelets or needles) with moderate aspect ratios is supported by our findings and offers an explanation for the particle sizes that have been derived from the in situ particle measurements. Reduced particle sedimentation speed through aspheric particle shape significantly influences denitrification efficiency. Consideration of this aspect therefore can improve chemical transport and climate chemistry modelling.

  4. Catalytic and immunologic characterization of hepatic and lung cytochromes P450 in the polar bear

    Microsoft Academic Search

    Stelvio M. Bandiera; Szilvia M. Torok; Song Lin; Malcolm A. Ramsay; Ross J. Norstrom

    1995-01-01

    The Arctic Ocean is subject to considerable influx of anthropogenic pollutants including halogenated organic compounds. The polar bear (Ursus maritimus) is at the top of the arctic marine food web and is an ideal species for monitoring the level and distribution of contaminants in the arctic ecosystem. As the first step in the development of a biological method for assessing

  5. More Arctic research needed

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The desire to achieve a balance between Arctic and Antarctic study was the message of the Senate Committee on Commerce, Science, and Transportation, which heard testimony on the need for more Arctic research on April 24. Ted Stevens (R-Alaska) noted that since 1986, study in the area has not increased as the National Science Foundation has claimed, but rather, owing to inflation, has merely kept pace. Robert Correll, assistant director of geosciences at NSF and chair of the Interagency Arctic Oceans Working Group, gave several reasons why the Arctic is an important area for study by the scientific community. Its unique environment, he said, makes it a natural laboratory. And due to its environmental sensitivity, it may provide one of the earliest indicators of global climate change. Also, its geographic location makes it a “window on space,” some of the world's largest mineral and petroleum resources are in the Arctic, and the region has great strategic and military importance.

  6. Polar Science in a Time of Rapid Change

    Microsoft Academic Search

    M. R. Albert

    2008-01-01

    The polar regions play key roles in the climate system, and we are now in a time of rapid change in the polar regions that is vividly witnessed in daily accounts in newspapers, television, internet sites, and podcasts that depict polar change, including crumbling ice shelves and melting of the fragile Arctic sea ice. The International Polar Year 2007-2009 has

  7. Temperature effect on vortex-core reversals in magnetic nanodots

    NASA Astrophysics Data System (ADS)

    Kim, Bosung; Yoo, Myoung-Woo; Lee, Jehyun; Kim, Sang-Koog

    2015-05-01

    We studied the temperature effect on vortex-core reversals in soft magnetic nanodots by micromagnetic numerical calculations within a framework of the stochastic Landau-Lifshitz-Gilbert scheme. It was determined that vortex-core-switching events at non-zero temperatures occur stochastically, and that the threshold field strength increases with temperature for a given field frequency. The mechanism of core reversals at elevated temperatures is the same as that of vortex-antivortex-pair-mediated core reversals found at the zero temperature. The reversal criterion is also the out-of-plane component of a magnetization dip that should reach -p, which is to say, m z , dip = -p, where p is the original polarization, p = +1 (-1), for the upward (downward) core. By this criterion, the creation of a vortex-antivortex pair accompanies complete vortex-antivortex-annihilation-mediated core reversals, resulting in the maximum excess of the exchange energy density, ? Eex cri ? 15.4 ± 0.2 mJ/cm3. This work provides the underlying physics of vortex-core reversals at non-zero temperatures, and potentiates the real application of vortex random access memory operating at elevated temperatures.

  8. Vortex-Surface Collisions^

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.

    1998-11-01

    The interaction of vortices with solid surfaces occurs in many different situations including, but not limited to tornadoes, propeller wakes, flows over swept wings and missile forebodies, turbomachinery flows, blade-vortex interactions and tip vortex-surface interactions on helicopters. Often, parts of a system must operate within such flows and thus encounter these vortices. In the present paper we discuss the nature of a particular subset of interactions called ``collisions''. A ``collision'' is characterized by the fact that the core of the vortex is permanently altered; usually the core is locally destroyed. The focus is on fully three-dimensional collisions although two-dimensional collisions are discussed as well. Examples of collisions in helicopter aerodynamics and turbomachinery flows are discussed and the dynamics of the vortex core during a collision process are illustrated for a 90^o collision. ^Supported by the US Army Research Office

  9. Changes in the characteristics of the stratospheric vortex during stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    de la Torre, Laura; Añel, Juan Antonio; Gimeno, Luis

    2015-04-01

    The strastospheric polar vortex is detected using a method based on regions of interest. Data from ERA-Interim reanalysis and WACCM are used to follow the vortex from the lowermost stratosphere to the mesosphere. The changes associated to stratospheric sudden warmings are studied from the point of view of the vortex: what happens inside, in the border and in the outside. Variables such as temperature, horizontal wind, ozone or the Brewer-Dobson Circulation are analized. The results suggest a great improvement respect to previous methods to compute and track the vortex.

  10. Sources and sinks of carbon dioxide in the Arctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  11. Observation Platforms and Data Streams of the Arctic Next Generation Ecosystem Experiment (NGEE-Arctic)

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.; Wullschleger, S. D.; Graham, D. E.; Hubbard, S. S.; Norby, R. J.; Rogers, A.; Torn, M. S.; Wilson, C. J.

    2013-12-01

    The goal of the Arctic Next Generation Ecosystem Experiment (NGEE-Arctic) is to deliver a process-rich ecosystem model, extending from bedrock to the top of the vegetative canopy, in which the evolution of Arctic ecosystems in a changing climate can be modeled at the scale of a high resolution Earth System Model grid cell. Increasing our confidence in climate projections for high-latitude regions of the world requires a coordinated set of observation platforms that target improved process understanding and model representation of important ecosystem-climate feedbacks. The Next-Generation Ecosystem Experiments (NGEE Arctic) seeks to address this challenge by quantifying the physical, chemical, and biological behavior of terrestrial ecosystems in Alaska. Initial research has focused upon the highly dynamic landscapes of the North Slope (Barrow, Alaska) where thaw lakes, drained thaw lake basins, and ice-rich polygonal ground offer distinct land units for investigation and modeling. This vision includes mechanistic studies in the field and in the laboratory; modeling of critical and interrelated water, nitrogen, carbon, and energy dynamics; and characterization of important interactions from molecular to landscape scales that drive feedbacks to the climate system. To complete these investigations, an integrated program of field monitoring has been initiated. These include observations of meteorological, hydrological, ecological and geophysical processes. These data streams are intended to supplement and extend existing polar data sets to advance our understanding of the Arctic environment and its response to a rapidly changing climate.

  12. Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks

    SciTech Connect

    Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.

    2010-12-21

    In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.

  13. Across the Arctic Teachers Experience Field Research

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Warburton, J.; Wiggins, H. V.; Marshall, S. A.; Darby, D. A.

    2005-12-01

    From studying snow geese on the North Slope of Alaska to sediment coring aboard the U.S. Coast Guard Cutter Healy in the Arctic Ocean, K-12 teachers embark on scientific expeditions as part of a program that strives to make science in the Arctic a "virtual" reality. In the past two years, seventeen K-12 teachers have participated in Teachers and Researchers Exploring and Collaborating (TREC), a program that pairs teachers with researchers to improve science education through arctic field experiences. TREC builds on the scientific and cultural opportunities of the Arctic, linking research and education through topics that naturally engage students and the wider public. TREC includes expeditions as diverse as studying plants at Toolik Field Station, a research facility located 150 miles above the Arctic Circle; climate change studies in Norway's Svalbard archipelago; studying rivers in Siberia; or a trans-arctic expedition aboard the USCGC Healy collecting an integrated geophysical data set. Funded by the National Science Foundation Office of Polar Programs, TREC offers educators experiences in scientific inquiry while encouraging the public and students to become active participants in the scientific inquiry by engaging them virtually in arctic research. TREC uses online outreach elements to convey the research experience to a broad audience. While in remote field locations, teachers and researchers interact with students and the public through online seminars and live calls from the field, online journals with accompanying photos, and online bulletin boards. Since the program's inception in 2004, numerous visitors have posted questions or interacted with teachers, researchers, and students through the TREC website (http://www.arcus.org/trec). TREC teachers are required to transfer their experience of research and current science into their classroom through the development of relevant activities and resources. Teachers and researchers are encouraged to participate in the Connecting Arctic/Antarctic Researcher and Educators (CARE) Network. CARE, established to help foster ongoing discussions about science content and educational approaches, uses a combination of conference calls and online interactive software for document sharing and discussion. Teacher and researchers pairs are also encouraged to continue developing their collaborative partnership on an individual basis. This presentation will provide an overview of TREC with co-presentations by a TREC teacher and researcher. The presentation highlights the effectiveness and value of pairing virtual learning with real-time research experiences.

  14. Factors controlling denitrification in recent cold Arctic winters

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Davies, S.; Carslaw, K. S.; Chipperfield, M. P.

    2003-04-01

    In this presentation we explore some of the factors that determine the rate of denitrification at a given time in an Arctic winter. In particular, the orientation of the streamlines of the wind flow on isentropic levels relative to the cold pool is found to be a dominant controlling factor. A cold pool that is concentric with the vortex allows NAT particles to stay inside the cold pool for sufficient time to grow large enough to sediment out, causing efficient denitrification. We call this a "closed flow" situation. A "through-flow" orientation is one in which the streamlines cross the cold pool. In this state, particles that have been nucleated inside the cold pool are advected out of the NAT region where they evaporate before sedimenting significantly. We present results from whole winter simulations using our 3-D microphysical model which calculates Denitrification by LAgrangian Particle Sedimentation (DLAPSE) coupled with the SLIMCAT offline chemical transport model. Case studies from previous cold Arctic winters will be shown. The results indicate that the flow conditions inside the Arctic vortex exert a very strong control over the denitrification rate, even if the NAT nucleation rate doesn't vary. Results from preliminary comparisons of the model with measurements from the EUPLEX/MAPSCORE part of the VINTERSOL field campaign will also be presented. An examination of flow conditions over the last 30 years suggests that ideal conditions for denitrification by large NAT particles occurs about 2-3 times per decade.

  15. Vortex Domains in Ferroelectric Nano-Structures

    NASA Astrophysics Data System (ADS)

    Scott, James F.

    2011-03-01

    Recently the study of submicron-diameter ferroelectric disks and squares and rectangles fabricated from films of ca. 100-300 nm thick have revealed usual domain patterns, qualitatively different from the stripe domains commonly studied in macroscopic specimens in the past. These include doughnut-shaped domains, four-fold vertex closure domains, and fractal domains. The static configurations offer a variety of puzzles, and the structures differ from those in magnetic vortex domains, presumably due to the much larger anisotropy in ferroelectrics, which generally prohibits true vortex configurations with polarization forced out of plane. The dynamics also differ qualitatively from early studies: For decades ferroelectrics were thought to be highly Ising-like, but recent data and theoretical simulations favor Bloch walls and more Heisenberg-like kinetics. This talk will include data from Alina Schilling and Marty Gregg in Belfast, Marin Alexe in Halle, and modeling from Hlinka and Marton in Prague and Bellaiche and Prosandeev in Arkansas.

  16. Vortex soliton motion and steering

    NASA Astrophysics Data System (ADS)

    Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

    1996-10-01

    Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

  17. Operational Determination of Wind Stress on the Arctic Ice Pack

    Microsoft Academic Search

    W. W. DENNER; L. D. ASHIM

    Routine forescasting of sea ice drift in the Arctic will require accurate determi­ nation of the wind stress field from large-scale atmospheric pressure fields. Fleet Numerical Weather Central (FNWC) at Monterey, California, is responsible for routine numerical forecasting for the Navy, FNWC currently uses a 125 x 125 point polar stereographic projection for many routine analysis and forecast fields. The

  18. a science plan for regional arctic system modeling

    E-print Network

    Wagner, Diane

    Institute of Technology 13. Alfred Wegener Institute for Polar and Marine Research 14. Naval Postgraduate. Lawrence3 , W. Maslowski14 , A. D. McGuire2,15 , P. P. Overduin13 , I. Overeem16 , A. Proshutinsky17 , V Fairbanks 2. International Arctic Research Center, University of Alaska Fairbanks 3. Cooperative Institute

  19. Cloud cover analysis with Arctic AVHRR data 1. Cloud detection

    Microsoft Academic Search

    R. G. Barry

    1989-01-01

    Automated analyses of satellite radiance data have concentrated heavily on low and middle situations. Some of the design objectives for the International Satellite Cloud Climatology Project (ISCCP) cloud detection procedure such as space and time contrasts are used in a basic algorithm from which a polar cloud detection algorithm is developed. This algorithm is applied to Arctic data for January

  20. Hunters Navigate Warming Arctic

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2009-02-26

    In this video segment adapted from the National Film Board of Canada, learn how the Inuit people have used their traditional knowledge to understand and adapt to changes in their Arctic environment, particularly when hunting and navigating the landscape.

  1. Warm-Season North American Extreme Surface Air Temperature Relationships to Arctic Sea Ice Conditions

    NASA Astrophysics Data System (ADS)

    Budikova, D.; Chechi, L.

    2014-12-01

    Growing amount of evidence points to a notable impact of the changing Arctic cryosphere on remote climates. Recent studies propose a series of events that makes the connection between Arctic amplification/sea ice decline and increased frequency of extreme weather events in the mid-latitudes plausible. This study examines relationships between 1978-2013 spring (MAM) and summer (JJA) extreme surface air temperature (SAT) conditions across North America (NA) and simultaneous Arctic sea ice concentration (SIC) conditions. Seasonal summaries of daily frequency of occurrence of extreme SATs are correlated to simultaneous mean seasonal SIC anomalies. Low MAM SICs coincide with higher-than-normal incidence of cool nights/days across central US and Canada and eastern in Canada and lower-than-expected incidence of cool nights/days is observed westward from Nevada and Arizona. At this time, large portions of northern and eastern Canada and NE US coincide with decreased frequency of warmest days/nights and large sections of the US southwest show a significant increase in the frequency of warmest days/nights when SICs are low. SAT extremes continue to be related to SIC conditions into JJA across large portions of northern and eastern NA where lower-than-expected SICs coincide with significantly lower frequencies of cool nights/days and higher frequency of warm days/nights. Also examined are various simultaneously-occurring atmospheric and synoptic flow conditions that may begin to suggest potential mechanisms behind the observed relationships. Initial analyses indicate the observed relationships are reflected in mean monthly SATs and atmospheric thickness conditions, as well as 500 and 250 hPa geopotential height and zonal wind anomaly patterns. Both seasons display strong north-south meandering of the 500 hPa surface. During low MAM ice seasons the mid-tropospheric flow resembles the positive phase of the AO with a well-developed polar vortex that dips south of the Great Lakes; low SIC JJA seasons are characterized by a low-high-low flow over NA with a ridge over the central-eastern sector. Zonal flow at the 500 hPa level is significantly weakened in JJA over eastern NA. Areas with greatest flow anomalies are associated with regions that display most notable SAT extreme frequency deviations.

