Science.gov

Sample records for area position-sensitive ionization

  1. Construction and commissioning of a position-sensitive ionization chamber

    NASA Astrophysics Data System (ADS)

    Kwag, M. S.; Chae, K. Y.; Cha, S. M.; Kim, A.; Kim, M. J.; Lee, E. J.; Lee, J. H.

    2016-05-01

    A position-sensitive ionization chamber has been constructed and commissioned at the Physics Department of Sungkyunkwan University to extract position information on incident charged particles for future nuclear reaction measurements. By utilizing the newly-designed position-sensitive anodes and the previously-commissioned portable gas-filled ionization chamber by Chae et al., position information on incident particles could be obtained. The device was tested with an 241Am α-emitting source, and the standard deviation of the fitted Gaussian distribution was measured to be 1.76 mm when a collimator with a 2 mm hole was used.

  2. A three dimensionally position sensitive large area detector

    NASA Astrophysics Data System (ADS)

    Pochodzalla, J.; Butsch, R.; Heck, B.; Hlawatsch, G.; Miczaika, A.; Rabe, H. J.; Rosner, G.

    1985-01-01

    A large area detector consisting of a parallel plate avalanche counter (PPAC) and a trapezohedral ionization chamber (TIC) is described. Its active area is 184 cm 2. The time resolution of the PPAC is 175 ps. The energy resolution of the TIC is 0.4%, the energy loss resolution 2.8%, the nuclear charge resolution 2.3%. The TIC is position sensitive in three dimensions. The position x is measured via a saw-tooth anode with a resolution of 0.7 mm; the drift time coordinate shows a resolution of δy ≅ mm. The range z is determined by a new technique, a graded density Frisch grid. It enlarges the dynamic range of the charge measurement down to the Bragg maximum at E/ A ˜ 1 MeV. The resolution is δZ/ Z ≅ 3.5%

  3. Two-dimensional position sensitive ionization chamber with GEM

    NASA Astrophysics Data System (ADS)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  4. Large area position sensitive β-detector

    NASA Astrophysics Data System (ADS)

    Vaintraub, S.; Hass, M.; Edri, H.; Morali, N.; Segal, T.

    2015-03-01

    A new conceptual design of a large area electron detector, which is position and energy sensitive, was developed. This detector is designed for beta decay energies up to 4 MeV, but in principle can be re-designed for higher energies. The detector incorporates one large plastic scintillator and, in general, a limited number of photomultipliers (7 presently). The current setup was designed and constructed after an extensive Geant4 simulation study. By comparison of a single hit light distribution between the various photomultipliers to a pre-measured accurate position-response map, the anticipated position resolution is around 5 mm. The first benchmark experiments have been conducted in order to calibrate and confirm the position resolution of the detector. The new method, results of the first test experiments and comparison to simulations are presented.

  5. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  6. Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Kato, T.; Nakamori, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Yamamoto, K.

    2013-12-01

    The release of radioactive isotopes (mainly 137Cs, 134Cs and 131I) from the crippled Fukushima Daiichi Nuclear Plant remains a serious problem in Japan. To help identify radiation hotspots and ensure effective decontamination operation, we are developing a novel Compton camera weighting only 1 kg and measuring just ∼10 cm2 in size. Despite its compactness, the camera realizes a wide 180° field of vision with a sensitivity about 50 times superior to other cameras being tested in Fukushima. We expect that a hotspot producing a 5 μSv/h dose at a distance of 3 m can be imaged every 10 s, with angular resolution better than 10° (FWHM). The 3D position-sensitive scintillators and thin monolithic MPPC arrays are the key technologies developed here. By measuring the pulse-height ratio of MPPC-arrays coupled at both ends of a Ce:GAGG scintillator block, the depth of interaction (DOI) is obtained for incident gamma rays as well as the usual 2D positions, with accuracy better than 2 mm. By using two identical 10 mm cubic Ce:GAGG scintillators as a scatterer and an absorber, we confirmed that the 3D configuration works well as a high-resolution gamma camera, and also works as spectrometer achieving typical energy resolution of 9.8% (FWHM) for 662 keV gamma rays. We present the current status of the prototype camera (weighting 1.5 kg and measuring 8.5×14×16 cm3 in size) being fabricated by Hamamatsu Photonics K.K. Although the camera still operates in non-DOI mode, angular resolution as high as 14° (FWHM) was achieved with an integration time of 30 s for the assumed hotspot described above.

  7. Position Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Sadleir, J. E.; Hammock, C.; Figueroa-Feliciano, E.; Stahle, C. K.; Bandler, S.; Saab, T.; Lindeman, M.; Porter, F. S.; Chervenak, J.; Brown, G.

    2004-01-01

    A Position Sensitive Transition-Edge Sensor (PoST) is a microcalorimeter device capable of one-dimensional imaging spectroscopy. The device consists of two Transition-Edge Sensors (TESs) connected to the ends of a long X-ray absorbing strip. The energy of a photon hitting the absorber and the position of the absorption event along the strip is measured from the response in the two sensors by analyzing the relative signal sizes, pulse rise times, and the sum of the pulses measured at each sensor, We report on the recent PoST effort at Goddard for applications to large field of view, high-energy- resolution, X-ray astrophysics.

  8. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector.

    PubMed

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-06-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (Tm x Yb1-x )Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  9. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector

    PubMed Central

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-01-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (TmxYb1−x)Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  10. Position Sensitive Detection System for Charged Particles

    SciTech Connect

    Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E; Huerta, A.; Varela, A.; Shapira, Dan

    2012-01-01

    The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

  11. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  12. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, John T.

    1994-01-01

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wave length shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event.

  13. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, J.T.

    1994-02-22

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wavelength shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event. 6 figures.

  14. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGESBeta

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; et al

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  15. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  16. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E. Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.; Hodges, D.; Lee, W.; Petryk, M.

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  17. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects. PMID:26233363

  18. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm3 detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  19. Position-Sensitive Scanning Fluorescence Correlation Spectroscopy

    PubMed Central

    Skinner, Joseph P.; Chen, Yan; Müller, Joachim D.

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells. PMID:15894645

  20. Position sensitivity of graphene field effect transistors to X-rays

    SciTech Connect

    Cazalas, Edward Moore, Michael E.; Jovanovic, Igor; Sarker, Biddut K.; Childres, Isaac; Chen, Yong P.

    2015-06-01

    Device architectures that incorporate graphene to realize detection of electromagnetic radiation typically utilize the direct absorbance of radiation by graphene. This limits their effective area to the size of the graphene and their applicability to lower-energy, less penetrating forms of radiation. In contrast, graphene-based transistor architectures that utilize the field effect as the detection mechanism can be sensitive to interactions of radiation not only with graphene but also with the surrounding substrate. Here, we report the study of the position sensitivity and response of a graphene-based field effect transistor (GFET) to penetrating, well-collimated radiation (micro-beam X-rays), producing ionization in the substrate primarily away from graphene. It is found that responsivity and response speed are strongly dependent on the X-ray beam distance from graphene and the gate voltage applied to the GFET. To develop an understanding of the spatially dependent response, a model is developed that incorporates the volumetric charge generation, transport, and recombination. The model is in good agreement with the observed spatial response characteristics of the GFET and predicts a greater response potential of the GFET to radiation interacting near its surface. The study undertaken provides the necessary insight into the volumetric nature of the GFET response, essential for development of GFET-based detectors for more penetrating forms of ionizing radiation.

  1. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  2. READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

    SciTech Connect

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P.; HE, Z.; HERMAN, C.; ZHANG, F.

    2007-10-27

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.

  3. Emulation workbench for position sensitive gaseous scintillation detectors

    NASA Astrophysics Data System (ADS)

    Pereira, L.; Margato, L. M. S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-12-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations.

  4. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  5. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  6. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  7. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  8. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  9. Beam tests of a 3-D position sensitive scintillation detector

    SciTech Connect

    Labanti, C.; Hall, C.J.; Agrinier, B.; Byard, K.; Dean, A.J.; Goldwurm, A.; Harding, J.S.

    1989-02-01

    An array of 30 position sensitive scintillator bars has been tested in a gamma-ray beam from I.N.S.T.N. Van de Graff facility at the Centre d'Etudes Nucleaires, Saclay, France. The gamma-ray energies ranged from 6 MeV to 17 MeV. The bars are similar to those proposed for use in the GRASP gamma-ray telescope satellite imaging plane. They are manufactured from CsI(T1) covered with a highly reflective diffusive wrapping, and are read out using large area PIN photodiodes. Each bar measures 15.0 cm by 1.3 cm by 1.3 cm. The beam test unit was comprised of 30 bars stacked in a 5 by 6 array. The photodiodes were optically coupled to the end face of each bar and were connected to a processing chain comprised of a low noise preamplifier, a high gain shaping amplifier, and a digitisation and data collection system. Several experiments were performed with the unit to assess the spectral response, position resolution, and background rejection capabilities of the complete detector. The test procedure is explained and some results are presented.

  10. A position-sensitive alpha detector using a thin plastic scintillator combined with a position-sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Iida, Takao

    1998-12-01

    A position-sensitive alpha detector was developed and tested. The alpha detector consists of a thin plastic scintillator, a position-sensitive photomultiplier tube, a position calculation circuit and a personal computer based data acquisition system. Because the thin plastic scintillator has high-detection efficiency for alpha particles while it has low-sensitivity for beta particles or gamma ray, the detector can selectively detect alpha particles with low background counts. The spatial resolution of the detector was approximately 3 mm FWHM. An autoradiographic images of plutonium distribution in the lung of an animal as well as an image of an uranium particle were successively obtained. Spatial and energy distribution of radon daughters could also be measured. We conclude that the developed position-sensitive alpha detector is useful for some applications such as plutonium detection or alpha autoradiography as well as distribution analysis of radon daughters.

  11. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  12. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  13. Self-Balancing Position-Sensitive Detector (SBPSD).

    PubMed

    Porrazzo, Ryan; Lydecker, Leigh; Gattu, Suhasini; Bakhru, Hassaram; Tokranova, Natalya; Castracane, James

    2015-01-01

    Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that. PMID:26205266

  14. Self-Balancing Position-Sensitive Detector (SBPSD)

    PubMed Central

    Porrazzo, Ryan; Lydecker, Leigh; Gattu, Suhasini; Bakhru, Hassaram; Tokranova, Natalya; Castracane, James

    2015-01-01

    Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that. PMID:26205266

  15. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Lemasson, A.; Rejmund, M.; Fremont, G.; Pancin, J.; Navin, A.; Michelagnoli, C.; Goupil, J.; Spitaels, C.; Jacquot, B.

    2016-03-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, the interaction position on the target and the velocity of reaction products detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) μm for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the γ-rays, detected in the γ-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  16. Development of a fast position-sensitive laser beam detector

    SciTech Connect

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G.

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  17. Integrated cooling channels in position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Boronat, M.; Fuster, J.; Garcia, I.; Gomis, P.; Marinas, C.; Ninkovic, J.; Perelló, M.; Villarejo, M. A.; Vos, M.

    2016-06-01

    We present an approach to construct position-sensitive silicon detectors with an integrated cooling circuit. Tests on samples demonstrate that a very modest liquid flow very effectively cool the devices up to a power dissipation of over 10 W/cm2. The liquid flow is found to have a negligible impact on the mechanical stability. A finite-element simulation predicts the cooling performance to an accuracy of approximately 10%.

  18. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  19. Position-sensitive photodetector for rotation-angle transducers

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Novikov, S. G.; Korneev, I. V.; Shtan'ko, A. A.; Rodionov, V. A.

    2011-03-01

    A new position-sensitive photodetector (PSPD) for photoelectric transducers of rotation angle is described, which is based on a three-layer ring sector structure. The output voltage of the PSPD is a linear function of the angle of rotation of a light-emitting diode relative to the PSPD contacts. The proposed device is highly reliable and ensures angle determination to within 7 min of arc. Rotation-angle transducers based on this PSPD are compatible with any measuring, matching, and processing equipment.

  20. Interdigited dual-cell position-sensitive device

    NASA Astrophysics Data System (ADS)

    Shie, Jin-Shown

    1992-10-01

    A special one-dimensional position-sensitive device for detection of a light-spot location is designed and fabricated. The device is composed of a pair of photodiodes with complementarily interdigited comb configuration. The width of comb teeth is characterized by a designated distributive function, hence, the coordination information of a light spot falling upon the device can be determined by photo-induced currents of the two diodes. This device is useful as the position sensing element in camera-autofocus application.

  1. A position sensitive microchannel photomultiplier for ultraviolet space astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O. H. W.; Bixler, J.; Bowyer, S.

    1986-01-01

    The 25-mm microchannel-plate, position-sensitive UV astronomy photomultiplier tube presented is intended for the EOM-1 Spacelab Mission's FAUST payload and conducts wide-field imaging surveys in the VUV over the 1400-1800-A range. The sealed detector encompasses a CsI photocathode deposited on the inner surface of a MgF2 window, a stack of microchannel plates, and a wedge-and-strip two-dimensional position-sensing anode. Since the wedge-and-strip principle requires only three anode signals, flight electronics can be reduced to three charge amplifiers and three analog-to-digital converters.

  2. Development of position sensitive proportional counters for hot particle detection in laundry and portal monitors

    SciTech Connect

    Shonka, J.J.; Schwahn, S.O.; Bennett, T.E.; Misko, D.J.

    1992-09-01

    This report summarizes research which demonstrates the use of position sensitive proportional counters in contamination monitoring systems. Both laundry monitoring and portal monitoring systems were developed. The laundry monitor was deployed at a nuclear power plant where it was used to monitor clothing during an outage. Position sensitive proportional counter based contamination monitoring systems were shown to have significant advantages over systems using conventional proportional counters. These advantages include the ability to directly measure the area and quantity of contamination. This capability permits identification of hot particles. These systems are also capable of self calibration via internal check sources. Systems deployed with this technology should benefit from reduced complexity, cost and maintenance. The inherent reduction of background that occurs when the counter is electronically divided into numerous detectors permits operation in high background radiation fields and improves detection limits over conventional technology.

  3. Spectroscopy of Actinide Nuclei - Perspectives with Position Sensitive HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Reiter, P.; Birkenbach, B.; Kotthaus, T.

    Recent advances in in-beam gamma-ray spectroscopy of actinide nuclei are based on highly efficient arrays of escape-suppressed spectrometers. The sensitivity of these detector arrays is greatly enhanced by the combination with powerful mass separators or particle detector systems. This technique is demonstrated by an experiment to investigate excited states in 234U after the one-neutron-transfer reaction 235U(d,t). In coincidence with the outgoing tritons, γ-rays were detected with the highly efficient MINIBALL spectrometer. In the near future an even enhanced sensitivity will be achieved by utilizing position sensitive HPGe detectors which will exploit the novel detection method of gamma-ray energy tracking in electrically segmented germanium detectors. An example for this novel approach is the investigation neutron-rich actinide Th and U nuclei after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL, Italy. A primary 136Xe beam hitting a 238U target was used to produce the nuclei of interest. Beam-like reaction products after neutron transfer were selected by the PRISMA spectrometer. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique, which was successfully exploited in this region.

  4. Development of a novel position-sensitive microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2015-10-01

    Position sensitive microchannel plate (MCP) detectors which measure the position of an incident electron, ion, or photon, are useful in imaging applications. Recently, a novel detector, which utilizes an induced approach to provide position sensitivity, has been developed. In the prototype detector, using only the zero-crossing point of the inherently bipolar signals, a position resolution of 466 μm (FWHM) has been achieved. Implementing a differential readout may improve on this resolution. To realize this differential approach, a better understanding of the dependence of the induced signal shape on the position of the electron cloud is required. To characterize the dependence of the induced signal shape on position a resistive anode (RA) has been incorporated into the detector. The RA will allow determination of the centroid of the electron cloud. Factors impacting the position resolution obtained with the RA will be discussed and the achieved position resolution of 157 μm (FWHM) will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  5. Positron camera using position-sensitive detectors: PENN-PET

    SciTech Connect

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    A single-slice positron camera has been developed with good spatial resolution and high count rate capability. The camera uses a hexagonal arrangement of six position-sensitive NaI(Tl) detectors. The count rate capability of NaI(Tl) was extended to 800k cps through the use of pulse shortening. In order to keep the detectors stationary, an iterative reconstruction algorithm was modified which ignores the missing data in the gaps between the six detectors and gives artifact-free images. The spatial resolution, as determined from the image of point sources in air, is 6.5 mm full width at half maximum. We have also imaged a brain phantom and dog hearts.

  6. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Chen, E.; Cheng, S.; Cui, Y.; Gul, R.; Gallagher, R.; Dedic, V.; De Geronimo, G.; Ocampo Giraldo, L.; Fried, J.; Hossain, A.; MacKenzie, J. M.; Sellin, P.; Taherion, S.; Vernon, E.; Yang, G.; El-hanany, U.; James, R. B.

    2016-02-01

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm2 and 6 × 6 mm2 and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  7. Position Sensitive Detectors Mounted with Scintillators and Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Carvalhaes, Roberto P. M.; Bonifácio, Daniel A. B.; Moralles, Maurício

    2011-08-01

    This work presents the first results obtained in the "Assembly and characterization of position sensitive detectors composed of scintillators coupled to silicon photomultipliers" project. The development of new x and γ radiation detectors have found several technological applications, especially in medical physics, where γ detectors that can be used in high intensity magnetic field are of particular importance. The experimental setup consisted of coupling of two silicon photomultipliers (SiPM) to the small sides of a 3×3×100 mm3 scintillator and the coupling of one SiPM to one of the small sides of a 3×3×10 mm3 scintillator. We found that the detectors used in this study presented an energy resolution that is in agreement with those observed in scintillators of the same family coupled to conventional photomultipliers. Besides that, there is a strong correlation between the difference of the light intensity in both SiPMs of the long detector and the position of the γ source. The results confirm the great potential of application of such detectors.

  8. Michrochannel plate for position sensitive alpha particle detection

    SciTech Connect

    Paul Hurley and James Tinsley

    2007-08-31

    This paper will describe the use of a microchannel plate (MCP) as the associated particle detector on a sealed tube neutron generator. The generator produces neutrons and associated alpha particles for use as a probe to locate and identify hidden explosives in associated particle imaging (API). The MCP measures the position in two dimensions and precise timing of the incident alpha particle, information which is then used to calculate the emission time and direction of the corresponding neutron. The MCP replaces the position-sensitive photomultipler tube (PSPMT) which, until recently, had been the only detector available for measuring position and timing for alpha particles in neutron generator applications. Where the PSPMT uses charge division for generating position information, a process that requires a first order correction to each pulse, the MCP uses delay-line timing, which requires no correction. The result is a device with an order of magnitude improvement in both position resolution and timing compared to the PSPMT. Hardware and software development and the measurements made to characterize the MCP for API applications are described.

  9. Canadian Penning Trap Mass Measurements using a Position Sensitive MCP

    NASA Astrophysics Data System (ADS)

    Kuta, Trenton; Aprahamian, Ani; Marley, Scott; Nystrom, Andrew; Clark, Jason; Perez Galvan, Adrian; Hirsh, Tsviki; Savard, Guy; Orford, Rodney; Morgan, Graeme

    2015-10-01

    The primary focus of the Canadian Penning Trap (CPT) located at Argonne National Lab is to determine the masses of various isotopes produced in the spontaneous fission of Californium. Currently, the CPT is operating in conjunction with CARIBU at the ATLAS facility in an attempt to measure neutron-rich nuclei produced by a 1.5 Curie source of Californium 252. The masses of nuclei produced in fission is accomplished by measuring the cyclotron frequency of the isotopes circling within the trap. This frequency is determined by a position sensitive MCP, which records the relative position of the isotope in the trap at different times. Using these position changes over time in connection with a center spot, angles between these positions are calculated and used to determine the frequency. Most of the work currently being conducted on the CPT is focused on the precision of these frequency measurements. The use of traps has revolutionized the measurements of nuclear masses to very high precision. The optimization methods employed here include focusing the beam in order to reduce the spread on the position of the isotope as well as the tuning of the MR-ToF, a mass separator that is intended on removing contaminants in the beam. This work was supported by the nuclear Grant PHY-1419765 for the University of Notre Dame.

  10. Development of arrays of position-sensitive microcalorimeters for Constellation-X

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Kolbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.

    2008-01-01

    We are developing arrays of position-sensitive transition-edge sensor (POST) X-ray detectors for future astronomy missions such as NASA's Constellation-X. The POST consists of multiple absorbers thermally coupled to one or more transition-edge sensor (TES). Each absorber element has a different thermal coupling to the TES. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. POST'S are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels and are ideally suited to increasing the Constellation-X focal plane area, without comprising on spatial sampling. Optimizing the performance of POST'S requires careful design of key parameters such as the thermal conductances between the absorbers, TES and the heat sink. as well as the absorber heat capacities. Using recently developed signal processing algorithms we have investigated the trade-off between position-sensitivity, energy resolution and pulse decay time. based on different device design parameters for PoST's. Our new generation of PoST's utilize technology successfully developed on high resolution (approximately 2.5eV) single pixels arrays of Mo/Au TESs. also under development for Constellation-X. This includes noise mitigation features on the TES and low resistivity electroplated absorbers. We report on the first experimental results from these new one and two-channel PoST"s, consisting of all Au and composite Au/Bi absorbers, which are designed to achieve an energy resolution of < 10 eV. coupled with count-rates of 100's per pixel per second and position sensitivity over the energy range 0.3-10 keV.

  11. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  12. Position-sensitive detectors of the detector group at Jülich

    NASA Astrophysics Data System (ADS)

    Engels, R.; Clemens, U.; Kemmerling, G.; Nöldgen, H.; Schelten, J.

    2009-06-01

    The detector group of the Central Institute of Electronics at the Forschungszentrum Jülich GmbH was founded in 1968. First developments aimed at a detector system with a position-sensitive BF 3 proportional counter for small-angle neutron scattering, which was later used at a beamline of the research reactor FRJ2. At the end of the 1970s first measurements were carried out with photomultiplier (PM)-based detector systems linked with a LiI crystal from Harshaw. Based on this experience we started with the spectrum of position-sensitive neutron scintillation detectors, which have been developed and designed in our institute during the last three decades comprising several high-resolution linear and two-dimensional detectors. The general design of those detectors is based on a modified Anger principle using an array of PMs and a 1 mm 6Li glass scintillator. The sensitive detector area varies on the type of the PMs used and is related to the spatial resolution of the detector type. The neutron sensitivity at 1 Å is about 65% and the remaining gamma sensitivity is less than 10 -4 with a maximum count rate up to 500 kHz depending on the used detector system.

  13. Development of position sensitive scintillation counter for balloon-borne hard x-ray telescope

    NASA Astrophysics Data System (ADS)

    Tamura, Keisuke; Kunieda, Hideyo; Ogasaka, Yasushi; Furuzawa, Akihiro; Shibata, Ryo; Nakamura, Tomokazu; Ohnishi, Katsuhiko; Kanou, Yasufumi; Miyata, Emi; Tsunemi, Hiroshi

    2006-06-01

    We have been developing position sensitive scintillation counter as focal plane detector of hard X-ray telescope onboard a balloon borne experiment. This detector consists NaI(TI) scintillator and position sensitive photo-multiplier tube. Focal plane detector has to have high efficiency in hard X-ray region, enough position resolution and detection area. 3mm thickness of NaI(TI) scintillator can achieve almost 100% efficiency below 80 keV. We measured position resolved energy and position resolution in synchrotron radiation facility SPring-8 BL20B2. Position resolution of 2.4mm at 60keV is about half of plate scale of half power diameter of X-ray telescope. The detector has 6 cm diameter window and it corresponds to 25 arcmin field of view, and it is enough lager than the that of telescope, which is 12 arcmin in FWHM. Balloon borne experiment for observation of the background was performed on May 24, 2005 from Sanriku balloon center. We could obtain background data for 3 hours at altitude of 40 km.

  14. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; Sad (eor. K/ E/); Figueroa-Feliciano, E.

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  15. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE PAGESBeta

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  16. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    SciTech Connect

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; Blakeley, R. E.; Mader, D. M.; Hecht, A. A.

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.

  17. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOEpatents

    Kopp, Manfred K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  18. A Beta-Particle Hodoscope Constructed Using Scintillating Optical Fibers and Position Sensitive Photomultiplier Tubes

    SciTech Connect

    Orrell, John L.; Aalseth, Craig E.; Day, Anthony R.; Fast, Jim; Hossbach, Todd W.; Lidey, Lance S.; Ripplinger, Mike D.; Schrom, Brian T.

    2006-09-19

    A hodoscopic detector was constructed using a position-sensitive plastic scintillator active area to determine the location of beta-active micron-sized particulates on air filters. The ability to locate beta active particulates on airsample filters is a tool for environmental monitoring of anthropogenic production of radioactive material. A robust, field-deployable instrument can provide localization of radioactive particulate with position resolution of a few millimeters. The detector employs a novel configuration of scintillating plastic elements usually employed at much higher charged particle energies. A filter is placed on this element for assay. The detector is intended to be sensitive to activity greater than 1 Bq. The physical design, position reconstruction method, and expected detector sensitivity are reported.

  19. Position-sensitive CdTe detector using improved crystal growth method

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  20. Position-sensitive CdTe detector using improved crystal growth method

    NASA Astrophysics Data System (ADS)

    1988-09-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  1. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude

    SciTech Connect

    Urbain, X. Bech, D.; Van Roy, J.-P.; Géléoc, M.; Weber, S. J.

    2015-02-15

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H{sub 3} into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme.

  2. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude.

    PubMed

    Urbain, X; Bech, D; Van Roy, J-P; Géléoc, M; Weber, S J; Huetz, A; Picard, Y J

    2015-02-01

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H3 into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme. PMID:25725834

  3. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude

    NASA Astrophysics Data System (ADS)

    Urbain, X.; Bech, D.; Van Roy, J.-P.; Géléoc, M.; Weber, S. J.; Huetz, A.; Picard, Y. J.

    2015-02-01

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H3 into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme.

  4. POSITION SENSITIVE GERMANIUM DETECTORS FOR GAMMA-RAY IMAGING AND SPECTROSCOPY

    EPA Science Inventory

    Gamma-ray imaging with position-sensitive germanium detectors offers the advantages of excellent energy resolution, high detection efficiency, and potentially good sptial resolution. The development of the amorphous-semiconductor electrical contact technology for germanium detec...

  5. Characterization of two resistive anode encoder position sensitive detectors for use in ion microscopy

    NASA Astrophysics Data System (ADS)

    Brigham, Robert H.; Bleiler, Roger J.; McNitt, Paul J.; Reed, David A.; Fleming, Ronald H.

    1993-02-01

    Both the standard resistive anode encoder (RAE) position sensitive ion detector and a new faster version have been adapted for use with CAMECA IMS-3f/4f imaging secondary-ion mass spectroscopy instruments. Each detector includes a dual microchannel plate image intensifier mounted in front of a resistive anode. The conversion efficiencies of the standard and fast detectors are 60% and 55%, respectively. The high count rates attainable with the fast detector require high strip-current microchannel plates for optimum performance. The mass bias of these detectors is proportional to (mass)1/2 and can be compensated by adjustment of detector supply voltage. The response across the active area of these detectors is uniform to within 3% with the greatest deviations occurring at the periphery. Distortion and pixel-to-pixel bias are negligible with the standard RAE, but noticeable in the prototype of the fast RAE. Software has been developed that corrects pixel-to-pixel bias. The dead times of the standard and fast RAE systems are 4.3±0.1 μs and 330±2 ns which limit practical count rates to about 40 000 and 600 000 Hz, respectively. For many applications, the higher ion arrival rates and dynamic range of the fast RAE imaging system more than compensate for the increased pixel-to-pixel bias and distortion and the small decrease in conversion efficiency.

  6. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  7. A multiplex readout method for position sensitive boron coated straw neutron detector

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Gong, Hui; Li, Jianmin; Wang, Yongqiang; Wang, Xuewu; Li, Yuanjing; Kang, Kejun

    2015-10-01

    A 1 m×1 m boron coated straw neutron detector is expected to be used to build the small-angle neutron scattering (SANS) instrument of the Compact Pulsed Hadron Source (CPHS) in Tsinghua University. A multiplex readout method based on summing circuits in columns and rows is studied for this large area position sensitive detector. In this method, the outputs of charge sensitive preamplifiers are combined by columns and rows at two ends of the detector, and then the shaped signals are sampled by flash ADCs. With the position reconstructed algorithm implemented in FPGA which analyzes the charge division and column and row number of signals, the 3-D position information of neutron events can be obtained. The position resolution and counting rate performance of this method are analyzed, and the comparison to the delay-line readout method is also given. With the multiplex readout method, the scale of readout electronics can be greatly reduced and a good position resolution can be reached. A readout electronics system for a detector module which consists 4 × 10 straw tubes is designed based on this method, and the test with neutron beam shows an average 3-D spatial resolution of 4 × 4 × 6.8mm3.

  8. Development of Position-Sensitive Magnetic Calorimeter X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Porst, Jan-Patrick; Bandler, Simon R.; Adams, Joseph S.; Hsieh, Wen-Ting; Rotzinger, Hannes; Seidel, George M.; Smith, Stephen J.; Stevenson, Thomas R.