  2. Postcolonial suicide among Inuit in Arctic Canada.

    PubMed

    Kral, Michael J

    2012-06-01

    Indigenous youth suicide incidence is high globally, and mostly involves young males. However, the Inuit of Arctic Canada have a suicide rate that is among the highest in the world (and ten times that for the rest of Canada). The author suggests that suicide increase has emerged because of changes stemming in part from the Canadian government era in the Arctic in the 1950s and 1960s. The effects of government intervention dramatically affected kin relations, roles, and responsibilities, and affinal/romantic relationships. Suicide is embedded in these relationships. The author also discusses the polarization between psychiatric and indigenous/community methods of healing, demonstrating that government-based intervention approaches to mental health are not working well, and traditional cultural healing practices often take place outside of the mainstream clinics in these communities. The main questions of the paper are: Who should control suicide prevention? What is the best knowledge base for suicide prevention? PMID:22392639

  3. Arctic Science and Technology Information System

    NSDL National Science Digital Library

    From the University of Calgary's Arctic Institute of North America, the Arctic Science and Technology Information System (ASTIS) database "contains over 46,000 records describing publications and research projects about northern Canada." This service, which has recently been made free with help from the Canadian Polar Commission, covers all of the major branches of science. The simple and advanced search features lead to citations of Canadian government and industry reports, journal articles, conference papers, theses, and books, from 1978 to present. Citations contain bibliographic information, an abstract, detailed subject and geographic terms, and a library symbol to aid in locating a publication. The database also holds close to 11,000 descriptions of research projects conducted in Canada's three northern territories (Yukon, the Northwest Territories, and Nunavut) since 1974. Information about obtaining publications is provided at the search page.

  4. Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic

    Microsoft Academic Search

    Wayne Pollard; Tim Haltigin; Lyle Whyte; Thomas Niederberger; Dale Andersen; Christopher Omelon; Jay Nadeau; Miles Ecclestone; Martin Lebeuf

    2009-01-01

    The Canadian High Arctic contains several of the highest fidelity Mars analogue sites in the world. Situated at nearly 80° north, Expedition Fjord on Axel Heiberg Island is located within a polar desert climate, with the surrounding landscape and conditions providing an invaluable opportunity to examine terrestrial processes in a cold, dry environment. Through the Canadian Space Agency's Analogue Research

  5. Dynamic characteristics of vortex levitation

    Microsoft Academic Search

    Xin Li; Kenji Kawashima; Toshiharu Kagawa

    2008-01-01

    Vortex levitation can achieve non-contact handling by blowing air into a vortex cup through a tangential nozzle to generate a swirling air flow. In this paper, its dynamic characteristics are analyzed and discussions are laid upon the behavior of a work piece at the moment when it is picked up by the vortex cup. From the dynamic handling experiment, it

  6. Simultaneous balloonborne measurements of stratospheric water vapor and ozone in the polar regions

    SciTech Connect

    Hofmann, D.J.; Oltmans, S.J. (NOAA, Boulder, CO (United States)); Deshler, T. (Univ. of Wyoming, Laramie (United States))

    1991-06-01

    Vertical profiles of stratospheric water vapor and ozone were measured together at McMurdo and South Pole Stations in Antarctica, and at Kiruna, Sweden, on several occasions during the austral spring of 1990 and the boreal winter of 1991. The Antarctic data indicated that major dehydration had occurred on a continental scale over the winter stratospheric cloud formation period leaving only 2 to 3 ppmv water vapor between 11 and 19 km. Measurements before and after movement of the boundary of the polar vortex across McMurdo detected increases in both water vapor and ozone in the 17 to 20 km region. This injected layer was still observed at South Pole Station a month later suggesting continental proportions. In early November, with the vortex still intact, South Pole measurements indicated a substantial degree of inhomogeneity in both water vapor and ozone in the lower stratosphere. In comparison, stratospheric water vapor measurements in the Arctic gave values of 4 to 5 ppmv indicating the absence of the gross stratospheric dehydration effects obvious in the Antarctic, and they did not reveal significant structure except on one occasion with very cold temperatures ({minus}90C) at 25 km and nacreous cloud displays.

  7. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  8. Studies of the genus Enchodelus Thorne, 1939 (Nematoda, Nordiidae) from Arctic polar deserts. 1. Species with long odontostyle: E. makarovae sp. n. and E. groenlandicus (Ditlevsen, 1927) Thorne, 1939, with an identification key to the species of the E. macrodorus group

    PubMed Central

    Elshishka, Milka; Lazarova, Stela; Peneva, Vlada K.

    2012-01-01

    Abstract Two nematode species of the genus Enchodelus Thorne, 1939, one new and one known from Arctic polar deserts were studied. Enchodelus makarovae sp. n. is an amphimictic species, characterised by females with body length of 1.57–2.00 mm, lip region 15–17.5 µm wide, amphid duplex, odontostyle 38–43 µm long or 2.3–2.8 times lip region diam. Odontophore with flanges, 1.2–1.4 times as long as odontostyle; pharynx length 320–377 µm, pharyngeal expansion 113–130 µm long or 32–37% of total pharynx length; female genital system amphidelphic, uterus tripartite, pars refringens vaginae with two trapezoid sclerotisations, vulva a transverse slit (V=45–51%); tail bluntly conoid (25–35 µm, c=45.8–70.3, c’=0.6–0.9 in females, and 29–33 µm, c=46.4–58.9, c’=0.7–0.8 in males). Males with 65–74 µm long spicules and 10–12 spaced ventromedian supplements. Additional information for Enchodelus groenlandicus is provided, this being a new geographic record for the Putorana Plateau, Russian Arctic. PMID:22933846

  9. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  10. FRAM - FRontiers in Arctic marine Monitoring: Permanent Observations in a Gateway to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Soltwedel, Thomas

    2015-04-01

    Our ability to understand the complex interactions of biological, chemical, physical, and geological processes in the ocean is still limited by the lack of integrative and interdisciplinary observation infrastructures. The main purpose of the open-ocean infrastructure FRAM (FRontiers in Arctic marine Monitoring) is permanent presence at sea, from surface to depth, for the provision of near real-time data on climate variability and ecosystem change in an Arctic marine environment. The Alfred-Wegener-Institut I Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), together with partner institutes in Germany and Europe, aims at providing such infrastructure for the polar ocean as a major contribution to international efforts towards comprehensive Global Earth Observation. The FRAM Ocean Observing System targets the gateway between the North Atlantic and the Central Arctic, representing a highly climate-sensitive and rapidly changing region of the Earth system. It will serve national and international tasks towards a better understanding of the effects of change in ocean circulation, water mass properties and sea-ice retreat on Arctic marine ecosystems and their main functions and services. FRAM integrates and develops already existing observatories, i.e. the oceanographic mooring array HAFOS (Hybrid Arctic/Antarctic Float Observing System) and the Long-Term Ecological Research (LTER) site HAUSGARTEN. It will implement existing and next-generation sensors and observatory platforms, allowing synchronous observation of relevant ocean variables, as well as the study of physical, chemical and biological processes in the water column and at the seafloor. Experimental and event-triggered platforms will complement observational platforms. Products of the infrastructure are continuous long-term data with appropriate resolution in space and time, as well as ground-truthing information for ocean models and remote sensing.

  11. Continuous measurements of aerosol particles in Arctic Russia and Finland

    NASA Astrophysics Data System (ADS)

    Asmi, Eija; Kondratyev, Vladimir; Brus, David; Lihavainen, Heikki; Laurila, Tuomas; Aurela, Mika; Hatakka, Juha; Viisanen, Yrjö; Reshetnikov, Alexander; Ivakhov, Victor; Uttal, Taneil; Makshtas, Alexander

    2013-04-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71o 36' N; 128o 53' E) on the shore of the Laptev Sea has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol physical properties, which have been successfully continued since summer 2010. These, together with the FMI measurements in Pallas station in northern Finland since 1999, provide important information on the year-round Arctic aerosol concentrations and properties. Here, we will present the annual cycle of Arctic aerosol concentrations, which is characterized by winter minimum and spring and summer maxima. We will show the most important Arctic aerosol source regions and their variability with seasons. Also, we will look the processes such as new particle formation, which takes frequently place at both the two stations and in particular in spring season.

  12. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  13. Atmospheric Mercury Transport and Chemistry in Western Canada and the Arctic: Results from the IPY Project INCATPA

    Microsoft Academic Search

    A. S. Cole; A. Steffen; H. Hung

    2010-01-01

    Elevated levels of mercury and other pollutants are an ongoing threat to the health of Arctic people and wildlife, despite the vast distance that separates the region from major anthropogenic sources of these contaminants. The International Polar Year (IPY) project INterContinental Atmospheric Transport of anthropogenic Pollutants to the Arctic (INCATPA) is investigating the transport of pollutants, specifically persistent organic pollutants

  14. Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.

    1992-01-01

    The paper reports simultaneous measurements of the stratospheric burdens of H2O, HDO, OCS, CO2, O3, N2O, CO, CH4, CF2Cl2, CFCl3, CHF2Cl, C2H6, HCN, NO, NO2, HNO3, ClNO3, HOCl, HCl, and HF made by the JPL MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were obtained on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland, and Greenland. Analyses of the chemically active gases reveal highly perturbed conditions within the vortex. The ClNO3 abundance was chemically enhanced near the edge of the vortex but was then depleted inside. NO2 was severely depleted inside the vortex. In contrast to Antarctica, H2O and HNO3 were both more abundant inside the vortex than outside. It is suggested that although the Arctic vortex did not get cold enough to produce any dehydration, or as vertically extensive denitrification as occurred in Antarctica, nevertheless, enough heterogeneous chemistry occurred to convert over 90 percent of the inorganic chlorine to active forms in the 14- to 27-km altitude range by early February 1989.

  15. Future Projections of Trans-Arctic Shipping Potential and Variability

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Smith, L. C.

    2014-12-01

    As the Arctic Ocean transitions towards a seasonally ice-free state, efforts to predict new connections between the Arctic and the global economy are underway. In particular, record lows in September sea ice extent from 2007-2013 have recast Arctic shipping routes as emerging international seaways for export of resources and as potential alternative pathways for global trade. While ensemble-averaged output from sea ice models suggest significant increases in vessel accessibility in September by midcentury (Smith & Stephenson, 2013), the seasonal length and variability of trans-Arctic shipping is not well understood. In addition, differences in ice extent due to inter-model variability reveal significant uncertainties in the magnitude and location of future vessel access. Here we present several scenarios of 21st-century trans-Arctic shipping as driven by sea ice output from CMIP5 models. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing present-day (2006-2015) and midcentury (2040-2059) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Results illustrate a range of potential futures for shipping in the Arctic owing to differences in model choice, vessel capability, and climate forcing. Inter-model differences reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.

  16. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  17. Vegetation greening in the Canadian Arctic related to decadal warming.

    PubMed

    Jia, Gensuo J; Epstein, Howard E; Walker, Donald A

    2009-12-01

    This study is presented within the context that climate warming and sea-ice decline has been occurring throughout much of the Arctic over the past several decades, and that terrestrial ecosystems at high latitudes are sensitive to the resultant alterations in surface temperatures. Results are from analyzing interannual satellite records of vegetation greenness across a bioclimate gradient of the Canadian Arctic over the period of 1982-2006. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation greenness along spatial gradients of summer temperature and vegetation. Linear autoregression temporal analysis of vegetation greenness was performed with relatively "pure" vegetation pixels of Advanced Very High Resolution Radiometer (AVHRR) data, spanning Low Arctic, High Arctic and polar desert ecosystems. Vegetation greenness generally increased over tundra ecosystems in the past two decades. Peak annual greenness increased 0.49-0.79%/yr over the High Arctic where prostrate dwarf shrubs, forbs, mosses and lichens dominate and 0.46-0.67%/yr over the Low Arctic where erect dwarf shrubs and graminoids dominate. However, magnitudes of vegetation greenness differ with length of time series and periods considered, indicating a nonlinear response of terrestrial ecosystems to climate change. The decadal increases of greenness reflect increasing vegetation production during the peak of the growing season, and were likely driven by the recent warming. PMID:20024021

  18. Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change

    PubMed Central

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. PMID:24871481

  19. The Polar Sea Voyage and the Northwest Passage Dispute

    Microsoft Academic Search

    Philip J. Briggs

    1990-01-01

    This study examines the Northwest Passage controversy between the United States and Canada beginning with the U.S. Coast Guard icebreaker Polar Sea voyage through the passage without permission from the Canadian Government in August 1985 to the signing of the executive agreement on Arctic cooperation in January 1988. Particular focus is placed upon U.S. national interests in the Arctic region,

  20. Observation of vortex dynamics in arrays of nanomagnets

    NASA Astrophysics Data System (ADS)

    Yu, W.; Keatley, P. S.; Gangmei, P.; Marcham, M. K.; Loughran, T. H. J.; Hicken, R. J.; Cavill, S. A.; van der Laan, G.; Childress, J. R.; Katine, J. A.

    2015-05-01

    Vortex dynamics within arrays of square ferromagnetic nanoelements have been studied by time-resolved scanning Kerr microscopy (TRSKM), while x-ray photoemission electron microscopy has been used to investigate the equilibrium magnetic state of the arrays. An alternating field demagnetization process was found to initialize a distribution of equilibrium states within the individual elements of the array, including quasiuniform states and vortex states of different chirality and core polarization. Repeated initialization revealed some evidence of stochastic behavior during the formation of the equilibrium state. TRSKM with a spatial resolution of ˜300 nm was used to detect vortex gyration within arrays of square nanoelements of 250-nm lateral size. Two arrays were studied consisting of a 9 ×9 and 5 ×5 arrangement of nanoelements with 50- and 500-nm element edge-to-edge separation to encourage strong and negligible dipolar interactions, respectively. In the 5 ×5 element array, TRSKM images, acquired at a fixed phase of the driving microwave magnetic field, revealed differences in the gyrotropic phase within individual elements. While some phase variation is attributed to the dispersion in the size and shape of elements, the vortex chirality and core polarization are also shown to influence the phase. In the 9 ×9 array, strong magneto-optical response due to vortex gyration was observed across regions with length equal to either one or two elements. Micromagnetic simulations performed for 2 ×2 arrays of elements suggest that particular combinations of vortex chirality and polarization in neighboring elements are required to generate the observed magneto-optical contrast.

  1. Double-branched vortex generator

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Westphal, R. V.; Mehta, R. D.

    1985-01-01

    In order to assess the suitability of using a double branched vortex generator in parametric studies involving vortex interactions, an experimental study of the main vortex and secondary flows produced by a double branched vortex generator was conducted in a 20-by-40 cm indraft wind tunnel. Measurements of the cross flow velocities were made with a five hole pressure probe from which vorticity contours and vortex parameters were derived. The results showed that the optimum configuration consisted of chord extensions with the absence of a centerbody.

  2. 2008 Fall AGU Meeting San Francisco, CA Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

    E-print Network

    Howat, Ian M.

    , The Ohio State University, Columbus, Ohio A Synthesis of Arctic Weather and Climate* *Supported by NSF Center The Ohio State University 2Atmospheric Sciences Program Department of Geography The Ohio State, The Ohio State University, Columbus, Ohio Outline Arctic System Reanalysis: Why, how and who? Polar WRF

  3. Vortex flow in acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Yan, Z. L.; Xie, W. J.; Wei, B.

    2011-08-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines.