    2009-12-01

    We are developing arrays of position-sensitive magnetic calorimeter (PoSM) X-ray detectors for future astronomy missions. The PoSM consists of multiple absorbers thermally coupled to one magnetic sensor. Each absorber element has a different thermal coupling to the sensor. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. PoSMs are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels without compromising on spatial sampling. Optimizing the performance of PoSMs requires careful design of key parameters such as the thermal conductances between the absorbers, magnetic sensor and the heat sink, as well as the absorber heat capacities. We report on the first experimental results from four-absorber PoSMs, each absorber consisting of a two layer composite of bismuth and gold. The measured energy resolution (FWHM) was less than 5 eV for 6 keV X-rays into all four absorbers. Straightforward position discrimination by means of rise-time is also demonstrated.

  9. Development of Position-Sensitive Magnetic Calorimeter X-ray Detectors

    SciTech Connect

    Porst, Jan-Patrick; Bandler, Simon R.; Adams, Joseph S.; Smith, Stephen J.; Hsieh, W.-T.; Stevenson, Thomas R.; Rotzinger, Hannes; Seidel, George M.

    2009-12-16

    We are developing arrays of position-sensitive magnetic calorimeter (PoSM) X-ray detectors for future astronomy missions. The PoSM consists of multiple absorbers thermally coupled to one magnetic sensor. Each absorber element has a different thermal coupling to the sensor. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. PoSMs are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels without compromising on spatial sampling. Optimizing the performance of PoSMs requires careful design of key parameters such as the thermal conductances between the absorbers, magnetic sensor and the heat sink, as well as the absorber heat capacities. We report on the first experimental results from four-absorber PoSMs, each absorber consisting of a two layer composite of bismuth and gold. The measured energy resolution (FWHM) was less than 5 eV for 6 keV X-rays into all four absorbers. Straightforward position discrimination by means of rise-time is also demonstrated.

  10. Imaging and timing performance of 1 cm x 1 cm position-sensitive solid-state photomultiplier

    NASA Astrophysics Data System (ADS)

    Dokhale, P.; Schmall, J.; Stapels, C.; Christian, J.; Cherry, S. R.; Squillante, M. R.; Shah, K.

    2013-02-01

    We have designed and built a large-area 1cm × 1cm position-sensitive solid-state photomultiplier (PS-SSPM) for use in detector design for medical imaging applications. Our new large-area PS-SSPM concept implements resistive network between the micro-pixels, which are photodiodes operated in Geiger mode, called Geiger Photodiodes (GPDs), to provide continuous position sensitivity. Here we present imaging and timing performance of the large-area PS-SSPM for different temperatures and operating biases to find the optimum operating parameters for the device in imaging applications. A detector module was built by coupling a polished 8 × 8 LYSO array, with 1 × 1 × 20 mm3 elements, to a 1 × 1 cm2 PS-SSPM. Flood images recorded at room temperature show good crystal separation as all 64 elements were separated from each other. Cooling the device at 10 °C showed significant improvement. The device optimum bias voltage was ~ 4.5V over breakdown voltage. The coincidence timing resolution was improved significantly by increasing the operating bias, as well as by lowering the temperature to 0 °C. Results show excellent imaging performance and good timing response with a large-area PS-SSPM device.

  11. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  12. A Systems Approach to Evaluating Ionizing Radiation: Six Focus Areas to Improve Quality, Efficiency, and Patient Safety

    PubMed Central

    Mower, Laura; Bushe, Chris

    2015-01-01

    Abstract: Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:26042626

  13. A Systems Approach to Evaluating Ionizing Radiation: Six Focus Areas to Improve Quality, Efficiency, and Patient Safety.

    PubMed

    Perlin, Jonathan B; Mower, Laura; Bushe, Chris

    2013-09-19

    Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:24102690

  14. A systems approach to evaluating ionizing radiation: six focus areas to improve quality, efficiency, and patient safety.

    PubMed

    Perlin, Jonathan B; Mower, Laura; Bushe, Chris

    2015-01-01

    Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:26042626

  15. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  16. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  17. (Development of recommendations in the area of ionizing and nonionizing radiations)

    SciTech Connect

    Not Available

    1990-01-01

    This document discusses progress made from March 1, 1990 to October 30, 1990 in terms of publication of reports. This subjects discussed are related to the fields of radiation protection and ionizing and nonionizing radiations. Topics discussed published works, reports in press, printer's manuscript preparation, and scientific committee activities. (KJD)

  18. A Study of Position-Sensitive Solid-State Photomultiplier Signal Properties

    PubMed Central

    Schmall, Jeffrey P.; Du, Junwei; Judenhofer, Martin S.; Dokhale, Purushottam; Christian, James; McClish, Mickel; Shah, Kanai S.; Cherry, Simon R.

    2014-01-01

    We present an analysis of the signal properties of a position-sensitive solid-state photomultiplier (PS-SSPM) that has an integrated resistive network for position sensing. Attractive features of PS-SSPMs are their large area and ability to resolve small scintillator crystals. However, the large area leads to a high detector capacitance, and in order to achieve high spatial resolution a large network resistor value is required. These inevitably create a low-pass filter that drastically slows what would be a fast micro-cell discharge pulse. Significant changes in the signal shape of the PS-SSPM cathode output as a function of position are observed, which result in a position-dependent time delay when using traditional time pick-off methods such as leading edge discrimination and constant fraction discrimination. The timing resolution and time delay, as a function of position, were characterized for two different PS-SSPM designs, a continuous 10 mm × 10 mm PS-SSPM and a tiled 2 × 2 array of 5 mm × 5 mm PS-SSPMs. After time delay correction, the block timing resolution, measured with a 6 × 6 array of 1.3 × 1.3 × 20 mm3 LSO crystals, was 8.6 ns and 8.5 ns, with the 10 mm PS-SSPM and 5 mm PS-SSPM respectively. The effect of crystal size on timing resolution was also studied, and contrary to expectation, a small improvement was measured when reducing the crystal size from 1.3 mm to 0.5 mm. Digital timing methods were studied and showed great promise for allowing accurate timing by implementation of a leading edge time pick-off. Position-dependent changes in signal shape on the anode side also are present, which complicates peak height data acquisition methods used for positioning. We studied the effect of trigger position on signal amplitude, flood histogram quality, and depth-of-interaction resolution in a dual-ended readout detector configuration. We conclude that detector timing and positioning can be significantly improved by implementation of digital timing

  19. A Study of Position-Sensitive Solid-State Photomultiplier Signal Properties.

    PubMed

    Schmall, Jeffrey P; Du, Junwei; Judenhofer, Martin S; Dokhale, Purushottam; Christian, James; McClish, Mickel; Shah, Kanai S; Cherry, Simon R

    2014-06-12

    We present an analysis of the signal properties of a position-sensitive solid-state photomultiplier (PS-SSPM) that has an integrated resistive network for position sensing. Attractive features of PS-SSPMs are their large area and ability to resolve small scintillator crystals. However, the large area leads to a high detector capacitance, and in order to achieve high spatial resolution a large network resistor value is required. These inevitably create a low-pass filter that drastically slows what would be a fast micro-cell discharge pulse. Significant changes in the signal shape of the PS-SSPM cathode output as a function of position are observed, which result in a position-dependent time delay when using traditional time pick-off methods such as leading edge discrimination and constant fraction discrimination. The timing resolution and time delay, as a function of position, were characterized for two different PS-SSPM designs, a continuous 10 mm × 10 mm PS-SSPM and a tiled 2 × 2 array of 5 mm × 5 mm PS-SSPMs. After time delay correction, the block timing resolution, measured with a 6 × 6 array of 1.3 × 1.3 × 20 mm(3) LSO crystals, was 8.6 ns and 8.5 ns, with the 10 mm PS-SSPM and 5 mm PS-SSPM respectively. The effect of crystal size on timing resolution was also studied, and contrary to expectation, a small improvement was measured when reducing the crystal size from 1.3 mm to 0.5 mm. Digital timing methods were studied and showed great promise for allowing accurate timing by implementation of a leading edge time pick-off. Position-dependent changes in signal shape on the anode side also are present, which complicates peak height data acquisition methods used for positioning. We studied the effect of trigger position on signal amplitude, flood histogram quality, and depth-of-interaction resolution in a dual-ended readout detector configuration. We conclude that detector timing and positioning can be significantly improved by implementation of digital timing

  20. New position sensitive photomultiplier tubes for high energy physics and nuclear medical applications

    SciTech Connect

    Suzuki, S.; Matsushita, T.; Suzuki, T.; Kimura, S.; Kume, H.

    1988-02-01

    New position sensitive photomultiplier tubes with fine mesh structured dynodes and discrete anode array configurations have been developed. One kind of the position sensitive photomultiplier tubes is being used as a photodetector for High Enegy Physics applications in high magnetic field environments. A photomultiplier tube constructed with 88 Multi-Anodes has a spatial resolution of less than 2.6 mm in FWHM in a magnetic field with a density of 500-2000 Gauss. The resolution includes an anode width of 2.6 mm. Another type of Multi-Anode photomultiplier tube which has been developed is the detector with a high spatial resolution for such applications as the PET system and hodoscope in scintillation systems. The tube, by applying additional electro-focusing electrodes, has an intrinsic spatial resolution of 1.4 mm in FWHM without the magnetic field.

  1. Characterization of multilayer reflectors and position sensitive detectors in the 45--300 A region

    SciTech Connect

    Yamashita, K.; Takahashi, S. ); Kitamoto, S.; Takahama, S.; Tamura, K. ); Hatsukade, I. ); Sakurai, M. ); Watanabe, M. ); Yamaguchi, A. ); Nagata, H.; Ohtani, M. )

    1992-01-01

    Multilayer reflectors and position sensitive detectors have been developed in constructing imaging optical systems in the 45--300 A region. Molybdenum-silicon (2{ital d}=140 A, {ital N}=20) and nickel--carbon (2{ital d}=100 A, {ital N}=20) multilayers were deposited on a spherical mirror (25 cm in diameter) for the normal incidence and on a segment of paraboloidal mirror (20 cm{times}10 cm) for 30{degree} grazing incidence. Their optical characteristics were evaluated by using characteristic x rays and monochromatized synchrotron radiation in the 45--300 A region. A position sensitive detector is made of a tandem microchannel plate (MCP) with a CsI photocathode and resistive plate, which is placed at the focal plane of each mirror. The detection efficiency and position resolution were measured by using characteristic x rays of C{ital K}{alpha} and monochromatized synchrotron radiation in the 45--200 A region.

  2. Position-sensitive detection of slow neutrons: Survey of fundamental principles

    SciTech Connect

    Crawford, R.K.

    1992-07-01

    This paper sets forth the fundamental principles governing the development of position-sensitive detection systems for slow neutrons. Since neutrons are only weakly interacting with most materials, it is not generally practical to detect slow neutrons directly. Therefore all practical slow neutron detection mechanisms depend on the use of nuclear reactions to ``convert`` the neutron to one or more charged particles, followed by the subsequent detection of the charged particles. The different conversion reactions which can be used are discussed, along with the relative merits of each. This is followed with a discussion of the various methods of charged particle detection, how these lend themselves to position-sensitive encoding, and the means of position encoding which can be applied to each case. Detector performance characteristics which may be of importance to the end user are discussed and related to these various detection and position-encoding mechanisms.

  3. Position-sensitive detection of slow neutrons: Survey of fundamental principles

    SciTech Connect

    Crawford, R.K.

    1992-01-01

    This paper sets forth the fundamental principles governing the development of position-sensitive detection systems for slow neutrons. Since neutrons are only weakly interacting with most materials, it is not generally practical to detect slow neutrons directly. Therefore all practical slow neutron detection mechanisms depend on the use of nuclear reactions to convert'' the neutron to one or more charged particles, followed by the subsequent detection of the charged particles. The different conversion reactions which can be used are discussed, along with the relative merits of each. This is followed with a discussion of the various methods of charged particle detection, how these lend themselves to position-sensitive encoding, and the means of position encoding which can be applied to each case. Detector performance characteristics which may be of importance to the end user are discussed and related to these various detection and position-encoding mechanisms.

  4. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.; Sato, K.; Sato, S.; Suzuki, S.

    2013-12-01

    As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  5. Unconventional double bent-crystal diffractometer equipped by position-sensitive detector

    NASA Astrophysics Data System (ADS)

    Mikula, Pavel; Lukas, Petr; Kulda, Jiri; Strunz, Pavel; Saroun, Jan; Wagner, Volker; Scherm, Reinhard; Alefeld, Berthold; Reinartz, Richard

    1992-11-01

    Using Bragg diffraction optics, an unconventional DBC diffractometer was tested for medium resolution small-angle neutron scattering experiments. The diffraction geometry of the analyzer enables to transform the angular beam distribution into the positional distribution and, consequently, to analyze it by means of a one-dimensional position sensitive detector. First experimental results obtained with a sample of PE+graphite proves a compatibility and a higher speed of data collection compared to a standard DBC diffractometer.

  6. Data acquisition system for an advanced x-ray imaging crystal spectrometer using a segmented position-sensitive detector.

    PubMed

    Nam, U W; Lee, S G; Bak, J G; Moon, M K; Cheon, J K; Lee, C H

    2007-10-01

    A versatile time-to-digital converter based data acquisition system for a segmented position-sensitive detector has been developed. This data acquisition system was successfully demonstrated to a two-segment position-sensitive detector. The data acquisition system will be developed further to support multisegmented position-sensitive detector to improve the photon count rate capability of the advanced x-ray imaging crystal spectrometer system. PMID:17979416

  7. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  8. Development of a one-dimensional Position Sensitive Detector for tracking applications

    NASA Astrophysics Data System (ADS)

    Lydecker, Leigh Kent, IV

    Optical Position Sensitive Detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS processing, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. Because they are non-contact, they do not degrade over time from surface friction due to repetitive sliding motion associated with standard full contact sliding potentiometers. This results in long, reliable device lifetimes. In this work, an innovative PSD was developed to replace the linear hard contact potentiometer currently being used in a human-computer interface architecture. First, a basic lateral effect PSD was developed to provide real-time positioning of the mouthpiece used in the interface architecture which tracks along a single axis. During the course of this work, multiple device geometries were fabricated and analyzed resulting in a down selection of a final design. This final device design was then characterized in terms of resolution and responsivity and produced in larger quantities as initial prototypes for the test product integration. Finally, an electronic readout circuit was developed in order to interface the dual- line lateral effect PSD developed in this thesis with specifications required for product integration. To simplify position sensing, an innovative type of optical position sensor was developed using a linear photodiodes with back-to-back connections. This so- called Self-Balancing Position Sensitive Detector (SBPSD) requires significantly fewer processing steps than the basic lateral effect position sensitive detector discussed above and eliminates the need for external readout circuitry entirely. Prototype devices were fabricated in this work, and the performance characteristics of these devices were established paving the way for ultimate integration into the target product as well as additional applications.

  9. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    NASA Astrophysics Data System (ADS)

    Sanjari, M. S.; Chen, X.; Hülsmann, P.; Litvinov, Yu A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th

    2015-11-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results.

  10. A fast position sensitive microstrip-gas-chamber detector at high count rate operation

    NASA Astrophysics Data System (ADS)

    Dolbnya, I. P.; Alberda, H.; Hartjes, F. G.; Udo, F.; Bakker, R. E.; Konijnenburg, M.; Homan, E.; Cerjak, I.; Goedtkindt, P.; Bras, W.

    2002-11-01

    Testing of a newly developed position sensitive high count rate microstrip gas chamber (MSGC) detector at high count rate operation has been carried out at the Dutch-Belgian x-ray scattering beamline at the European Synchrotron Radiation Facility (Grenoble, France) with a high intensity x-ray beam. The measurements show local count rate capabilities up to approx4.5 x105 counts/s/channel. Experimental data taken with this detector are also shown. These tests show that both time resolution down to 1.5 ms/frame and a reliable operation at high counting rates can be achieved.

  11. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors

    SciTech Connect

    Mazin, Benjamin A.; Bumble, Bruce; Day, Peter K.; Eckart, Megan E.; Golwala, Sunil; Zmuidzinas, Jonas; Harrison, Fiona A.

    2006-11-27

    The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. The authors present results on position sensitive x-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

  12. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.

    1986-10-21

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole and means for collimating the scattered gamma rays onto the detector.

  13. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Bumble, Bruce; Day, Peter K.; Eckart, Megan E.; Golwala, Sunil; Zmuidzinas, Jonas; Harrison, Fiona A.

    2006-11-01

    The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. The authors present results on position sensitive x-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

  14. Measurement of spot dancing for focused beam in atmosphere using position sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoshan; Zhu, Wenyue; Rao, Ruizhong

    2005-05-01

    The spot dancing of the focused laser beam in the turbulent atmosphere was studied using a two dimensional position sensitive photomultiplier tube (PSPMT). The centroid position of the laser spot was evaluated by means of current-dividing center-of-gravity detection. The system has advantage over detector array system in spatial resolution and over the imaging system in dynamic range and sampling rate. Laser propagation experiments were carried out over 1000m path above the sea level and the fluctuations of laser intensity were measured simultaneously. The frequency spectra were calculated by fast Fourier tansform and the standard deviation of the spot dancing were analyzed.

  15. A position sensitive time of flight detector for heavy ion ERD

    NASA Astrophysics Data System (ADS)

    Eschbaumer, S.; Bergmaier, A.; Dollinger, G.

    2016-03-01

    A new 2D position sensitive time of flight detector for heavy ion ERD has been developed. The detector features separate time and position measurement in a straight geometry. An electrostatic lens focuses the secondary electrons ejected from a carbon foil onto a channel plate stack maintaining the position information despite the electron momentum distribution. For position readout a 2D Backgammon anode is used. A position resolution of <0.6 mm (FWHM) and a time resolution of 96 ps (FWHM) is demonstrated.

  16. IonCCD™ for direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions

    SciTech Connect

    Hadjar, Omar; Johnson, Grant E.; Laskin, Julia; Kibelka, Gottfried; Shill, Scott M.; Kuhn, Ken; Cameron, Chad; Kassan, Scott

    2011-04-01

    A novel charged-particle sensitive, pixel based detector array is described and its usage is demonstrated for a variety of applications, from detection of elemental particles (electrons) to hyper-thermal large biomolecular positive and negative ions including keV light atomic and molecular ions. The array detector is a modified light-sensitive charged coupled device (CCD). The IonCCDTM was engineered for direct charged particle detection by replacing the semi-conductor part of the CCD pixel by a conductor1. In contrast with the CCD, where the semi-conductive pixel is responsible for electron-hole pair formation upon photon bombardment, the IonCCD uses a capacitor coupled to the conductive electrode for direct charge integration. The detector can be operated from atmospheric pressure to high vacuum since no high voltages are needed. The IonCCD, presented in this work is an array of 2126 active pixels with 21 um pixel width and 3 um pixel gap. The detection area is 1.5x51mm2 where 1.5 mm and 51 mm are pixel and detector array length, respectively. The result is a one-dimensional position-sensitive detector with 24 um spatial resolution and 88 % pixel area ratio (PAR). In this work we demonstrate the capabilities and the performance of the detector. For the first time we show the direct detection of 250 eV electrons providing linearity response and detection efficiency of the IonCCD as function of electron beam current. Using positive ions from and electron impact source (E-I), we demonstrate that the detection efficiency of the IonCCD is virtually independent of particle energy [250 eV, 1250 eV], particle impact angle [45o, 90o] and particle flux. By combining the IonCCD with a double focusing sector field of Mattauch-Herzog geometry (M-H), we demonstrate fast acquisition of mass spectra in direct air sniffing mode. A first step towards fast in vivo breath analysis is presented. Detection of hyper-thermal biomolecular ions produced using an electrospray ionization

  17. Characterization of contamination through the use of position sensitive detectors and digital image processing

    SciTech Connect

    Shonka, J.J.; DeBord, D.M.; Bennett, T.E.; Weismann, J.J.

    1996-06-01

    This report describes development of a significant new method for monitoring radioactive surface contamination. A floor monitor prototype has been designed which uses position sensitive proportional counter based radiation detectors. The system includes a novel operator interface consisting of an enhanced reality display providing the operator with 3 dimensional contours of contamination and background subtracted stereo clicks. The process software saves electronic files of survey data at very high rates along with time stamped video recording and provides completely documented surveys in a visualization oriented data management system. The data management system allows simple re-assembly of strips of data that are taken with a linear PSPC and allows visualization and treatment of the data using algorithms developed for processing images from earth resource satellites. This report includes a brief history of the development path for the floor monitor, a discussion of position sensitive proportional counter technology, and details concerning the process software, post processor and hardware. The last chapter discusses the field tests that were conducted at five sites and an application of the data management system for data not associated with detector systems.

  18. Development of a simple test device for spindle error measurement using a position sensitive detector

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Hung; Jywe, Wen-Yuh; Lee, Hau-Wei

    2004-09-01

    A new spindle error measurement system has been developed in this paper. It employs a design development rotational fixture with a built-in laser diode and four batteries to replace a precision reference master ball or cylinder used in the traditional method. Two measuring devices with two position sensitive detectors (one is designed for the measurement of the compound X-axis and Y-axis errors and the other is designed with a lens for the measurement of the tilt angular errors) are fixed on the machine table to detect the laser point position from the laser diode in the rotational fixture. When the spindle rotates, the spindle error changes the direction of the laser beam. The laser beam is then divided into two separated beams by a beam splitter. The two separated beams are projected onto the two measuring devices and are detected by two position sensitive detectors, respectively. Thus, the compound motion errors and the tilt angular errors of the spindle can be obtained. Theoretical analysis and experimental tests are presented in this paper to separate the compound errors into two radial errors and tilt angular errors. This system is proposed as a new instrument and method for spindle metrology.

  19. Position sensitivity in 3"×3" Spectroscopic LaBr3:Ce Crystals

    NASA Astrophysics Data System (ADS)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2015-06-01

    The position sensitivity of a thick, cylindrical and continuous 3" × 3" (7.62 cm × 7.62 cm) LaBr3:Ce crystal with diffusive surfaces was investigated. Nuclear physics basic research uses thick LaBr3:Ce crystals (> 3cm) to measure medium or high energy gamma rays (0.5 MeV < Eγ< 20 MeV). In the first measurement the PMT photocathode entrance window was covered by black absorber except for a small window 1 cm × 1cm wide. A complete scan of the detector over a 0.5 cm step grid was performed. The data show that even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. The position of the full energy peak centroids are sufficient to identify the collimated gamma source position. The crystal was then coupled to four Position Sensitive Photomultipliers (PSPMT). We acquired the signals from the 256 segments of the four PSPMTs grouping them into 16 elements. An event by event analysis shows a positon resolution of the order of 2 cm.

  20. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  1. An improved method of energy calibration for position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Huang, Tian-Heng; Liu, Zhong; Ding, Bing; Yang, Hua-Bin; Zhang, Zhi-Yuan; Wang, Jian-Guo; Ma, Long; Yu, Lin; Wang, Yong-Sheng; Gan, Zai-Guo; Xiao-Hong, Zhou

    2016-04-01

    Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced. The energy resolution of the 8.088 MeV α decay of 213Rn is determined to be about 87 keV (FWHM), which is better than the result of the traditional method, 104 keV (FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances. Supported by ‘100 Person Project’ of the Chinese Academy of Sciences and the National Natural Science Foundation of China (11405224 and 11435014)

  2. Evaluation of Nanoporous Gold with Controlled Surface Structures for Laser Desorption Ionization (LDI) Analysis: Surface Area Versus LDI Signal Intensity

    NASA Astrophysics Data System (ADS)

    Jin, Jang Mi; Choi, Suhee; Kim, Young Hwan; Choi, Man Ho; Kim, Jongwon; Kim, Sunghwan

    2012-09-01

    The structural effect of a nanoporous gold (NPG) surface on the signal intensities of laser desorption ionization-mass spectrometry (LDI-MS) were investigated using NPG surfaces with controlled structures. The relationship between surface area and LDI efficiency was compared and evaluated. Comparisons between bare flat gold and NPG surfaces show that nanostructures increased LDI efficiency. We also found that the LDI signal decreased with increasing depth of nanoporous layers, thus increasing the surface area. This result agrees with a previous report (Shin J. A. et al., J. Am. Soc. Mass Spectrom. 2010, 21, 989) in which the LDI efficiency of small molecules decreased for ZnO wires with longer lengths. This observation was explained by the penetration and deposition of samples into locations inaccessible to photons because of structural screening. The LDI-MS analysis of oils with NPG surfaces (but without matrix) showed the same trend whereby the NPG with about a 200 nm depth of porous area showed the highest sensitivity. This study clearly shows that the active surface area for solution chemistry can differ from LDI-MS and that NPGs can function as a substrate for LDI oil analysis.

  3. Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    PubMed Central

    Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel

    2010-01-01

    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648

  4. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration. PMID:22163434

  5. Read-out of scintillating fibres using a weak cross-talk position-sensitive photomultiplier

    NASA Astrophysics Data System (ADS)

    Agoritsas, V.; Akchurin, N.; Bing, O.; Bravar, A.; Drevenak, R.; Finger, Mic.; Finger, Mir.; Flaminio, V.; Digirolamo, B.; Gorin, A.; Kuroda, K.; Manuilov, I.; Okada, K.; Onel, Y.; Penzo, A.; Rappazzo, G. F.; Riazantsev, A.; Slunecka, M.; Takeutchi, F.; Yoshida, T.

    1998-02-01

    Fast and precise readout of scintillating fibres (SciFi) has a great potential for fast tracking and triggering at high-luminosity particle physics experiments. In the framework of the RD-17 experiment at CERN (FAROS) significant milestones in the development of SciFi detectors using position-sensitive photomultipliers have been achieved. Results obtained with a weak cross-talk multi-anode photomultiplier, Philips XP1724, and a parallel readout of the anodes are reported. With 0.5 mm diameter fibres a spatial resolution of about 125 μm and a detection efficiency in excess of 95% have been obtained. The time dispersion of signals from individual photomultiplier channels has been estimated to be about 1 ns. The possibility of digitising the track position in real time by a peak-sensing circuit is studied for the first time

  6. Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Wanchun; Broussard, L. J.; Hoffbauer, M. A.; Makela, M.; Morris, C. L.; Tang, Z.; Adamek, E. R.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Ding, X.; Geltenbort, P.; Hickerson, K. P.; Holley, A. T.; Ito, T. M.; Leung, K. K.; Liu, C.-Y.; Morley, D. J.; Ortiz, Jose D.; Pattie, R. W.; Ramsey, J. C.; Saunders, A.; Seestrom, S. J.; Sharapov, E. I.; Sjue, S. K.; Wexler, J.; Womack, T. L.; Young, A. R.; Zeck, B. A.; Wang, Zhehui

    2016-09-01

    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE =m0 gδx. Here, the symbols δE, δx, m0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.

  7. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  8. Measuring the cantilever-position-sensitive detector distance and cantilever curvature for cantilever sensor applications.

    PubMed

    Xu, Meng; Tian, Ye; Coates, M L; Beaulieu, L Y

    2009-09-01

    Measuring cantilever sensor deflections using an optical beam deflection system is more complicated than often assumed. The direction of the reflected beam is dependent on the surface normal of the cantilever, which in turn is dependent on the state of the cantilever. It is often assumed that the cantilever is both straight and perfectly level before the onset of sensing experiments although this assumption, especially the former, is rarely true. Failure to characterize the initial state of the cantilever can lead to irreproducibility in cantilever sensor measurements. We have developed three new methods for characterizing the initial state of the cantilever. In the first case we show how to define the initial angle of inclination beta of the chip on which the cantilever is attached. This method was tested using an aluminum block with a known angle of inclination. A new method for determining the initial distance L(o) between the cantilever and the position-sensitive detector (PSD) is also presented. This parameter which behaves as an amplification factor of the PSD signal is critical for obtaining precise cantilever sensor data. Lastly, we present a method for determining the initial curvature of the cantilever which often results from depositing the sensing platform on the lever. Experiments conducted using deflected cantilevers showed the model to be accurate. The characterization methods presented in this work are simple to use, easy to implement, and can be incorporated into most cantilever sensor setups. PMID:19791971

  9. Performance of BF{sub 3} Filled Position Sensitive Neutron Detector

    SciTech Connect

    Desai, Shraddha S.; Devan, Shylaja; Krishna, P. S. R.

    2011-07-15

    {sup 3}He filled position sensitive detectors (PSD)s developed in-house are successfully used for neutron scattering studies at Dhruva. However recent global scarcity of {sup 3}He has made it essential to find an alternative. It is very difficult to meet performance capabilities of {sup 3}He for neutron detection in any of the alternate materials. Among various alternatives, BF{sub 3} gas can be one. We have recently put an effort to evaluate performance of BF{sub 3} based PSD. For that a PSD filled with BF{sub 3} gas at 0.8 bar pressure is fabricated and characterized. Performances of the same with Pu-Be source and at Hi-Q Diffractometer, Dhruva are reported in this paper. Diffraction spectra from standard samples Fe and Si at wavelength 0.783 A were recorded. It is found that while position resolution of the BF{sub 3} filled PSD is comparable but the efficiency is 20 times less than that of a {sup 3}He(12 bar) filled PSD.