  4. PolarTREC---A Model Program for Taking Polar Literacy into the Future

    Microsoft Academic Search

    J. Warburton; K. Timm; A. M. Larson

    2009-01-01

    Polar TREC---Teachers and Researchers Exploring and Collaborating, is a three-year (2007-2009) NSF-funded International Polar Year (IPY) teacher professional development program that advances Science, Technology, Engineering, and Mathematics (STEM) education by improving teacher content knowledge and instructional practices through Teacher Research Experiences (TRE) in the Arctic and Antarctic. Leveraging profound changes and fascinating science taking place in the polar regions, PolarTREC

  5. PolarTREC: Successful Methods and Tools for Attaining Broad Educational Impacts with Interdisciplinary Polar Science

    Microsoft Academic Search

    K. M. Timm; J. Warburton; R. Owens; W. K. Warnick

    2008-01-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)-funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences in the polar regions, working closely with IPY scientists as a pathway to improving science education. Developing long-term teacher- researcher collaborations through PolarTREC

  6. Arctic routing: Challenges and opportunities

    Microsoft Academic Search

    Hiromitsu Kitagawa

    2008-01-01

    Responding to the world’s growing demand for oil and gas, Arctic resources have been given much attention by the energy and\\u000a shipping industries. In addition, global warming has accelerated oil and gas development in the Arctic, particularly in its\\u000a western region. Ice-diminishing Arctic has inspired the world’s shipping industry to explore the feasibility of the historical\\u000a Arctic routes, the Northwest

  7. Atmospheric Circulation Attribution to Recent Intensification of Arctic Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Zhang, X.; He, J.; Hinzman, L. D.; Polyakov, I.; Walsh, J. E.; Inoue, J.; Wu, P.

    2009-12-01

    Changes in Arctic freshwater budgets and pathways have important implication for Arctic Ocean circulations and North Atlantic deep convection formation. Studies have shown an intensification of Arctic hydrological cycle in recent decades, which has been outstandingly evidenced by an increase in gauged river discharges from major drainage basins surrounding the Arctic Ocean. The enhanced river discharges could be attributable to the global warming induced increase in precipitation less evaporation, greening change in vegetation coverage and density, and thawing of frozen soil. However, high uncertainties exist in these parameters due to sparse and indirect observations. In this study, we investigated changes in Arctic hydrological cycle from the atmospheric circulation perspective. Relatively, the fundamental atmospheric parameters have been well monitored and these parameters have fewer errors in the global assimilation system output at each assimilation time step. Based on these output at each time step, we developed a correction approach and made the data homogenous physically in a long time period since the middle of 20th century to present. We then examined changes in atmospheric circulation and their contribution to the changes in and variability of the Arctic hydrological cycle. The results show that atmospheric-circulation-driven net moisture transport captures gauged climatological river discharges very well, and plays a predominant forcing role in accelerating Arctic hydrological cycle. In particular, the most-recent spatial shift of atmospheric circulation and the polarization of the newly-identified Arctic Rapid change Pattern (ARP) decisively resulted in the observed record high Eurasian river discharges along with the extreme event of sea ice cover loss in 2007.

  8. Cloud identification in the Canadian High Arctic using the UV-visible colour index

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyi; Adams, Cristen; Strong, Kimberly; Duck, Thomas; Perro, Chris; Hudak, David; Rodriguez, Peter

    2014-05-01

    In UV-visible spectroscopy, Rayleigh and Mie scattering contribute to the broadband extinction seen in spectra of scattered sunlight. The relative intensity of these two components of scattering is highly dependent on the cloud condition of the sky. The colour index, defined as the ratio of light intensities at different wavelengths, typically 350 nm and 550 nm, provides a means of determining the cloud conditions. A UV-visible triple-grating spectrometer, the UT-GBS (University of Toronto Ground-Based Spectrometer), was installed at the Polar Environment Atmospheric Research Laboratory (PEARL), at Eureka in the Canadian High Arctic (86.4°W, 80.1°N) in 1999. Since then, the instrument has made daily measurements during spring from 1999-2009, and year-round, with the exception of polar night, from 2010-2013. The UT-GBS measures vertical column densities of ozone, NO2, and BrO, as well as slant column densities of enhanced OClO, by using the Differential Optical Absorption Spectroscopy (DOAS) technique. We use the colour index data from the UT-GBS to distinguish polar stratospheric clouds and tropospheric clouds. The UV-visible measurements are supplemented by vertically resolved lidar and radar cloud data products. The CANDAC (Canadian Network for the Detection of Atmospheric Change) Rayleigh-Mie-Raman Lidar (CRL) and the Millimetre Cloud Radar (MMCR) are located at the Zero Altitude PEARL Auxiliary Laboratory (0PAL), which is about 15 km away from PEARL. The CRL uses ultra-short pulses of light from two lasers, operating at ultraviolet (355 nm) and visible (532 nm) wavelengths. The CRL measures the vertical distribution of aerosols, temperature, and water vapour in the troposphere and lower stratosphere. The zenith-pointing MMCR measures equivalent radar reflectivity, Doppler velocity, spectral width, and Doppler spectra, from which information about cloud heights, thicknesses, internal structure and vertical motions can be determined. Polar stratospheric cloud (PSC) events have been observed during spring by the UT-GBS and the CRL; these will be discussed in the context of the location of the polar vortex relative to Eureka, stratospheric temperatures, and stratospheric ozone loss events. In addition to detecting PSCs, the colour index can be used for the detection of tropospheric clouds. The UT-GBS cloud index results are in good agreement with data from the MMCR. Thus the cloud index can be useful for assessing the quality of DOAS retrievals, which can be greatly affected by tropospheric clouds.

  9. Vortex Apparatus and Demonstrations

    ERIC Educational Resources Information Center

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  10. Behavior of Vortex Systems

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1979-01-01

    Application of the Kutta-Joukowski theorem to the relationship between airfoil lift and circulation is described. A number of formulas concerning the conduct of vortex systems derived from the theorem are presented. The application of this line of reasoning to several problems of airfoil theory and the observed relations are discussed.

  11. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  12. Tunable pinning of a superconducting vortex by a magnetic vortex

    NASA Astrophysics Data System (ADS)

    Carneiro, Gilson

    2007-03-01

    The interaction between a straight vortex line in a superconducting film and a soft magnetic nanodisk in the magnetic vortex state in the presence of a magnetic field applied parallel to the film surfaces is studied theoretically. The superconductor is described by London theory [G. Carneiro, Phys. Rev. B 69, 214504 (2004)] and the nanodisk by the Landau-Lifshitz continuum theory of magnetism [L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935); Collected Papers of L. D. Landau (Gordon and Breach, New York, 1967), p. 101], using the approximation known as the rigid vortex model. Pinning of the vortex line by the nanodisk is found to result, predominantly, from the interaction between the vortex line and the changes in the nanodisk magnetization induced by the magnetic field of the vortex line and applied field. In the context of the rigid vortex model, these changes result from the displacement of the magnetic vortex. This displacement is calculated analytically by minimizing the energy, and the pinning potential is obtained. The applied field can tune the pinning potential by controlling the displacement of the magnetic vortex. The nanodisk magnetization curve is predicted to change in the presence of the vortex line.

  13. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; O'Hara, T M; Elkin, B; Solomon, K R; Muir, D C G

    2003-01-01

    Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (delta 13C) and nitrogen (delta 15N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by delta 15N) is positively correlated with increasing delta 13C values, suggesting that Arctic fox with a predominantly marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (Sigma PCB) > chlordane-related compounds (Sigma CHLOR) > hexachlorocyclohexane (Sigma HCH) > total toxaphene (TOX) > or = chlorobenzenes (Sigma ClBz) > DDT-related isomers (Sigma DDT). In liver, Sigma CHLOR was the most abundant OC group, followed by Sigma PCB > TOX > Sigma HCH > Sigma ClBz > Sigma DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of delta 15N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While Sigma PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs. PMID:12547532

  14. Production and Cycling of Methylated Mercury Species in Arctic Marine Waters

    Microsoft Academic Search

    I. Lehnherr; V. L. St. Louis; H. Hintelmann

    2009-01-01

    Monomethyl mercury (MMHg), a vertebrate neurotoxin which bioaccumulates through foodwebs, is found in some Arctic marine mammals at levels that may be harmful to northern peoples consuming them as food. Unfortunately, sources of MMHg to polar marine food webs remain unknown, in part due to the complex nature of Hg cycling in polar marine waters. Since 2005, we have been

  15. Arctic Circle Web

    NSDL National Science Digital Library

    1969-12-31

    The Arctic Circle Web site at the University of Connecticut aims to stimulate among viewers a greater interest in the peoples and environment of the Arctic and Sub Arctic region. As stated on the Welcome page, this 'electronic circle' has three interrelated themes: natural resources; history and culture; social equity and environmental justice. In addressing these issues, the presentations utilize a range of textual and photographic materials, and in the near future, sound and short video recordings. Specific topics include discussions of Sustainability, Equity, and Environmental Protection; Northern Development and the Global Economy; Ethnographic Portraits of indigenous peoples in Alaska, Canada, Northwest Siberia, etc.; and specific studies dealing with the impact of petroleum, gas, hydroelectric, and other forms of large scale natural resource development in selected regions of the Circumpolar North. New material is being added on a regular basis.

  16. CALIPSO Polar Stratospheric Cloud Observations from 2006-2015

    NASA Astrophysics Data System (ADS)

    Pitts, Michael; Poole, Lamont

    2015-04-01

    Polar stratospheric clouds (PSCs) play a crucial role in the springtime chemical depletion of ozone at high latitudes. PSC particles (primarily supercooled ternary solution, or STS droplets) provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation (a process commonly known as denitrification), which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIPSO is an excellent platform for studying polar processes with CALIOP acquiring, on average, over 300,000 backscatter profiles daily at latitudes between 55 and 82 degrees in both hemispheres. PSCs are detected in the CALIOP backscatter profiles using a successive horizontal averaging scheme that enables detection of strongly scattering PSCs (e.g., ice) at the finest possible spatial resolution (5 km), while enhancing the detection of very tenuous PSCs (e.g., low number density NAT) at larger spatial scales (up to 135 km). CALIOP PSCs are separated into composition classes (STS; liquid/NAT mixtures; and ice) based on the ensemble 532-nm scattering ratio (the ratio of total-to-molecular backscatter) and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we will provide an overview of the CALIOP PSC detection and composition classification algorithm and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than nine-year data record from 2006-2015.

  17. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  18. The Arctic Regional Communications Small SATellite (ARCSAT)

    NASA Technical Reports Server (NTRS)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  19. Arctic Sea Ice

    NSDL National Science Digital Library

    2012-06-26

    In this activity, learners explore how the area of Arctic sea ice has changed over recent years. First, learners graph the area of Arctic sea ice over time from 1979 to 2007. Then, learners use this information to extrapolate what the area will be in 2018 and graph their predictions. In part two of the activity, learners make a flip book to simulate the sea changes they just graphed. This resource includes background information related to the Northwest Passage and questions for learners to answer after completing this activity.

  20. Magnetic vortex gyration in a confined double-nanocontacts structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Huanan; Hu, Yong; Du, An

    2014-09-01

    We studied the gyrotropic motion of a vortex in a double-contacts system, where two spin-polarized out-of-plane dc currents were injected into a nanodisk through a centered nanocontact and an off-centered nanocontact, respectively. Driven by the two currents, the orbit of vortex core distorts. Moreover, the gyrotropic frequency shows zigzag variation with time when the off-centered current passes from -z to +z-axis, and a peak appears when the off-centered current passes from +z to -z-axis. We analyzed the forces acting on the vortex core, and found that the changes of frequency mainly attribute to the forces generated by the Oersted fields arising from the two currents.

  1. International Straits and Trans-Arctic Navigation

    Microsoft Academic Search

    Donald R. Rothwell

    2012-01-01

    The Arctic Ocean is increasingly becoming accessible to international shipping as a result of the reduction in Arctic sea ice. Commercial shipping may seek to transit the Arctic Ocean from either the Pacific or Atlantic Ocean and, as a result, the legal regime of straits has significance for trans-Arctic navigation. In this article, current developments in Arctic shipping are assessed

  2. Correcting vortex splitting in higher order vortex beams.

    PubMed

    Neo, Richard; Tan, Shiaw Juen; Zambrana-Puyalto, Xavier; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel

    2014-04-21

    We demonstrate a general method for the first order compensation of singularity splitting in a vortex beam at a single plane. By superimposing multiple forked holograms on the SLM used to generate the vortex beam, we are able to compensate vortex splitting and generate beams with desired phase singularities of order ? = 0, 1, 2, and 3 in one plane. We then extend this method by application of a radial phase, in order to simultaneously compensate the observed vortex splitting at two planes (near and far field) for an ? = 2 beam. PMID:24787874

  3. The evolution of Arctic marine mammals.

    PubMed

    Harington, C R

    2008-03-01

    This review deals only with the evolutionary history of core Arctic marine mammals: polar bear (Ursus maritimus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), harp seal (Pagophilus groenlandica), ringed seal (Phoca hispida), bowhead whale (Balaena mysticetus), white whale (Delphinapterus leucas), and narwhal (Monodon monoceras). Sections on the evolutionary background of pinnipeds and whales help to provide a better perspective on these core species. Polar bears stemmed from brown bears about the Early to Middle Pleistocene. Fossils are rare; the earliest records are from approximately Early Weichselian deposits of Kew Bridge, London, and Svalbard. Existing Pacific and Atlantic walruses probably arose from splitting of a former Holarctic range during a Pleistocene glacial phase of extensive sea ice in the Canadian Arctic. The earliest known bearded seal remains are from Early to Middle Pleistocene deposits of Norfolk, England, and Cape Deceit, Alaska. Other Pleistocene fossils of this species are recorded from the North Sea, southwestern Sweden, and the Champlain Sea that existed in eastern North America approximately 12 000-10000 BP. The harp seal is the commonest pinniped in the Weichselian deposits of the southern North Sea. The earliest recorded fossil is from about 2 million years ago (2 Ma), from Ocean Point, Alaska. The earliest known Pleistocene ringed seal fossils are from last interglacial deposits near Teshekpuk Lake, Alaska, and Thule, Greenland, although an earlier (3 Ma?) specimen from Malaspina, Alaska, has been reported. This species seems to have been relatively abundant along the coasts of Prince of Wales Island, Alaska, during the Last Glacial Maximum. The bowhead whale probably originated in the high latitudes of the Northern Hemisphere. The earliest (mid-Wisconsinan) Canadian remains are from Ellesmere and Devon islands. More than 400 radiocarbon-dated bowhead remains have been used to reconstruct Holocene sea ice history in the Canadian Arctic. White whales are common in the late warming stage (approximately 10 500 BP) of the Champlain Sea and are one of the commonest marine mammal fossils in Late Pleistocene North Sea deposits. Fourteen narwhal specimens of Late Glacial or Early Holocene age are known from Atlantic Canada, as well as Ellesmere, Baffin, and Prince of Wales islands in Arctic Canada. Arctic marine mammals have tended to shift to more southerly ranges during glacial phases of the Pleistocene. PMID:18494361