  10. High spatial resolution two-dimensional position sensitive detector for the performance of coincidence experiments

    SciTech Connect

    Ceolin, D.; Chaplier, G.; Lemonnier, M.; Garcia, G.A.; Miron, C.; Nahon, L.; Simon, M.; Leclercq, N.; Morin, P.

    2005-04-01

    A position sensitive detector (PSD) adapted to the technical and mechanical specifications of our angle and energy resolved electron-ion(s) coincidence experiments is described in this article. The device, whose principle is very similar to the one detailed by J. H. D. Eland [Meas. Sci. Technol. 5, 1501 (1994)], is composed by a set of microchannel plates and a delay line anode. The originality comes from the addition in front of the encoding surface of a ceramic disk covered by a resistive surface. The capacitive coupling between the anode and the resistive plane has the double advantage of eliminating the spatial modulations due to the lattice of the anode and also of sensitizing a greater number of electrodes, increasing thus considerably the accuracy of the position measurements. The tests carried out with a time to digital conversion module of 250 ps resolution showed that a spatial resolution better than 50 {mu}m and a dead time of 160 ns can be achieved. Typical images obtained with the help of the EPICEA and DELICIOUS coincidence setups are also shown.

  11. Fourier synthesis image reconstruction by use of one-dimensional position-sensitive detectors.

    PubMed

    Kotoku, Jun'ichi; Makishima, Kazuo; Okada, Yuu; Negoro, Hitoshi; Terada, Yukikatsu; Kaneda, Hidehiro; Oda, Minoru

    2003-07-10

    An improvement of Fourier synthesis optics for hard x-ray imaging is described, and the basic performance of the new optics is confirmed through numerical simulations. The original concept of the Fourier synthesis imager utilizes nonposition-sensitive hard x-ray detectors coupled to individual bigrid modulation collimators. The improved concept employs a one-dimensional position-sensitive detector (such as a CdTe strip detector) instead of the second grid layer of each bigrid modulation collimator. This improves the imaging performance in several respects over the original design. One performance improvement is a two-fold increase in the average transmission, from 1/4 to 1/2. The second merit is that both the sine and cosine components can be derived from a single grid-detector module, and hence the number of imaging modules can be halved. Furthermore, it provides information along the depth direction simultaneously. This in turn enables a three-dimensional imaging hard x-ray microscope for medical diagnostics, incorporating radioactive tracers. A conceptual design of such a microscope is presented, designed to provide a field of view of 4 mm and a spatial resolution of 400 microm. PMID:12856730

  12. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.; Beard, W.J.

    1987-01-20

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole, means for collimating the scattered gamma rays onto the detector. The detector comprises scintillation crystal means having discrete longitudinally spaced active regions or bins and is longitudinally spaced from the gamma ray source. It has a longitudinal length L and two opposite ends and photomultiplier tubes optically coupled to the opposite ends for providing output voltage signals having voltage amplitudes A and B representative of the intensity of scintillation events occurring in the crystal and impinging at the opposite ends thereof. A means separates the bins for selectively attenuating light passing therebetween, and a means combines the output voltage signals A and B according to a predetermined relationship to derive the discrete bin along the length L of each of the scintillation events in the crystal, thereby providing measurements of the gamma ray scattering properties of the earth formations at different radial distances from the borehole.

  13. Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection

    SciTech Connect

    Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

    1994-10-01

    Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

  14. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  15. Mathematical modelling and study of the encoding readout scheme for position sensitive detectors

    NASA Astrophysics Data System (ADS)

    Yue, Xiaoguang; Zeng, Ming; Zeng, Zhi; Wang, Yi; Wang, Xuewu; Zhao, Ziran; Cheng, Jianping; Kang, Kejun

    2016-04-01

    Encoding readout methods based on different schemes have been successfully developed and tested with different types of position-sensitive detectors with strip-readout structures. However, how to construct an encoding scheme in a more general and systematic way is still under study. In this paper, we present a graph model for the encoding scheme. With this model, encoding schemes can be studied in a more systematic way. It is shown that by using an encoding readout method, a maximum of n (n - 1)/2 + 1 strips can be processed with n channels if n is odd, while a maximum of n (n - 2)/2 + 2 strips can be processed with n channels if n is even. Furthermore, based on the model, the encoding scheme construction problem can be translated into a problem in graph theory, the aim of which is to construct an Eulerian trail such that the length of the shortest subcycle is as long as possible. A more general approach to constructing the encoding scheme is found by solving the associated mathematical problem. In addition, an encoding scheme prototype has been constructed, and verified with MRPC detectors.

  16. The particle background of the Rosat PSPC. [Position Sensitive Proportional Counter

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Plucinsky, P. P.; Briel, U.; Hasinger, G.; Pfeffermann, E.

    1992-01-01

    In order to permit quantitative studies of the diffuse cosmic X-ray background and of extended X-ray sources, the particle induced background of the Roentgen Satellite, Rosat, Position Sensitive Proportional Counter (PSPC) is parameterized. Data collected during 210,000 s of PSPC operation have been analyzed and the temporal, spectral, and spatial distributions investigated. About 77 percent of the residual events originate within the detector while the remainder enter through the counter window. During typical conditions, the count rate of the residual events is well correlated with the Master Veto (MV) count rate. The spectrum of these events is well described by a flat component plus a soft power law and an Al K-alpha line at 1.5 keV. Also during typical conditions, the ratio between the power law and flat components remains constant to +/- 4 while the relative Al K-alpha contribution increases with increasing MV count rate. The distribution of the counts over the field of view is uniform except for a slight radial dependence and shadowing caused by blockage of the externally produced component by the window support structure.

  17. A Prototype Three-Dimensional Position Sensitive CdZnTe Detector Array

    SciTech Connect

    Zhang, Feng; He, Zhong; Seifert, Carolyn E.

    2007-08-01

    A new CdZnTe gamma-ray spectrometer system that employs two layers of modular detector arrays is being developed under the collaboration between the University of Michigan and the Pacific Northwest National Labaratory (PNNL). Each layer can accommodate up to three by three 3-dimensional position sensitive CdZnTe gamma-ray spectrometers. This array system is based on the newly developed VAS_UM/TAT4 ASIC readout electronics. Each of the nine detector modules consists of a pixellated CdZnTe detector and a VAS_UM/TAT4 ASIC frontend board. Each 1.5´1.5´1.0 cm3 CdZnTe detector employs an array of 11 by 11 pixellated anodes and a planar cathode. The energy depositions and 3-dimensional positions of individual interactions of each incident gamma ray can be obtained from pulse amplitude, location of each pixel anode and the drift time of electrons. Ten detectors were tested individually and half of them achieved resolution of <1.0% FWHM at 662 keV for single-pixel events (~30% of all 662 keV full energy deposition events). Two of them were tested in a simple array to verify that the upgrade to an array system does not sacrifice the performance of individual detectors. Experimental results of individual detectors and a twodetector array system are presented, and possible causes for several worse performing detectors are discussed.

  18. Position-sensitive change in the transition metal L-edge fine structures

    SciTech Connect

    Gulec, Ahmet; Phillips, Patrick J.; Klie, Robert F.

    2015-10-05

    Studying the structure and composition of solid-state materials on the atomic scale has become nearly routine in transmission electron microscopy with the development of novel electron optics and electron sources. In particular, with spatial resolutions better than 0.1 nm and energy resolution smaller than 100 meV, the stoichiometry, bonding, and coordination can now be examined on similar scales. Aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) have played a crucial role in identifying charge ordering, valence, and as spin state transitions in transition metal perovskite oxides. In this letter, we investigate the effects of ever-decreasing electron-probe sizes on the measured near-edge fine-structure of the transition metal core-loss edge using EELS. We find that for certain transition metal perovskites, the position of the electron probe with respect to the atomic column is crucial in determining the correct valence state. Several reasons for the observed position-sensitive EELS fine-structure are discussed.

  19. Performance characteristics of a compact position-sensitive LSO detector module.

    PubMed

    Vaquero, J J; Seidel, J; Siegel, S; Gandler, W R; Green, M V

    1998-12-01

    We assembled a compact detector module comprised of an array of small, individual crystals of lutetium oxyorthosilicate:Ce (LSO) coupled directly to a miniature, metal-can, position-sensitive photomultiplier tube (PSPMT). We exposed this module to sources of 511-keV annihilation radiation and beams of 30- and 140-keV photons and measured spatial linearity; spatial variations in module gain, energy resolution, and event positioning; coincidence timing; the accuracy and sensitivity of identifying the crystal-of-first-interaction at 511 keV; and the effects of intercrystal scatter and LSO background radioactivity. The results suggest that this scintillator/phototube combination should be highly effective in the coincidence mode and can be used, with some limitations, to image relatively low-energy single photon emitters. Photons that are completely absorbed on their first interaction at 511 keV are positioned by the module at the center of a crystal. Intercrystal scatter events, even those that lead to total absorption of the incident photon, are placed by the module in a regular "connect-the-dot" pattern that joins crystal centers. As a result, the accuracy of event positioning can be made to exceed 90%, though at significantly reduced sensitivity, by retaining only events that occur within small regions-of-interest around each crystal center and rejecting events that occur outside these regions in the connect-the-dot pattern. PMID:10048853

  20. Performance of resistive-charge position sensitive detectors for RBS/Channeling applications

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Wahl, U.; Catarino, N.; Ribeiro da Silva, M.; Alves, E.

    2014-10-01

    The performance of two types of 1×1 cm2 photodiode position sensitive detectors (PSDs) based on resistive charge division was evaluated for their use in Rutherford Backscattering/Channeling (RBS/C) experiments in blocking geometry. Their energy resolution was first determined for ~ 5.5 MeV alpha particles from a radioactive sources, and values of full width half maximum (FWHM) of 22 keV and 33 keV were achieved using a shaping time constant of τ = 2.0 μs. Additional tests were performed using backscattered 4He particles from the 2.0 MeV beam of a Van de Graaff accelerator. While the 22 keV FWHM detector failed after exposure to less than 5×106 cm-24He particles, the other did not show any noticeable deterioration due to radiation damage for a fluence of 4×108 cm-2. For this type of PSD position resolution (τ = 0.5 μs) standard deviations of ΔL = 0.072 mm at ~ 5.5 MeV and ΔL = 0.247 mm at 1.1 MeV were achieved. RBS/Channeling experiments using PSD were performed on several crystalline samples, showing that this setup seems suitable for lattice location studies, particularly for heavy ions implantation (D ≳1015 at /cm2) on light substrates like Si, SiC, and AlN.

  1. Hard x-ray polarimetry with a thick CdTe position sensitive spectrometer

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Bertuccio, Giuseppe; Cola, Adriano; Curado da Silva, R. M.; Donati, Ariano; Dusi, Waldes; Landini, Gianni; Siffert, Paul; Sampietro, Marco; Stephen, John B.

    2000-12-01

    Even though it is recognized that the study of polarization from cosmic high-energy sources can give very important information about the nature of the emission mechanism, to date very few measurements have been attempted. For several years we have proposed the use of a thick CdTe array as a position sensitive spectrometer for hard X- and soft gamma-ray astronomy, a design which is also efficient for use as a polarimeter at energies above approximately 100 keV. Herein we describe the preliminary results of our study of a polarimeter based on 4096 CdTe microcrystals that we would like to develop for a high altitude balloon experiment. We present the telescope concept with a description of each subsystem together with some results on activities devoted to the optimization of the CdTe detector units' response. Furthermore we give an evaluation of the telescope performance in terms of achievable spectroscopic and polarimetric performance. In particular we will show the results of Monte Carlo simulations developed to evaluate the efficiency of our detector as a hard X ray polarimeter.

  2. Trace detection of non-uniformly distributed analytes on surfaces using mass transfer and large-area desorption electrospray ionization (DESI) mass spectrometry.

    PubMed

    Soparawalla, Santosh; Salazar, Gary A; Sokol, Ewa; Perry, Richard H; Cooks, R Graham

    2010-08-01

    Ambient ionization methods such as desorption electrospray ionization (DESI) allow the analysis of chemicals adsorbed at surfaces without the need for sample (or surface) pretreatment. A limitation of current implementations of these ionization sources is the small size of the area that can be sampled. This makes examination of surfaces of large areas time-consuming because of the need to raster across the surface. This paper describes a DESI source that produces a spray plume with an effective desorption/ionization area of 3.6 cm(2), some 200 times larger than given by conventional DESI sources. Rhodamine 6G and several drugs of abuse (codeine, heroin and diazepam) were used to demonstrate the ability to use large-area DESI MS to perform rapid (a few seconds) representative sampling of areas of the order of several square centimetres without scanning the probe across the surface. The large area ion source displayed high sensitivity (limits of detection in the high nanogram range) and high reproducibility (approximately 20 to 35% relative standard deviation). The rapid analysis of even larger surfaces (hundreds of cm(2)) for traces of explosives is possible using a sorbent surface wipe followed by large-area DESI interrogation performed directly on the wipe material. The performance of this mass transfer dry wipe method was examined by determination of the limits of detection of several explosives. Surfaces with different topographies and compositions were also tested. Using this method, absolute limits of detection observed for HMX and RDX from plastic surfaces and skin were found to be as low as 10 ng cm(-2). The concentration of residue from large surface areas in this technique allowed the detection of 100 ng of explosives from surfaces with areas ranging from 1.00 x 10(3) cm(2) to 1.40 x 10(4) cm(2). PMID:20539884

  3. Properties of large area ErBa2Cu3O(7-x) thin films deposited by ionized cluster beams

    NASA Technical Reports Server (NTRS)

    Levenson, L. L.; Stan, Mark A.; Bhasin, Kul B.

    1991-01-01

    ErBa2Cu3O(7-x) films have been produced by simultaneous deposition of Er, Ba, and Cu from three ionized cluster beam (ICB) sources at acceleration voltages of 0.3 to 0.5 kV. Combining ozone oxidation with ICB deposition at 650 C eliminated any need of post annealing processing. The substrates were rotated at 10 rotations per minute during the deposition which took place at a rate of about 3 to 4 nm. Films with areas up to 70 mm in diameter have been made by ICB deposition. These films, 100 nm thick, were deposited on SrTiO3 (100) substrates at 650 C in a mixture of six percent O3 in O2 at a total pressure of 4 x 10(exp -4) Torr. They had T(sub c) ranging from 84.3 K to 86.8 K over a 70 mm diameter and J(sub c) above 10(exp 6) A/sq cm at 77 K. X ray diffraction measurements of the three samples showed preferential c-axis orientation normal to the substrate surface. Scanning electron micrographs (SEM) of the three samples also show some texture dependence on sample position. For the three samples, there is a correlation between SEM texture, full width at half-maximum of rocking curves and J(sub c) versus temperature curves.

  4. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources

    PubMed Central

    Markoff, Diane M.; Cianciolo, Vince; Britton, Chuck L.; Cooper, Ronald G.; Greene, Geoff L.

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented 3He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using 3He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  5. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources.

    PubMed

    Markoff, Diane M; Cianciolo, Vince; Britton, Chuck L; Cooper, Ronald G; Greene, Geoff L

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented (3)He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using (3)He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  6. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    NASA Astrophysics Data System (ADS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S. I.; Flaminio, V.; Golovkin, S. V.; Gorin, A. M.; Medvedkov, A. M.; Pyshev, A. I.; Tyukov, V. E.; Vasilchenko, V. G.; Zymin, K. V.

    1995-02-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20 μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ = 170 μm, a two-track resolution of the same value and a hit density of n = 1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200 μm, the two-track resolution 600 μm and the hit density n = 1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking.

  7. A location system based on two-dimensional position sensitive detector used in interactive projection systems

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Zhou, Qian; Chen, Liangjun; Sun, Peng; Xu, Honglei; Gao, Yuan; Ma, Jianshe; Li, Yi; Liu, Minxia

    2010-11-01

    The interactive projection systems have been widely used in people's life. Currently the major type is based on interactive whiteboard (IWB). In recent years, a new type based on CCD/CMOS sensor is greatly developed. Compared to IWB, CCD/CMOS implements non-contact sensing, which can use any surface as the projection screen. This makes them more flexible in many applications. However, the main defect is that the location accuracy and tracing speed are limited by the resolution and frame rate of the CCD/CMOS. In this paper, we introduced our recent progress on constructing a new type of non-contact interactive projection system by using a two-dimensional position sensitive detector (PSD). The PSD is an analog optoelectronic position sensor utilizing photodiode surface resistance, which provides continuous position measuring and features high position resolution (better than 1.5μm) and high speed response (less than 1μs). By using the PSD, both high positioning resolution and high tracing speed can be easily achieved. A specially designed pen equipped with infrared LEDs is used as a cooperative target. A high precision signal processing system is designed and optimized. The nonlinearity of the PSD as well as the aberration of the camera lens is carefully measured and calibrated. Several anti-interference methods and algorithms are studied. Experimental results show that the positioning error is about 2mm over a 1200mm×1000mm projection screen, and the sampling rate is at least 100Hz.

  8. Betabox: a beta particle imaging system based on a position sensitive avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Dooraghi, A. A.; Vu, N. T.; Silverman, R. W.; Farrell, R.; Shah, K. S.; Wang, J.; Heath, J. R.; Chatziioannou, A. F.

    2013-06-01

    A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm2 position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as 18F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for 18F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm-2 at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of 18F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm-2 for 1 min acquisitions and a 62 × 62 µm2 pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm2. We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ˜180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ˜200 µm of additional LDPE film. Lastly

  9. Betabox: a beta particle imaging system based on a position sensitive avalanche photodiode

    PubMed Central

    Dooraghi, AA; Vu, NT; Silverman, RW; Farrell, R; Shah, KS; Wang, J; Heath, JR; Chatziioannou, AF

    2013-01-01

    A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm2 position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as 18F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for 18F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm−2 at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of 18F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm−2 for 1 min acquisitions and a 62 × 62 µm2 pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm2. We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ~180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ~200 µm of additional LDPE film

  10. A position-sensitive γ-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Nagai, Yasuyoshi; Muramatsu, Shinichi; Nagai, Shota; Masuda, Keisuke

    2002-07-01

    A new position-sensitive γ-ray detector to be used in a two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) apparatus has been developed. It consists of 36 compact position-sensitive photomultiplier tubes (PS-PMT: HAMAMATSU R5900-00-C8), a light guide, and 2676 Bi 4Ge 3O 12 (BGO) scintillator pieces of size 2.6 mm×2.6 mm×18 mm. A high detection efficiency for 511 keV γ-ray is achieved with the length of BGO scintillators used. The detection area is about 160 mm×160 mm. The 288 anode outputs of the PS-PMTs are wired and connected to resistor chains from which 16 outputs (8 outputs each along the X and Y directions) are taken to identify the incident position of the γ-ray. The spatial resolution is about 3 mm (FWHM). The timing signal taken from the last dynodes of the PS-PMTs gives a timing resolution of 7.7 ns (FWHM) for 511 keV positron annihilation γ-rays.

  11. In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: Feasibility study

    SciTech Connect

    Reniers, B.; Landry, G.; Eichner, R.; Hallil, A.; Verhaegen, F.

    2012-04-15

    Purpose: In gynecological radiotherapy with high dose rate (HDR){sup 192}Ir brachytherapy, the treatment complexity has increased due to improved optimization techniques and dose constraints. As a consequence, it has become more important to verify the dose delivery to the target and also to the organs at risk (e.g., the bladder). In vivo dosimetry, where dosimeters are placed in or on the patient, is one way of verifying the dose but until recently this was hampered by motion of the radiation detectors with respect to the source. The authors present a novel dosimetry method using a position sensitive radiation detector. Methods: The prototype RADPOS system (Best Medical Canada) consists of a metal oxide field effect transistor (MOSFET) dosimeter coupled to a position-sensor, which deduces its 3D position in a magnetic field. To assess the feasibility of in vivo dosimetry based on the RADPOS system, different characteristics of the detector need to be investigated. Using a PMMA phantom, the positioning accuracy of the RADPOS system was quantified by comparing position readouts with the known position of the detector along the x and y-axes. RADPOS dose measurements were performed at various distances from a Nucletron{sup 192}Ir source in a PMMA phantom to evaluate the energy dependence of the MOSFET. A sensitivity analysis was performed by calculating the dose after varying (1) the position of the RADPOS detector to simulate organ motion and (2) the position of the first dwell position to simulate errors in delivery. The authors also performed an uncertainty analysis to determine the action level (AL) that should be used during in vivo dosimetry. Results: Positioning accuracy is found to be within 1 mm in the 1-10 cm range from the origin along the x-axis (away from the transmitter), meeting the requirements for in vivo dosimetry. Similar results are obtained for the other axes. The ALs are chosen to take into account the total uncertainty on the measurements. As a

  12. Effects of dose and of partial body ionizing radiation on taste aversion learning in rats with lesions of the area postrema

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Lee, J. )

    1984-01-01

    The effect of area postrema lesions on the acquisition of a conditioned taste aversion following partial body exposure to ionizing radiation was investigated in rats exposed to head-only irradiation at 100, 200 and 300 rad or to body-only irradiation at 100 and 200 rad. Following head-only irradiation area postrema lesions produced a significant attenuation of the radiation-induced taste aversion at all dose levels, although the rats still showed a significant reduction in sucrose preference. Following body-only exposure, area postrema lesions completely disrupted the acquisition of the conditioned taste aversion. The results are interpreted as indicating that: (a) the acquisition of a conditioned taste aversion following body-only exposure is mediated by the area postrema; and (b) taste aversion learning following radiation exposure to the head-only is mediated by both the area postrema and a mechanism which is independent of the area postrema.

  13. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  14. Proportional counter for X-ray analysis of lunar and planetary surfaces. [a position sensitive scintillating imaging proportional counter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A position sensitive proportional scintillation detector was developed and evaluated for use in applications involving X-ray imaging as well as spectroscopy. Topics covered include limitations of the proportional scintillation counter for use in space; purification of the xenon gas in the detector, and the operation of the detector system. Results show that the light signal in a proportional scintillation detector remains well localized. With modest electric fields in xenon, the primary electrons from a photoelectric absorption of an X-ray can be brought a distance of a few millimeters to a higher field region without spreading more than a millimeter or so. Therefore, it is possible to make a proportional scintillation detector with good position sensitivity that could be used to calibrate out the difference in light collection over its sensitive volume.

  15. Software modules of DAQ PCI board (DeLiDAQ) for positive-sensitive MWPC detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Levchanovsky, F. V.; Litvinenko, E. I.; Nikiforov, A. S.; Gebauer, B.; Schulz, Ch.; Wilpert, Th.

    2006-12-01

    The data acquisition system for the position-sensitive delay line detectors on basis of the reprogrammable PCI DAQ board (DeLiDAQ) began to be used for scientific measurements with one- and two-dimensional position-sensitive MWPC detectors on the neutron reactors IBR-2 (JINR, Dubna) and BERII (HMI, Berlin). A stand-alone version of the system with the graphical user interface on the basis of packet ROOT can be used on any PC with the operating system Windows 2000 or Windows XP. Architecture of the created software ensures several ways of interfacing to experiment control systems. In the paper we provide a description of the DeLiDAQ software modules, their features and results of some performance tests.

  16. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    SciTech Connect

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.

  17. A position-sensitive germanium detector for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Varnell, L. S.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.; Pehl, R. H.; Goulding, F. S.; Landis, D. A.; Luke, P. N.; Madden, N. W.

    1984-01-01

    The critical problem in high-resolution cosmic gamma-ray spectroscopy in the energy range from 0.02 to 10 MeV is the limited spectral sensitivity of the detectors used. This results from the small effective area of the detectors and the high background noise due to induced radioactivity and scattering in the detectors' high-energy particle environment. The effective area can be increased by increasing the number of detectors, but this becomes prohibitive because of the size and expense of the resulting instrument. We have taken a new approach: a segmented large-volume germanium gamma-ray detector which can effectively discriminate against internal background yet maintain the high spectral resolution and efficiency of conventional coaxial Ge detectors. To verify this concept, a planar detector divided into two segments has been fabricated and laboratory measurements agree well with Monte Carlo calculations. A large coaxial detector which will be divided into five segments is being built using the techniques developed for the planar detector. Monte Carlo calculations show that the sensitivity (minimum detectable flux) of the segmented coaxial detector is a factor of 2-3 better than conventional detectors because of the reduction in the internal background.

  18. Properties of large area ErBa2Cu3O(7-x) thin films deposited by ionized cluster beams

    NASA Technical Reports Server (NTRS)

    Levenson, L. L.; Stan, M.; Bhasin, K. B.

    1991-01-01

    Ionized cluster beam (ICB) deposition is employed to produce ErBa2Cu3O(7-x) films on different substrates without post-annealing. Films with diameters of up to 70 mm are grown on SrTiO3 100 plane and exhibit Tc values of 84-87 K, Jc of about 10 exp 6 A/sq m at 77 K. These films are epitaxial with the c-axis perpendicular to the plane of the substrate surface, and they can be routinely produced by ICB with good Jc and Tc.

  19. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    SciTech Connect

    Nelson, R.; Sandoval, J.

    1996-10-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled {sup 3}He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source.

  20. Development of Gamma-Ray Compton Imager Using Room-Temperature 3-D Position Sensitive Semiconductor Detectors

    SciTech Connect

    Zhong He; David Whe; Glenn Knoll

    2003-05-14

    During the three years of this project, two 3-dimensional position sensitive CdZnTe spectrometers were upgraded in collaboration with Johns Hopkins University Applied Physics Laboratory. A prototype Compton-scattering gamma-ray imager was assembled using the two upgraded CdZnTe detectors. The performance of both gamma-ray spectrometers were individually tested. The angular resolution and detection sensitivity of the imaging system were measured using both a point and a line-shaped 137 Cs radiation source. The measurement results are consistent with that obtained from Monte-Carlo simulations performed during the early phase of the project.

  1. Semiconductor diodes as neutron detectors for position-sensitive measurements and for application in personal neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Balzhaeuser, Michael; Dehoff, A.; Engels, R.; Hoengesberg, F.; Lauter, J.; Luth, Hans; Reetz, M.; Reinartz, Richard; Richter, H.; Schelten, Jim; Schmitz, Th.; Steffen, A.; Vockenberg, Th.

    1997-02-01

    A new design for a position-sensitive detector system for thermal neutrons is introduced. The detection principle with a thin 6LiF converter on the surface of a semiconductor diode is described. In experiments with thermal neutrons, a spatial resolution of 1.25 mm was obtained. The detector is insensitive to (gamma) -rays with energies up to 1.5 MeV. The design of a detector with an improvement of the detection efficiency for thermal neutrons from 2.5 percent up to 35 percent is also proposed and the present state of the process development for its fabrication is described.

  2. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    SciTech Connect

    V. Popov

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  3. EMSP Project Number 65015 Final Report: Three-dimensional position-sensitive germanium detectors

    SciTech Connect

    Amman, Mark; Luke, Paul N.

    2001-12-07

    Critical to the DOE effort to deactivate and decommission the weapons complex facilities is the characterization of contaminated equipment and building structures. This characterization includes the isotopic identification of radioactive contaminants and the spatial mapping of these deposits. The penetrating nature of the gamma rays emitted by the radioactive contaminants provides a means to accomplish this task in a passive, non-destructive and non-intrusive manner. Through conventional gamma-ray spectroscopy, the radioactive isotopes in the contaminants can be identified by their characteristic gamma-ray signatures and the amount of each isotope by the intensity of the signature emission. With the addition of gamma-ray imaging, the spatial distributions of the isotopes can simultaneously be obtained. The ability to image radioactive contaminants can reduce waste as well as help ensure the adequate protection of workers and the environment. For example, if equipment and building materials have been subjected to radionuclide contamination, the entire structure must be treated as radioactive waste during demolition. However, only partial removal may be necessary if the contamination can be accurately located and identified. Hand-held survey instrumentation operated in the near vicinity of the contaminated objects is a common method to accomplish this task. This method necessitates long data acquisition times, direct close access, and considerable worker exposure, as well as leads to imprecise information. In contrast, imaging devices operated at a distance from the contaminated objects can accurately acquire the spatially dependent gamma-ray emission information in a single measurement. Consequently, the devices can more efficiently discriminate between contaminated and non-contaminated areas of heterogeneous objects while at the same time reducing worker exposure.

  4. Ultrahigh vacuum measuring ionization gauge

    NASA Technical Reports Server (NTRS)

    Brock, F. J. (Inventor)

    1968-01-01

    The ionization gage described consists of separate ionization and collector regions connected at an exit area with a modulator electrode. In addition to the standard modulation function, the modulator in this location yields a suprising increase in collector current, apparently due to improved focussing and extraction of ions from the ionization region.

  5. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  6. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-09-16

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/Δm=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Finally, long-chain alkanes from vehicle emissions might be their precursors.

  7. Design and development of a position-sensitive γ-camera for SPECT imaging based on PCI electronics

    NASA Astrophysics Data System (ADS)

    Spanoudaki, V.; Giokaris, N. D.; Karabarbounis, A.; Loudos, G. K.; Maintas, D.; Papanicolas, C. N.; Paschalis, P.; Stiliaris, E.