  4. Critical review of mercury fates and contamination in the Arctic tundra ecosystem.

    PubMed

    Poissant, Laurier; Zhang, Hong H; Canário, João; Constant, Philippe

    2008-08-01

    Mercury (Hg) contamination in tundra region has raised substantial concerns, especially since the first report of atmospheric mercury depletion events (AMDEs) in the Polar Regions. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. This has generated a unique opportunity to survey the whole Arctic in respect to Hg issue and to find out new discoveries. However, there are still considerable knowledge gaps and debates on the fate of Hg in the Arctic and Antarctica, especially regarding the importance and significance of AMDEs vs. net Hg loadings and other processes that burden Hg in the Arctic. Some studies argued that climate warming since the last century has exerted profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity which increased in sedimentary Hg, whereas some others pointed out the importance of the formation and postdeposition crystallographic history of the snow and ice crystals in determining the fate and concentration of mercury in the cryosphere in addition to AMDEs. Is mercury re-emitted back to the atmosphere after AMDEs? Is Hg methylation effective in the Arctic tundra? Where the sources of MeHg are? What is its fate? Is this stimulated by human made? This paper presents a critical review about the fate of Hg in the Arctic tundra, such as pathways and process of Hg delivery into the Arctic ecosystem; Hg concentrations in freshwater and marine ecosystems; Hg concentrations in terrestrial biota; trophic transfer of Hg and bioaccumulation of Hg through food chain. This critical review of mercury fates and contamination in the Arctic tundra ecosystem is assessing the impacts and potential risks of Hg contamination on the health of Arctic people and the global northern environment by highlighting and "perspectiving" the various mercury processes and concentrations found in the Arctic tundra. PMID:18707754

  5. Arctic surface ozone depletions from ozone soundings and surface measurements

    NASA Astrophysics Data System (ADS)

    Tarasick, David

    2015-04-01

    Episodes of ozone depletion in the lowermost Arctic atmosphere (0-2 km) in the polar spring are understood to result from catalytic reactions involving bromine derived from sea salt. Arctic sites consistently show ozone depletion in the surface boundary layer throughout the spring months, sufficient at some sites to markedly affect the annual cycle, and produce an ozone minimum in spring. Although this is a natural phenomenon -- the long ozonesonde record at Resolute shows depletions since the beginning of the record in 1966 - it appears to be changing: the (recently re-evaluated) Resolute record also shows an increase in their frequency over the period 1966-2013 of 6.8 +/- 3.7% per decade (95% confidence limits). In addition, surface sites show a shift toward increasing frequency earlier in the year. These changes are examined in the context of other changes in the Arctic boundary layer.

  6. Aeroacoustics of viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Paredes, Pedro; Nichols, Joseph W.; Duraisamy, Karthik; Hussain, Fazle

    2011-11-01

    Reconnection of two anti-parallel vortex tubes is studied by direct numerical simulations and large-eddy simulations of the incompressible Navier-Stokes equations over a wide range (2000-50,000) of the vortex Reynolds number (Re). A detailed investigation of the flow dynamics is performed and at high Re, multiple reconnections are observed as the newly formed ``bridges'' interact by self and mutual induction. To investigate acoustics produced by the recoil action of the vortex threads, Möhring's theory of vortex sound is applied to the flow field and evaluated at varying far-field locations. The acoustic solver is verified against calculations of laminar vortex ring collision. For anti-parallel vortex reconnection, the resulting far-field spectra are shown to be grid converged at low-to-mid frequencies. To assess the relevance to fully turbulent jet noise, the dependence of reconnection upon Reynolds number is investigated.

  7. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  8. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  9. Strings and vortex rings

    E-print Network

    Steven S. Gubser; Revant Nayar; Sarthak Parikh

    2014-08-10

    We treat string propagation and interaction in the presence of a background Neveu-Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scale which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross-Pitaevskii lagrangian, and also how it compares to the action for giant gravitons.

  10. Whither vortex tubes?

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Yang, Yue

    2014-12-01

    We review research aimed at the development of an analytical and numerical framework for tracking the evolution, in an incompressible viscous fluid, of scalar fields, called ‘vortex surface fields’ (VSFs), whose instantaneous isosurfaces always contain continuous vortex lines. A set of equations describing the evolution of VSFs starting from a known initial condition is proposed and discussed. Non-uniqueness in the initial-value problem is resolved with the introduction of evolution in a pseudo-time variable where the vorticity, frozen in real time, plays the role of an advecting field. A numerical method for following both the real and pseudo-time evolution is described and its regularization properties are discussed. Examples are given of following VSFs in a viscous Taylor–Green flow (Taylor and Green 1937 Proc. R. Soc. A 158 499–521). The prospects for extending these ideas to fully turbulent flows are discussed.

  11. Confined vortex scrubber

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  12. Numerical study of vortex reconnection

    Microsoft Academic Search

    Wm. T. Ashurst; D. I. Meiron

    1987-01-01

    With a Biot-Savart model of vortex filaments to provide initial conditions, a finite-difference scheme for the incompressible Navier-Stokes equation is used in the region of closest approach of two vortex rings. In the Navier-Stokes solutions, it is seen that the low pressure which develops between the interacting vorticity regions causes the distortion of the initially circular vortex cross section and

  13. Shallow winter and summer macrofauna in a high Arctic fjord (79° N, Spitsbergen)

    Microsoft Academic Search

    Monika K?dra; Joanna Lege?y?ska; Wojciech Walkusz

    Very little is known about benthic organisms surviving strategies in extreme winter conditions in polar areas. Most of the\\u000a research conducted in Arctic has been carried out during the summer from depths available to research vessels. Our study is\\u000a the first one conducted in winter within a high Arctic fjord at shallow depths. The main aim was to examine the

  14. Interferometric optical vortex array generator.

    PubMed

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs. PMID:17514234

  15. Surveying Arctic Sea Ice

    USGS Multimedia Gallery

    Two U.S. Coast Guard members are being transported by crane from U.S. Coast Guard Cutter Healy onto a piece of multi-year ice. This was during a scientific expedition to map the Arctic seafloor. The expedition was a joint effort using two ships, Healy and the Canadian Coast Guard Ship Louis S. St. L...

  16. Arctic lithosphere - A review

    NASA Astrophysics Data System (ADS)

    Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X.

    2014-07-01

    This article reviews the characteristics of Arctic lithosphere and the principal tectonic events which have shaped it. The current state-of-knowledge associated with the crust, crustal-scale discontinuities, and their ages, as well as knowledge of the lithosphere as a whole from geophysical data, permits the division of Arctic lithosphere into discrete domains. Arctic continental lithosphere is diverse in age, composition, and structure. It has been affected by at least two periods of thermal overprinting associated with large volumes of magmatism, once in the Permo-Triassic and again in the Aptian. In addition, it was attenuated as the result of at least five phases of rifting (in the late Devonian-early Carboniferous, Permo-Triassic, Jurassic, Early Cretaceous, and Late Cretaceous-Cenozoic). Older phases of consolidation are associated with continental lithosphere and occurred through a series of continent-continent collisions in the Paleozoic. Jurassic and Cretaceous extensional phases are related to the dismembering of Pangea and Eurasia, and were concentrated in the Norway-Greenland and Canadian-Alaskan Arctic regions. Large areas of submarine, hyperextended continental (?) lithosphere developed in parts of the Amerasia Basin. After continental breakup and the accretion of new oceanic lithosphere, the Eurasia and Canada basins were formed.

  17. Live from the Arctic

    Microsoft Academic Search

    G. Haines-Stiles; W. K. Warnick; J. Warburton; K. Sunwood

    2003-01-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This

  18. Tunable supercontinuum light vector vortex beam generator using a q-plate.

    PubMed

    Rumala, Yisa S; Milione, Giovanni; Nguyen, Thien An; Pratavieira, Sebastião; Hossain, Zabir; Nolan, Daniel; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Alfano, Robert R

    2013-12-01

    Spatially coherent multicolored optical vector vortex beams were created using a tunable liquid crystal q-plate and a supercontinuum light source. The feasibility of the q-plate as a tunable spectral filter (switch) was demonstrated, and the polarization topology of the resulting vector vortex beam was mapped. Potential applications include multiplexing for broadband high-speed optical communication, ultradense data networking, and super-resolution microscopy. PMID:24281515

  19. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  20. Predicting the Arctic Ocean Environment in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Popova, Ekaterina; Yool, Andrew; Nurser, George

    2015-04-01

    Recent environmental changes in the Arctic have clearly demonstrated that climate change is faster and more vigorously in the Polar Regions than anywhere else. Significantly, change in the Arctic Ocean (AO) environment presents a variety of impacts, from ecological to social-economic and political. Mitigation of this change and adaptation to it requires detailed and robust environmental predictions. Here we present a detailed projection of ocean circulation and sea ice from the present until 2099, based on an eddy-permitting high-resolution global simulation of the NEMO ¼ degree ocean model. The model is forced at the surface with HadGEM2-ES atmosphere model output from the UK Met. Office IPCC Assessment Report 5 (AR5) Representative Concentration Pathways 8.5 (RCP8.5) scenario. The HadGEM2-ES simulations span 1860-2099 and are one of an ensemble of runs performed for the Coupled Model Intercomparison Project 5 (CMIP5) and IPCC AR5. Between 2000-2009 and 2090-2099 the AO experiences a significant warming, with sea surface temperature increasing on average by about 4° C, particularly in the Barents and Kara Seas, and in the Greenland Sea and Hudson Bay. By the end of the simulation, Arctic sea ice has an average annual thickness of less than 10 cm in the central AO, and less than 0.5 m in the East-Siberian Sea and Canadian Archipelago, and disappears entirely during the Arctic summer. In summer, opening of large areas of the Arctic Ocean to the wind and surface waves leads to the Arctic pack ice cover evolving into the Marginal Ice Zone (MIZ). In winter, sea ice persists until the 2030s; then it sharply declines and disappears from the Central Arctic Ocean by the end of the 21st century, with MIZ provinces remaining in winter along the Siberian, Alaskan coasts and in the Canadian Arctic Archipelago. Analysis of the AO circulation reveals evidence of (i) the reversal of the Arctic boundary currents in the Canadian Basin, from a weak cyclonic current in 2040-2049 to a strong anti-cyclonic current in 2090-2099, and (ii) increased anti-cyclonic surface ocean circulation in the eastern part of the AO, while the surface circulation in the western Arctic becomes more cyclonic. We relate the shift in the circulation to changes in the winds and reduction of sea ice cover, which modify momentum transfer from atmosphere to the ocean. Our simulation suggests a potentially complex picture of future AO change, and highlights the importance of high resolution modelling in forecasting it.

  1. Polar Bears International : Wrangel Island, Russia

    NSDL National Science Digital Library

    2007-12-12

    This site describes the ongoing research of the polar bears in the Russian High Arctic. Wrangel Island with neighboring small island, Herald Island, are the key reproductive areas for the Chukchi-Alaskan polar bear population. Marine areas and Wrangel and Herald islands provide optimum foraging habitats for polar bears, and polar bear densities in these marine habitats are high all year round. Approximately 350-500 pregnant female polar bears construct their maternity dens on Wrangel and Herald islands every fall, emerging with their cubs in spring. The research is described in terms of goals and objectives, structure, methods, equipment, staff, and implementations.

  2. Statistical Behavior of Formation Process of Magnetic Vortex State in Ni80Fe20 Nanodisks

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Keisuke, Yamada; Kasai, Shinya

    2011-01-14

    Magnetic vortices in magnetic nanodots, which are characterized by an in-plane (chirality) and an out-of-plane (polarity) magnetizations, have been intensively attracted because of their high potential for technological application to data storage and memory scheme as well as their scientific interest for an understanding of fundamental physics in magnetic nanostructures. Complete understanding of the formation process of vortex state in magnetic vortex systems is very significant issue to achieve storage and memory technologies using magnetic vortices and understand intrinsic physical properties in magnetic nanostructures. In our work, we have statistically investigated the formation process of vortex state in permalloy (Py, Ni{sub 80}Fe{sub 20}) nanodisks through the direct observation of vortex structure utilizing a magnetic transmission soft X-ray microscopy (MTXM) with a high spatial resolution down to 20 nm. Magnetic imaging in Py nanodots was performed at the Fe L{sub 3} (707 eV) absorption edge. Figure 1 shows in-plane and out-of-plane magnetic components observed in 40 nm thick nanodot arrays with different dot radius of r = 500 and 400 nm, respectively. Vortex chirality, either clockwise (CW) or counter-clockwise (CCW), and polarity, either up or down, are clearly visible in both arrays. To investigate the statistical behavior in formation process of the vortex state, the observation of vortex structure at a remanant state after saturation of nanodots by an external magnetic field of 1 kOe has been repeatedly performed over 100 times for each array. The typical MTXM images of vortex chirality taken in two successive measurements together with their overlapped images in nanodot arrays of r = 500 and 400 nm are displayed in Fig. 2. Within the statistical measurement, the formation process of chirality of either CW or CCW is quite stochastic in each nanodot. Similar behavior is also witnessed in the formation of vortex polarity observed in consecutive experiments of the same arrays. Interestingly, a particular selectivity between the circulation sense of chirality and orientation sense of polarity for each other is found in the formation process of vortex state despite of their respective stochastic generation in repeated measurements. Dzyaloshinskii-Moriya (D-M) interaction in magnetic nanodisks, which is inevitably generated due to the breaking of inversion symmetry at surface/interface in magnetic thin layers, is mainly responsible for the experimentally witnessed selectivity between chirality and polarity in a formation of vortex structure.

  3. New Trans-Arctic shipping routes navigable by midcentury.

    PubMed

    Smith, Laurence C; Stephenson, Scott R

    2013-03-26

    Recent historic observed lows in Arctic sea ice extent, together with climate model projections of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shipping routes linking the Atlantic and Pacific Oceans. However, numerical studies of how projected geophysical changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we analyze seven climate model projections of sea ice properties, assuming two different climate change scenarios [representative concentration pathways (RCPs) 4.5 and 8.5] and two vessel classes, to assess future changes in peak season (September) Arctic shipping potential. By midcentury, changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened (Polar Class 6) ships over the North Pole, and new routes through the Northwest Passage for both vessel classes. Although numerous other nonclimatic factors also limit Arctic shipping potential, these findings have important economic, strategic, environmental, and governance implications for the region. PMID:23487747

  4. Tunable pinning of a superconducting vortex by a magnetic vortex

    Microsoft Academic Search

    Gilson Carneiro; Rio de Janeiro-RJ

    2007-01-01

    The interaction between a straight vortex line in a superconducting film and a soft magnetic nanodisk in the magnetic vortex state in the presence of a magnetic field applied parallel to the film surfaces is studied theoretically. The superconductor is described by London theory [G. Carneiro, Phys. Rev. B 69, 214504 (2004)] and the nanodisk by the Landau-Lifshitz continuum theory

  5. VORTEX SHEETS, VORTEX RINGS, AND A MESOCYCLONE David S. Nolan*

    E-print Network

    Nolan, David S.

    14.1 VORTEX SHEETS, VORTEX RINGS, AND A MESOCYCLONE David S. Nolan* Division of Meteorology, the generation of vertical vorticity is symmetric about the shear vector, and two symmetric rotating storms are generated. However, it is much more often the case that the wind vector turns clockwise with height (in

  6. Using a nuclear submarine for Arctic research

    NASA Astrophysics Data System (ADS)

    Keigwin, Lloyd D.; Johnson, G. Leonard

    Oceanographers have been accused of not thinking big enough. Where is our Hubble Space Telescope? Where is our Superconducting Super Collider? Where is our project to map the human genome? An example of a highly successful “big” project in the marine sciences is the Ocean Drilling Program, currently funded at about $42 million per year. That effort is small by comparison to big projects in astronomy and in highenergy physics.Ocean-ice-atmosphere interactions in polar regions play a major role in driving deep ocean circulation and in regulating Earth's climate, and Arctic regions in particular are expected to be the first to respond to the predicted global warming. Despite the fundamental importance of polar regions to the habitability of planet Earth, most oceanographers have used only the most inefficient methods for exploring the ocean beneath the ice: drifting on floating ice camps and bashing through the ice with ice breakers. Neither of these methods is an effective way to explore a feature as large and as physiographically varied as the Arctic basin.

  7. Building AN International Polar Data Coordination Network

    NASA Astrophysics Data System (ADS)

    Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We discuss remaining challenges. Lastly, to establish a sustainable Arctic Data Coordination Network (ADCN) as part of a broader polar Network will require adequate continued resources. We conclude by outlining proposed business models for the emerging Arctic Data Coordination Network and a broader polar Network.

  8. Interdisciplinary cooperation on impacts of climate change in the Arctic

    NASA Astrophysics Data System (ADS)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.

  9. Arctic Climate Curriculum, Activity 1: Exploring the Arctic

    NSDL National Science Digital Library

    Karin Kirk

    Part A: What is the Arctic? (time in classroom required: two 45-minute class periods) In this activity students brainstorm their knowledge about the Arctic and build a concept map of different aspects of the Arctic environment. Students try to define the Arctic and after peer-review correct their definitions. Assessments: Concept Maps, Peer-review of Definition of Arctic, Worksheet questions Part B: A Virtual Trip to the Arctic (time in classroom required: two 45-minute class periods) Students take a virtual tour of the Arctic and Arctic research sites using Google Earth. Assessments: Google Earth kmz files, worksheet questions, Thinking Further questions Part C: Collecting Your Own Meteorological Data (time in classroom required: two to three 45-minute class periods) Students conduct hands-on experiments measuring albedo, relative humidity, and soil temperature using simple classroom methods. In this jigsaw activity, they regroup and analyze the data in teams and discuss questions that have them think further. Then they research and identify scientific instruments at the Eureka Arctic meteorological tower. Assessments: Data collection sheets, responses to discussion questions Extension Activity I: Using ImageJ for Albedo Measurements (time required: one 45-minute class period) Students use ImageJ, a free image processing software, to measure albedo digitally on images of their own choice. Assessment: Estimated and measured albedo values

  10. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating the shortcomings of current climate models in the projections of future climate change and feedback mechanisms at high latitudes. Interactions and feedbacks between clouds, sea ice, and various atmospheric circulation patterns in the Arctic are also investigated based on multi-decadal satellite products, including cloud characteristics and radiation fluxes from the MODerate resolution Imaging Spectroradiometer (MODIS) data and the APP-x dataset, sea ice products from Special Sensor Microwave/Imager (SSM/I), and various atmospheric parameters from reanalysis data sets. Results demonstrate that changes in sea ice concentration and cloud cover played major roles in the magnitude of recent Arctic surface temperature trends. Interactions between sea ice and clouds are strong, such that recent shrinking of sea ice extent might influence future cloud cover changes. Not surprisingly, cloud cover is also affected by changes in large-scale atmospheric circulation patterns. Quantitative analyses of the relationships between trends in these parameters provide new insight into polar climates.

  11. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  12. Enhancing NASA'S Contribution to Arctic Sea Ice and Ocean Studies

    NASA Astrophysics Data System (ADS)

    Steele, M.; Elfring, C.; Holt, B.

    2001-12-01

    In a recent report by the National Academies, an interdisciplinary committee assessed NASA's polar geophysical datasets in the context of the science questions driving the Earth Science Enterprise (ESE) and other avenues of polar research. The report examines data sets in terms of the major ESE themes: ongoing changes in polar climate and the biosphere, forcings of the polar climate system, responses and feedbacks to the forcing, consequences of change in the polar regions, and prediction of such changes. It includes a matrix of science needs and available data sets and, from that, identifies high-priority measurement needs, many of which are directly relevant to Arctic sea ice and ocean studies. The greatest overall needs are improved measurements of polar precipitation, surface albedo, freshwater discharge from terrestrial regions, surface temperatures and turbulent fluxes, permafrost extent and dynamics, ocean salinity, ice sheet mass flux, land surface characteristics, and sea ice thickness. Some sea ice and polar ocean data sets are in relatively good shape. An example is sea ice concentration, although summer values are still questionable. Another example is sea ice velocity, obtained by both satellites and buoys. On the other hand, some data sets are still quite poor. An example is sea ice thickness, although recent preliminary work indicates this may be measurable via satellites. Sea surface temperature (SST) observations from satellites require special in situ calibration at low SST. Sea surface salinity (SSS) is not currently observed from satellites, although efforts are now underway to do this. However, the precision of this measurement is relatively low, and is worst at low SST. This is particularly unfortunate given the crucial role that SSS plays in the Arctic freshwater budget and in the Arctic (and indeed the global) thermohaline circulation.

  13. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  14. Dynamic modeling of vortex levitation

    Microsoft Academic Search

    Xin Li; Kenji Kawashima; Toshiharu Kagawa

    2008-01-01

    Vortex levitation can achieve non-contact handling by blowing air into a vortex cup through a tangential nozzle to generate a swirling air flow. In this paper, its dynamic characteristics are analyzed through dynamic pressure response, and a dynamic modeling is developed and verified experimentally. First, we observe the pressure dynamic response inside the cup by making the cup and the

  15. Vortex Shedder Fluid Flow Sensor

    Microsoft Academic Search

    Lawrence C. Lynnworth; Ram Cohen; Joseph L. Rose; Jin O. Kim; Edward R. Furlong

    2006-01-01

    This paper was motivated by the possibility of extracting from a vortex-shedding strut, in addition to flow velocity V, information on fluid density rho or temperature T, and combining them to obtain mass flowrate. Shedder shapes were diamond and bluff polygon. These shapes are compared as vortex shedders in flowing air or water. V is obtained from the shedding frequency

  16. VORTEX BREAKDOWN INCIPIENCE: THEORETICAL CONSIDERATIONS

    E-print Network

    Erlebacher, Gordon

    or momentum or heat exchange; or destructive, as in degradation of aerodynamic performance. Vortex breakdown interest, vortex breakdown has important technological applications, both aerodynamic and non­ aerodynamic. There is a tendency for the breakdown to migrate back and forth in the test section or on the aerodynamic surface

  17. Experiments in superconducting vortex avalanches

    Microsoft Academic Search

    E. Altshuler; T. H. Johansen; Y. Paltiel; P. Jin; K. E. Bassler; O. Ramos; G. F. Reiter; E. Zeldov; C. W. Chu

    2004-01-01

    We detect vortex avalanches in superconducting Nb when an external field is slowly ramped up. Through the combination of micro-Hall probe magnetometry and Magneto-optical imaging, we are able to visualize the magnetic field “landscape” where the “local” vortex avalanches take place. We measure the avalanche size statistics at several locations in the magnetic landscape, comprising a number of events orders

  18. Trailing vortex-pair instability

    Microsoft Academic Search

    Jai Prakash Narain; Mahinder S. Uberoi

    1973-01-01

    The instability of a vortex-pair to infinitesimal disturbances is studied in the inviscid and incompressible fluid approximations. The cores of the vortices contain uniform axial-velocity jets of fluid density different from that of the surrounding medium. In one model a nonrotating core with surrounding potential vortex is assumed, and in the other a uniformly rotating core. In the lowest order

  19. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O. (76 Beaver Rd., Reading, MA 01867)

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  20. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  1. Vertical profiles of N2O5 along with CH4, N2O, and H2O in the late Arctic winter retrieved from MIPAS-B infrared limb emission measurements

    Microsoft Academic Search

    G. Wetzel; T. von Clarmann; H. Oelhaf; H. Fischer

    1995-01-01

    Vertical profiles of N2O5, CH4, N2O, and H2O inside the arctic vortex were retrieved from nighttime infrared limb emission spectra obtained during a flight of the Michelson interferometer for passive atmospheric sounding, balloonborne version (MIPAS-B) Fourier spectrometer from Kiruna (Sweden, 68°N) on March 14\\/15, 1992, as part of the European Arctic Stratospheric Ozone Experiment. Spectra were analyzed by a nonlinear

  2. Evidence for extreme climatic warmth from late cretaceous arctic vertebrates

    PubMed

    Tarduno; Brinkman; Renne; Cottrell; Scher; Castillo

    1998-12-18

    A Late Cretaceous (92 to 86 million years ago) vertebrate assemblage from the high Canadian Arctic (Axel Heiberg Island) implies that polar climates were warm (mean annual temperature exceeding 14 degreesC) rather than near freezing. The assemblage includes large (2.4 meters long) champsosaurs, which are extinct crocodilelike reptiles. Magmatism at six large igneous provinces at this time suggests that volcanic carbon dioxide emissions helped cause the global warmth. PMID:9856943

  3. Arctic & Antarctic Activity Book

    E-print Network

    R A C U V B U O R C A E E M F G J K L I R O P A F D R D L U H A R P S E A L B O W N S L L E I C I M seal Lemmings Orca King crab Walrus Arctic tern Ptarmigan Musk Ox Sculpin Cod Brittle star Black fly

  4. Yearly Arctic Temperature Anomaly

    NSDL National Science Digital Library

    Cindy Starr

    2003-10-23

    This animation shows the yearly temperature anomaly over the Arctic region from 1981-82 through 2002-03. Years run from August 1 through July 31. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -7.0 to +7.0 degrees Celsius in increments of .25 degrees. (See color bar below)

  5. Convergenceof Vortex Methods for Weak Solutionsto the

    E-print Network

    Liu, Jian-Guo

    the structure of the approximate solutions generated by vortex methods. The aim of this paper is to proveConvergenceof Vortex Methods for Weak Solutionsto the 2-D Euler Equationswith Vortex SheetData JIAN-GUO LIU Temple University AND ZHOUPING XIN Courant Institute Abstract We prove the convergence of vortex

  6. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  7. Generated using version 3.2 of the official AMS LATEX template Relative Roles of Gravity and Planetary Waves in Vortex1

    E-print Network

    Birner, Thomas

    Generated using version 3.2 of the official AMS LATEX template Relative Roles of Gravity and Planetary Waves in Vortex1 Preconditioning Prior to Sudden Stratospheric Warmings2 John R. Albers, Thomas reanalysis data to evaluate the evolution of polar vortex geometry, planetary wave5 drag, and gravity wave

  8. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1993-01-01

    Physical properties of the stratospheric aerosol population are inferred from cloud-free SAGE II multiwavelength extinction measurements in the Antarctic during late summer (February/March) and spring (September/October, November). Seasonal changes in these properties are used to infer physical processes occurring in the Antarctic stratosphere over the course of the winter. The analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of aerosol redistribution through subsidence of the polar vortex air mass and sedimentation of large polar stratospheric cloud particles. The analysis also suggests that vortex processes are responsible for a significant downward transport of aerosol through the tropopause.

  9. Mercury in the marine environment of the Canadian Arctic: review of recent findings.

    PubMed

    Braune, Birgit; Chételat, John; Amyot, Marc; Brown, Tanya; Clayden, Meredith; Evans, Marlene; Fisk, Aaron; Gaden, Ashley; Girard, Catherine; Hare, Alex; Kirk, Jane; Lehnherr, Igor; Letcher, Robert; Loseto, Lisa; Macdonald, Robie; Mann, Erin; McMeans, Bailey; Muir, Derek; O'Driscoll, Nelson; Poulain, Alexandre; Reimer, Ken; Stern, Gary

    2015-03-15

    This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change. PMID:24953756

  10. Long-term measurements of Polar Stratospheric Clouds with the Esrange lidar

    NASA Astrophysics Data System (ADS)

    Achtert, Peggy; Tesche, Matthias; Blum, Ulrich

    2014-05-01

    Polar Stratospheric Clouds (PSCs) play a key role for ozone depletion in the polar stratosphere whose magnitude depends on the type of PSC and its lifetime and extent. PSCs are classified into three types (PSC Ia: nitric acid di- or trihydrate crystals, NAD or NAT; PSC Ib: supercooled liquid ternary solutions, STS; PSC II: ice) according to their particle composition and to their physical phase. This study presents long-term statistics of PSC occurrence from measurements with the lidar system at the Esrange Space Centre (68°N, 21°E), northern Sweden. The study gives an overview of the occurrence frequency of different PSC types in connection to the prevailing meteorological conditions for the northern hemispheric winters from 1996/97 to 2013/14. During these 18 years, most of the measurements were conducted in January. The geographical location of Esrange in the lee of the Scandinavian mountain range allows for the observation of a wide range of PSC growth conditions due to mountain-wave activity. The Esrange lidar data set contains hourly mean values of the parallel and perpendicularly polarized backscatter ratio and the linear particle depolarization ratio - all measured at 532 nm. These parameters are used for PSC classification. The lowest occurrence frequency is found for PSCs of type II (6% for the entire period). This low occurrence rate is reasonable since PSCs of type II are formed at temperatures below the ice-frost point. Such temperatures are rarely reached in the Arctic polar vortex. Most of the observations between 1997 and 2014 showed low particle depolarization ratios and low backscatter ratios according to which observed PSCs were classified as type Ib (47%) or mixtures (33%). The remaining 13% of the observation were classified as type Ia PSCs (NAT particles).

  11. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  12. Cooperative Neighbors on Arctic Diplomacy

    USGS Multimedia Gallery

    This photograph is of Canadian Coast Guard ship Louis S. St. Laurent alongside U.S. Coast Guard Cutter Healy in the Arctic Ocean. The U.S. and Canada are mapping the Arctic seafloor and gathering data to help define the outer limits of the continental shelf. Each country may exercise sovereign right...

  13. Absorption Properties of Arctic Aerosol

    Microsoft Academic Search

    R. Gao; J. P. Schwarz; D. A. Lack; R. Bahreini; K. D. Froyd; S. Lance; J. R. Spackman; W. Laurel A; D. W. Fahey; A. M. Middlebrook; P. R. Veres; C. A. Brock

    2009-01-01

    The Arctic region is highly sensitive to global climate change. Aerosols, especially their absorption properties, have a significant potential to affect climate forcing. Accurate knowledge of aerosol absorption is critical to derive a complete set of aerosol optical properties from remote radiance measurements. We present airborne observations obtained during the NOAA-sponsored Aerosol Radiation and Cloud Processes affecting Arctic Climate (ARCPAC)

  14. 6, 96559722, 2006 Arctic smoke

    E-print Network

    Boyer, Edmond

    Discussions Arctic smoke ­ record high air pollution levels in the European Arctic due to agricultural fires Institute for Air Research, Kjeller, Norway 2 University of California, Merced, USA 3 Alfred Wegener Institute, Bremerhaven, Germany 4 Meteorological Institute, Oslo, Norway 5 University of Maryland, Baltimore

  15. Bistatic lidar measurements of clouds in the Nordic Arctic region.

    PubMed

    Olofson, K Frans G; Witt, Georg; Pettersson, Jan B C

    2008-09-10

    Cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research in Andenes (69 degrees N, 16 degrees E), Norway. Measurements were performed at altitudes between 1.5 and 10.5 km, corresponding to scattering angles between 130 degrees and 170 degrees. The geometry, not restricted to the parallel or perpendicular laser polarization directions, gave a well-defined scattering angle, which together with polarization characterization, was used to investigate the scattering particles. The principles of the technique and the first results are presented together with an evaluation of the capabilities. PMID:18784783

  16. Vortex Core and Its Effects on the Stability of Vortex Flow over Slender Conical Bodies

    E-print Network

    Liu, Feng

    Vortex Core and Its Effects on the Stability of Vortex Flow over Slender Conical Bodies Jinsheng rather than temporal. Using the simplified separation-vortex flow model of Legendre,14 Huang and Chow15

  17. Arctic System Reanalysis: Call for Community Involvement

    Microsoft Academic Search

    David Bromwich; Ying-Hwa Kuo; Mark Serreze; John Walsh; Le-Sheng Bai; Michael Barlage; Keith Hines; Andrew Slater

    2010-01-01

    Arctic climate encompasses multiple feedbacks, the most important of which is the ice-albedo feedback. Enhanced Arctic changes, first recognized in the nineteenth century, increasingly are being observed across terrestrial, oceanic, atmospheric, and human systems, inspiring interdisciplinary research efforts, including the Study of Environmental Arctic Change (SEARCH) program, to understand the nature and future development of the Arctic system. In response

  18. Polar Lows: Mesocale Weather Systems in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Bromwich, David H.

    2004-03-01

    Ten expert authors have combined to provide a comprehensive summary of the status of knowledge, circa 2000, about ``polar lows'' in both polar regions. The term ``polar low'' is normally reserved for small but fairly intense maritime cyclones that dominantly form in the northern oceans during winter, as cold air crosses regions of sharp sea surface temperature gradients. This synthesis covers the full spectrum of mesoscale lows with a diameter less than 1000 km that occur in the Arctic and Antarctic poleward of the main polar front. These features typically form and develop in data-sparse areas, so heavy reliance is placed on satellite remote sensing and numerical modeling to describe and understand these storms. Only a small number of systems have been directly sampled by aircraft. A particularly strong and attractive aspect of this book is the plethora of satellite images that illustrate the wide range of cloud signatures. In the introductory Chapter 1, J. Turner, E. Rasmussen, and A. Carleton give a brief history of research, and follow this with discussion of the vexing problem of labeling, for which many different descriptions have been used (polar low, mesoscale cyclone, Arctic instability low, polar air depression, etc.). Satellite images are then presented, showing comma cloud, spiraliform, merry-go-round, instant occlusion, baroclinic wave, and warm core types of mesoscale cyclones. Chapter 2, by Rasmussen, K. Ninomiya, and Carleton, addresses the climatology of mesoscale cyclones in the Arctic and the Antarctic in relation to the physical factors that occur in these regions. For example, the ubiquitous katabatic winds near the Antarctic coastal slopes play a central role in generating low-level frontal zones just offshore that are key to mesoscale cyclogenesis in that area. The spatial and temporal variations of mesoscale cyclones are then related to the large-scale modes of atmospheric variability, such as the North Atlantic Oscillation and the El Niño-Southern Oscillation.

  19. Measurements of total depletion of ozone in the 2010-2011 Arctic winter lower stratosphere by MIPAS/ENVISAT using a 2D tomographic approach

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Castelli, E.; Viscardy, S.; Papandrea, E.; Errera, Q.; Carlotti, M.; Dinelli, B.

    2011-12-01

    We present observations of the 2010-2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. We adopted a full 2D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions. A well isolated stratospheric vortex extended the PSC season up to middle March, with consequent significant activation of heterogeneous chemistry and ozone destruction. Through inspection of MIPAS spectra, 84% of PSCs were identified as supercooled ternary solution (STS) or STS mixed with nitric acid trihydrate (NAT), 16% formed mostly by NAT particles, and only a few by ice. In the lower stratosphere, vortex average ozone showed a daily depletion rate reaching 100 ppbv/day and absolute values dropping to 0.6 ppmv (corresponding to a chemical loss from early winter greater than 80%). In early April, 10% of vortex measurements at 18 km altitude displayed total depletion of ozone. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification which further delayed the recovery of ozone in spring. Compared to MIPAS observed 2003-2010 Arctic winters, the lower stratospheric vortex in March had temperature 15 K lower than average, pressure measurements showed a contraction by up to 20% and HNO3 was 50% lower. This resulted in vortex ozone 50% lower than usual and the largest depletion ever observed.

  20. Conservation of Arctic Flora and Fauna (CAFF)

    NSDL National Science Digital Library

    1997-01-01

    Established in 1992 by nine countries, the Conservation of Arctic Flora and Fauna (CAFF) project aims "to conserve Arctic flora and fauna, their diversity and their habitats; to protect the Arctic ecosystem from threats; to seek to develop improved conservation management, laws, regulations and practices for the Arctic; to collaborate for more effective research, sustainable utilization and conservation; [and] to integrate Arctic interests into global conservation fora." To that end, the CAFF homepage describes its efforts in Arctic habitat and species conservation. Here users can access technical reports, publications, and project overviews. A beautiful color map of Protected Areas in the Circumpolar Arctic may be viewed or downloaded at the site.

  1. Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

    E-print Network

    Lindsay, Ron

    Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp R. W. Lindsay Polar Science Center, Applied Physics Laboratory, University 2002; published 19 June 2003. [1] In the polar oceans the ice thickness distribution controls

  2. Integrated multi vector vortex beam generator.

    PubMed

    Schulz, Sebastian A; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W

    2013-07-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10dB between different orbital angular momentum channels. PMID:23842399

  3. Integrated multi vector vortex beam generator

    NASA Astrophysics Data System (ADS)

    Schulz, Sebastian A.; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W.

    2013-07-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  4. Integrated multi vector vortex beam generator

    E-print Network

    Sebastian A. Schulz; Taras Machula; Ebrahim Karimi; Robert W. Boyd

    2013-06-28

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  5. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases.

    PubMed

    Zhou, Junxiao; Liu, Yachao; Ke, Yougang; Luo, Hailu; Wen, Shuangchun

    2015-07-01

    We propose a novel method for the generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases. In our scheme, the Airy beam is generated by the dynamic phase with a spatial light modulator, and the vortex phase or the vector polarization is modulated by the geometric phase with a dielectric metasurface. The modulation of the geometric phase provides an extra degree of freedom to manipulate the phase and the polarization of Airy beams. This scheme can be extended to generate any other types of optical beams with desirable phase and polarization. PMID:26125400

  6. The Contributions of Chemistry and Transport to Low Arctic Ozone in March 2011 Derived from Aura MLS Observations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Newman, P. A.

    2012-01-01

    Stratospheric and total columns of Arctic O3 (63-90 N) in late March 2011 averaged 320 and 349 DU, respectively. These values are 74 DU lower than averages for the previous 6 years. We use Aura MLS O3 observations to quantify the roles of chemistry and transport and find there are two major reasons for low O3 in March 2011: heterogeneous chemical loss and a late final warming that delayed the resupply of O3 until April. Daily vortex-averaged partial columns in the lowermost stratosphere (p greater than 133 hPa) and middle stratosphere (p less than 29 hPa) are unaffected by local heterogeneous chemistry and show a near total lack of transport into the vortex between late January and late March, contributing to the observed low column. The lower stratospheric (LS) column (133-29 hPa) is affected by both heterogeneous chemistry and transport. Low interannual variability of Aura MLS 0 3 columns and temperature inside the Arctic vortex (2004-2011) shows that the transport contribution to vortex O3 in fall and early winter is nearly the same each year. The descent of MLS N2O vortex profiles in 2011 provides an estimate of O3 transported into the LS column during late winter. By quantifying the role of transport we determine that PSC-driven chemical loss causes 80 (plus or minus 10) DU of vortex-averaged O3 loss by late March 2011. Without heterogeneous chemical loss, March 2011 vortex O3 would have been 40 DU lower than normal due to the late final warming and resupply of O3 which did not occur until April.

  7. Recent warming leads to a rapid borealization of fish communities in the Arctic

    NASA Astrophysics Data System (ADS)

    Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.

    2015-07-01

    Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.

  8. Impacts of projected sea ice changes on trans-Arctic navigation

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  9. AURORA BOREALIS: a polar-dedicated European Research Platform

    Microsoft Academic Search

    Bonnie Wolff-Boenisch; Paul Egerton; Joern Thiede; Azzolini Roberto; Lester Lembke-Jene

    2010-01-01

    Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to

  10. Observationally based assessment of polar amplification of global warming

    E-print Network

    Bhatt, Uma

    Observationally based assessment of polar amplification of global warming Igor V. Polyakov,1) are similar, and do not support the predicted polar amplification of global warming. The possible moderating amplification of global warming. Intrinsic arctic variability obscures long-term changes, limiting our ability

  11. Arctic Research Mapping Application 3D Geobrowser: Accessing and Displaying Arctic Information From the Desktop to the Web

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gonzalez, J.; Brady, J. J.; Gaylord, A.; Manley, W. F.; Cody, R.; Dover, M.; Score, R.; Garcia-Lavigne, D.; Tweedie, C. E.

    2009-12-01

    ARMAP 3D allows users to dynamically interact with information about U.S. federally funded research projects in the Arctic. This virtual globe allows users to explore data maintained in the Arctic Research & Logistics Support System (ARLSS) database providing a very valuable visual tool for science management and logistical planning, ascertaining who is doing what type of research and where. Users can “fly to” study sites, view receding glaciers in 3D and access linked reports about specific projects. Custom “Search” tasks have been developed to query by researcher name, discipline, funding program, place names and year and display results on the globe with links to detailed reports. ARMAP 3D was created with ESRI’s free ArcGIS Explorer (AGX) new build 900 providing an updated application from build 500. AGX applications provide users the ability to integrate their own spatial data on various data layers provided by ArcOnline (http://resources.esri.com/arcgisonlineservices). Users can add many types of data including OGC web services without any special data translators or costly software. ARMAP 3D is part of the ARMAP suite (http://armap.org), a collection of applications that support Arctic science tools for users of various levels of technical ability to explore information about field-based research in the Arctic. ARMAP is funded by the National Science Foundation Office of Polar Programs Arctic Sciences Division and is a collaborative development effort between the Systems Ecology Lab at the University of Texas at El Paso, Nuna Technologies, the INSTAAR QGIS Laboratory, and CH2M HILL Polar Services.

  12. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada) [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States) [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan) [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)] [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  13. Vortex gas lens

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  14. Holographic Vortex Coronagraph

    NASA Technical Reports Server (NTRS)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  15. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Benitez-Nelson, Bryan; Kaiser, Karl; Amon, Rainer M. W.

    2004-03-01

    Soils in the drainage basins of Arctic rivers are a major global reservoir of aged organic carbon. The fate of this old carbon is of growing concern as the effects of climate change become more evident in the Arctic. We report natural abundance 14C data indicating that dissolved organic carbon (DOC) from several Eurasian and North American rivers is predominantly young and largely derived from recently-fixed C in plant litter and upper soil horizons. Concentrations of dissolved lignin phenols, unique organic tracers of terrestrial plant material, and 14C content in DOC were strongly correlated throughout the Arctic Ocean, indicating terrigenous DOC is mostly young and widely distributed in polar surface waters. These young ages of terrigenous DOC in rivers and the ocean indicate little of the old carbon stored in Arctic soils is currently being mobilized in the dissolved component of continental runoff.

  16. A Vacation to the Polar Regions

    NSDL National Science Digital Library

    In this lesson plan students will learn about the characteristics of the Arctic and Antarctic by looking at a globe and at pictures of the polar landscape and animals. They will plan a vacation to one of these regions and draw pictures or write stories depicting themselves on the trip.

  17. Volume and freshwater transports through the Canadian Arctic Archipelago-Baffin Bay system

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2011-08-01

    Baffin Bay connects the Arctic Ocean and the Labrador Sea. It receives Polar water through the Canadian Arctic Archipelago and by the West Greenland Current. The Polar water is, after transformation, exported through Davis Strait. With control sections both upstream and downstream Baffin Bay invites the use of an idealized geostrophic approach to estimate transports. The baroclinic transports, driven by the density differences between the Arctic Ocean and Baffin Bay, are first determined. The density and upper layer depth are assumed the same in Lancaster Sound, Nares Strait and the West Greenland Current. Once the baroclinic transports are estimated the sea level difference between the Arctic Ocean and Baffin Bay is computed. Next the upper layer depth in Nares Strait and the West Greenland Current is reduced, while the sea level difference is kept constant. This allows for deep inflows through Nares Strait and the West Greenland Current. To establish a deep outflow through Davis Strait a "barotropic" sea level slope between the Arctic Ocean and the Labrador Sea is estimated from two "ideal" water columns. The transports are computed for different salinities in the Polar water and the salinity giving mass balance in the deeper layers is determined. The effects of possible increased melting of the Greenland icecap are examined. If the meltwater is added directly to Baffin Bay the effects are small, but if it is incorporated in the East and West Greenland Current a significant reduction of the outflow through the Archipelago might occur.

  18. Arctic Sea Ice and Its Changes during the Satellite Period

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, Y.; Key, J. R.

    2009-12-01

    Sea ice is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect the complex exchanges of momentum, heat, and mass between sea and the atmosphere, along with profound socio-economic influences due to its role in transportation, fisheries, hunting, polar animal habitat. Over the last two decades of the 20th century, the Arctic underwent significant changes in sea ice as part of the accelerated global warming of that period. More accurate, consistent, and detailed ice thickness, extent, and volume data are critical for a wide range of applications including climate change detection, climate modeling, and operational applications such as shipping and hazard mitigation. Satellite data provide an unprecedented opportunity to estimate and monitor Arctic sea ice routinely with relatively high spatial and temporal resolutions. In this study, a One-dimensional Thermodynamic Ice Model (OTIM) has been developed to estimate sea ice thickness based on the surface energy balance at a thermo-equilibrium state, containing all components of the surface energy balance. The OTIM has been extensively validated against submarine Upward-Looking Sonar (ULS) measurements, meteorological station measurements, and comprehensive numerical model simulations. Overall, OTIM-estimated sea ice thickness is accurate to within about 20% error when compared to submarine ULS ice thickness measurements and Canadian meteorological station measurements for ice less than 3 m. Along with sea ice extent information from the SSM/I, the Arctic sea ice volume can be estimated for the satellite period from 1984 to 2004. The OTIM has been used with satellite data from the extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) products for the Arctic sea ice thickness, and sequentially sea ice volume estimations, and following statistical analysis of spatial and temporal distribution and trends in sea ice extent, thickness, and volume over the satellite period has been performed. The preliminary results show clear evidence that the Arctic sea ice has been experiencing significant changes over the past two decades of the 20th century. The Arctic sea ice has been shrinking unexpected fast since 1997, the declines in sea ice extent, thickness, and volume are apparent in fall season. The accelerated changes in the Arctic sea ice since the 20thcentury should be paid extensive attention for the global warming study

  19. Mathematical analysis of vortex dynamics

    NASA Astrophysics Data System (ADS)

    Caflisch, Russel E.

    This review paper discusses the mathematical theory of vortex dynamics for incompressible, inviscid flow in two and three dimensions. The surveyed results include existence and uniqueness of time-dependent solutions, instability and singularity formation, convergence of numerical methods, and existence and stability of steady states. A simple integral formulation for the evolution of a three dimensional vortex sheet and a variational principle for the Batchelor flow problem are presented.

  20. Coal burning leaves toxic heavy metal legacy in the Arctic

    SciTech Connect

    McConnell, J.R.; Edwards, R. [Desert Research Institute, Reno, NV (United States)

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximate to 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  1. JPL Polar Oceanography Group

    NSDL National Science Digital Library

    The Jet Propulsion Laboratory's Polar Oceanography Group utilizes "satellite microwave remote sensing data and in-situ methods to understand the climate-induced variability in sea-ice and land-ice on seasonal to interannual time scales." Research conducted by the group is mainly concerned with Arctic Sea Ice, Antarctic Sea Ice, and Ice Sheets. "The principal thrust of this research is to understand the role of the polar oceans in controlling or regulating global climate." A data products section includes online data for sea ice melt detection and ice drift and ice motion data. The excellent publications section offers online copies (.pdf) of the group's work dating from 1989 to current publications that are in press. The site also provides news, contacts, and links.

  2. Arctic Late Cretaceous and Paleocene Plant Community Succession

    NASA Astrophysics Data System (ADS)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes and ferns, with some subordinate conifers, make up a persistent raised mire climax community that is most widely developed in late Albian, Cenomanian and Campanian times, with the Campanian exhibiting particularly high levels of bryophyte diversity; (10) general Cretaceous SPC characteristics were maintained into the Paleocene due to migrations from northeastern Russia into the more northerly northern Alaska and the lack of high levels of extinction. The earliest Paleocene communities are, however, poorly understood as yet and temporarily may have had a different character. These observations attest to Arctic vegetation displaying persistent structure and dynamics despite a general late Cretaceous cooling trend and events at the Cretaceous-Paleocene transition.

  3. Continuous measurements of Arctic boundary layer aerosol physical and optical properties

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Lihavainen, H.; Laurila, T. J.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Reshetnikov, A.; Ivakhov, V.; Uttal, T.; Makshtas, A. P.

    2013-12-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded on the shore of the Arctic Ocean, in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71_360N; 128_530E) has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol particle physical and optical properties. Measurements were initiated in summer 2010 and further extended in summer 2013. Together with the FMI measurements in Pallas GAW station in northern Finland since 1999, these complete our understanding on the Arctic aerosol annual cycles and allow for infer their climatic impacts. Here, we will present the annual cycle of Arctic aerosol concentrations, which is characterized by winter minimum and spring and summer maxima. We will show the most important Arctic aerosol source regions and their variability with seasons. We will present the aerosol radiative forcing and compare these measured values with those provided by the current earth-system model calculations. In more detail we will look at the process of new particle formation, which takes frequently place at both the two stations and in particular in spring season, and estimate its impact on aerosol radiative properties.

  4. Arctic and Antarctic cells in the troposphere

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Wu, Kaijun; Liang, Haoyuan

    2015-05-01

    The three-cell model, including the Hadley, Ferrel, and Polar cells in each of two hemispheres, has been accepted for a long time and the strongest Hadley cell has been used to study the climate change in recent years. However, two questions, why the upper level flow of Ferrel cell does not match observations and how many cells exist in the two polar regions, still exist. Using three different reanalysis datasets for the last 30 years, this paper showed that there might be an additional cell in each of two polar regions. The analyses of meridional-vertical section streamline (MSS), meridional-mass stream function (MSF), and climatic vertical velocity provide some evidences to support the existence of the new Arctic and Antarctic cells located in the troposphere. Thus, an eight-cell model in the global troposphere is proposed in this study. The maximum intensity of the Hadley cell in the boreal winter indicated by MSF in the Northern Hemisphere (NH) is stronger than that of the Ferrel cell for about 4.8 times, so the upper level northeasterly wind of Ferrel cell is too weak to be detected when compared with the stronger southwesterly wind of the Hadley cell.

  5. Color characterization of Arctic Biological Soil Crusts

    NASA Astrophysics Data System (ADS)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano

    2015-04-01

    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  6. Organochlorine contaminants in arctic marine food chains: accumulation of specific polychlorinated biphenyls and chlordane-related compounds

    Microsoft Academic Search

    Derek C. G. Muir; Ross J. Norstrom; Mary Simon

    1988-01-01

    Polychlorinated biphenyl congeners (S-PCB) and chlordane-related compounds (S-CHLOR) as well as DDT, hexachlorocyclohexane, toxaphene, and chlorobenzenes were determined in pooled arctic cod (Boreogadus saida) muscle and polar bear (Ursus maritimus) fat and in the blubber and liver of 59 ringed seals (Phoca hispida) from the east-central Canadian Arctic. S-PCB concentrations ranged from 0.0037 mg\\/kg (wet wt) in cod muscle to

  7. Warm to cold polar climate transitions over the last 15,000 years: A paleoclimatology record from the raised beaches of northern Norway

    SciTech Connect

    Fletcher, C.H. (Univ. of Hawaii, Honolulu (United States)); Fairbridge, R.H. (NASA-Goddard Inst. for Space Studies, New York, NY (United States)); Moeller, J.K. (Univ. of Tromso (Norway)); Long, A.J. (Univ. of Durham (United Kingdom))

    1991-03-01

    Because of the strength of the cold, dry arctic high pressure vortex, and the absence of multiple air-mass sources, climate records from the polar region tend to display a cleaner signal than those from mid-latitude settings. The high arctic presents unique opportunities for the prediction of the natural background pattern of climate change prior to the disturbances generated by manmade atmospheric pollutants. The Varanger Peninsula of northernmost Norway was extensively depressed by an ice dome during the last glacial stage. Deglaciation was accompanied by isostatic recovery at a steady though exponentially decaying rate. Superimposed on the rising land is a discontinuous staircase of cobble beach ridges, deposited during the postglacial period by storms at the coast. The ridges are constructed during brief episodes of weather- and tide-related elevation of sea level and wave run-up. Storminess periods can only occur in the absence of sea ice associated with several decades of mild, relatively warm temperatures. A history of local relative sea level is constructed from over 70 radiocarbon dates of various water-level indicators. The sea-level history is used to construct a chronology of beach-ridge building that documents the cyclic, a periodic nature of arctic storminess conditions. The authors date a dynamic signal with multiple climate transitions from warm, stormy conditions to cool, calm conditions occurring roughly every 200 years between 15,000 years ago to 10,000 years ago. Throughout the Holocene the climate is more settled with longer periods separating the major warm to cool transitions.

  8. The Arctic lithosphere: an overview

    NASA Astrophysics Data System (ADS)

    Drachev, S.; Pease, V.; Stephenson, R.

    2012-04-01

    The Arctic is comprised of three deepwater oceanic basins, the Norwegian-Greenland, Eurasia, and Amerasia basins, surrounded by continental masses of the Achaean to Early Proterozoic North American, Baltica and Siberian cratons and intervening Neoproterozoic and Phanerozoic fold belts. Though the tectonic history of the Arctic continental realm spans almost three billions of years, the formation of the Arctic began with the creation of Pangaea-II supercontinent at end of Permian epoch. Between 250 and 150 Ma the Proto-Arctic was represented by the Anyui Ocean, or Angayuchum Sea - a Paleo-Pacific embayment into Pangaea II. During the Mesozoic Pangaea II was destroyed and the Anyi Ocean was isolated from the Paleo-Pacific, finally leading to the separation of Arctic Alaska-Chukchi Microcontinent from the North American side of Laurasia; the collision of this microplate with the Siberian margin occurred at ca. 125 Ma in association with the opening of the Canada Basin. The final stage of the Arctic formation took place in the Cenozoic, and was related to the propagation of the divergent Atlantic lithospheric plate boundary between North America and Baltica with the separation of the Lomonosov continental sliver from the Eurasian margin and opening of the Eurasia oceanic basin between 56 and 0 Ma. The present-day Arctic, especially its shelves and oceanic basins, is one of the least studied places on the Earth. Though we know the geology of the surrounding continental masses, there are still many questions remaining about major lithospheric divides beneath the Arctic seas, such as: • Where are the plate boundaries associated with the Amerasia Basin? • How and when did the Canada Basin open? • What was the pre-drift setting of the Chukchi Borderland? • Which tectonic processes formed the East Siberian shelves? • How and when did the major ridges in the Amerasia Basin form? • Where are the Early Tertiary plate boundaries in the Arctic? • What is the relationship between segmentation of the Gakkel Ridge and ultra-slow spreading processes? • Has the axial geometry of the Gakkel Ridge changed since rifting? If not, why? • What structures connect seafloor spreading on the Gakkel Ridge to continental extension on the Laptev Shelf? • Where are the continuations of pre-Eocene orogens in the Arctic? • How do these crustal-scale discontinuities influence Arctic tectonic evolution? • How has this tectonic evolution affected the sedimentation history of the Arctic basins?

  9. Life strategy, ecophysiology and ecology of seaweeds in polar waters

    Microsoft Academic Search

    C. Wiencke; M. N. Clayton; I. Gómez; K. Iken; U. H. Lüder; C. D. Amsler; U. Karsten; D. Hanelt; K. Bischof; K. Dunton

    2007-01-01

    Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic\\u000a species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean\\u000a the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species

  10. Life strategy, ecophysiology and ecology of seaweeds in polar waters

    Microsoft Academic Search

    C. Wiencke; M. N. Clayton; I. Gómez; K. Iken; U. H. Lüder; C. D. Amsler; U. Karsten; D. Hanelt; K. Bischof; K. Dunton

    Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic\\u000a species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean\\u000a the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species

  11. Vortex wandering in grid turbulence

    NASA Astrophysics Data System (ADS)

    Pentelow, Steffen; Tavoularis, Stavros

    2013-11-01

    The tip vortex of a square-tipped NACA 0012 wing at an angle of attack of 5° was investigated in a water tunnel. The chord length was c = 180 mm and the chord-based Reynolds number was 25000. Cases with three free-stream conditions were examined: unobstructed flow with a transverse fluctuation intensity (in the free-stream at the wing-tip plane) u2' /U? = 2 . 3 % ``small-grid'' turbulence with u2' /U? = 3 . 5 % and a transverse integral length scale L2 = 0 . 063 c ; and ``large-grid'' turbulence with u2' /U? = 5 . 3 % and L2 = 0 . 078 c . Velocity maps were obtained on several transverse planes using stereo particle image velocimetry and three-dimensional, time-dependent vortex wandering was resolved using flow visualisation of fluorescent dye injected into the vortex at the wing tip. The results quantify the effect of turbulence on the amplitude, frequency and wavelength of the vortex wandering motion, as well as on the axial and azimuthal velocity variations within the vortex. The tip vortex of a square-tipped NACA 0012 wing at an angle of attack of 5° was investigated in a water tunnel. The chord length was c = 180 mm and the chord-based Reynolds number was 25000. Cases with three free-stream conditions were examined: unobstructed flow with a transverse fluctuation intensity (in the free-stream at the wing-tip plane) u2' /U? = 2 . 3 % ``small-grid'' turbulence with u2' /U? = 3 . 5 % and a transverse integral length scale L2 = 0 . 063 c ; and ``large-grid'' turbulence with u2' /U? = 5 . 3 % and L2 = 0 . 078 c . Velocity maps were obtained on several transverse planes using stereo particle image velocimetry and three-dimensional, time-dependent vortex wandering was resolved using flow visualisation of fluorescent dye injected into the vortex at the wing tip. The results quantify the effect of turbulence on the amplitude, frequency and wavelength of the vortex wandering motion, as well as on the axial and azimuthal velocity variations within the vortex. Supported by NSERC.

  12. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    PubMed

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay

  13. Modelling of dynamics of vortex reversal in nanodisc of cobalt

    NASA Astrophysics Data System (ADS)

    Dzienisiuk, U.; Kisielewski, M.; Maziewski, A.

    2013-11-01

    By micromagnetic simulations, the dynamic of vortex-core-polarization reversal under the influence of an in-plane oriented magnetic field pulse has been examined for a 3 nm thick cobalt disc. The results are summarized in a diagram showing the range of both pulse strength and pulse width, which should be used in the aim to force a controlled toggle switch of the core of vortex in discs of diameter varying from 90 nm to 180 nm. Typical values of these parameters are the following: pulse width is in the range of one-tenth of nanosecond and pulse strength is in the range of hundred mT. The smaller disc diameter, the more right-side-limited range of pulse width. The obtained results are qualitatively similar to previously reported ones for a 200 nm diameter and 20 nm thick Permalloy discs (R. Hertel, S. Gliga, M. Fa¨hnle, C. M. Schneider, Physical Review Letters 98 (2007) 117201).

  14. Improving vector vortex waveplates for high-contrast coronagraphy.

    PubMed

    Nersisyan, Sarik R; Tabiryan, Nelson V; Mawet, Dimitri; Serabyn, Eugene

    2013-04-01

    Vector vortex waveplates (VVWs) open the door to new techniques in stellar coronagraphy and optical communications, but the performance of currently available liquid-crystal-polymer-based VVWs tends to be limited by defects in the axial region of the vortex pattern. As described here, several steps allow for a reduction in the size of such axial defects, including the use of photoalignment materials with high photosensitivity and reversible response, and a reduction in exposure energy. Moreover, redistributing the writing beam's intensity from the axial region to its periphery (using a VVW) allows the production of large area VVWs with a small defect area. Finally, using VVWs as linear to axial polarization converters allows producing VVWs of higher topological charge, while also reducing the photoalignment time to a few minutes. These steps have allowed the fabrication of VVWs with topological charges of 1 and 2 with central defect sizes below 3 ?m. PMID:23571910

  15. Modeling Arctic sea ice with an efficient plastic solution Jinlun Zhang and Drew Rothrock

    E-print Network

    Zhang, Jinlun

    Modeling Arctic sea ice with an efficient plastic solution Jinlun Zhang and Drew Rothrock Polar, Seattle Abstract. A computationally efficient numerical method is developed for solving sea ice momentum the equations. The ADI method for modeling sea ice dynamics is dynamically consistent since it rapidly

  16. Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago

    Microsoft Academic Search

    Paul B. Hamilton; Konrad Gajewski; David E. Atkinson; David R. S. Lean

    2001-01-01

    The physical and chemical limnology of 204 lakes from across the Canadian Arctic Archipelago was examined. Mean summer air temperature did not correlate well with lake chlorophyll levels due to the predominance of ultra-oligotrophic hard-water lakes located in a polar climate. Local geology influences ion budgets and is an important factor in determining pelagic phosphorus availability, carbon cycling and metal

  17. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment

    Microsoft Academic Search

    Dorothy Koch; James Hansen

    2005-01-01

    Black carbon (BC) particles, derived from incomplete combustion of fossil fuels and biomass, may have a severe impact on the sensitive Arctic climate, possibly altering the temperature profile, cloud temperature and amount, the seasonal cycle, and the tropopause level and accelerating polar ice melting. We use the Goddard Institute for Space Studies general circulation model to investigate the origins of

  18. Recent, unprecedented, arctic ozone losses: climate change or large interannual variability?

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Polvani, L. M.

    2012-04-01

    The record ozone loss over the Arctic in the spring of 2011 [e.g., Manney et al., 2011] highlights the importance of a detailed understanding of the connection between cold polar temperatures, polar stratospheric clouds (PSCs) and column ozone. Several studies have analyzed the empirical relationship between PSC volume (Vpsc) and ozone loss in the Arctic [e.g., Rex et al., 2006], and put forward the hypothesis that the coldest Arctic winters are getting colder and therefore anomalous ozone losses in the Arctic are likely to increase in the coming decades. In the present study we analyze trends and variability in polar temperatures, Vpsc and column ozone, using both reanalysis products (ERA40, MERRA) and numerical model output (from selected models participating in the Chemistry-Climate Model Validation Activity). Beyond considering mean values, we employ a variety of statistical measures for extremes (i.e., high quantiles) in order to identify possible changes in the frequency distribution of polar temperatures and Vpsc, and attempt to determine whether the recent occurrences of record ozone loss are indicative of statistically significant trends or simply a reflection of large natural variability.

  19. Looking for little green bugs and methane in the Canadian high Arctic. (Invited)

    Microsoft Academic Search

    L. Whyte; T. Niederberger; N. Perreault; N. Mykytczuk; B. Sherwood Lollar; T. C. Onstott; D. T. Andersen; W. H. Pollard; C. Greer

    2010-01-01

    The primary targets for astrobiology investigations of other solar system bodies are Mars as well as Europa and Enceladus. Extremely cold temperatures characterize these targets, and as such, the best terrestrial analogues may be the Earth's polar regions; the Canadian high Arctic offers several unique cryoenvironments that resemble the conditions that are known, or are suspected, to exist on Mars.

  20. Evaluation of an AVHRR Cloud Detection and Classification Method over the Central Arctic Ocean

    Microsoft Academic Search

    Dan Lubin; Esther Morrow

    1998-01-01

    A cloud classification method that uses both multispectral and textural features with a maximum likelihood discriminator is applied to full-resolution AVHRR (Advanced Very High Resolution Radiometer) data from 100 NOAA polar-orbiter overpasses tracked from an icebreaker during the 1994 Arctic Ocean Section. The cloud classification method is applied to the 32 × 32 pixel cell centered about the ship's position

  1. Engaging Students in Science Courses: Lessons of Change from the Arctic

    ERIC Educational Resources Information Center

    Duffy, Lawrence K.; Godduhn, Anna; Fabbri, Cindy E.; van Muelken, Mary; Nicholas-Figueroa, Linda; Middlecamp, Catherine Hurt

    2011-01-01

    Where you live should have something to do with what you teach. In the Arctic, the idea of place-based education--teaching and sharing knowledge that is needed to live well--is central to the UARCTIC consortium and the 4th International Polar Year educational reform effort. A place-based issue oriented context can engage students in chemistry…

  2. A synopsis of CALIPSO Polar Stratospheric Cloud Observations from 2006-2014

    NASA Astrophysics Data System (ADS)

    Pitts, Michael C.; Poole, Lamont R.

    2014-10-01

    Polar stratospheric clouds (PSCs) are known to play key roles in the springtime chemical depletion of ozone at high latitudes. PSC particles provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation, which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIOP began data collection in mid-June 2006 and has since acquired, on average, over 300,000 backscatter profiles daily at latitudes between 55° and 82° in both hemispheres. PSCs are detected in the CALIOP backscatter profiles as enhancements above the background aerosol in either 532-nm scattering ratio (the ratio of total-to-molecular backscatter) or 532-nm perpendicular-polarized backscatter. CALIOP PSCs are separated into composition classes based on the ensemble 532- nm scattering ratio and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we provide an overview of the CALIOP PSC measurements and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than eight-year data record.

  3. Arctic Sea Ice Satellite Observations

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2008-01-17

    In this interactive activity produced for Teachers' Domain, learn how Arctic sea ice has changed over the past 25 years in terms of maximum winter extent, concentration, and the timing of breakup each spring.

  4. Climate change and Arctic parasites.

    PubMed

    Dobson, Andy; Molnár, Péter K; Kutz, Susan

    2015-05-01

    Climate is changing rapidly in the Arctic. This has important implications for parasites of Arctic ungulates, and hence for the welfare of Arctic peoples who depend on caribou, reindeer, and muskoxen for food, income, and a focus for cultural activities. In this Opinion article we briefly review recent work on the development of predictive models for the impacts of climate change on helminth parasites and other pathogens of Arctic wildlife, in the hope that such models may eventually allow proactive mitigation and conservation strategies. We describe models that have been developed using the metabolic theory of ecology. The main strength of these models is that they can be easily parameterized using basic information about the physical size of the parasite. Initial results suggest they provide important new insights that are likely to generalize to a range of host-parasite systems. PMID:25900882

  5. Fresh Water in the Arctic

    NSDL National Science Digital Library

    NBC Learn

    2010-10-07

    Scientists are watching the Arctic Ocean closely, and measuring the growing amount of fresh water to see how it could affect the Earth's climate. "Changing Planet" is produced in partnership with the National Science Foundation.

  6. Spread of denitrification from 1987 Antarctic and 1988-1989 Arctic stratospheric vortices

    NASA Technical Reports Server (NTRS)

    Tuck, A. F.; Fahey, D. W.; Loewenstein, M.; Podolske, J. R.; Kelly, K. K.; Hovde, S. J.; Murphy, D. M.; Elkins, J. W.

    1994-01-01

    Vertical profiles of N2O and NO(y) taken by the ER-2 outside the vortex are used to construct average vertical profiles of F(NO(y)) = NO(y)/(A-N2O), where A is the tropospheric content of N2O three years prior to the measurements. The southern hemisphere had less nitrous oxide in the range 400 less than Theta less than 470 K, by up to 25% relative to the northern hemisphere. F(NO(y)) is the ratio of NOy produced to N2O lost in a stratospheric air mass since entry from the troposphere. The profiles of F(NO(y)) have the following characteristics: (1) Relative to 1991-1992, a year without denitrification inside or outside the vortex, the northern hemisphere in 1988-1989 showed denitrification outside the vortex ranging up to 25% and averaging 17% above Theta = 425 K. (2) Relative to the northern hemisphere in 1991-1992, the southern hemisphere in 1987 showed denitrification outside the vortex ranging up to 32% and averaging 20% above Theta = 400 K. (3) Below Theta = 400 K the southern hemisphere showed enhancements of F(NO(y)) relative to the northern hemisphere in 1991-1992 ranging up to 200% at Theta = 375 K, outside the vortex. Corresponding profiles of residual water, R(H2O) = H2O - 2(1.6 - CH4), are considered and shown to be consistent with those of F(NO(y)) in the sense that they show deficits outside the Antarctic vortex, which was both dehydrated and denitrified, but not outside the 1988-1989 Arctic vortex, which was denitrified but not dehydrated. R(H2O) is the water content of stratospheric air with the contribution from methane oxidation subtracted. Comparison of F(NO(y)) and R(H2O) below 400 K outside the Antarctic vortex leads to the suggetion that dehydration in the Antarctic vortex occurs by the sedimentation of ice crystals large enough to fall out of the stratosphere, whereas denitrification occurs mainly on mixed nitric acid-water crystals which evaporate below the base of the vortex at Theta = 400 K but above the tropopause.

  7. Gravity waves from vortex dipoles and jets 

    E-print Network

    Wang, Shuguang

    2009-05-15

    The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

  8. Congruent responses to weather variability in high arctic herbivores.

    PubMed

    Stien, Audun; Ims, Rolf A; Albon, Steve D; Fuglei, Eva; Irvine, R Justin; Ropstad, Erik; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif Egil; Veiberg, Vebjørn; Yoccoz, Nigel G

    2012-12-23

    Assessing the role of weather in the dynamics of wildlife populations is a pressing task in the face of rapid environmental change. Rodents and ruminants are abundant herbivore species in most Arctic ecosystems, many of which are experiencing particularly rapid climate change. Their different life-history characteristics, with the exception of their trophic position, suggest that they should show different responses to environmental variation. Here we show that the only mammalian herbivores on the Arctic islands of Svalbard, reindeer (Rangifer tarandus) and sibling voles (Microtus levis), exhibit strong synchrony in population parameters. This synchrony is due to rain-on-snow events that cause ground ice and demonstrates that climate impacts can be similarly integrated and expressed in species with highly contrasting life histories. The finding suggests that responses of wildlife populations to climate variability and change might be more consistent in Polar regions than elsewhere owing to the strength of the climate impact and the simplicity of the ecosystem. PMID:23015455

  9. The structure of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Leibovich, S.

    1978-01-01

    The term 'vortex breakdown', as used in the reported investigation, refers to a disturbance characterized by the formation of an internal stagnation point on the vortex axis, followed by reversed flow in a region of limited axial extent. Two forms of vortex breakdown, which predominate, are shown in photographs. One form is called 'near-axisymmetric' (sometimes 'axisymmetric'), and the other is called 'spiral'. A survey is presented of work published since the 1972 review by Hall. Most experimental data taken since Hall's review have been in tubes, and the survey deals primarily with such cases. It is found that the assumption of axial-symmetry has produced useful results. The classification of flows as supercritical or subcritical, a step that assumes symmetry, has proved universally useful. Experiments show that vortex breakdown is always preceded by an upstream supercritical flow and followed by a subcritical wake. However, a comparison between experiments and attempts at prediction is less than encouraging. For a satisfactory understanding of the structure of vortex breakdown it is apparently necessary to take into account also aspects of asymmetry.

  10. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  11. Arctic National Wildlife Refuge: oil field or wilderness

    SciTech Connect

    Spitler, A.

    1987-11-01

    The second session of the 100th Congress will see continued debate over the prospect of oil and gas drilling on a 19-million-acre expanse of mountains and tundra known as the Arctic National Wildlife Refuge (ANWR). The arctic refuge, most of which lies above the Arctic Circle, is larger than any refuges in the lower 48 states. Because of its size, the area supports a broad range of linked ecosystems. Of particular concern is the 1.5-million-acre coastal plain, which may be targeted for development. The coastal plain provides a home, at least part of the year, to Alaska's porcupine caribou. The coastal plain also supports many other forms of wildlife-including the wolf, arctic fox, brown bear, polar bear, and arctic peregrine falcon, which is listed as a threatened species. The potential effects of drilling projects extend beyond loss of wildlife; they include desecration of the land itself. Although few members of Congress deny the value of protecting the amazing variety of life on the coastal plain, some insist that limited drilling could be conducted without destroying crucial habitat. Last July, the department tentatively divided some of the targeted lands among native corporations in preparation for leasing to oil companies. In response to what was felt to be an attempt to overstep congressional authority, the House passed HR 2629, banning this kind of land deal without congressional approval. In essence, the measure reiterated congressional authority provided by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980. This act mandated the study of environmental threats and oil potential by the Department of Interior, while putting the ANWR coastal plain off-limits to development without an explicit congressional directive.

  12. Arctic River Discharge and Sediment Loads --- an Overview

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.

    2014-12-01

    Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.

  13. Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams

    E-print Network

    Marrucci, Lorenzo

    Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams be exploited for generating vortex electron beams when a spin-polarized beam is used as input. Conversely phase arising in the spin manipulation. When applied to a spatially coherent input spin-polarized

  14. Arctic region mapping tool

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-08-01

    An interactive online mapping tool is now available to assist with scientific, environmental, and emergency response needs in the Arctic region, the National Oceanic and Atmospheric Administration (NOAA) announced on 31 July. The Environmental Response Management Application (ERMA®) already has been used in other regions, including in the Gulf of Mexico, as part of the response to the Deepwater Horizon oil spill in 2010. The tool—which is a product of the combined work of NOAA, the U.S. Department of the Interior's Bureau of Safety and Environmental Enforcement (BSEE), the University of New Hampshire, and others—offers near-real time oceanographic observations, weather data, environmental and commercial information, and other data.

  15. Melting Transition of Vortex Lattice in Point Vortex Systems

    E-print Network

    Sakaguchi, Hidetsugu

    2012-01-01

    Point vortices take a triangular lattice structure in a rotating system as a minimum energy state. We perform a numerical simulation of point vortex systems using initial conditions indicating that the triangular lattice is randomly perturbed. The total energy increases with the magnitude of the perturbation. When the energy is increased, the vortex lattice becomes irregular and a layered structure appears. When the energy is further increased, the layered structure disappears and a liquidlike state appears. We interpret the melting transition with a mean-field approximation for layered structures.

  16. Particle creation in the vortex cosmological model

    Microsoft Academic Search

    V. N. Lukash; I. D. Novikov; A. A. Starobinskiy

    1976-01-01

    A complete picture of evolution of the vortex model, with allowance for matter creation, is constructed. It is shown that the effect of particle creation near the singularity at t approximately t sub pl results in a strong decrease in the primary vortex velocity of matter which ultimately proves to be completely insufficient for the vortex theory of the origin

  17. Effect of a spiral phase on a vector optical field with hybrid polarization states

    NASA Astrophysics Data System (ADS)

    Chen, Rui-Pin; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan; Zhao, Tingyu

    2015-06-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges.

  18. Ice Processes and Growth History on Arctic and Sub-Arctic Lakes Using ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Morris, K.; Jeffries, M. O.; Weeks, W. F.

    1995-01-01

    A survey of ice growth and decay processes on a selection of shallow and deep sub-Arctic and Arctic lakes was conducted using radiometrically calibrated ERS-1 SAR images. Time series of radar backscatter data were compiled for selected sites on the lakes during the period ot ice cover (September to June) for the years 1991-1992 and 1992-1993. A variety of lake-ice processes could be observed, and significant changes in backscatter occurred from the time of initial ice formation in autumn until the onset of the spring thaw. Backscatter also varied according to the location and depth of the lakes. The spatial and temporal changes in backscatter were most constant and predictable at the shallow lakes on the North Slope of Alaska. As a consequence, they represent the most promising sites for long-term monitoring and the detection of changes related to global warming and its effects on the polar regions.

  19. New results in vortex statics

    NASA Astrophysics Data System (ADS)

    Aref, Hassan; Vainchtein, Dmitri; Stremler, Mark A.

    2000-11-01

    Vortex statics was the name Lord Kelvin gave to the study of vortex configurations that move without change of shape or size. Particularly for point vortices in 2D ideal hydrodynamics this subject has spawned a large literature. We report on some recent results in which configurations of low symmetry and `unexpected' geometrical properties have been obtained. These include completely asymmetric, finite patterns of identical point vortices, and infinite, quasi-crystal-like configurations of three different kinds of point vortices. Apart from their intrinsic interest as singular solutions of the 2D Euler equation, some of these patterns are now emerging in experimental realizations of vortex flows. The asymmetric patterns are unstable, to the extent we have been able to check, which means that they arise as transients during a relaxation to a global energy minimum. They have spatial attributes that one might associate with a turbulent flow state, but entirely trivial temporal evolution.

  20. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.