    2004-07-01

    A position-sensitive γ-camera is being currently designed at IASA. This camera will be used experimentally (development mode) in order to obtain an integrated knowledge of its function and perhaps to improve its performance in parallel with an existing one, which has shown a very good performance in phantom, small animal, SPECT technique and is currently being tested for clinical applications. The new system is a combination of a PSPMT (Hamamatsu, R2486-05) and a PMT for simultaneous or independent acquisition of energy and position information, respectively. The resistive chain technique resulting in two signals at each ( X, Y) direction will perform the readout of the PSPMT's anode signals; the system is based on PCI electronics. Status of the system's development and the ongoing progress is presented.

  8. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  9. Simulated Performance of Algorithms for the Localization of Radioactive Sources from a Position Sensitive Radiation Detecting System (COCAE)

    SciTech Connect

    Karafasoulis, K.; Zachariadou, K.; Seferlis, S.; Kaissas, I.; Potiriadis, C.; Lambropoulos, C.; Loukas, D.

    2011-12-13

    Simulation studies are presented regarding the performance of algorithms that localize point-like radioactive sources detected by a position sensitive portable radiation instrument (COCAE). The source direction is estimated by using the List Mode Maximum Likelihood Expectation Maximization (LM-ML-EM) imaging algorithm. Furthermore, the source-to-detector distance is evaluated by three different algorithms based on the photo-peak count information of each detecting layer, the quality of the reconstructed source image, and the triangulation method. These algorithms have been tested on a large number of simulated photons over a wide energy range (from 200 keV to 2 MeV) emitted by point-like radioactive sources located at different orientations and source-to-detector distances.

  10. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  11. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    SciTech Connect

    Del Guerra, A.; Zavattini, G. |; Notaristefani, F. de |; Di Domenico, G. |; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-06-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO{sub 3}:Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm{sup 3}), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 {+-} 3)% with a 150 keV threshold and (20 {+-} 2)% with a 300 keV threshold.

  12. Investigation on gamma-ray position sensitivity at 662 keV in a spectroscopic 3' x 3' LaBr3:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Camera, F.; Birocchi, F.; Blasi, N.; Boiano, C.; Brambilla, S.; Coelli, S.; Fiorini, C.; Marone, A.; Million, B.; Riboldi, S.; Wieland, O.

    2015-02-01

    The position sensitivity of a thick, cylindrical and continuous 3" x 3" (7.62 cm x 7.62 cm) LaBr3:Ce crystal was studied using a 1 mm collimated beam of 662 keV gamma rays from a 400 MBq intense 137Cs source and a spectroscopic photomultiplier (PMT) (HAMAMATSU R6233-100SEL). The PMT entrance window was covered by black absorber except for a small window 1 cm x 1 cm wide. A complete scan of the detector over a 0.5 cm step grid was performed for three positions of the 1 cm x 1 cm window. For each configuration the energy spectrum was measured and the peak centroid, the FWHM, the area and peak asymmetry of the 662 keV gamma transition were analyzed. The data show that, even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. We verified that, on average, the position of the full energy peak centroids measured in the three 1 cm x 1 cm window configurations is sufficient for the correct identification of the collimated gamma source position.

  13. Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry.

    PubMed

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole; Bateman, Adam P; Nguyen, Tran B; Bones, David L; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-09-16

    Fine aerosol particles in the urban areas of Shanghai and Los Angeles were collected on days that were characterized by their stagnant air and high organic aerosol concentrations. They were analyzed by nanospray-desorption electrospray ionization mass spectrometry with high mass resolution (m/Δm = 100,000). Solvent mixtures of acetonitrile and water and acetonitrile and toluene were used to extract and ionize polar and nonpolar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. A majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates that were detected at two locations have distinctly different molecular characteristics. Specifically, the organosulfates in the Los Angeles sample were dominated by biogenic products, while the organosulfates of a yet unknown origin found in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degrees of oxidation and unsaturation. The use of the acetonitrile and toluene solvent facilitated the observation of this type of organosulfates, which suggests that they could have been missed in previous studies that relied on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the uncommon organosulfates suggest that they may act as surfactants and plausibly affect the surface tension and hygroscopicity of atmospheric particles. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in the liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors. PMID:25184338

  14. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  15. A simple technique to increase the linearity and field-of-view in position sensitive photomultiplier tubes

    SciTech Connect

    Clancy, R.L.; Thompson, C.J.; Robar, J.L.; Bergman, A.M.

    1996-12-31

    Crossed anode wire position sensitive photomultiplier tubes (PS-PMTs) detect the location of a light source and provide the X and Y axis coordinates of the event. These coordinates are typically generated using Anger logic, where a resistor chain divides the current flow into two signals for each coordinate (X{sup +}, X{sup -} & Y{sup +}, Y{sup -}). In the standard readout, identical resistor values are used across the entire resistor chain. While this arrangement provides a linear readout in the central portion of the photomultiplier face, the readout is non-linear and sometimes even double valued near the edges of the PS-PMT due to the truncation of the charge beyond the last anode wire. To counter this effect, we have increased the value of the resistance near the ends of each resistor chain in order to compensate for the charge lost beyond the anode wires. Measurements were made using a Hamamatsu R-3941 PS-PMT coupled to a pixellated BGO matrix of cut crystals with a 2mm pitch in each direction. After changing the end resistors, the usable field-of-view increased by 39%. This simple modification should enhance the operation of PS-PMTs in applications such as positron emission mammography, and small animal PET imaging.

  16. Reciprocal-Space Analysis of Compositional Modulation in Short-Period Superlattices Using Position-Sensitive X-Ray Detection

    SciTech Connect

    Ahrenkiel, S.P.; Follstaedt, D.M.; Lee, S.R.; Millunchick, J.M.; Norman, A.G.; Reno, J.L.; Twesten, R.D.

    1998-11-10

    Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice

  17. Development of a scintillating-fibre detector with position-sensitive photomultipliers for high-rate experiments

    NASA Astrophysics Data System (ADS)

    Horikawa, S.; Daito, I.; Gorin, A.; Hasegawa, T.; Horikawa, N.; Iwata, T.; Kuroda, K.; Manuilov, I.; Matsuda, T.; Miyachi, Y.; Riazantsev, A.; Sidorov, A.; Takabayashi, N.; Toeda, T.

    2004-01-01

    An extensive study was performed on the development of fast and precise scintillating-fibre detectors with position-sensitive photomultipliers (PSPM) for application in high-rate experiments. Several detector prototypes with Kuraray multi-cladding fibres of 0.5 mm diameter and Hamamatsu 16-channel H6568 PSPMs were constructed and tested under different beam conditions at the CERN PS and SPS beam lines. High time resolution of the order of 300 ps (r.m.s.) was obtained with spatial resolution of about 125 μm (r.m.s.) and with detection efficiency in excess of 98%. The detector prototype equipped with a 3-m-long light guide was also tested and showed a time resolution of about 540 ps (r.m.s.). Results of tests using a high-intensity muon beam show excellent stability of the detector performances in time and spatial resolutions as well as in detection efficiency under beam fluxes of up to 1.4×10 8 muons per 2.4-second spill.

  18. Organic Position-Sensitive Detectors Based on ZnO:Al and CuPc:C60.

    PubMed

    Morimune, Taichiro; Kajii, Hirotake; Nishimaru, Hiroki; Ono, Shinji

    2016-04-01

    Organic position-sensitive detector (OPSD) based on copper phthalocyanine CuPc:fullerene C60 bulk-heterojunction with an inverted structure have been fabricated using aluminum doped ZnO (ZnO:Al) as a resistive layer, which is prepared by sol-gel method. The resistance length of the one-dimensional PSD is fixed at 5 mm, and the Ag common electrode is fabricated by vacuum evaporation within the 100-µm width. The current density-voltage characteristics with different structures of photodetector, the influence of ZnO:Al resistivity on the thickness and the position characteristics of PSDs are investigated. The experimental results indicate that the architecture, which uses an inverted structure, increases sensitivity under red light illumination compared to the conventional structure. In addition, the thickness of the ZnO:Al has influence on the position characteristics. The resistivity of ZnO:A film with Al doping concentration of 2 mol% prepared in this study is around 150 Ωcm and it increases from less than approximately 400 nm-thickness. These characteristics seem to be correlated with the properties of ZnO:AI resistive layer. For a device with a 620 nm-thick ZnO:Al layer, the measured position values obtained from the output photocurrent agree with the actual position values under red laser light illumination. CuPc:C60 OPSD with an inverted structure exhibits red light sensitivity, high incident-photon-to-current conversion efficiency of above 80% at -3 V and linearity error of 5.9% at -2 V. PMID:27451643

  19. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2015-04-01

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×106 Hz without any loses and will report a maximum event rate of 6.11×105 Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  20. Performance improvement of small gamma camera using NaI(Tl) plate and position sensitive photo-multiplier tubes.

    PubMed

    Jeong, Myung Hwan; Choi, Yong; Chung, Yong Hyun; Song, Tae Yong; Jung, Jin Ho; Hong, Key Jo; Min, Byung Jun; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-11-01

    The purpose of this study was to improve the performance of a small gamma camera, utilizing a NaI(Tl) plate and a 5" position sensitive PMT. We attempted to build a NaI(Tl) plate crystal system which retained all its advantages, while at the same time integrating some of the advantages inherent in an array-type scintillation crystal system. Flood images were obtained with a lead hole mask, and position mapping was performed by detecting hole positions in the flood image. Energy calibration was performed using the energy spectra obtained from each hole position. Flood correction was performed using a uniformity correction table containing the relative efficiency of each image element. The spatial resolution was improved about 16% after correction at the centre field of view. Resolution deterioration at the outer field of view (OFOV) was considerably ameliorated, from 6.7 mm to 3.2 mm after correction. The sensitivity at the OFOV was also increased after correction, from 0.7 cps microCi(-1) to 2.0 cps microCi(-1). The correction also improved uniformity, from 5.2% to 2.1%, and linearity, from 0.5 mm to 0 mm. The results of this study indicate that the revised correction method can be employed to considerably improve the performance of a small gamma camera using a NaI(Tl) plate-type crystal. This method also provides high spatial resolution and linearity, like array-type crystals do, while retaining the specific advantages of plate-type crystals. PMID:15584530

  1. Comparison of two dose-area-product ionization chambers with different conductive surface coating for over-table and under-table tube configurations

    SciTech Connect

    Bednarek, D.R.; Rudin, S.

    2000-03-01

    A custom-built graphite-coated transmission ionization chamber is compared to the VacuDAP 2001 (VacuTec, Dresden, Germany), which has transparent conductive electrodes. A study was made of the dependence of response on x-ray tube potential for both types of chamber under identical conditions of exposure using over-table and under-table x-ray tubes. Since the calibration factor is the dose-area product of the radiation incident on the patient per chamber reading, it depends on the intrinsic response of the chamber as well as the effect of material in the beam between the x-ray tube and patient. Differences of about 20% were measured between the intrinsic and the over-table calibration factors and between the over-table and the under-table calibration factors for both chambers. The VacuDAP display is specifically calibrated for the over-table condition and would overstate the actual DAP in the under-table case. The intrinsic response of the graphite chamber is nearly independent of tube potential. Although the variation of response with tube potential of the graphite chamber is increased when it is used as an over-table and an under-table patient monitor, it shows less overall variation of response than the VacuDAP. The average deviation of each range of 40 to 140 kVp for both chambers.

  2. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  3. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  4. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  5. Impact ionization engineered avalanche photodiode arrays for free space optical communication

    NASA Astrophysics Data System (ADS)

    Ferraro, Mike S.; Rabinovich, William S.; Clark, William R.; Waters, William D.; Campbell, Joe C.; Mahon, Rita; Vaccaro, Kenneth; Krejca, Brian D.

    2016-03-01

    High sensitivity photodetectors serve two purposes in free space optical communication: data reception and position sensing for pointing, tracking, and stabilization. Because of conflicting performance criteria, two separate detectors are traditionally utilized to perform these tasks but recent advances in the fabrication and development of large area, low noise avalanche photodiode (APD) arrays have enabled these devices to be used both as position sensitive detectors (PSD) and as communications receivers. Combining these functionalities allows for more flexibility and simplicity in optical assembly design without sacrificing the sensitivity and bandwidth performance of smaller, single element data receivers. Beyond eliminating the need to separate the return beam into two separate paths, these devices enable implementation of adaptive approaches to compensate for focal plane beam wander and breakup often seen in highly scintillated terrestrial and maritime optical links. While the Naval Research Laboratory (NRL) and Optogration Inc, have recently demonstrated the performance of single period, InAlAs/InGaAs APD arrays as combined data reception and tracking sensors, an impact ionization engineered (I2E) epilayer design achieves even lower carrier ionization ratios by incorporating multiple multiplication periods engineered to suppress lower ionization rate carriers while enhancing the higher ionization rate carriers of interest. This work presents a three period I2E concentric, five element avalanche photodiode array rated for bandwidths beyond 1GHz with measured carrier ionization ratios of 0.05-0.1 at moderate APD gains. The epilayer design of the device will be discussed along with initial device characterization and high speed performance measurements.

  6. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  7. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  8. Femtosecond Laser Ionization of Organic Amines with Very Low Ionization Potential.

    NASA Astrophysics Data System (ADS)

    Yatsuhashi, Tomoyuki; Obayashi, Takashi; Tanaka, Michinori; Murakami, Masanao; Nakashima, Nobuaki

    2006-03-01

    The interaction between high intensity femtosecond laser and molecules is one of the most attractive areas in laser chemistry and ionization is the most fundamental subject. Theoretical consideration successfully reproduced the ionization behavior of rare gases. However, the understanding of ionization mechanisms of large molecules is difficult more than those of rare gases due to their complexity. Generally speaking, molecules are harder to ionize than rare gases even if they have the same ionization potential. The suppressed ionization phenomena are one of the important features of molecular ionization. Hankin et al. examined 23 organic molecules with ionization potentials between 8.25 and 11.52 eV. We have examined ionization and/ or fragmentation of many organic molecules, including aromatic compounds, halogenated compounds, methane derivatives etc. at various wavelengths below 10^16 Wcm-2. In order to investigate the nature of molecular ionization, it is interesting to examine a variety of molecule in a wide range of ionization potential. In this study, we examined several organic amines because we can explore the uninvestigated ionization potential range down to 5.95 eV. In addition to the significant suppression of the ionization rates, stepwise ionization behavior, which was not observed in rare gases, was observed.

  9. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zhong

    2008-11-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications. Supported by National Nature Science Foundation of China (10275063)

  10. Development of a large area InGaAs APD receiver based on an impact ionization engineered detector for free-space lasercomm applications

    NASA Astrophysics Data System (ADS)

    Burris, H. R.; Ferraro, M. S.; Freeman, W. T.; Moore, C. I.; Murphy, J. L.; Rabinovich, W. S.; Smith, W. R.; Summers, L. L.; Thomas, L. M.; Vilcheck, M. J.; Clark, W. R.; Waters, W. D.

    2012-06-01

    The U.S. Naval Research Laboratory (NRL) is developing a small size, weight and power (SWaP) free space lasercomm terminal for small unmanned airborne platforms. The terminal is based on a small gimbal developed by CloudCap Technology. A receiver with a large field of view and with sensitivity sufficient to meet the program range goals is required for this terminal. An InGaAs Avalanche Photodiode (APD) with internal structures engineered to reduce excess noise and keff in high gain applications was selected as the detector. The detector is a 350 micron diameter impact ionization engineered (I2E) APD developed by Optogration, Inc. Results of development and characterization of the receiver will be presented.

  11. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  12. Count rate studies of a box-shaped PET breast imaging system comprised of position sensitive avalanche photodiodes utilizing monte carlo simulation.

    PubMed

    Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S

    2006-01-01

    We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi). PMID:17645997

  13. MRI compatibility of position-sensitive photomultiplier depth-of-interaction PET detectors modules for in-line multimodality preclinical studies

    NASA Astrophysics Data System (ADS)

    Vaquero, J. J.; Sánchez, J. J.; Udías, J. M.; Cal-González, J.; Desco, M.

    2013-02-01

    This work addresses the feasibility of a small-animal, in-line PET/MR system based on Position-Sensitive Photo Multiplier Tubes (PS-PMTs). To this end, we measured the effects of static magnetic fields on the PS-PMTs performance in order to explore the minimal tandem separation between the PET and MR subsystems to preserve their respective performances. We concluded that it is possible to achieve minimal degradation of the PET scanner performance (after a system recalibration) if the magnetic field strength influencing the PET detectors is less than 1 mT and if it is oriented perpendicularly to the longitudinal axis of the tube. Therefore, we predict that it will be possible to maintain the PET image quality if it is placed outside the 1 mT line.

  14. Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode.

    PubMed

    Hirano, Yoshiyuki; Nitta, Munetaka; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2014-01-01

    Our purpose in this work was to evaluate the performance of a 4-layer depth-of-interaction (DOI) detector composed of GSO crystals by use of a position-sensitive photomultiplier tube (PMT) with a super-bialkali photocathode (SBA) by comparing it with a standard bialkali photocathode (BA) regarding the ability to identify the scintillating crystals, energy resolution, and timing resolution. The 4-layer DOI detector was composed of a 16 × 16 array of 2.9 × 2.9 × 7.5 mm(3) GSO crystals for each layer and an 8 × 8 multi-anode array type position-sensitive PMT. The DOI was achieved by a reflector control method, and the Anger method was used for calculating interacting points. The energy resolution in full width at half-maximum (FWHM) at 511 keV energy for the top layer (the farthest from the PMT) was improved and was 12.0% for the SBA compared with the energy resolution of 12.7% for the BA. As indicators of crystal identification ability, the peak-to-valley ratio and distance-to-width ratio were calculated; the latter was defined as the average of the distance between peaks per the average of the peak width. For both metrics, improvement of several percent was obtained; for example, the peak-to-valley ratio was increased from 1.78 (BA) to 1.86 (SBA), and the distance-to-width ratio was increased from 1.47 (BA) to 1.57 (SBA). The timing resolution (FWHM) in the bottom layer was improved slightly and was 2.4 ns (SBA) compared with 2.5 ns (BA). Better performance of the DOI detector is expected by use of a super bialkali photocathode. PMID:23963892

  15. Proteomic Analysis of Flax Seeds from the Chernobyl Area Suggests Involvement of Stress, Signaling, and Transcription/Translation in Response to Ionizing Radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. However, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including 90Sr and 137Cs, the local ecosystem has been able...

  16. A BGO/GSO position sensitive block detector for a high resolution positron emission tomography with depth of interaction detection capability

    SciTech Connect

    Yamamoto, S.

    1996-12-31

    We developed a position sensitive block detector with depth of interaction detection capability for positron emission tomography (PET). The detector consists of 6 x 8 array of GSO scintillators, 6 x 8 array of BGO scintillators and two dual photomultiplier tubes (PMT). The GSO scintillators are optically coupled to front surface of the BGO scintillators. The position of 6 x 8 scintillators are determined by the Anger principle and depth of interaction position is determined by using the pulse shape analysis of GSOs and BGOs. Performance of the block detector was measured. Position distribution of the developed BGO/GSO block detector was little distorted. However the separation of the spots was still enough to distinguish the scintillators in transaxial and axial directions. Since pulse shape distribution using a developed simple pulse shape analyzer had two peaks, it is possible to separate the GSOs and BGOs for depth of interaction detection. With these results, a high resolution PET with depth of interaction detection capability will be possible using the developed BGO/GSO block detectors.

  17. High-gain effects minimized at the ends of the anodes in position sensitive gas proportional counters for SSM on ASTROSAT

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Babu, V. C.; Ashoka, B. N.; Seetha, S.

    2015-03-01

    The Scanning Sky Monitor (SSM) on ASTROSAT is a position-sensitive gas-filled proportional counter with a wide field of view. The science objective of SSM is to scan the sky to detect and locate transient X-ray sources in the outburst phase. The energy range of operation of SSM is 2.5 to 10 keV. Gas-filled proportional counters are known to have distorted electric fields at the ends of the anodes inside the detector. The electric field and hence the gas gain is different at the ends of the anodes compared to that of the central region. In SSM, the ends of the anode wires were found to have high electric field values and hence high gas gain initially. These effects had to be minimized as they would result in huge charge collection for incidence of highly energetic photons and charged particles, leading to probable discharge effects which would limit the life time of the detector. They also result in undesirable signals, the amplitude of which may not be proportional to the energy of the incident photon. In this paper, we discuss the technique which we use to reduce the field at the ends of the anodes in SSM detectors.

  18. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  19. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  20. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  1. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  2. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  3. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  4. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  5. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  6. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  7. ASSESSMENT OF CAPABILITIES AND RESEARCH NEEDS IN THE AREA OF HEALTH EFFECTS OF LOW-LEVEL IONIZING RADIATION: A JOINT REPORT TO THE CONGRESS BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY, AND THE U.S. NUCLEAR REGULATORY COMMISSION

    EPA Science Inventory

    The report summarizes the capabilities, research needs and on-going projects of the Environmental Protection Agency and the Nuclear Regulatory Commission related to the health effects of low-level ionizing radiation. The statutory authorities of both EPA and NRC related to radiat...

  8. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  9. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  10. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  11. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  12. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  13. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    SciTech Connect

    Tribble, Robert E.; Sobotka, Lee G.; Blackmon, Jeff C.; Bertulani, Carlos A.

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  14. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  15. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  16. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  17. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  18. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  19. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  20. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  1. Multiple-ionization channels in proton-atom collisions

    SciTech Connect

    DuBois, R.D.; Manson, S.T.

    1987-03-01

    A detailed investigation of multiple ionization of He (ionization charge states q = 1,2), Ne (q = 1--3), and Ar and Kr (q = 1--4) is presented for proton impact energies ranging from 10 keV to a few MeV. Absolute cross sections for various ionization pathways have been obtained by combining some new measurements with previously published experimental results and, in certain cases, with existing theoretical information. It is shown how each of these pathways contribute to the various stages of target ionization that are observed after the collision and how these experimentally measured quantities are related to the cross sections for initial inner- and outer-shell vacancy production. Areas where additional data are required or where the existing data are not internally consistent are pointed out. In general, it is shown that the existing data are sufficient to describe the ionization of helium as well as the lower levels of ionization of neon, argon, and krypton. However, for the higher degrees of ionization, particularly for Kr, our understanding is hampered by substantial gaps in the available inner-shell ionization data: both in cross-section and branching-ratio information. Nevertheless, the data are sufficient to indicate the relative importance of the various pathways. For all targets, direct multiple outer-shell cross sections were extracted. Analyzing the energy dependences of these cross sections provided some hints as to how to calculate multiple-ionization cross sections, e.g., information as to where the multiple ionization is dominated by the first-order or by a higher-order term in the perturbation expansion of the proton-target interaction is obtained.

  2. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  3. Exploration of the Dissociative Recombination following DNA ionization to DNA+ due to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Strom, Richard A.; Zimmerly, Andrew T.; Andrianarijaona, Vola M.

    2014-05-01

    It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (Radiat. Res. 157, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA+. More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA+ with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  4. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  5. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  6. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  7. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  8. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  9. IEHI: Ionization Equilibrium for Heavy Ions

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2015-07-01

    IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

  10. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  11. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  12. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  13. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  14. Fundamental study of impact ionization plasma detector

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Muranaga, K.; Sasaki, S.; Nogami, K.; Shibata, H.

    Impact ionization plasma detectors are commonly used for cosmic dust research on board spacecraft. There seems to be no scientific background on their shape, area, and applied high voltage; they are determined empirically. To design a dust detector having large aperture and lightweight to collect dust effectively for the future mission, we are to study fundamental physics of dust impact ionization phenomena. To determine parameters of impact ionization, a simple detector is designed; metal target, two grids, with/without sidewall. Distance from target to grid, grid to grid, applied voltages are variable. Each electrode is connected to charge sensitive preamplifiers, signals are observed with a digital oscilloscope. Experiments using micro-particle accelerators are made at HIT, Univ. Tokyo in Japan, and at MPI-K in Germany. Time difference of two grid signals (plasma expansion velocity), and target signal rise time are determined from observed signals. Preliminary study shows, plasma expansion velocity is dependent on applied high voltage, not dependent on dust velocity. There is a clear correlation between dust particle velocity and target signal rise time. Sidewall effect is to be studied in the near future experiment.

  15. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  16. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  17. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  18. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  19. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  20. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  1. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  2. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  3. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  4. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  5. Salts Are Mostly NOT Ionized.

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    1996-01-01

    Discusses the misconception that salts are completely ionizing in solution, the presence of this error in textbooks, probable origins of the error, covalent bonding and ion pairs, and how to tell students the truth. (MKR)

  6. Measuring Ionization at Extreme Densities

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik; Doeppner, Tilo; Kritcher, Andrea; Bachmann, Benjamin; Fletcher, Luke; Falcone, Roger; Gericke, Dirk; Glenzer, Siegfried; Masters, Nathan; Nora, Ryan; Boehm, Kurt; Divol, Laurent; Landen, Otto; Yi, Austin; Kline, John; Redmer, Ronald; Neumayer, Paul

    2015-11-01

    A precise knowledge of ionization at given temperature and density is crucial in order to properly model compressibility and heat capacity of ICF ablator materials for efficient implosions producing energy gain. Here, we present a new experimental platform to perform spectrally resolved x-ray scattering measurements of ionization, density and temperature in imploding CH or beryllium capsules on the National Ignition Facility. Recording scattered x-rays at 9 keV from a zinc He-alpha plasma source at a scattering angle of 120 degrees, first experiments show strong sensitivity to k-shell ionization, while at the same time constraining density and temperature. This platform will allow for x-ray Thomson scattering studies of dense plasmas with free electron densities up to 1025 cm-3, giving the possibility to investigate effects of continuum lowering and Pauli blocking on the ablator ionization state right before stagnation of the implosion.

  7. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  8. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  9. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  10. Laser ionization mass spectroscopy

    SciTech Connect

    Bernardez, L.J. III; Siekhaus, W.J. )

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument we use is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which we frequency-quadruple to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10{sup {minus}8} and 10{sup {minus}9} Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment. 6 figs., 1 tab.

  11. Laser ionization mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernardez, Luis J., III; Siekhaus, W. J.

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument used is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which was frequency-quadrupled to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10(exp -8) and 10(exp -9) Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment.

  12. Microwave ionization of Rydberg atoms

    SciTech Connect

    Gallagher, T.F.

    1996-12-31

    An atom can be ionized by a static field if the field depresses the potential below the binding energy W, leading to the requirement E = W{sup 2}/4 in atomic units. The atomic units of field and energy are 5.14 {times} 10{sup 9} V/cm and 27.2 eV. The ionization field is often expressed in terms of the principal quantum number n of the state in question as E = 1/16n{sup 4}. In a microwave field with frequency far less than the separation {Delta}W = 1/n{sup 3} between adjacent n states, atoms other than H ionize at the much lower microwave field amplitude of E = 1/3n{sup 5}. This field corresponds to the Inglis-Teller limit, where it is impossible to resolve spectrally adjacent n states due to Stark broadening in a plasma. In H ionization occurs as it does in a static field. The difference exists because the finite sized ionic core of a non hydrogenic atom breaks one of the symmetries found in H. In non hydrogenic atoms the microwave field drives a series of transitions through successively higher n states culminating in ionization. These transitions can be understood in terms of a Landau-Zener picture based on the variation of the energies of the atoms produced by the time varying field or as the resonant multiphoton absorption of the microwave photons. In either case, the atoms make transitions through real intermediate states en route to ionization. With short, four cycle, microwave pulses complete ionization does not occur with fields of E = 1/3n{sup 5}, and population is left in intermediate states. The transition from ionization at fields near E = 1/3n{sup 5} to fields of E = 1/16n{sup 4} occurs when the frequency becomes low enough that the energies of the states vary adiabatically in the temporally varying field.

  13. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  14. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  15. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  16. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  17. Conformational relaxation and water penetration coupled to ionization of internal groups in proteins.

    PubMed

    Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand

    2011-04-28

    Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding. PMID:21428436

  18. Intense laser ionization of transiently aligned CO

    SciTech Connect

    Pinkham, D.; Jones, R.R.

    2005-08-15

    We have measured the ionization rate for CO molecules exposed to intense 30 fsec 780 nm laser pulses as a function of the angle between the molecular and laser polarization axes. Nonionizing, 70 fsec laser pulses are used to coherently prepare the molecules, preferentially aligning them for the strong-field ionization experiments. We find a 2:1 ionization-rate ratio for molecules aligned parallel or perpendicular to the ionizing field.

  19. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  20. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  1. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  2. Ultraviolet femtosecond laser ionization mass spectrometry.

    PubMed

    Imasaka, Totaro

    2008-01-01

    For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry. PMID:18302290

  3. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  4. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  5. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  6. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  7. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  8. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  9. Time-of-flight ERD with a 200 mm2 Si3N4 window gas ionization chamber energy detector

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Laitinen, Mikko; Sajavaara, Timo

    2014-08-01

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight-energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm2 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100-1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface.

  10. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles